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Abstract--By minimizing the cost function, which is the sum of 
the friction power loss and the metabolic energy proportional to 
blood volume, Murray derived an optimal condition for a vas- 
cular bifurcation. Murray's law states that the cube of the radius 
of a parent vessel equals the sum of the cubes of the radii of the 
daughters. We tested Murray's law against our data of pig's 
maximally vasodilated coronary arteriolar blood vessels at bifur- 
cation points in control and hypertensive ventricles. Data were 
obtained from 7 farm pigs, 4 normal controls and 3 with right 
ventricular hypertrophy induced by stenosis of a pulmonary ar- 
tery. Data on coronary arteriolar bifurcations were obtained from 
histological specimens by optical sectioning. The experimental 
results show excellent agreement with Murray's law in control 
and hypertensive hearts. Theoretically, we show that Murray's 
law can be derived alternatively as a consequence of the uniform 
vessel-wall shear strain rate hypothesis and a fluid mechanics 
equation based on conservation of mass and momentum. Con- 
versely, the fluid mechanical equation, together with Murray's 
law, established as an empirical equation of actual measurements 
implies the uniformity of the shear strain rate of the blood at the 
vessel wall throughout the arterioles. The validity of these state- 
ments is discussed. 

Keywords--Heart, Coronary arterioles, Murray's law, Shear 
strain rate, Shear stress, Right ventricular hypertrophy. 

INTRODUCTION 

The pattern of vascular trees has been studied by anat- 
omists for years. In recent years physiologists have bor- 
rowed the methods of geographers and hydrologists to 
describe the bifurcation pattern of vascular trees. In sev- 
eral new articles (11-13) we have introduced the connec- 
tivity matrix and a diameter-defined Strahler system to 
describe the coronary arteries and veins. From our data we 
can present a relationship between the diameters of blood 
vessels at every point of bifurcation. Such relationships 
have been proposed theoretically from the principle of 
minimum work by Murray (l 7) and Oka (19,20), the prin- 
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ciple of optimal design by Rosen (22), the principle of 
minimum blood volume by KamiYa and Togawa (7), and 
the principle of minimum total shear force on the vessel 
wall by Zamir (27,28). The role of shear stress was first 
pointed out by Thoma (24) and verified by Kamiya and 
Togawa (8) by in vivo experiments in dogs. Zamir (27,28) 
deduced that the shear is uniform throughout the arterial 
system according to his principle of minimum total shear 
force. The uniform shear concept has received strong sup- 
port from detailed studies of coronary blood flow by Gid- 
dens et al. (3) and others. The recognition of the physio- 
logical and molecular biologic roles played by shear stress 
acting on the endothelial cells has provided a great impe- 
tus to recent vascular mechanics research, see references 
in Ref. 2. 

Murray (17,18) was the first to arrive at a relationship 
between the diameter of mother and daughter vessels at 
every point of bifurcation. He proposed a cost function 
that is the sum of the rate at which work is done on the 
blood and the metabolic rate of the vessel. The former is 
the product of blood flow rate and pressure drop. The 
latter is assumed to be proportional to the volume of the 
blood. By minimizing the cost function, Murray derived 
an equation that states that the cube of the radius of a 
parent vessel equals the sum of the cubes of the radii of the 
daughters. This relation is known as Murray's law. 

In this study we shall test the validity of Murray's law 
against our measured data on the diameters of maximally 
vasodilated coronary arterioles in the right and left ventri- 
cles of normal pigs and in the right ventricles of right 
ventricular hypertrophy pigs (11,13). We shall then dis- 
cuss the interplay between Murray's law, Murray's cost 
function and minimum principle, and the uniform shear 
strain rate or shear stress hypotheses. 

