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A Fiber Matrix Model for Fluid Flow and Streaming Potentials in the 
Canaliculi of an Osteon 
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Abs t rac t - -A theoretical model is developed to predict the fluid 
shear stress and streaming potential at the surface of osteocytic 
processes in the lacunar-canalicular porosity of an osteon when 
the osteon is subject to mechanical loads that are parallel or 
perpendicular to its axis. The theory developed in Weinbaum et 
al. (3t) for the flow through a proteoglycan matrix in a canalic- 
ulus is employed in a poroelastic model for the osteon. Our 
formulation is a generalization of that of Petrov et al. (17). Our 
model predicts that, in order to satisfy the measured frequency 
dependence of the phase and magnitude of the SGP in macro- 
scopic bone samples, the fiber spacing in the fluid annulus must 
lie in the narrow range 6-7 nm typical of the spacing of GAG 
sidechains along a protein monomer. The model predictions for 
the local SGP profiles in the osteon agree with the experimental 
observations of Starkebaum et al. (24). The theory predicts that 
the pore pressure relaxation time, -r a, for a 150-300 p~m diameter 
osteon with the foregoing matrix structure is approximately 
0.03-0.13 sec, and that the amplitude of the mean fluid shear 
stress on the membrane of the osteocytic process at the mean 
areal radius of the osteon has a maximum at 28 Hz if "r a = 0.06 
sec. This maximum, which is independent of the magnitude of 
the loading, could be important in vivo since the recent experi- 
ments of Turner et al. (28) and McLeod et al. (15) have a peak 
in the strain frequency spectrum between 20 and 30 Hz that also 
appears to be independent of the type (magnitude) of loading. 
Numerical predictions for the amplitude of the average fluid 
shear stress on the osteocytic membrane at the mean areal radius 
of the osteon show that the fluid shear stress associated with the 
low amplitude 20-30 Hz spectral strain component is at least as 
large as the average fluid shear stress associated with the high 
amplitude 1 Hz stride component, although the latter loading is 
an order of magnitude larger, and has a magnitude that lies 
within the middle of the range, 6-30 dynes/cm 2, where fluid 
shear stresses in tissue culture studies with osteoblast monolayers 
have elicited an intracellular Ca + + response (31). The implica- 
tions of these results for intracellular electrical communication 
are discussed. 
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INTRODUCTION 

In this paper,  we develop a theoretical model  to de- 
scribe the fluid flow and the strain-generated potential 
(SGP) in the lacunar-canalicular porosity of  an osteon un- 
der sinusoidal loading that is either perpendicular or par- 
allel to the axis of the osteon. This model  is intended to 
predict the location dependence and magnitude of  the SGP 
that were measured in the pioneering study by Starkebaum 
et al.  (24), in which the detailed measurements of  the SGP 
around individual osteons were correlated with bone mor- 
phology. The model is also used to analyze the structure of  
the proteoglycan matrix in the fluid space surrounding the 
osteocytic process in the canaliculus and to relate this 
structure to the fluid shear stress on the cell membrane of  
the osteocytic process for mechanical loadings that are 
typical of those produced in the long bones of  human and 
animal limbs due to either a cyclic loading of  1,000-2,000 
Ix strain associated with the fundamental 1-2 Hz stride 
frequency or 100-200 Ix strain associated with the high 
frequency 20-30  Hz spectral component  that was ob- 
served during standing or normal gait McLeod et al. (15). 

The experimental study by Starkebaum et al. (24) re- 
vealed several essential features of the osteonal-related 
SGP. It showed that the local osteonal field was 10 to 30 
times greater than the background field associated with the 
SGP across the entire bone specimen, was nearly axisym- 
metric, and had a cusp-like shape that changed direction 
from the tension to the compression side of  the specimen. 
The present model  for predicting these basic features 
draws heavily upon an earlier formulation and numerical 
solution by Petrov et al, (17) and two recent papers by the 
authors, Weinbaum et al.  (31) and Cowin et  al. (5). In 
(17), the electrokinetic theory in Salzstein et  af. (22), 
which was previously developed to predict the phase and 
magnitude of the macroscopic SGP across the entire bone 
specimen, was applied to an individual osteon and a nu- 
merical solution obtained for the boundary value problem 
associated with the pore pressure of this osteonal system. 
This formulation assumed that the SGP was associated 
with the fluid flow in a system of  10 to 35 nm radius pores 
associated with collagen-hydroxyapati te  porosity. 
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The present analysis, while closely resembling the for- 
mulation in Petrov et  al. (17), differs in the description of 
the interstitial fluid flow at the microstructural level and 
the anatomical structures that determine this flow. It as- 
sumes that, in contrast to the view in Salzstein et  al. (22), 
the SGP is generated in the lacunar-canalicular porosity 
and that the fluid resistance arises from hydrodynamic 
forces on the boundaries of the fluid annulus that sur- 
rounds the osteocytic processes, i .e . ,  the cell membrane of 
the osteocytic process, the walls of the canaliculi and, 
most importantly, the proteoglycan matrix associated with 
the membrane surface of the osteocytic process. This new 
view and its physiological implications are described in 
much greater depth in two recent papers by the authors 
(5,31). The essential features as they relate to the present 
study are summarized in the next section. 

BACKGROUND 

Although many investigators have examined various 
aspects of convective flow in the lacunar-canalicular po- 
rosity (9,12,18), the lacunar-canalicular porosity has not 
been associated with the relaxation of the excess pore 
pressure and the SGP until recently. The reason for the 
failure to associate the lacunar canalicular flow with the 
SGPs was that the measured relaxation time for the SGP in 
one mm thick specimens was two orders of magnitude 
larger than estimates of the drainage time for the cana- 
liculi, assuming the latter were simple pores devoid of 
cellular and fiber matrix components. In Weinbaum et  al.  

(31) the Biot and Darcy-Brinkman theories are combined 
to describe the presence of the osteocytic processes and 
gel-like proteoglycan structures in the fluid annulus. In the 
latter study, the fiber spacing parameter, A, was chosen as 
7 nm, a value that is characteristic of the spacing of GAG 
sidechains of a protein monomer if the latter is ordered by 
albumin. For this prescribed value of A, the theory is able 
to predict accurately the measured relaxation time, 1-2 
sec, of the macroscopic SGP. In (5), this theory is ex- 
tended to show that the frequency dependence of the phase 
and magnitude of the SGP that is measured in the 4-point 
bending apparatus experiments of Salzstein et  al. (23) and 
Scott and Korostoff (25) can also be predicted by this new 
model if A = 6-7 nm and q, the ratio of the radius of the 
canaliculus to the radius of the osteocytic process, is ap- 
proximately 3. In the present study, instead of prescribing 
A, we will examine how the relaxation time and phase of 
the SGP in an osteonal system change as the fiber spacing 
( i .e . ,  the characteristic spacing of GAG sidechains) is var- 
ied between 4 and 20 nm. 

