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AbstractmThe mechanical properties of lung tissue are impor- 
tant contributors to both the elastic and dissipative properties of 
the entire organ at normal breathing frequencies. A number of 
detailed studies have shown that the stress adaptation in the 
tissue of the lung following a step change in volume is very 
accurately described by the function t -k, for some small positive 
constant k. We applied step increases in length to lung paren- 
chymal strips and found the ensuing stress recovery to be ex- 
tremely accurately described by t - k  over almost 3 decades of 
time, despite the quasi-static stress-length characteristics of the 
strips being highly nonlinear. The corresponding complex im- 
pedance of lung tissue was found to have a magnitude that varied 
inversely with frequency. We note that this is highly reminiscent 
of a phenomenon known as 1/f noise, which has been shown to 
occur ubiquitously throughout the natural world. 1/f noise has 
been postulated to be a reflection of the complexity of the system 
that produces it, something like a central limit theorem for dy- 
namic systems. We have therefore developed the hypothesis that 
the t -k nature of lung tissue stress adaptation follows from the 
fact that lung tissue itself is composed of innumerable compo- 
nents that interact in an extremely rich and varied manner. Thus, 
although the constant k is no doubt determined by the particular 
constituents of the tissue, we postulate that the actual functional 
form of the stress adaptation is not. 

Keywords--Stress adaptation, Fractals, Viscoelasticity, Lung 
tissue impedance 

INTRODUCTION 

The mechanical properties of  lung tissue are important 
contributors to the overall mechanical behavior of  the en- 
tire organ. Indeed, the dissipative (resistive) properties of  
these tissues are known to be the major determinants of  
lung resistance in many species at frequencies within the 
breathing frequency range. Furthermore, lung tissue resis- 
tance decreases markedly as the frequency at which flow 
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is oscillated at the airway opening is increased. This phe- 
nomenon is a consequence of  the fact that lung tissue, like 
all biological soft tissues, is viscoelastic. This was first 
alluded to by Bayliss and Robertson (4) and Mount (23). 
However, the real significance of  viscoelasticity in lung 
tissue has been fully appreciated only since the seminal 
work of Hildebrandt (16,17) and Bachofen (1) on isolated 
cat lungs. More recently, Bates et al. (3) used the alveolar 
capsule technique in dogs to determine that, under normal 
conditions, the apparently multi-compartment behavior of  
the organ is due to tissue viscoelasticity rather than re- 
gional ventilation inhomogeneity, as had been the popular 
conception since the influential model analysis of  Otis et 

al. (26). Ludwig et al. (19) also used the alveolar capsule 
technique to demonstrate the importance of tissue resis- 
tance to the resistance of  the whole lung. Now the litera- 
ture contains numerous studies in humans (e .g . ,  11,32) 
and various animal species (e.g., 12,13,30) demonstrating 
the typical frequency-dependent nature of lung impedance 
that is the hallmark of  a viscoelastic structure. 

Over the normal range of  breathing frequencies, the 
viscoelastic nature of  lung tissue may be conveniently and 
accurately described by the linear viscoelastic solid, or 
Kelvin body (10) shown in Fig. 1A. The single spring 
spanning the structure from top to bottom gives rise to its 
static elastic properties. The series spring and dashpot (to- 
gether known as a Maxwell element) act much like a 
shock absorber on an automobile and produce an expo- 
nential decay in stress (pressure) following a step change 
in strain (volume) as shown in Fig. lB. The Maxwell 
element also enables the system to achieve a balance be- 
tween conservative and dissipative behavior that varies 
with frequency in a manner similar to that observed in 
nature (Fig. 1C). 