METHODS 

Measurements 

In Refs. 11 and 13, we have described in detail the 
methods of preparation and measurement of the coronary 
arterioles. Briefly, 7 farm pigs (Yorkshire and Durocs 
crosses) were used in this study. Four of these animals 
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were used as controls and 3 had right ventricular hyper- 
trophy (RVH) induced by a stenosis of the pulmonary 
artery. A Silastic snare stenosed the pulmonary artery until 
the right ventricular systolic pressures were raised to 70-  
80 mm Hg. The snare was then fixed to maintain this 
degree of stenosis. The animals were allowed to recover 
for 5 weeks, during which time the right ventricular pres- 
sure was hypertensive and the muscle hypertrophied. The 
control and hypertrophic pigs of the same age (4-months- 
old) and weight (30.5 -+ 1.3 kg) were then prepared for 
morphometric study. Briefly, the control and RVH hearts 
were KCl-arrested, adenosine-dilated, and perfused with 
freshly catalyzed silicone elastomer through their major 
coronary arteries. The arterial perfusion pressure was set 
initially at 130 mm Hg for 5 min and then lowered and 
maintained at 80 mm Hg until the elastomer was hard- 
ened, in approximately 70--80 min. The hearts were re- 
frigerated in saline for several days to increase the strength 
of the polymer. A total of 12 plugs of myocardial tissue 
were removed from each of the left and right ventricles of 
4 control pigs and a total of 12 plugs from the right ven- 
tricles of 3 RVH pigs. Each plug was approximately 4 x 
4 mm in cross-section and extended from epicardium to 
endocardium. Each plug was mounted on a freezing mi- 
crotome and serially sectioned, transverse to the radial 
direction, to thicknesses of 60 to 80 ~xm from epicardium 
to endocardium. Each section was dehydrated with 100% 
alcohol and cleared with methyl salicylate to render the 
myocardium transparent and the silicone elastomer-filled 
microvasculature visible in light microscopy. The arteri- 
oles, venules, and capillaries were distinguished on the 
basis of their topography (10-12). The topography of the 
arterioles is tree-like, that of venules is root-like, whereas 
the capillaries have cross-connections. Morphometry of 
the arterioles was performed by changing the focal plane 
through the thickness of the histological section (optical 
sectioning). An image-processing system described in 
Ref. 11 was used to measure the dimensions. The arteri- 
oles were viewed, along their longitudinal direction, with 
an inverted light microscope (Olympus, optical resolution 
0.6 txm at • magnification) and displayed on a color 
video monitor (Sony Trinitron) through a television cam- 
era (COHU solid-state camera). The image was grabbed 
by the computer software and analyzed with a digitizing 
system. Several lumen diameter measurements were made 
along each vessel segment to obtain a mean diameter as 
shown in Fig. 1. Figure 2 shows an example of a recon- 
structed arteriolar tree from the left ventricle. 

Analysis 

Mathematically, consider a node connecting three ves- 
sels. We shall use the terms parent vessel and daughter 
vessels to denote the largest and the two smaller vessels 

FIGURE 1. A reconstruction of a left ventricle arteriole show- 
ing the diameters measured along each vessel segment. 

meeting at a node. We assume that blood is an incom- 
pressible Newtonian viscous fluid so that the flow is gov- 
erned by the Navier-Stokes equation. The boundary con- 
dition is no-slip on the vessel wall. We assume that each 
vessel is a straight circular cylindrical tube and that the 
flow is laminar (i.e., not turbulent), uniaxial (i.e., the 
velocity is such that only the axial component is not iden- 
tically zero), and unchanging in the axial direction. The 
last hypothesis is valid in an infinitely long tube but is 
rigorously nonvalid at the junction of three vessels. How- 
ever, this hypothesis was used by Kamiya and Togawa 
(7), Murray (17,18), Oka (19,20), Rosen (22), and Zamir 
(27,28). Under these hypotheses the wall shear stress is 
proportional to flow over radius cube, 

Q = (-rra3/41x) "rw, (1) 

where Q is the rate of volume flow, a is the radius of the 
vessel, ix is the coefficient of viscosity of blood, and "r w is 
the shear stress evaluated at the vessel wall. This relation- 
ship between blood flow and wall shear stress is valid for 

�9 6 5.6 5.6 

1"/.5 5 . !  4.1 7 6 7.1 5.3 

. 1  

16.0  ~ 10,4 5.0 

7.7 61 

14.0 8.5 57 

.7 ~ s . 5  

FIGURE 2. A schematic diagram of an arteriolar bifurcation to 
indicate the notation used, 
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each vessel. The principle of conservation of mass applied 
to the three vessels of a bifurcation gives, for an incom- 
pressible fluid, 

Qo = Ol --- 02, (2) 

where the subscript 0 refers to the mother vessel and 1 and 
2 refer to the daughter vessels. Using Eqs. 1 and 2, we 
obtain the desired relation 