An important aspect of the new model in Weinbaum et  

al.  (31) is that it can be used to predict the maximum fluid 
shear stress on the membranes of the osteocytic processes. 
It is shown that, for A = 6-7 nm and q = 2, the maximum 

shear stress on trabecular elements for physiological load- 
ing conditions corresponding to either the 1-2 Hz funda- 
mental stride or high frequency 20-30 Hz spectral strain 
components lie within a range where cultured osteoblast 
monolayers have been demonstrated to release intracellu- 
lar Ca ++ Williams et  al.  (32) and second messengers 
Reich and Frangos (20). Intracellular Ca + § is believed to 
regulate the opening and closing of the hydrophilic pores 
in the gap junction proteins that link the apical ends of 
osteocytic processes of neighboring osteocytes as well as 
osteoblasts at the bone surface, and thus control the intra- 
cellular ionic currents that pass through the gap junction 
proteins of the interconnected cell network. This combi- 
nation of model predictions and physical reasoning has led 
to a new hypothesis in (30) for the cellular level mecha- 
nosensory mechanism by which bone cells sense mechan- 
ical strain and communicate this physical loading to the 
osteoblasts at the bone surface. In the present study, we 
will also examine how the fluid shear stress on the mem- 
branes of the osteocytic processes varies in individual os- 
teons as a function of canalicular geometry and proteogly- 
can matrix structure for physiological loads representative 
of either the fundamental stride or the 20-30 Hz spectral 
strain component. 

MATHEMATICAL FORMULATION 

The presentation of the formulation and solution of the 
single osteon problem addressed in this study is divided 
into four subsections: the flow in the canaliculus, the po- 
roelasticity theory to determine the pore pressure in the 
osteon, the electrokinetic theory to determine the SGP, 
and the calculation of the fluid shear stress on the osteo- 
cytic process. Results derived in (5,17,31) will be used 
directly, where possible, with appropriate references 
given. 

Flow in Canaliculi 

The formulation and solution of the boundary value 
problem for the flow through the gel-like proteoglycan 
structure in the fluid annulus that surrounds the osteocytic 
process in the canaliculus is given in (31). We present 
below only the essential features of this formulation and 
solution required for our single osteon model. In (31), 
three hierarchical levels of permeability are introduced: 
the smallest scale is associated with the open spacing, A, 
between GAG fibers; the intermediate scale is associated 
with thickness of the fluid annulus, b - a;  and the largest 
scale is associated with the Darcy permeability constant 
that appears in the Blot equation governing the fluid pore 
pressure. The smallest scale permeability constant, kp, ap- 
pears in the Darcy-Brickman equation, 

V2 Vp=-z-u+  u, (1) 
Kp 
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for the fluid flow in the fiber filled annulus surrounding 
the osteocytic process. For an ordered matrix of parallel 
fibers, kp is given in Tsay and Weinbaum (28) as 

where a o is the fiber radius and 2a o + A is the fiber 
spacing. Eq. 2 is a reasonable quantitative approximation 
for flow either perpendicular or parallel to the fiber array. 
In (28), it is shown that the effective medium approach 
given by Eq. 1 is highly accurate for slender fibers whose 
length-to-diameter ratio is greater than 5. This criterion is 
well satisfied by the GAG sidechains in a proteoglycan 
matrix. 

The solution of Eq. (1) for the velocity profile in the 
fluid annulus is given as 

u kp Op l, 
where the canalicular axis lies along the osteonal radial 
coordinate r, p is a radial coordinate measured from 0 = 
a, the radius of the osteocytic process, to p = b, the wall 
of the canaliculus and 

Ko(~l) - Ko('y/q) 
A1 = Io(3~/q)Ko('Y) - lo(~)Ko('y/q) ' 

lo('y/q) - lo(~l) 
B1 = io(~l/q)Ko(~ ) _ lo(~l)Ko(,y/q) �9 (4) 

Here K o and I o are modified Bessel functions of zeroth 
order, q = b/a and ~/ = b/X/~pp. The pressure gradient, 
(~p)/(ar) in Eq. (3) is along the axis of the canaliculus and 
is determined by the solution, given in the next subsec- 
tion, of the pore pressure distribution in the osteon. 

Eq. 3 for the velocity u can be written in a much sim- 
pler form for the limiting case when the fiber matrix is 
very dilute, i.e., kp tending to infinity. In this case, Eq. 3 
reduces to the solution of the Stokes equation for the flow 
in an annulus 

a2 OP[P 2 { q 2 -  1~ P 1 
us = 4--~ 0--r a-2 - 1 - ~ 1--]-~q// In , (5) 

where u= is the velocity in the dilute fiber limit. 
The shear stress acting at the inner surface of the an- 

nular region (the exterior surface of the membrane 
of the osteocytic process), is readily obtained from the 
gradient of the velocity profile in Eq. 3 by evaluating it at 
r = a ,  

du b Op 
s(a) = tx -~9 (a) = -~ -&r [alll(~l/q) - B1KI(~/q)] �9 

(6) 

In the dilute fiber limiting case, Eq. 6 reduces to the inner 
wall shear stress for Stokes flow in an annulus, which we 
indicate by s(a)~, 

Ou a ap ( 1 -- q2~ 
s(a)~ = I x o g ( a ) =  ~Orr 1 + ~ ] .  (7) 

From Eqs. 6 and 7, the ratio of the shear stress on the 
osteocytic membrane in the case when the fiber matrix 
components in the annulus are present to the case when 
they are absent is given by 

s(a) 2q Alll(~/q) - B1KI(~/q) 
s ( a ) ~ -  ",/ 1 + (1 - q2)/21nq 

(8) 

The large-scale permeability constant, k, is obtained by 
first integrating Eq. 3 to determine the fluid flux in a 
single annulus and then multiplying this flux by the num- 
ber of canaliculi per unit area, n. The final expression for 
the Darcy large-scale permeability that will appear in 
the diffusion constant, c, in the partial differential equa- 
tion (Eq. 11) governing the diffusion of the pore water 
pressure is 

k _ 
2"rrna4 q3 { 

~3 Al[ll('y/q) - qll(~/)] + Bl[qKl(~l) 

,,/(q2 _ 1)} 
- K ~ ( ~ / / q ) ]  + -2q " (9) 

The results described above are derived in (31). 