Nevertheless, nature is not quite this simple. Detailed 
examination by Hantos et al. of the frequency dependence 
of  mechanical impedance in dog lungs (13,14) and cat 
lungs (15) has shown that the Kelvin body does not de- 
scribe low frequency lung tissue mechanics with perfect 
accuracy. Rather, the real part of  impedance is signifi- 
cantly better described as being hyperbolic with fre- 
quency, instead of  sigmoidal as the Kelvin body predicts 
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(Fig. 1C). Similarly, the product of the imaginary part of 
impedance with angular frequency, commonly called the 
dynamic elastance, is more closely linear with the loga- 
rithm of frequency (f) than sigmoidal with f, as predicted 
by the Kelvin body (Fig. 1C). Hantos e t  a l .  (13) showed 
that their results are in accord with the original observa- 
tions in isolated cat lungs made by Hildebrandt (16,17), 
who found the time course of stress adaptation following 
a step change in lung volume to be almost perfectly linear 
with the logarithm of time (t). Peslin et  al .  (28) found the 
same in rat lungs. Hildebrandt (16), however, also found 
stress adaptation in a rubber balloon to be very well de- 
scribed by a function of the form t-k,  for some positive 
constant k, as is the case for various polymers (8). Re- 
cently Hantos e t  al .  have shown that the frequency domain 
equivalent of the t -k  model is an even better description of 
lung tissue mechanics in  v i v o  in dogs (14) and cats (15) 
than is the model predicting a linear course of stress ad- 
aptation with the logarithm of t, although the two descrip- 
tions are very similar over a wide range of t because 

t -k = e x p [ - k  In(t)] 

= 1 - k In(t) + k 2 ln(t)z/2! - . . . 

+ ( - - 1 )  n k n l n ( t ) " / n !  + . . . 

1 - k In(t) (1) 

provided k ~ 1 (which seems to be the case as k has been 
shown to have values less than 0.1 [14]). 

It is intriguing that such apparently unrelated materials 
as lung tissue, rubber, and polymers can have stress ad- 
aptation time courses that are qualitatively so similar, all 
being extremely accurately described by a function on the 
form t - k .  Consequently, one is compelled to ponder why 
stress adaptation should always demonstrate this particular 
dynamic. In this paper we present further experimental 
evidence for the universality of t k and argue for a theory 
of stress adaptation based on the ensemble behavior of 
systems with many interacting components. We suggest 
that important aspects of the bulk dynamic properties of a 
viscoelastic material reflect the complexity of the system 
per se and may be quite independent of the specific prop- 
erties of the material's components, something like the 
central limit theorem of statistics. 

METHODS 

We prepared and tested degassed strips of dog lung 
parenchyma under uniaxial strain as described by Maksym 
e t  a l .  (20). Briefly, tissue strips of approximately 3 cm 
unstressed length (10) and 0.2 cm 2 in cross section were cut 
from the left lobes of Krebs-Ringer-washed degassed dog 
lungs with the pleura removed from the strips. Each strip 
was mounted horizontally in a uniaxial testing apparatus 

and submerged in a temperature-controlled organ bath. 
One end of the strip was connected to a piezoresistive 
temperature-compensated load cell, and the other to the 
moving arm of a linear motor. The position of the motor 
arm was measured by a linear variable differential trans- 
former (LVDT). A 486 personal computer sampled the 
LVDT signal and implemented a servo-control algorithm 
that gave the motor a flat bandwidth to 20 Hz with a 1 cm 
peak-to-peak displacement and a step response with no 
overshoot. The force measured by the load cell was sam- 
pled at 50 Hz and normalized to the cross-sectional area of 
the tissue strip to give an output in kilopascals. 

Before making measurements, the strips were sub- 
jected to a preconditioning protocol consisting of four con- 
secutive cycles, at constant rate of strain of 2% 1 o �9 sec-  1, 
between rest length and a stress of 5 kPa. After reaching 
5 kPa for the final time, the strips were returned at the 
same strain rate to the desired operating stress. Once the 
desired operating stress was reached, the tissue was held at 
a fixed length for 6 min, after which a sudden step stretch 
(rise time = 10 msec) was applied. The new length was 
maintained for an additional 60 sec, during which the axial 
stress in the tissue was measured. Preconditioning proto- 
cols were repeated prior to each measurement in order to 
standardize the strain history. In this way, we measured 
the stress relaxation in the tissue strips occurring from 
0.02 to 60 sec following 10% length changes from three 
different initial lengths. Curves of the form So + A t  - k  (So 

being the initial stress prior to the step) were fitted to the 
stress relaxation data using SigmaPlot v 4.0 (Jandel Sci- 
entific, Corte Madera, CA). 

