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O P T E V I I Z A T I O N  O F  R I S K  P R O C E S S E S *  

A. N. Nakonechnyi UDC 519.248 

STATEMENT OF THE PROBLEM 

Mathematical and statistical problems of insurance, together with their solution methods, constitute the subject of so- 

called actuarial or insurance mathematics. One of the subdivisions of insurance mathematics is risk theory, which deals with 

stochastic processes (risk processes) of the form [1-5] 

u ( 0  = u + a ( 0  - , 8  ( 0 ,  (1) 

where ~(t), ~(t), t _> 0, are stochastic processes with monotone nondecreasing paths, ~(0) = /3(0) = 0, and u > 0. Here u is 

the initial capital of the insurance company; the process ~(t) describes the total inflows and j3(t) the total outflows during the 

time [0, t]. Assume that the risk process depends on parameters, i.e., 

u (t,x) = u + a (t,x) - #  (t, x), (2) 

where x E X ,  X =  {X E R "  **.< ;a i , ,~ , b 1 < ** V i = l ; n } ,  IR a is the n-dimensional Euclidean space. 

It is relevant to solve the problem of capital maximization at the end of a given time interval [0, T]. In other words, 

we solve an optimization problem of the form 

max M u (T, x), 
x E X  

where M is the expectation over the measure P of the probability space on which the risk process is defined. 

As an additional constraint on the solution of problem (3), we can consider the inequality 

(3) 

l - P ( u ( t , x ) > 0  ' r  [0 , 'T l )~ t ,  (4) 

where e is a small parameter (for instance, e = 10 -3 [1]). Here 1 -P ( - )  is the probability of ruin. 

Let x* be one of the solutions of problem (3), (4). Then the process u(t, x*) is optimal in the sense that it maximizes 

the capital (in the mean) and guarantees a certain financial stability by making the probability of ruin of the insurance company 

sufficiently small. Note that the solution of problem (3) without constraint (4) does not guarantee this stability. It is sufficient 
to consider the example of an insurance company with a capital of $l million that insures risks for the amount of $150 million. 

It successfully increases its capital until the first insurance event (the first claim). 

A problem of the form (3), (4) for a certain class of risk processes was first stated in [2, Ch. 13] alongside other 
problems incorporating the constraint (4). 
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BRIEF ANALYSIS O F  METHODS OF SOLUTION O F  P R O B L E M  (3), (4) 

Lagrange Function and Existence Conditions of the E ~ r e m u m .  We rewrite problem (3), (4) in the following 

equivalent form: 

rain {.t" (x) I g (x) g 0, x E JO, (5) 

whereflx) = - Mlz(T, x), g(x) = e -1 (I - P(u(t, x) > 0 v t E [0, T])) - 1. 

The Lagrange function L(x. y) = fix) + yg(x), x E X, y >. 0 plays a special role in deriving the existence conditions 

of a solution of problem (5) and describing the algorithm to find the solution. Specifically, suppose that there exist x* E X and 

y" ~_ 0 such that L(x*, y) <. L(x', y') <__ L(x, y*). Then x" is a solution of problem (5) (see [6]). The pair (x',  y*) is called 

a saddle point of the Lagrange function. Thus, the solution of problem (5) reduces to finding the first component of a saddle 

point of the Lagrange function. 

We assume that fix), g(x) are convex functions of x E X and the Slater regularity condition is satisfied for problem 

(5). In this case, a saddle point exists [6]. 

Algorithms to Find Saddle Points. The choice of an algorithm to solve problem (5) depends primarily on whether 

we know how to construct an exact (or an approximate) analytical expression for the functions fix), g(x) or how to estimate 

the values of these functions by the Monte-Carlo method. For the first case, there are fairly many saddle-point algorithms that 

use the Lagrange function and its various modifications [7, 8]. 

For the second case, we do not have such a variety of algorithms. The solution is usually reduced to application of a 

stochastic analogue of the Ar row-Hurwi tz  method [9]. The nonlinear constraint of problem (5) contains a bound on the 

probability of a rare event - ruin in a given time interval. Solution of such problems (extremal problems with rare events) 

by stochastic programming methods has been examined in [10-14]. 

Mult ipl ier  Method.  The multiplier method relies on the notion of modified Lagrange function [7, 8]. There are various 

classes of such functions. One of the popular modifications for problem (5) is defined as follows: 

�9 , , ,-,~ 

= I s ( x )  + y z (x) + o . 5 ,  !f c z < x )  �9 - y , -  
Lc( x, y) / l ( x ) - O . S y 2 1 c ,  i f  C g ( X )  < - - y .  