Pore Pressure in an Osteon 

The formulation of the boundary value problem to de- 
termine the pore pressure in a single osteon closely fol- 
lows that presented in (17). The simplifying assumptions, 
boundary conditions and governing equations for the pore 
pressure are the same. The present analysis differs from 
this earlier study in three ways. First, the Darcy perme- 
ability, k, is given by effective medium theory for flow in 
the canaliculi, (Eq. 9), as opposed to a simple pore theory. 
Second, closed-form analytic solutions are obtained for 
the pore pressure, in contrast to the earlier work by Petrov 
et al. (17) where the boundary value problem was solved 
numerically. Third, we consider the physiological case 
where an osteon is loaded along its axis in addition to the 
experimental situation of Starkebaum et al. (24), in which 
only the loading transverse to the osteonal axis was con- 
sidered. 

Poroelasticity (Biot theory) is the model used for cal- 
culating the local fluid pressure gradient in the canaliculus 
from the externally applied load. First, we consider 2-D 
loading. For an osteon under sinusoidal loading perpen- 
dicular to the axis of the osteon, the stress field of an 
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infinite plate containing a circular hole of radius, r i, that 
represents the osteonal lumen is given by 

TIck= Trr + TOO = S[1-  (2-~!) cos 20], (10) 

where S = - t r  o - tr sin tot, Timoshenko and Goodier 
(27, p. 91). When the applied stress field given by ex- 
pression (10) is inserted into the partial differential equa- 
tion for the pore pressure (obtained from poroelasticity 
theory), one obtains 

O2p 1 0 p  1 O2p 1 0 p  

O-'-~ + -  + r -&r r z O02 c Ot 

3c costot 1 - cos 20 , (11) 

where B (B = 0.53) is a factor representing the relative 
compressibility of bone matrix and bone water and c is a 
diffusion constant defined by Eq. 19 in Weinbaum et al. 
(31). The expression for c is given by (k/l~) (13 .5GPa) ,  
where the large-scale permeability constant, k, in turn, is 
given in Eq. 9. 

The differential equation (Eq. 11) is rendered dimen- 
sionless by the introduction of the dimensionless vari- 
ables, 

r Ct 3p tOr2o ri 
R = - -  r = ~ ,  P = T = - -  R i = --; 

r o' r o crBT' c ' r o 
(12) 

thus, 

oZP I ( O P ~  1 02P OP 

OR ~ + R \ O R  ] + R 2 0302 OqT 

2R 2 ] 
= - c o s T r  1 - ~ c o s 2 0  . 

(13) 

The first three of the dimensionless quantities introduced 
in Eq. (12) render the length, time, and pressure variables 
dimensionless. The dimensionless frequency parameter, 
T, is the ratio of the characteristic time of relaxation of the 
fluid pore pressure, % = ~ c -  ~, to the characteristic time 
of applied forcing, Tf = to- l; T is small when "r a ~ rf and 
large when the reverse is tree. The characteristic time of 
decay of the fluid pore pressure is related to the large-scale 
permeability constant, k, 

2 2 
ro Poro 

7d -- -- (14) 
C k(13 .5GPa)  ' 

where k is given in Eq. 9. 

The boundary conditions used for the solution of Eq. 13 
are 

t~ 
P =  0, a tR = R i -  , (15a) 

ro 

OP 
- 0 ,  at R = 1. (15b) 

OR 

The boundary condition in Eq. 15b is an approximation 
which requires that the flow through the cement line of 
the osteon at r o be negligible compared with the flow at r i, 
the Haversian canal. The solution of Eq. 13 subject to 
Eq. 15 is 

1 
P = ~ Re{eir~[AoIo(X~zT R) + B o K o ( V ~  R) 

+ (A212(V~ R) + B2K2(V~  R)) cos 201} 

where 

1( 2R/2 ) 
+ ~ 1 - ~ c o s 2 0  sin Tr, (16) 

iKl(X/T-tT) 

Ao io(VirR/)Kl(VT-in + 1~(VT-inKo(X/--/-~Ri) 

u~(VT-a3 
~o ~o(X/-~ R~)K~(X/-i-n + 6(V-i-nKo(X/-~ R,) 

= . 2 2 _ IK2(V~iT) ) A2 -12Ri[~iT (K2(~TRi) R 2 
\ 

/ 

R 2 g l  ('k//i-T) /m2, 

�9 2 2 1 

1 ] 
+ 1, (vT-r) /a2, 

and 

a2 = -K2(X/-~ Ri)ll(VUr) - g~(X/Vlr)12 (X/~ ~i) 

(17a) 

(17b) 

(17c) 

(17d) 

vTf  
_ _ _  (K2(~/~/'T)/2(~/i-T) - 12(V~-IT)K2(~IT gi) ). 

For an osteon under sinusoidal loading parallel to the axis 
of the osteon, the dimensionless governing equation is 

02P 1 [ O P \  1 02p OP 
aR 2 + R ~ ) ~  + R 2 002 0'1" = - c o s  T'r. 

(18) 
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Note that this equation is the same as Eq. 13 without the 
cos20 forcing term. The solution of Eq. 18 subject to Eq. 
15 is a reduced form of Eq. 16 in which the azimuthal 
terms are absent: 

1 
P = ~ Re{eiTr R) + BoKo(~tT R)]} 

1 
+ ~ sin T-r. (19) 

1 

Stress Generated Potential 

From Eq. 4 in Petrov et al. (17), the SGP in the lacu- 
nar-canalicular porosity of an osteon is, using Eqs. 16 and 
19, 

F F crBT crBF 

crfP . . . .  VSGP = --  crf 3 P = (sin T'r 

+ Re{eirr R) + BoKo(N/~ R)]}) 

(20) 

for parallel loading, and 

VsGp = ~ 1 - -~-  cos20 sin T'r 

+ Re{eirr R ) + B o K o ( ~  R) 

+ (aJz(~ir R) + 8#2(V~ R)) cos 20]}] 
_1 

(21) 

for perpendicular loading. In these equations, (rf is the 
electrical conductivity of the solution and F is a compli- 
cated electrokinetic coefficient, which is derived in Cowin 
et al. (5). This expression for F depends on the distribu- 
tion of the ionic current in the fluid annulus surrounding 
the osteocytic process. This current distribution depends 
critically on the relative thickness of the Debye double 
layers and the fiber-induced boundary layers at the walls 
of the annulus. The final expression for F is given by Eq. 
20 in Cowin et al. (5). The solution for VsG P can be made 
dimensionless by introducing the factor, (~BF)/(3crf), 
which has the dimension of volts. The dimensionless 
SGP is 