We also subjected the same tissue strips to sinusoidal 
oscillations of amplitude equal to 10% of the resting 
length after establishing an operating stress of 1.08 + 0.04 
kPa following preconditioning as described above. Five 
oscillatory cycles were performed at frequencies of 0.03, 
0 .1,0.3,  1, and 3 Hz. Tissue impedance was calculated as 
the complex frequency domain ratio of stress to rate of 
change of strain from the last four cycles. 

RESULTS 

Figure 2 shows an example of the final preconditioning 
stress-stretch curve from a typical lung strip undergoing 
uniaxial stretching at constant velocity during both in- 
creasing length (top curve) and decreasing length (bottom 
curve). The curves are highly nonlinear and demonstrate a 
degree of hysteresis in that the increasing and decreasing 
curves are not identical. 

Figure 3 shows log-log plots of three stress adaptation 
curves from a typical tissue strip obtained by subjecting 
the strip to 10% step changes of resting length from three 
different initial resting lengths. The initial stresses (So) 
prior to each step correspond to three points on the de- 
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FIGURE 1. The elements of the linear viscoelastic solid, or Kelvin body. (A) The Kelvin body. (B) The time domain behavior of the 
Kelvin body. A step increase in strain results in a corresponding immediate increase in stress that then relaxes exponentially to 
a lower level. (C) The frequency domain behavior of the Kelvin body. The overall resistance of the Kelvin body decreases toward 
zero in a sigmoidal fashion with frequency. The initial value of resistance equals that of the dashpot in the Kelvin body. The overall 
elastance of the Kelvin body at zero frequency equals that of the single spring spanning the horizontal bars in the Kelvin body. 
Overall elastance then increases with frequency toward a value at infinity equal to the sum of the two springs in the Kelvin body. 
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FIGURE 2. Stress v e r s u s  stretch in a strip of lung parenchyma subjected to slow cycling at a constant strain rate. 
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FIGURE 3. Three stress recovery curves obtained from the 
same lung parenchymal strip subjected to 10% stretch from 
three different starting lengths. 

scending limb of the stress-stretch curve shown in Fig. 2. 
Also shown in Fig. 3 are the fitted curves of the form S O 
+ At  -k,  which appear as straight lines in the log-log plot. 
Although the values of A for the three curves varied con- 
siderably (0.389, 0.603, and 1.174 kPa, respectively, 
from the lowest to the highest), the values of k were re- 
markably similar (0.0451, 0.0424, and 0.0446, respec- 
tively). The root-mean-square residuals between the three 
sets of relaxation data and their fitted curves were 0.0046, 
0.0028, and 0.0025 kPa, respectively, from the lowest to 
the highest. 

The results shown in Figs. 2 and 3 are typical of those 
from all lung tissue strips studied. Table 1 shows the re- 
suits obtained from five strips, each from a different dog, 
each subjected to the same procedure as that shown in Fig. 
3. Again, it is clear that, despite a marked dependence of 
A on operating stress (So), k is almost perfectly indepen- 
dent of So. 

Figure 4 shows a log-log plot of the magnitude of 

TABLE 1. Parameters of the model S - So = At-* f i t ted to 
stress relaxation data obtained from lung tissue strips 

subjected to 10% step increases in resting length from three 
different initial stresses (So). 

So rms Residual 
(kPa) A (kPa) k (kPa x 10 -a) 

0.6 0.42 _+ 0.05 0.044 -- 0.005 5.2 _+ 3.5 
1.1 0.60 _+ 0.05 0.045 _+ 0.004 3.8 _+ 1.7 
2.1 1.25 +- 0.22 0.046 _+ 0.006 4.9 _+ 2.0 

The values of A and k are means (_+standard deviation) from 
five strips, each taken from a different dog lung. 

tissue strip impedance (average of five strips) versus fre- 
quency together with a straight line fit. From the fitted line 
we estimate the magnitude of tissue strip impedance to be 
a/ i f ,  where a = 0.991 • 0.088 kPa sec-  1 and ot = 0.959 
• 0.022 (mean --- standard deviation estimated from the 
fit). 