(ao3/ixo) "twO = (a13/1,s 'rwl + (a23/l&2) "l'w2 (3) 

or 

a03~o ----- a13~l + a23~2 (4) 

where "/o, ~/1, ~2, %0, "rwl, %2, and Ix o, Ixl, IX2 refer to the 
values of y, "r w, and Ix at the boundaries of the tubes 0, 1, 
2, respectively. Now, if one introduces the hypothesis that 
the shear strain rate or the coefficients of viscosity and the 
wall shear stresses are the same in all three vessels, then 
Eqs. 3 and 4 become 

ao 3 = a l  3 + a23 (5a) 

or in terms of diameters, 

Do 3 = D13 + D23 (5b) 

This is Murray's Law which can be rewritten as 

0 1 / 0  o = {1/[1 + (02/l)1)3]} 1/3 (6) 

or  

D2/D 0 = {(D2/D1)3/[1 + (D2/D1)3]} 1/3 (7) 

Without loss of generality, we may set D1 /> D2 by def- 
inition. We shall test our experimental data against Eqs. 6 
and 7. 

On the other hand, Murray (17) derived his Eq. 5 by 
minimizing a cost function of flow in a tube of length L: 

Murray's cost function = (8gL/~ra4)Q z + Kb~ra2L, (8) 

in which the first term represents the work done by a 
Poiseuille flow, and the second term represents the meta- 
bolic cost proportional to the volume of the blood in the 
vessel in which K b is a constant. According to Murray's 
minimum principle, for a given vessel of length L and 
flow Q there is an optimal radius a, which can be calcu- 
lated by optimizing Eq. 8 

Q = ('rr2K/16 Ix) 1/2 a 3. (9) 

On substituting Eq. 9 into the law of conservation of mass, 
Eq. 2, we obtain Murray's law (see Ref. 1, p. 87). 

RESULTS 

We have measured the diameters of all coronary arter- 
ies and arterioles of several right and left ventricles of four 
normal pigs and three right ventricular hypertrophic pigs. 

The present right ventricular hypertrophy (RVH) was in- 
duced by stenosis of the pulmonary artery for 5 weeks 
(13). The mean and peak systolic pressures of the fight 
ventricle increased to three to four times the control levels, 
and the right ventricle/left ventricle weight ratio doubled 
over the 5 weeks (13). 

A total of 112 and 144 arteriole trees were measured 
from the left and right ventricles, respectively, of 4 normal 
pigs and a total of 160 arteriole trees from the right ven- 
tricles of 3 RVH pigs. Only those vessels with diameters 
in the range from 9 to 50 p~m are considered in the present 
analysis. An example of an arteriolar tree with nodes hav- 
ing branches lying is this range is shown in Fig. 2 with the 
nodes identified by asterisks. We obtained data from a 
total of 489 and 1,193 arteriolar nodes from the left and 
right ventricles, respectively, of normal pigs and a total of 
1,007 arteriolar nodes from the right ventricles of RVH 
pigs. 

Figures 3A and 3C show the branch diameter ratios 
Dx/D o and D2/Do plotted against the daughter vessels di- 
ameter ratio D2/D ~ for the left ventricles. The data points 
correspond to the experimental measurements, whereas 
the solid curves correspond to the theoretical formulas, 
Eqs. 6 and 7. Figures 3B and 3D show the same data 
averaged over D2/D 1 intervals of 0.05. Similarly, Figs. 
4A-4D show the data for the control right ventricles, 
while Figs. 5A-5D show the corresponding data for the 
hypertensive right ventricles. The theoretical predictions 
agree with the experimental data within the • confi- 
dence limits. 

We may further determine the agreement between the 
theoretical predictions and experimental measurements by 
examining the deviation of  [O13 + D23]/D03, Eq. 5, from 
unity as proposed by Lipowsky (15). Figures 6a-6c show 
the distributions for the various bifurcations of the left and 
right ventricles of normal pigs and right ventricles of RVH 
pigs, respectively. The mean • SE for the left and right 
ventricles of normal pigs are 1.03 • 0.015 and 1.05 • 
0.0096, respectively, and 1.10 • 0.0097 for the right 
ventricles of RVH pigs. 