For c = 0, this function reduces to an ordinary Lagrange function. The functions L(x, y) and Lc(x, y) have identical 

saddle-point sets [7, 8], and we can thus use Lc(X, y) instead of L(x, y) to construct more efficient computational algorithm of 

solving problem (5). 

An iterative step of the multiplier method is defined as follows. For fixed values c k and Yk we solve the problem 

xm~EnxLcA (x, Yk)" (6) 

Letx  k* be a solution of problem (6). ThenYk+ t = max {0, Yk + ckg(xk*)} , and ck+ 1 >-- c k (here c t > 0 and lim c k 

In each step of the multiplier method, we solve the minimization problem (6) with simple constraints. This can be done 

by various efficient algorithms [7, Ch. 1], but their application requires evaluation of the gradient of  the function Lc(X, y) with 

respect to x. At the same time, the evaluation of the function g(x) involves solving fairly complex equations, and the error 

involved in this procedure is not conducive to efficient application of finite differences for determination of the gradient. 

Therefore, despite their low rate of convergence, coordinatewise or random descent methods are quite acceptable for solving 

problem (6). 

Random Search of Solution of Problem (6). An iterative step of the minimizing sequence is defined as 

Here rX(.) is the projector on the set X. z I 

zm+! =xx(zm-sm~m I, m ~ l .  

----- X (k- l ) • ,  S m ---- O ( m - l ) ,  the random vector ~" is defined below. 
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tf the gradient of the function fix) is easily evaluated, we may set 

v / ( x ' )  + 3a  - t (,,,) v (,n) lyeg ( x "  + A (,n) b (,,,)) + 

+ O ..S ct.gZ(x"t + A (m) b (m)) i, if Ckg (X'n) aD -- yk . 

Vl(~=), if ceg (x') <-Yk" 

O t h e r w i s e  ~m = 3A-l(m)b(m)Lck(.v,n + A(m)b(m), y~). 

Here A(m) = A/m ~ ~ > 0: b(m) is the m-th realization of a random vector with independent ( -  I, 1)-uniform 

coordinates. In both cases, if the modified Lagrange function is twice continuously differentiable with respect to x, we have 

the equality (see Appendix) M ~rn = Vx" Lck(xm ' yk} + O(A(m)), O(A(m)) is a vector with norm of order A(m). 

Under the above assumptions, this random search algorithm converges almost surely to a solution of problem (6) (see 

[14]). 

AN EXAMPLE O F  RISK PROCESS OPTIMIZATION 

Optimizat ion of a Reinsurance Contract .  We assume that the insurance company writes n types of insurance 

contracts, and the number of claims under insurance contracts of type i in time interval (0, t) is Poisson distributed with the 

parameter ~i t, i = 1, n. The amount of type i claims has the distribution function 1 - exp ( - t / r i ) ,  t -- 0. 

If the expected claims under certain types of insurance contracts are very large, the insurance company purchases 

reinsurance protection. For instance, according to a surplus agreement, the insurance company pays an amount not exceeding 

one line x i, and the remainder is paid by the reinsurer. The amount paid by the insurance company under contracts of type i 

in this case has the distribution function 

1 -  e x p ( - t / r / ) , ,  if t < x t ,  
P/t ,  x i )=  1, if t ; , x~ .  

Therefore, the stochastic process ~(t, x) in (2) is a compound Poisson process, i.e., the number of claims in the interval [0, 

t] has the Poisson distribution (~t) k exp(-l~t)/k!, k > I, and the claim amount has the distribution function F(t, x), t >_ 0, with 
n /! 

mean r(x) (and F ( + 0 ,  x) = 0). Here t~ = ~ ,  F ( t , x ) -  ~ , p t P j ( t , ' x t ) ; p l - l ~ i l l i .  

Also note that r(x) = ~ Pi t t (1  -- exp( - x i / r i )  ). Indeed, if P(~ < t) = ~(t), then M min (~, x) = ~ tdcb(t) + 
i=1 0 

x(1 - ~(t)). Substituting for ~(t) the distribution function 1 - exp(- t / r )  and integrating by parts, we obtain M min (~, x) = 

~-(1 - exp( - t/r)). It now remains to note that r(x) is a linear combination of the corresponding means (with weights Pi). 
The arrival process in (2) is defined as cx(t, x) = c(x)t, where c(x) > 0 is a constant that expresses the rate of arrival 

of insurance premiums. This constant is determined as follows. 

Let c i be the rate of arrival of insurance premiums for contracts of type i. According to the reinsurance agreement, 

part of the insurance premium is transferred to the reinsurer, i.e., the fraction retained by the insurance company is given by 

the function Pi(X) = -f t dP~t, xi) / f t dFf(t), and the fraction transferred to the reinsurer is 1 - pi(x). The rate of arrival 
0 "  0 

of net insurance premiums for the insurance company is thus given by c (x) = ~ ciPi(X ). Since f t d ~ t )  = *i' and 
i - I  0 

t d ,~t, xi) = ~ / l  - exp ( -  x/ri)) ,  we finally obtain r (x) = ~ r - exp ( -  x / T.)). 
0 i - I  

Objective Function Evaluation. Let us now analyze problem (5) in application to the given class of risk processes. 