DISCUSSION 

Viscoelasticity 

Viscoelasticity is characterized by transient changes in 
stress following sudden changes in strain; indeed, this is 
virtually the definition of viscoelasticity. In general, such 
behavior can be modeled by a collection of Maxwell ele- 
ments having appropriate values of resistance (R) and 
elastance (E). When the R and E values in such a model 
are constant, the phenomenon it represents is known as 
linear viscoelasticity, which alternatively may be charac- 
terized by a distribution of time constants (the ratios of the 
R to the E values). The stress adaptation transient exhib- 
ited by such a model following a step change in strain 
consists of a sum of decaying exponential functions. The 
time constants of the exponentials are precisely those of 
the Maxwell elements, and the coefficients of the expo- 
nentials are proportional to the respective E values. 

It is possible, in principle, to find a distribution of time 
constants B(-r) that corresponds to any conceivable shape 
of stress adaptation transient S(t) so that 

S(t) = fo ~ B('r) e-t/~d"c. (2) 

In particular, when B('r) is hyperbolic in t between two 
limiting values and zero elsewhere, then the system so 
defined has an impedance with a constant phase between 
corresponding frequency limits (10). This corresponds to 
an S(t) that is proportional to t -k  between corresponding 
time limits, for some k > 0. Thus, it is possible to char- 
acterize stress adaptation in terms of linear systems theory 
as a continuous distribution of time constants. Indeed, it 
has often been viewed this way (10), perhaps for no better 
reason than the mathematics of linear systems are tractable 
and well developed. This does not mean, however, that a 
model of linear interconnected compartments accurately 
reflects the underlying physical processes giving rise to 
the stress adaptation. As our data show (Fig. 2), the quasi- 
static stress-strain behavior of lung tissue is markedly 
nonlinear. The same applies to the quasi-static behavior of 
whole lungs (27) and its dynamic behavior when oscillated 
about different mean strains (1,15,17), so that a nonlinear 
model of tissue (e.g., 31,33) must be invoked to describe 
it over a range of strains. 

A particularly significant aspect of our stress adaptation 
data (Fig. 3) is that, despite the highly nonlinear quasi- 
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static stress-length properties of the lung tissue strips, 
their stress recovery time courses showed almost exactly 
the same time dependence over nearly 3 decades of time 
regardless of the length from which they were stretched. 
That is, the stress relaxation curves were almost perfectly 
described by a function of the form A(So)t -k, where A(So) 
is a markedly nonlinear function of initial stress (or tissue 
length) while the time dependence is confined to the factor 
t -k .  This separation of dependencies has been described 
before and is the basis of Fung's quasi-linear theory of 
viscoelasticity (10). Navajas et al. (25) recently applied 
quasi-linear viscoelasticity to the mechanical behavior of 
strips of diaphragm. Despite the success of Fung's theory, 
however, one cannot take the independence of the value of 
k on S O as evidence of linear underlying dynamics, be- 
cause the highly nonlinear forms of both the quasi-static 
stress-strain curve (Fig. 2) and A(So) (Table 1) clearly 
show otherwise. Rather, it stands as further compelling 
evidence of the universality of t -  k as a description of soft 
tissue adaptation. 

Another philosophical problem with the linear dynamic 
viewpoint is that it requires nature to have chosen the same 
special type of time constant distribution (i.e., hyperbolic) 
for its various soft tissues. Why should the widely dispa- 
rate constituents of materials such as lung tissue, poly- 
mers, and rubber have this common property? We feel that 
it is unreasonable to consider a specific type of linear 
model structure for soft tissues and so have looked for a 
more general genesis for soft tissue mechanical behavior. 
In the course of our search we were struck by another 
natural phenomenon whose ubiquity throughout the phys- 
ical world gives it the same character of generality as the 
t -k  form for stress adaptation. This phenomenon is the 
so-called 1/f noise. 