/ i/crBF\ 

Shear Stress on the Osteocytic Process 

We first determined the magnitude of the maximum 
shear stress on the membrane surface of the osteocytic 
processes in a trabecula during a loading cycle. Eq. 6 
gives the shear stress on the membrane surface of the 

osteocytic processes, and Eqs. 16 and 19 provide the di- 
mensionless pressure distribution for an osteon subject to 
transverse and parallel loading, respectively. In either 
case, the solution for the pressure has a maximum gradient 
at the osteonal inner boundary at R = Ri; thus, the shear 
stress on the osteocytic processes will be greatest at this 
osteonal surface. We denote the maximum shear stress 
that occurs during the course of one temporal cycle on a 
membrane surface located at the position (R i, 0) in the 
osteon as s(a)max , which from Eqs. (6), (16) or (19) is 
given by 

crBb 
s(a)ma~ = max[3-~r ~ (Alll(7/q) 

-- B1K1(7/q))Re{W eirr (23) 

where 

W = U + iV = [Aolt(X~tTRi)- BoKI(N~T 8 i ) ]N /~  

for parallel loading, and 

W = U + iV = [ao/l(X iT Ri) - BoKI(~'iT Ri) 

-}- (A212'(~TRi) -~ B2K 2' (~lIT Ri))cos 20]~ iT  

(24) 

4iR~ 
R3 cos 20 (25) 

for perpendicular loading. From Eq. 23, the shear stress 
will achieve its maximum value when Re{We iTr is at a 
maximum. The time, ,r, in the loading cycle when this 
occurs is given by 

1 V 
'rmax T tan- 1~ (26) 

where U and V are obtained from Eqs. 24 or 25. Using Eq. 
26, one can show that the maximum value of Re{We ire} is 
simply N/-U2 + V 2. 

In Weinbaum et al. (31), the fluid shear stress excita- 
tion hypothesis was explored using the maximum shear 
stress on a trabecula as the criterion for excitation. This is 
equivalent to results in Eqs. 23 to 26 for the osteon. For 
reasons which will be described at greater length in the 
Discussion, a physiologically more meaningful criterion 
might be the average shear stress at the mean areal radius, 
r m. This radius is the radius that divides the annular region 
between the lumen, r i, and the cement line, r o, of the 
osteon into equal annular areas, 

~ 2 + r ~  ~ l + R 2  
r~ - roRm. (27) rm = 2 - ro 2 

If we denote the time-averaged magnitude of the fluid 
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shear stress on the membrane of the osteocytic process 
at the mean areal radius R m by s(a) . . . . .  then from Eqs. 6 
and 19, 

2 crBb 
T fo 7 is(a)[R=Rm d'r [Al l l (7 /q)  s(a)m,av 7r "IT 37ro 

(28) 
- B1KI(7/q)] IW[m, 

where W is given by Eqs. (24) and (25) for parallel and 
transverse loading, respectively. 

PARAMETER VALUES 

The selection of the values of parameters a o, a, n, q, 
and "r a is discussed in detail in Cowin et al. (5) where the 
sensitivity of the solutions for the phase and magnitude of 
the SGP across the entire bone specimen to the key input 
parameters, q, n, and a is compared with the experimental 
measurements in Salzstein and Pollack (23) and Scott and 
Korostoff (25). In Cowin et al. (5), it was shown that 
close agreement with experiment could be obtained for 
both the phase and magnitude when q was approximately 
2.0, ~a = 1.42 sec. for a 1 mm thick specimen, and n = 
20/(30 Ixm) 2 = 0.022 ixm -2 assuming that the radius of 
the osteocytic process, a = 100 nm, the fiber radius, a o 
= 1.0 nm, and A = 6 nm. The values of a and a o are well 
accepted values in the literature. The predicted values of q 
and n both fall within the range 1.5 ~< q ~< 3 and 0.01 ~< 
n ~< 0.025 Ixm-z,  respectively, observed in morphometric 
studies. 

The selection of A requires an assumption as to the 
structure of the GAG sidechains and a knowledge of 
the proteoglycans in the fluid annulus surrounding the 
osteocytic process. Whereas the collagen fibrils and pro- 
teoglycan components of  the mineralized collagen- 
hydroxyapatite have been characterized (see Robey et al. 
[21]), the gel-like components of the fluid annulus that 
diffusely stain for horseradish peroxidase Doty et al. (6), 
osmium tetroxide Wasserman and Yaeger (30), and mi- 
croperoxidase Tanaka and Sakamo (26) have yet to be 
either isolated or identified. The selection of A is thus the 
largest uncertainty in the model. However, reasonable 
bounds and a most likely estimate for A can be established 
by comparison with the matrix in other tissues. 

In Weinbaum et al. (30) and Cowin et al. (5), we 
assumed that since albumin (effective diameter, 7 nm) was 
abundant in the plasma-derived bone fluid, this molecule 
ordered the GAG and formed a molecular sieve with A = 
6-7 nm, as first proposed by Michel (16) for the surface 
glycocalyx of capillary endothelial cells perfused in 
plasma. Strong evidence in support of this hypothesis for 
capillary endothelium was recently obtained by Adamson 
and Clough (1) in which it was demonstrated that ferritin, 
a nearly spherical molecule 10 nm in diameter could not 

penetrate the ordered GAG of the surface proteoglycan 
layer if albumin were present in the perfusate. In contrast, 
in the absence of plasma proteins (pure Ringer perfusate), 
this layer was clumped and highly permeable to ferritin. In 
the present study, we will let A vary between 4 nm (the 
closest spacing suggested for the GAG in cartilage pro- 
teoglycan Buschman et al. [4]) and 20 nm (the largest 
value that has been suggested for the spacing of the chon- 
droitan sulfate [CS] sidechains of the proteoglycan mono- 
mers of this common proteoglycan) and examine the effect 
of A on both pore pressure relaxation time and osteocytic 
membrane shear stress. In the mineralized bone compart- 
ment, a large CS proteoglycan (versican) is replaced by 
biglycan and decorin as mineralization proceeds Roby et 
al. (21). It is not presently known whether this replace- 
ment also occurs outside the mineralized region. This 
point is returned to in the Discussion. 