We conclude that Eqs. 5, 6, and 7, or Murray's law, is 
valid in the statistical sense for the maximally vasodilated 
coronary arterioles in normal right and left ventricles of 
the pig and in the hypertrophic right ventricles of the pigs 
examined. Murray's law, Eq. 5, is then a good empirical 
formula of the experimental data. 

DISCUSSION 

Comparison with Other Works 

Murray's law of cubic dependence of blood flow on 
vessel diameter has been validated by Mayrovitz and Roy 
(16) in the cremaster muscle microvasculature of nor- 
motensive and hypertensive rats. Murray's law of diame- 
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FIGURE 3. (A) Measured data of arteriolar bifurcations of left 
ventricles of normal pigs compared wi th  Eq. 8. A diameter 
rat io of the larger branch to parent vessel (D~/D o) plot ted 
against the diameter ratio of daughter branches, (D2/D~). (B) 
Mean _+ SE of same data averaged over D2/D ~ intervals of 0.05. 
(C) Diameter ratio of the smaller branch to parent vessel (Dz/ 
D o) plotted against (Dz/D1). (D) Mean -+ SE of same data av- 
eraged over Dz/D ~ intervals of 0.05. 

ters has also been tested for arterial bifurcations in the 
retina of man and monkey (29,30), in various parts of the 
cardiovascular system of man, rabbit, and pig (31), and in 
the coronary arteries of man and rat (32,33). The caliber 
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FIGURE 4. (A) Measured data of arteriolar bifurcations of r ight 
ventricles of normal pigs compared wi th  Eq. 8. A diameter 
ratio of the larger branch to parent vessel (D1/D o) plot ted 
against the diameter ratio of daughter branches, (D2/DI). (B) 
Mean -+ SE of same data averaged over D2/D 1 intervals of 0.05. 
(C) Diameter ratio of the smaller branch to parent vessel (Dz/ 
D o) plotted against (D2/D1). (D) Mean _+ SE of same data av- 
eraged over D2/DI intervals of 0.05. 

of vessels examined in these studies were >50 Ixm in 
diameter. Rough validity was shown but the scatter was 
large. It should be noted, however, that Poiseuille's for- 
mula was postulated in the derivation of Murray's law. In 
theory, Poiseuille's formula applies only to steady laminar 
flow, without turbulence and at zero Womersley's num- 
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FIGURE 5. (A) Measured data of arteriolar bifurcations of right 
ventricles of RVH pigs compared with Eq. 8. A diameter ratio 
of the larger branch to parent vessel (D1/Do) plotted against 
the diameter ratio of daughter branches, (D2/D1). (B) Mean _+ 
SE of same data averaged over D2/D 1 intervals of 0.05. (C) 
Diameter ratio of the smaller branch to parent vessel (D2/D o) 
plotted against (Dz/D1). (D) Mean --. SE of same data averaged 
over D=/DI intervals of 0.05. 

bers. These conditions are best approximated in smaller 
vessels. Hence, in our study we have considered only 
those arterial vessels <50 ixm in diameter, see Figs. 3-5. 
It is not surprising that the scatter of data is smaller in our 
study, for vessels <50 Ixm in diameter, than that of pre- 

vious studies, for vessels >50 Ixm in diameter (32,33). 
House and Lipowsky (5) also examined vessels <50 ~xm 
and reported good agreement with Murray's law for the rat 
cremaster muscle microcirculation. However, no data 
were presented since the focus of their study was on the 
microvascular hematocrit and red cell flux. 

Murray's Minimum Cost Function and the Uniform Wall 
Shear Hypothesis 

Murray derived his morphological statement (Murray's 
law) from a theory of minimum cost. We showed that 
Murray's law can be derived alternatively as a conse- 
quence of the uniform vessel wall shear strain rate hypoth- 
esis and a fluid mechanics equation based on conservation 
of mass and momentum. Murray's law, however, implies 
the uniformity of shear stress since on comparing Eq. 1 
with Eq. 9, we obtain 

,r w = (Kblx) 1/2 (10) 

If K b and Ix are the same in all vessels, then % is uniform 
in all vessels. Hence we see when using Poiseuille's for- 
mula in Murray's cost function the minimum principle 
leads to Eqs. 5 and 10, i.e., Murray's law and the unifor- 
mity of shear stress. 