1/f Noise 

Many dynamical systems produce apparently random 
behavior that has a power spectral density which varies 
with the inverse of frequency to some power g, where 0 < 
g < 2. This has come to be known as 1/f noise and has 
been described in many apparently unrelated systems, 
such as electronic components (34), economic data (21), 
and rate of insulin uptake by diabetics (6). Indeed, even 
the loudness and pitch of music exhibit this type of be- 
havior (35)! There have, of course, been attempts to un- 
derstand the basis of 1/f noise in terms of linear systems 
theory (18). On the other hand, Murch and Bates (24) 
recently showed that a system of coupled nonlinear dif- 
ference equations also produces this type of behavior. In 
fact, the precise origin of 1/f noise remains something of 
a mystery. Nevertheless, its widespread occurrence com- 
pels one to speculate that l / f  noise reflects, in the words of 
Keshner (18), "some profound law of nature that applies 

to all nonequilibrium systems." West and Schlesinger 
(36) also decided to "adopt the point of view that l / f  noise 
is the consequence of a system being complex, irrespec- 
tive of the context." 

To see how the 1/f noise phenomenon might bear on 
soft tissue mechanics, consider the function 

P(t) = At  -k,  (3) 

which, as we have already pointed out, seems to describe 
accurately stress adaptation of lung tissue following a step 
change in volume, where P(t) is the pressure applied to 
inflate the lungs (referenced to the preinflation pressure) 
and A and k are positive constants. Considering lung tissue 
for the moment as a linear system, Eq. 3 can be viewed as 
the step response of the system when volume is the input 
and pressure the output. Equivalently, if flow into the 
lungs is taken as the input, then Eq. 3 is the impulse 
response of the system, which makes its Fourier transform 
the complex impedance, Z(D, of the lung tissue. The Fou- 
rier transform of Eq. 3 can be found in standard tables to 
be 

ZOO = A(2/Tr)1/2F(1 - k){cos[(1 - k),rr/2] 
+ isin[(1 - k)~r/2]}/(27rf) l - k ,  (4) 

where F is the Gamma function and i = - 1. Thus if a 
white noise flow signal is applied to the lungs, then the 
resulting P(t) has the character of noise with a power 
spectral density proportional to l / f  2-2k. For 0 < k < 1, 
this falls within the definition of 1/f noise (18). 

The above shows that a system with a transient dy- 
namic response like that of soft tissue will shape a general 
(i.e., white) noise source into I / f  noise, provided that k is 
somewhere in the interval 0 to 1. This condition is met by 
the value of k (mean value 0.045; Table 1) that we found 
in lung tissue strips. It is also strongly supported by our 
measurements of impedance as a function of frequency in 
the strips (Fig. 4), in which we found impedance magni- 
tude to be almost perfectly proportional to f - ' ~ .  Further- 
more, the value of ~x we obtained from the impedance 
measurements (0.959) is very close to that predicted from 
Eq. 4 using the measured value ofk(tx = 1 - k = 0.955). 
Other estimates of k are also compatible with our hypoth- 
esis. For example, Hantos et al. (14) studied the low fre- 
quency impedance of dog lungs and found a mean value 
for k for normal lungs of 0.09. We also fitted Eq. 3 to the 
stress relaxation data of Peslin et al. (28) and found k to be 
about 0.15 (unpublished observations). These findings 
thus led us to wonder whether 1/f noise and general soft 
tissue stress adaptation might be reflections of the same 
underlying physical process. If this were true, we would 
be able to use the time domain expression Eq. 3 and the 
frequency domain 1/f-type relation interchangeably as em- 
pirical descriptions of the same dynamic system, as de- 
picted in Fig. 5. Of course, the question remains as to the 
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FIGURE 4. A log-log plot of tissue strip impedance magnitude 
v e r s u s  oscillation frequency, together with the line of best fit. 
The data points shown are means (-+standard deviation) from 
five strips, each from a different dog. 

identity of the underlying phenomenon that must be com- 
mon to soft tissues and all those myriad systems that pro- 
duce I/f  noise. The only thing that we can think of which 
is common to all these systems is the fact that they are 
complex; that they are composed of innumerable, mutu- 
ally interacting components or subsystems. 