RESULTS 

The fluid shear stress, s(a),  on the membrane of the 
osteocytic process is a function of the fiber matrix param- 
eters a o and A and the geometry of the canaliculus. The 
ratio, s(a)/s(a)~ given by Eq. 8 is plotted as a function of 
A for several values of q in the physiological range 2-3 in 
Fig. 1. One observes that for q > 2.5, even the most dilute 
matrix considered, A = 20 nm, leads to a decrease of one 
order of magnitude in shear stress from the case when no 
matrix is present. There is typically a more than five-fold 
decrease in s(a)/s(a)~ as the spacing of the matrix is de- 
creased from A = 20 nm to the most likely estimate, A = 
6--7 nm, in our earlier studies, and the sensitivity to q in 

8 

0.300 

0.200 

f i t  
q=@ 

0. I00 
0,=8.3 

o.ooo J I I ) I J I [ I I r I I I I 
4.000 8.000 12.000 16,000 20.000 

A(nm) 

FIGURE 1. The shear stress ratio s(a)ls(a)=, Equat ion (8), plot- 
ted against the fiber spacing parameter  A for q = 2, 2.3, 2.5 
and 3. a o = 1.0 nm and a = 100 nm,  Note  this ratio is inde- 
pendent  of the loading (pore pressure gradient) .  
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the most likely physiological range, 2 < q < 2.5, is small. 
The theoretical prediction made in Eq. 14 for the char- 

acteristic time of  decay of  the pore pressure in the osteon 
"r d is shown in Fig. 2 for the same values of  q and A as 
appear in Fig. 1. There is an order of  magnitude decrease 
in "r d as A is increased from 6 to 20 nm. The characteristic 
relaxation time for an osteon 200 txm in diameter is of the 
order 0.02 to 0.06 sec for A = 6 nm. This characteristic 
time is a factor of  25 smaller than the decay time for the 
macroscopic SGP across the entire 1 mm thick specimen 
(the "r d for the 1 mm thick specimen is obtained by replac- 
ing r o in Eq. 14 by the specimen half thickness, d). 

The variation of  the dimensionless peak SGP of an 
osteon along radii at 0 equal to 0 and -rr/2 is shown in Fig. 
3 for three loading frequencies, to = 1 Hz and to = 20 
Hz, typical of  the stride and the high frequency spectral 
response observed in Turner et al. (29) and McLeod et al. 

(15), and also for to = 100 Hz. This calculation, based on 
Eqs. 21 and 22, assumes that q = 2, A = 6 nm and that 
r i = 27 Ixm. It follows from Fig. 2 that "r a = 0.057 sec for 
q = 2 and A = 6 nm. One observes that there is only a 
relatively small azimuthal asymmetry in the SGP, as noted 
previously, in the numerical solution of  Petrov et al. (17) 
and the measurements of  Starkebaum et al. (24) except at 
very high frequency, to = 100 Hz. The important obser- 
vation inFig .  3 is that there is a large increase inmagni-  
tude of  Vsc P when to > 1 Hz, that the maximum VsG P is 
achieved for to of  order 100 Hz and that to = 20 Hz is near 
the center of  this large increase in the stress generated 
potential. This result gives rise to a maximum in the pres- 
sure gradient and fluid shear stress at the mean areal radius 
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FIGURE 2. The characteristic draining t ime Cd plotted as a 
function of fiber spacing ~ for q = 2, 2.3, 2.5, and 3. The values 
for the parameters employed were  n = 20/(30 i ,m) z, ao = 1.0 
nm, a = 100 nm, and i �9 was  taken to be the viscosity of water .  
This is a plot of equation (14) for Cd using expression (2) for kp. 
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FIGURE 3. Plot of the peak solution profiles for VSGP, obtained 
from Eq. 22, as a function of the dimensionless radial distance 
R. ~d = 0.057 sec for all curves. Curves 1, 3, and 5 are for 0 = 
0 (horizontal axis) and curves 2, 4, and 6 are for 0 = ~r/2 (ver- 
tical axis). Curves 1 and 2, 3 and 4, and 5 and 6 are for I Hz, 20 
Hz, and 100 Hz, respectively. 

of the osteon in the 20-30 Hz range of  the frequency 
spectrum. This will be discussed later. 

The radial P = Vscp /T  profiles are plotted in Fig. 4a 
for co = 1 Hz and Fig. 4b for to = 20 Hz at 45 ~ increments 
in the phase of  the loading for parallel loading and show 
the experimentally observed reversal in the cusp-like 
shape of  the SGP from the compression to the tension 
side. Note that P = Vsap/T  has been plotted as the ordi- 
nate since the amplitude of this scaled pressure is of  O(1) 
for all frequencies, in contrast to Vscp whose magnitude 
changes dramatically for frequencies greater than 1 Hz as 
observed in Fig. 3. At to = 1 Hz the phase of  the loading 
is nearly 90 ~ out of phase with the maximum in the Vs~p/T 
whereas at to = 20 Hz this phase has shifted - 7 0  ~ and the 
maximum Vsap profile lags the applied loading by only 
20 ~ The peak SGP profile in Fig. 3 for to = 20 Hz is 
therefore lies above the 45 ~ profile for V s c p / T  in Fig. 4b. 

Inspection of  the dimensionless solutions Eqs. 20 and 
21 for the SGP and the coefficients that appear in these 
solutions reveals that for a given osteonal geometry the 
dimensionless solutions for VsG e, Eq. 22, depend on only 
a single parameter, T, the dimensionless frequency param- 
eter defined in Eq. 12. This frequency parameter, T = 
to'ra, is a function of  the size of  the osteon r o and the 
canalicular geometry and matrix parameters, q and A, that 
appear in the effective large-scale Darcy permeability co- 
efficient, k, in Eq. 9. k and r o are the two parameters that 
determine "r a, see Eq. 14. At any given position within the 
osteon, one could plot the shift in the phase angle of  the 
SGP as a function of the dimensionless frequency param- 
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eter, T, but this would not easily show the sensitivity of  
the results to variations in the parameters that determine a- a 
which are shown in Fig. 2. 

We have thus plotted in Fig. 5 the frequency response 
of  the phase for three values of  "rd; 0.032, 0.057, and 
0.128 sec. For q = 2 and A = 6 nm, these values of  "r d 
correspond to osteons whose diameter increases from 150 
to 200 to 300 Ixm. Using the results in Fig. 2, one can also 
hold ro fixed but vary q and A to obtain the three pre- 
scribed values of  r d. For the osteon 200 Ixm in diameter 
the shift in phase is shown along the vertical line 0 = 7r/2 
at both r; and r m for transverse loading. One observes that 
the phase varies very little with position within the osteon. 
Thus for osteons of  150 and 300 Ixm in diameter we have 
plotted the frequency response only at r, n for the case of  
parallel loading where the 0 dependence is not present. 
Note that there is little shift in phase angle in all cases for 
loading frequencies less than 1 Hz and that the phase angle 
is approximately 20 ~ for (o = 20 Hz for the 200 txm 
diameter osteon as observed in Fig. 4b. 