If we don't use the minimum principle but use Poi- 
seuille's law and the hypothesis of uniform shear stress, 
then by introducing the latter into Eq. 3, we obtain Mur- 
ray's law, Eq. 5. Thus Murray's law follows Poiseuille's 
formula, the law of conservation of mass, and the uniform 
shear hypothesis. Conversely, if Murray's law, Eq. 5, is 
accepted as an empirical equation from morphometry, and 
Poiseuille's formula and conservation of mass are ac- 
cepted, then Eq. 4 is valid. The simultaneous validity of 
Eqs. 4 and 5 implies, on eliminating ao 3, that 

(% - ~/0)al 3 = (~2 - ~/o)a2 3- (11) 

This equation can be valid for arbitrary values of a x and a 2 
only if 

% = % = ~/2. (12) 

That is, the strain rate at the wall is uniform in all three 
vessels. Another way to look at this is to think of "y as a 
parameter for each vessel. According to Poiseuille's for- 
mula 7r~/o/4, ~'y1/4, and w~/z/4 are equal to Qo/ao 3, Qa/al 3, 
and QJaz 3, respectively. Using them in Eq. 4 yields Eq. 
2. Using them in Eq. 5 yields 

Qo/'Yo = Qa/% + Q2/~2 �9 (13) 

Equations 13 and 2 can be valid simultaneously for arbi- 
trary Qz/Q1 only if Eq. 12 holds. 

The uniform shear hypothesis has an interesting impli- 
cation for the viscous energy dissipation. The volumetric 
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FIGURE 6. (A) Histogram of the ratio of sum of the cubes of daughter branch diameters to that of the parent branch for the 
arteriolar bifurcations of left ventricles of normal pigs, (B) Histogram of the ratio of sum of the cubes of daughter branch diameters 
to that of the parent branch for the arteriolar bifurcations of right ventricles of normal pigs, (C) Histogram of the ratio of the sum 
of the cubes of daughter branch diameters to that of the parent branch for the arteriolar bifurcations of right ventricles of RVH pigs, 

rate of viscous dissipation at the vessel wall, ~ ,  is the 
product of wall shear stress and strain rate, 

= "rw "Yw. (14) 

However, since the shear stress is the product of fluid 
viscosity and strain rate, Eq. 14 becomes 

= iXyw 2. (15) 

Hence, the viscous energy dissipation along the vessel 
wall is equal to the product of viscosity and the square of 
the wall shear strain rate. This implies uniform energy 
dissipation throughout the arteriolar walls if the fluid vis- 
cosity and wall shear stress are constant. 

The hypothesis of uniform blood shear stress acting on 
the blood vessel wall has been supported by several stud- 
ies. Kamiya and Togawa (8) surgically constructed an 
arteriovenous shunt from the common carotid artery to the 
external jugular vein, caused an increase of blood flow in 
one segment of the artery and a decrease of flow in an- 
other. They then showed that in 6 to 8 months after the 
operation, the segment with increased flow dilated while 
the other segment with decreased flow atrophied to a 
smaller diameter. The diameter of the artery was increased 
or decreased in such a way that the wall shear rate re- 
mained almost constant if the change of flow was within 
four times of the control. Constant shear rate implies con- 
stant shear stress if the viscocity is constant. Thoma (24), 
Liebow (14) and others, on observing embryologic vas- 
cular development and studying arteriovenous fistulas and 
collateral circulation, have shown that increased blood 
flow induces blood vessel dilatation. Rodbard (21) col- 
lected clinical evidence of the same. More recently, Ka- 
miya et al. (9) and Giddens et al. (3) have collected data 
from literature and their own research and concluded that 
the blood arterial shear stress acting on the walls of dog's 
peripheral and coronary arterioles, arteries, and aorta lies 
in the range of 10-20 dynes/cm 2. The narrowness of the 
range of wall shear stress is remarkable. 