Actually, the link between 1/f noise and power law 
relaxation processes has already been made recently 
through a phenomenon called self-organized criticality 
(SOC) (2,7). SOC occurs in a system of interconnected 
components that are each able to absorb energy up to a 
certain point, beyond which the energy spills out into the 
nearest neighbors. It has been shown that such a system 
naturally organizes itself so that, regardless of where en- 
ergy is put into the system, the spatial and temporal dis- 
tributions of energy within the system assume power law 
forms (7). This results in the temporal dynamics of the 
system being characterized by l / f  noise. 

Time-domain 
~(t) --z~ I 

Fr~equ~ency'~d~ I 
white noise ~ I 

Lung tissue 

(complex dynamic 
system) 

At -k 

- -~  1/f noise 

FIGURE 5. The time/frequency domain duality of lung tissue 
postulated as arising from its inherent dynamic complexity. In 
the time domain an impulse input (flow) gives rise to an out- 
put (pressure) having the form t-*. In the frequency domain a 
white noise input produces a 1/f type output. 

Also highly relevant to our thesis is the fact that a log 
normal probability distribution occurs inevitably as the 
ensemble behavior of many stochastic processes whose 
interactions are conditional upon each other's behavior. 
That is, the overall system behavior results from the prod- 
uct of many individual probabilities, rather than from their 
sum, as is the case for the normal distribution (36). The 
tail of the log normal distribution bears a very close re- 
semblance to an inverse power function, which may ex- 
plain the latter's ubiquity (36). Now consider a model of 
biological soft tissue in which energy is dissipated among 
its component fibers or molecules in a series of cascades 
as the yield stresses of the contact points between compo- 
nents are overcome in a random fashion. That is, each 
yield event alters the stresses in nearby contact points, 
thereby altering the probabilities that the nearby points 
themselves will yield. When a number of contact points 
yield in series, a cascade occurs. Furthermore, if each 
event contributing to a cascade is conditional upon the 
preceding event occurring, then the probability of the en- 
tire cascade occurring is given by the product of the prob- 
abilities of the individual events and so should follow a log 
normal probability distribution. Such an interdependence 
of events eventually leading to a cascade is precisely the 
type of mechanism that has been shown to produce SOC 
(2,7). This suggests that SOC and the log normal proba- 
bility distribution may be governed by the same underly- 
ing phenomenology, namely, the multiplying of many in- 
dependent probability distributions. 

Our hypothesis, then, is that 1/f noise and the t -k form 
of soft tissue stress adaptation are characteristics that arise 
from the ensemble properties of the components of com- 
plex systems. Biological soft tissue is composed of count- 
less molecules, cells, and fibers and thus certainly quali- 
fies as a complex system. The interactions between its 
components are also themselves certain to be complex, 
such as the fiber-gel interactions described by Burlatsky 
and Deutch (5). If a mechanism like SOC is ultimately 
responsible for power law relaxation functions in soft tis- 
sue, then strong nonlinearities at the elemental level are 
also necessary. Indeed, such a mechanism has recently 
been postulated for interacting fibers by Mijailovich et al. 
(22). Although these authors considered only the dynam- 
ics of a single pair of fibers, one can easily imagine that a 
network of them might exhibit the stochastic cascade be- 
havior likely to produce SOC. 