Let T = co. The mean Mu(T, x) is infinite in this case. and we accordingly consider the objective function lim T-1Mu(T, 
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TABLE 1 

1 I I m e t e r s  I - 1  1 " 2  i - 3  I - 4  

/~  0.2 0 5  1 i.2 

lr t 3 2 3 2 

r o.,/I 12, 3.5 

i 
t - 5  i - 6  [ 1 - 7  

! 
2 3 4 

1 0.3 O3 

2.4 I 0.5 

TABLE 2 

Para-meters ' "  i ' ' ' 1 " '  I ' ' ' ! " ' 1 ' ' '  I 
Xe 3.2 2.4 3.4 2.6 L9 0.76 

X, 3.4 2.2 3.5 2.5 I-II O.?S 

x t 3.2 2.3 3.4 2.4 L7 (X7 

0.4 

x), which is the rate of growth of the capital of the insurance company in unit time. We find that in (5) fix) = c(x) - lz~'(x) 

or using the previous formulas 
II 

i , , I  

C r a m e r - L u n d b e r g  Bound for  th e  P r o b a b i l i t y  o f  Ruin. Let Q(u, x) = l - P(u(t, x) > 0 v t E [0, ~ ) )  be the 
probability of ruin of the insurance company (u is the initial capital, see (2)). For this probability we have the C r a m e r -  Lund- 
berg bound [I-5] Q(u, x)  < e x p ( -  R(x) u), where the function R(x) is the solution of the equation 

,.--xp (R (x) z ) 0  - ," (,~, z ) ) d z  = c ( x ) / , , , .  (8) 
0 

Substituting in (8) the characteristics of the above-mentioned compound Poisson process, we find that the sought 
function is the solution of the equation 

l ." l  0 i - 1  i - - I  

Taking the integrals in the left-hand side, we find 

(9) 

R I R 
- 

i 

Numerical Examaple, The input data for solving the optimization problem with n = 7 are presented in Table 1. The 
results of three executions of the computational process with initial capital u = 40 are given in Table 2. In all three cases, the 
random search method executed 2,000 iterations, with 10 iterations by the variable y. Substitution of the optimal values of the 

variables x i in formula (7) gives in all three cases 1.4 for the optimal growth of capital. 

APPENDIX 

Let h(x) be a twice continuously differentiable function, x E ( - o o ,  +o~). Then by Taylor 's  formula h' (x)  = 

0.5(~eA) - t  (h(x + a A )  -- h(x - aA)) + O(~A). Left- and right-multiplying by a 2. we obtain 

a Zh'(x)  = 0 . 5  a tx - I (h ( x  + a A) - h ( x  - a &)) + O ( a  3 ~ ) .  (10) 
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Let a in (10) be a (0, 1)-uniform random variable. Noting that uc~ is ( -  1, 1)-uniform if P0' = 1) = P(v = - 1) = 

1/2 and denoting B = va, we obtain the bound (passing to expectations on both sides in (10)) 

h ' ( x )  = 3 4 -SM/~ h (x +,8 4) + O (4). (11) 

Now let h(x) be a twice continuously differentiable function, x E R n. From (11) we have 

oh (x) I Ox i = 3 4 - ' M # i  h (x~ . . . . .  x I + # . a  . . . . .  x,,) + 0 (4). (12) 

It follows from (12) that to estimate the gradient we need to find the vector b = (~t . . . . .  ~n) of independent ( -  1, l)- 

uniform random variables and also to evaluate the function at n random points. The latter is not practicable for large problems. 

We also have the formula 

V h ( x )  = 3 4  - i  Mbh(x+b4)+O•, (13) 

where O,, is a vector with norm of order A. This formula differs from (12) in that it requires only one evaluation of the 

function. To prove formula (13), note that we have the equality 

+ , , , .  p. 0h +p.,,  . . . . .  / + o ( 4 . ) ]  - 

-3,,-rM.8, h . . . .  x§ 

Similarly expanding in a Taylor series in the variables x 3 . . . . .  x n, we obtain 

3 -  -~ M #~ h ( ,  + # A) = 34 -  ' M ~ h /'~ + ~ 4, ~ ,  h ' " "  "' *;'1 § O'(a): 

By (12), the right-hand part of this equality is a bound of the derivative with respect to x 1. By symmetry, the same 

equalities hold for other partial derivatives, which proves equality (13). 
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