The variation of  the maximum fluid shear stress s(a)max 
(Curves 1 and 2) and the average fluid stress at the mean 
areal radius o f  the osteon s(a) . . . .  (Curves 3 and 4) with 
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FIGURE 5. A plot of the phase angle of ~fSGP, obtained for 
parallel loading from Eq. (22) against frequency at ,r d = 0.032 
sec (Curve 1), 0.057 sec (Curves 2 and 3) and 0.128 sec (Curve 
4). This corresponds to osteonal outer radii r o of 75, 100, and 
150 Fm, respectively, if q = 2 and & = 6 nm. Curves 1, 2, and 
4 are plotted at r = r m. Curve 3 is plotted at �9 = �9 

fiber spacing is shown in Fig. 6 where a, a o, q, A, and ro 
have the same values as Fig. 3. Curves 2 and 4 are for (o 
= 1 Hz and Curves 1 and 3 for 20 Hz. The maximum 
shear stress always occurs at the luminal surface of  the 
osteon, where the pressure or potential field gradient is 
maximum as is evident from Fig. 3. It is important to point 
out that the applied cyclic load for the 20 Hz high fre- 
quency spectral strain is a factor of  ten lower than the load 
of  (~ = 20 M Pa for the 1 Hz loading due to stride. This 
ratio is typical of  the measurements in McLeod et al. (15) 
where the high frequency 20-30 Hz spectral strain com- 
ponent during standing or gait was 5 to 15% that of  the 
fundamental mode due to stride. Despite this order of  
magnitude difference in amplitude one observes that the 
high frequency spectral component produces a maximum 
shear stress at the osteonal luminal border and an average 
fluid shear stress at the mean areal radius which is roughly 
50% greater than the fundamental mode due to stride for 
all fiber spacings or equivalently, all values of  "r a. Similar 
results were observed in (31) for the maximum fluid shear 
stress at the surface o f  a simplified one-dimensional model 
for a plate-like trabecular element in combined bending 
and axial load. 

The variation of s(a)max and s(a)m,a v with frequency is 
shown in Fig. 7. The curves all assume a constant applied 
load amplitude of  o- = 20 M Pa typical of  the measured 
strains for the 1-2 Hz spectral component McLeod et al. 
(15). Curves 1, 2, and 3 for  s(a)m ~ ,  which indicate the 
maximum shear stress on the membranes of  the osteocytic 
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FIGURE 7. A plot of the average shear stress s(a)m,av at r = r m 
and the max imum shear stress s(a)m. . at r = ri on the mem-  
brane surface of the osteocytic processes, as a function of 
frequency r The Curves 1, 2, and 3 are for s(a)max and are 
plot ted for parallel loading, Curve 2, and transverse loading, 
Curve I (0 = w/2) and Curve 3 (0 = 0). The average shear stress 
s(a)m,av is shown in Curves 4, 5, and 6 which correspond to "i'd 
= 0.032, 0.057, and 0.128 sec, or equivalently, osteonal diam- 
eters of 200, 300, and 400 ixm, respectively, if q = 2 and ~ = 6 
r i m .  

processes at the boundary with the osteonal canal, have 
been plotted for both parallel and transverse loading as- 
suming that "r d = 0.057 sec. If we require that q = 2 and 
A = 6 nm, as described previously in our discussion of  
parameter values, r o = 100 p,m. One observes that for to 
> 10 Hz there is a significant azimuthal asymmetry in 
s(a)max as 0 is increased from 0 ~ Curve 3, to 90 ~ Curve 
1, for the transverse loading and these results bracket 
Curve 2 for parallel loading. Curves 4, 5 and 6 for s(a)  . . . .  

have been plotted only for parallel loading, but for three 
values of "r a, 0.032, 0.057 and 0.128 sec corresponding to 
150, 200, and 300 ixm diameter osteons if q = 2 and A = 
6 nm. In contrast to the curves for s(a)ma ~, which show a 
rapid monotonic increase in fluid shear stress above 1 Hz, 
the curves for s(a)  . . . .  show a rapid rise starting at 1 Hz, 
but then a monotonic decay at very high frequencies. This 
produces a maximum average shear stress at the mean 
areal radius of  the osteon whose location shifts to the left 
in the figure as the size of the osteon or "r d increases. For 
T a = 0.57 sec the maximum is at 28 Hz. The origin of  this 
maximum can be deduced from Fig. 3, where the profiles 
of VsGp, or equivalently the pore pressure, are plotted. At 
to = 1 Hz, T ~ 1 and there is enough time for the pore 
pressure to be relieved by fluid drainage into the Haver- 
sian canal. Thus Vscp r 1. For to >> 1 Hz, or T >> 1, VVsG p 
asymptotes to a maximum value and only the fluid near 
the Haversian canal has a chance to drain. There is rela- 
tively little fluid movement in the interior regions of the 
osteon. The maximum response is thus achieved for T of 
O(1). We believe this intriguing behavior has important 
physiological implications that are related to both the 20-  
30 Hz peak strain component observed in the experiments 
of McLeod et al .  (15) and the mechanosensory transduc- 
tion mechanism proposed in Weinbaum et al .  (31) (see 
Discussion). 

DISCUSSION 

A fundamental premise in our model is that the relax- 
ation of excess pore pressure in an individual osteon and 
the associated SGP occur in the lacunar-canalicular poros- 
ity as opposed to pores in the mineralized collagen- 
hydroxyapatite, as concluded in Salzstein et al .  (22) and 
Petrov et  al .  (17). The same arguments advanced in 
Cowin et al .  (5) for the relaxation of  the pore pressure and 
the associated SGP in the macroscopic bone sample also 
apply at the local level of a single osteon. The experiments 
by Tanaka and Sakano (26), which examine the penetra- 
tion of microperoxidase MP (2 nm diameter) in the alve- 
olar bone of  five-day-old rats, provide convincing evi- 
dence for the lacunar-canalicular porosity being the site of  
the streaming current associated with the SGP. The elec- 
tron micrographs in this study show a clear demarcation of  
MP at the interface between the mineralized and unmin- 
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eralized matrix with the MP being confined entirely to the 
lacunar-canalicular porosity and narrow regions of bone 
matrix bordering this porosity that still had not undergone 
mineralization. Since the size of the pores predicted in 
Salzstein e t  al .  (22) (10 to 35 nm radius with an average 
of 16 nm) is far greater than the effective radius of the MP 
molecule (1 nm) hydrophilic pores in the mineralized ma- 
trix of these dimensions would have easily permitted the 
passage of this tracer molecule. 