A corollary of our postulate is that the precise natures 
of the individual components and their interactions are not 
important for producing stress adaptation of the type given 
by Eq. 3--all that matters is that there are lots of them and 
that they interact in a sufficiently rich and general manner. 
Indeed, it has even been shown that in the much simpler 
system of a polymer in dilute solution, containing suffi- 
ciently long and coiled macromolecules, the form of the 
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macroscopic relaxation function of the solution does not 
depend on the specific chemical constituents of the poly- 
mer (29). This is not to say, of course, that every macro- 
scopic tissue property should be independent of its com- 
ponents' properties. Presumably, for example, the actual 
value of k in Eq. 3 is very much influenced by the nature 
of the components- -some components produce rapid 
stress adaptation while others adapt slowly. A complete 
understanding of tissue mechanics, however, requires that 
we know which aspects of a tissue's behavior follow di- 
rectly from its components'  individual properties and 
which result solely from their connectedness. 

Implications for Lung Tissue Function 

It is instructive to consider whether it is advantageous 
for lung tissue to behave like a 1/f system (or its t -k  time 
domain equivalent). The cardinal feature of such as sys- 
tem is that it has no resonant frequency or characteristic 
time constant and therefore has no preference for the par- 
ticular frequency range or time scale over which it oper- 
ates. Indeed, it is perhaps more enlightening to consider 
what the implications would be if lung tissue were not like 
this. Since lung tissue must oscillate during breathing, it 
would clearly be problematic if it preferred to do so at a 
particular frequency, because the frequency of breathing 
must vary over nearly two orders of magnitude, or even 
more, across species and under various conditions of rest 
and exercise (a mouse breathes at about 5 Hz whereas a 
resting human may breathe at about 0.1 Hz). Furthermore, 
lung tissue is in intimate contact with a number of other 
biological soft tissues (such as those of the heart, esoph- 
agus, pleural sac, and diaphragm). If  each of these tissues 
had their own different optimal frequencies, there would 
clearly be problems of efficient operation of the entire 
organism unless the frequencies were all carefully 
matched. Since there are no preferred frequencies, how- 
ever, the problem does not arise. Thus, from a functional 
point of view, time/frequency scale invariance allows the 
organ to adapt to a wide range of conditions. Such dy- 
namic tolerance is similar to the geometric tolerance ex- 
hibited by a fractal airway tree to genetic or environmen- 
tally induced errors in its development during growth (37). 

Another implication of Eq. 3 for lung tissue function, 
as pointed out by Hantos et al. (14), is that it automatically 
couples together the dissipative and conservative proper- 
ties of the tissue. This fits with the well-known observa- 
tion that the dissipative and conservative parts of lung 
tissue impedance always seem to change in concert in 
response to various interventions. Fredberg and Stamen- 
ovic (9) formalized this in terms of the structural damping 
hypothesis, in which they defined a quantity "q, termed 
hysteresivity, as 

n = R ( f ) / X f f ) ,  (5) 

where R(f) and X(f) are, respectively, the real (dissipative) 
and imaginary (conservative) parts of impedance. From 
Eq. 4 we get 

~q = cos[(1 - k)~r/2]/sin[(1 - k)~r/2], (6) 

which has a value of 0.14 when k is 0.09, as measured in 
whole lungs by Hantos et al. (14). This is similar to the 
values for -q found by Fredberg and Stamenovic (9) under 
normal conditions. Indeed, other biological soft tissues 
associated with the respiratory system exhibit values of "q 
that are similar, which points to the generality of Eq. 3. 

Conclusions 

In conclusion, we suggest that the qualitative nature of 
stress adaptation of lung tissue (indeed, biological soft 
tissue in general) is determined principally by the fact that 
it is composed of many richly interacting components, 
without particular regard to the nature of the individual 
components themselves. This is a feature that appears to 
be shared by many complex dynamic systems encountered 
in nature. We further suggest that our hypothesis has im- 
portant implications for the current trend in biology of 
examining systems at ever increasing levels of magnifica- 
tion. Although cellular and molecular studies are obvi- 
ously essential for a complete understanding of an entire 
organ, they will not lead to a complete understanding on 
their own. There are important aspects of  an entire organ's 
behavior that arise independently of its components' indi- 
vidual properties. These aspects arise from the connectiv- 
ity between the components and can be understood only 
by considering the organ as an entire system. In other 
words, an organ is more than just the sum of its parts. 
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