The shear strain rate and shear stress on blood vessel 
wall discussed in Refs. 7, 17-20, 22, 24, and 28 are those 

evaluated by Poiseuille's formula pertaining to a cylindri- 
cal tube with a smooth inner wall. The actual inner wall of 
a blood vessel is the endothelium, which is not smooth. 
Taking the bumpiness of the endothelium into account, 
Yamaguchi et al. (26) have shown that the actual shear 
stress on the endothelial cell wall is nonuniform even 
though the flow is uniform. The reason is that the flow has 
no slip on the endothelial cell wall, on which the relative 
velocity is zero; consequently the displacement of the sur- 
face of the wall constitutes a nontrivial pertubation of flow 
in the neighborhood of the wall. Further, the blood shear 
stress is an external load acting on the endothelial cells. A 
uniform external load does not imply a uniformity of the 
stress and strain in the endothelial cells. In fact, the tensile 
stress and shear stress in the endothelial cell membrane 
can be very large and nonuniform even when the external 
loading is small and uniform, as is discussed in Fung and 
Liu (2). 

Other Cost Functions 

Oka (19) generalized Murray's cost function by adding 
another term of metabolic cost proportional to the volume 
of the blood vessel wall. Hence, Murray's modified cost 
function, P, has the form 

p = (81j.L/,rra4)Q2 + Kb .rra2L + Kw 2wahL (16) 

where K w and h are the metabolic constant and thickness 
of the vessel wall, respectively, and are assumed to be 
constant. Optimization of Eq. 16 with respect to radius a 
yields 

Q = (.rrZKb/16 ~1~) 1/2 a3[1 + ot/a] 1/2, 
= hKw/K b. (17) 

On substituting Eq. 17 into the law of conservation of 
mass, Eq. 2, we obtain Oka's (19) modified Murray's law 

ao3[1 + ot/ao] 1/2 = a13[l + or~all 1/2 
+ a23 [1 + a/a2] 1/2. (18) 

The constant ot was determined from our morphometric 
data for various bifurcations. The values of a were found 
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to be negative however, i.e., nonphysical. This can be 
seen analytically when considering some special cases. In 
the asymmetric case where a o = a I > a2, the solution to 
Eq. 18 becomes oL = - a  2. Also, in the symmetric case 
where a a = a 2, the solution to Eq. 18 becomes [ao 6 - 
4a16]/[4al 5 - a05]. It can easily be shown that this ex- 
pression also takes on negative values since a 0 I> a~. 

Next, consider a cost function that is the sum of the 
friction power loss and the metabolic energy proportional 
to vessel wall volume only (i.e., Eq. 16 without the sec- 
ond term). Furthermore, we remove the hypothesis that 
the vessel thickness is a constant, independent of  diame- 
ter. Tomanek et al. (25) have measured wall thicknesses 
for various caliber coronary arterial vessels in the dog. 
Their data can be fitted with a least square fit: h = 
1.06a ~ (R 2 = 9,65) for our diameter range of  interest. 
It can be shown that substitution of  this expression into our 
cost function, followed by optimization, will yield the 
result that the flow is proportional to a 273. This result 
differs from Murray's  law in that the exponent of  radius is 
2.73 instead of  3. Conservation of  mass along a bifurca- 
tion yields a result similar to Murray's  law: Do 273 = 
D12'73 -F 022"73. This relation was also tested against our 
morphological data and was found to be in good agree- 
ment. We also found the mean + SE of  the function 
[O12.73 "+ D22"73]/Do2"73 to be 1.08 -+ 0.015 and 1.09 _+ 

0.0091 for the left and right ventricles of  normal pigs, 
respectively, and 1.14 -+ 0.0089 for the right ventricles of  
RVH pigs. Suwa et al. (23) found the average exponent to 
have a similar value of  2.7 from data obtained from acrylic 
resin arterial casts of  a variety of human organs. Hutchins 
et al. (6) found a mean value for the exponent of  3.2 for 
the left main coronary artery and its branches (diameter 
range of  1.0-3.3 mm) obtained from postmortem human 
coronary arteriograms while cast measurements of sheep 
bronchi diameters yielded a value of  2.98 for the exponent 
(4). Finally, Mayrovitz and Roy (16) found the exponent 
to have a mean value of 3.01 for the rat cremaster muscle 
microvasculature. 

The minimum cost of  principle is a hypothesis (an ax- 
iom). Each expression of  cost function is an additional 
hypothesis. Any extra mathematical or empirical simpli- 
fication of  the cost function is a further additional hypoth- 
esis. Hence, validation is needed when proposing and op- 
timizing cost functions. 
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