Figure 2 provides important insight into the likely 
structure of the proteoglycan matrix in the fluid annulus 
that surrounds the osteocytic process. Eq. 14 for "r d is the 
same expression derived in Cowin et  al .  (5) to determine 
the pore pressure relaxation time for the macroscopic 
SGP, except that the characteristic length in the latter 
study was the half thickness (0.5 ram) of the entire bone 
specimen. The theoretical expression, Eq. 23 in (5) for 
VsG P, which is used to curve fit data of Scott and Korost- 
off (25) for the change in phase of the SGP with fre- 
quency, depends only on the parameter ~r d in contrast to 
Eq. 20 for the single osteon where the phase depends not 
only on T but also on the osteonal geometry. A very close 
fit to the data in Scott and Korostoff (25) could be ob- 
tained in Cowin et  al .  (5) for rd = 1.42 sec. This char- 
acteristic relaxation time was achieved by choosing A = 
6 nm and finding a compatible q that allowed a best fit for 
the change in magnitude of the SGP with frequency. This 
best fit was achieved for q = 2. "r d for the single osteon for 
this combination of q and A is, from Fig. 2, 0.057 sec if 
r o = 100 txm. However, Fig. 2 shows that there are other 
combinations of q and A that would allow ~a to be 0.057 
sec for a 200 txm diameter osteon or 1.42 sec for the 
macroscopic bone specimen. Anatomical studies indicate 
that q varies between 1.5 and 3, whereas the theoretical 
model in (5) predicts an even narrower range of q between 
2 and 2.3, if one were also to obtain a reasonable curve fit 
for the variation of the magnitude of the experimentally 
measured SGP with loading frequency. For the anatomi- 
cally observed range of 2 ~< q ~< 3, A is constrained to the 
range between 3.8 and 6.0 nm, whereas for the more 
limited range of q, 2 to 2.3, predicted by the theory in (5), 
A is confined to the range approximately between 5 and 6 
nm. The important point is that there is only a rather 
limited range of fiber spacings that are consistent with 
measured data for the frequency dependence of the SGP 
and anatomical observations for q. 

The most likely range of A just predicted, 5-6 nm, 
corresponds roughly to the spacing of GAG sidechains in 
the proteoglycan matrix of other tissues. For example, our 
predicted A is comparable to the spacing of the GAG in 
nasal cartilage proteoglycan (chondroitan sulfate), which 
has been estimated to vary between 7 and 9 nm (3), and is 
also compatible with the observations of Adamson and 
Clough (1) for the size of the molecular sieve that limits 

the passage of ferritin (10 nm) through endothelial surface 
matrix. A related question is whether the matrix will fill 
the entire fluid annulus. The recent three-dimensional 
quick freeze-etch electron micrographs of ear cartilage re- 
veal a continuity and attachment of the proteoglycan core 
protein to chondrocyte membrane, Mecham and Heuser 
(1990). A similar membrane attachment is observed for 
subendothelial matrix in arteries, Frank and Fogelman 
(1989). In both cases the proteoglycan has been identified 
as chondroitan sulfate (CS), where the length of the pro- 
tein monomer is typically 300-400 nm. This type of core 
protein should easily fill the fluid annulus whose gap is 
only of the order of 100 nm. 

Although the proteoglycans at the edge of the lacunar- 
canalicular border have been identified, the matrix in the 
fluid space of the canaliculus has not yet been character- 
ized. From an evolutionary viewpoint, there is a possibil- 
ity that this matrix may be a form of chondroitan sulfate. 
In the initial stages of bone formation, a large CS proteo- 
glycan (versican) is found in the matrix surrounding os- 
teoblasts and osteocytes. As mineralization proceeds, in 

v ivo  studies have shown a rapid migration to the mineral- 
ization front of a smaller mobile proteoglycan, biglycan 
(19), which is present in high concentration surrounding 
osteocytic lacunae (2). Deeper regions of the mineralized 
matrix contain primarily decorin (21). This suggests that 
in the fluid region surrounding the osteocytes, where no 
mineralization has occurred, no proteoglycan substitution 
has taken place and the primary proteoglycan that remains 
is the versican that was laid down initially. It is suggested 
in (21) that mineralization and proteoglycan substitution is 
prevented by calcium binding serum proteins, matrix pro- 
teins and crystal poisons that must first be removed for 
mineralization to proceed. 

The only cell membranes where fluid shear stresses 
have been accurately measured or estimated on the basis 
of velocity measurements are vascular endothelial cells. 
Kamiya et  al .  (l 1) have shown that the average shear 
stress on the membranes of these cells is 15 to 20 dynes/ 
cm 2 from the largest nutrient arteries to the arterial capil- 
laries. Several investigators have performed experiments 
which have shown that when the flow into vessels is either 
increased or decreased there is an adaptive remodeling of 
the blood vessels to restore the fluid shear stress to the 
average range just cited (10,13); this adaptive response is 
lost if the endothelium is removed. The prediction of the 
maximum fluid shear stress on the membranes of the os- 
teocytic processes at osteonal canal due to the 20--30 Hz 
spectral component is compatible with this measured 
range of shear stress for vascular endothelial remodeling. 
If we confine A to 6-7 nm for the reasons cited above, we 
can conclude from Fig. 6 that the maximum stress on the 
osteocytic membranes at r -- r i for either the 1 Hz, 1,000 
tx strain or the 20-30 Hz, 100 Ix strain component falls in 
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the range 16 to 25 dynes/cm 2. One also observes from Fig. 
1 that the shear stress would be more than an order of 
magnitude higher if matrix were not present in the fluid 
annulus. It is thus tempting to hypothesize that the fiber 
spacing of the matrix and the geometry of the canaliculus 
are coupled by design to maintain a shear stress on the 
osteocytic membranes, which is in approximately the 
same range as for vascular endothelium. This suggests that 
the osteocytes may release chemical substances that con- 
trol the location of the mineralization front in a manner 
compatible with the shear stress at their surface. 

The recent study by McLeod and Rubin (15) suggests 
that the strains associated with the 20-30 Hz loadings 
maintain bone mass at strain levels one order of magnitude 
lower than the strain levels necessary to maintain bone 
mass at 1 Hz. The principal controversy is whether these 
20-30 Hz spectral components are due to muscular con- 
tractions. Turner e t  a l .  (29) maintain that the 25 Hz spec- 
tral component is also present during non-weight bearing 
conditions although, according to their experiments, the 
strain energy associated with the 20-30 Hz spectral com- 
ponents is increased twofold during locomotion. How- 
ever, the predictions of our model and the validity of our 
fluid shear excitation hypothesis do not depend on the 
resolution of this controversy. Figure 6 shows that, what- 
ever the origin of the low amplitude (100-200 tx strain) 
20-30 Hz strain component, the membrane shear stresses 
that they produce are at least as large as those produced by 
the high amplitude (1,000-2,000 p~ strain) 1 Hz low fre- 
quency stride component. Similar predictions for the rel- 
ative magnitude of the fluid shear stresses induced by the 
20-30 Hz and fundamental 1 Hz stride component were 
predicted for trabecular bone in (31). 

If the 20-30 Hz spectral strain component is due to 
muscular contractions and these contractions are respon- 
sible for the maintenance of bone mass, as proposed in 
(15), then one expects that an intracellular biochemical 
response must be triggered in which osteocytes in the in- 
terior of the osteon first detect the mechanical load and are 
then able to communicate this information to the bone 
forming osteoblasts. The fluid shear stress excitation hy- 
pothesis proposed in (31) provides a rational explanation 
for this biosignaling behavior. First, the predicted ampli- 
tude range of the average strain-induced fluid shear stress 
at the inner radius of the osteon is in the middle of the 
range of fluid shear stresses, 6-30 dynes/cm 2, where in- 
tracellular calcium ions (32), and second messengers (20), 
have been released intracellularly in cultured monolayers 
of bone osteoblast and endothelial cells. Weinbaum e t  a l .  

(32) have proposed that, since intracellular calcium is 
known to regulate the opening and closing of the hydro- 
philic pores in the transmembrane proteins of communi- 
cating junctions (14), and these junctions are the pathways 
for intracellular electrical currents, the fluid shear stress 

on the membranes of the osteocytic processes regulates the 
intracellular ion currents between cells and the latter is the 
cellular transduction mechanism by which osteocytes 
sense mechanical strain and communicate this information 
to osteoblasts, the cells controlling bone deposition and 
resorption. The calculations in this paper support the 
quantitative feasibility of this fluid shear stress mechanism 
in osteonal bone formation. 

The intriguing feature of the strain-induced fluid shear 
stresses in the mineralized interior of the osteon near r = 
r m is that they exhibit a spectral tuning that provides for a 
maximum frequency response that could be related to the 
20-30 Hz spectral resonance observed in (15,29). Is this 
fortuitous or does this coincidence serve a special func- 
tion? As McLeod and Rubin (15) point out, most bone 
tissue never sees strains of 1,000 IX strain or larger and yet 
bone tissue is maintained under minimal use. While the 
origin of the low amplitude 20-30 Hz spectral strain com- 
ponent can be debated, the osteon, if it is to function 
efficiently as a detector of low-amplitude strain, could 
optimize this detection capability by having a heightened 
sensitivity in the same spectral frequency range as this 
experimentally observed high-frequency strain compo- 
nent. Further, the present analysis predicts that despite the 
small amplitude of this high frequency strain component 
(2-4 M Pa), it is of sufficient magnitude to excite a fluid 
shear-induced intracellular biochemical response in a con- 
nected network of osteocytes that act as a neural network 
to signal other cells to activity. For Curve 5 in Fig. 7 
S(a)m.av at 28 Hz would be - 4  dynes/cm 2 for a load of 4 
MPa. This is very close to the threshold for the release of 
intracellular Ca + + in (32). Since the location of the max- 
imum shear stress response in the frequency spectrum de- 
pends on osteon size (see Fig. 7), it would seem further 
that the dimensions of the osteon may be determined by 
either or both the distance that the electrical signal must 
travel to reach the osteoblasts and the requirement that the 
osteon optimize its threshold sensitivity for detecting 
small strains. 

In our final remarks, we would like to suggest several 
functional roles that necessitate the presence of a proteo- 
glycan gel in the fluid annulus of the lacunar-canalicular 
porosity. First, as observed in Fig. 2, the matrix reduces 
by more than one order of magnitude the shear stress that 
would exist on the osteocytic process if it were not 
present. Second, the microcirculatory blood vessels in 
bone are known to be significantly more permeable than 
muscle capillaries. Large amounts of albumin would be 
lost to the bone tissue unless there were an effective mo- 
lecular sieve for this molecule in the lacunar-canalicular 
porosity. In capillaries in muscle tissue this molecular 
sieve has been demonstrated to exist in a surface glyco- 
calyx at the luminal front of the endothelial cells (1). 
Third, the presence of proteoglycan proteins serves as an 
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inhibitor of  mineralization, thus enabling the osteocyte to 
maintain the thin fluid layer that surrounds its membrane 
(21). 
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NOMENCLATURE AND VALUES OF 
PARAMETERS EMPLOYED 

a = radius of  the osteocytic process.  
a 0 = radius of  the fiber traversing the annular 

region between the osteocytic process and 
the canaliculus wall. 

b = radius of  the canaliculus. 
B = dimensionless constant that is a ratio of  the 

increment in pore water pressure to the in- 
crement in the sum of  the three normal 
stresses in the solid matrix (B = 0.53). 

c = d i f fus ion  coef f ic ien t  in the d i f ferent ia l  
equation governing the pore fluid pressure 
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d = 

Io, I i ,  12 = 

Ko, K1,  K 2 = 

k .  = 

n 

k 

p = 
p = 

q = 

r i ~-  

R i = 

r o 

r m 

t = 
T = 

VSG P = 

VSG P -~ 
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half the thickness of  bone specimen used in 
experiments (2d = 1 mm). 
modified Bessel functions of  the first kind. 
modified Bessel functions of the second 
kind. 
the cell process channel scale Darcy law 
pe rmeab i l i t y  cons tan t  for  f luid f low 
through the mid-section of  a cell process 
channel filled with transverse fibers. 
number of  channels per unit area; in Cowin 
et  al.  (5) it is n/L 2, where L is the mean 
center-to-center distance between two lacunae. 
pore fluid pressure. 
dimensionless pressure ( =  3p/crBT).  
the ratio of  the radius of  the canaliculus, b, 
to the radius of  the osteocytic process, a. 
radius of  the osteonal lumen ( =  27 Ixm). 
dimensionless radius of  the osteonal lumen 
( = ri/r o = 0.27). 
radius of  the periodic boundary around the 
osteon. 
mean areal radius (r  m = ~ / ( r  2 + ~ ) / 2 )  
time. 
dimensionless time ( =  o~r2 c - 1). 

cartesian stress tensor components of  the 
bone m a t r i x .  
strain generated potential. 
dimensionless strain generated potential. 

"y 

A 

Ix 

P 

fY  

or o 

cr s 
0 
T 

s(a)  

s (a)~  

'T d 

O3 

= dimensionless parameter ( =  b / ~ p )  that is 
the ratio of  two lengths, the radius of  the 
canaliculus b and the thickness of  the fiber- 
induced viscous layer near the wall, V~p. 

= open space between the transverse fibers in 
the channel between the cytoplasmic pro- 
cess and the wall of  the canaliculus. 

= bone fluid viscosity. 
= radial coordinate spanning from the radius 

of the osteocytic process to the radius of 
the canaliculus. 

= the magnitude of the periodic axial com- 
pressive stress. 

= the magnitude of  the temporally constant 
compressive stress. 

= conductivity of the bone fluid. 
= polar angle in cross-section of osteon. 
= dimensionless time ( =  Ctro2) .  
= shear stress acting on the surface of the 

osteocytic process. 
= shear stress acting on the surface of the 

osteocytic process in the very dilute fiber 
limit. 

= characteristic time of  decay of  the fluid 
pore pressure ( = r2o c -  1). 

= character is t ic  t ime of  applied forcing 
( = O J - -  1). 

= driving frequency. 


