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R E L A X A T I O N  M E T H O D S  W I T H  S T E P  R E G U L A T I O N  F O R  S O L V I N G  
C O N S T R A I N E D  o P T I M I Z A T I O N  P R O B L E M S  

Z. R. Gabidul l ina UDC 519.853 

We study the problem 
(1) 

where f ( x )  is a continuously differentiable pseudoconvex function satisfying condition A (introduced in [2]) 
on a convex closed set D C Rn. 

We use the following notation: 9(x) is the gradient of the function f ( x )  at the point x, x0 is the point 
of initial approximation, f* = ~ f ( x ) ,  X* = {x* e D : f (x*)  = f*}, L = {0, 1 , . . .} ,  and p~ is the 

projection of the recursion point xk on the set X*. 

Def in i t i on  1 [2]. A continuous function f satisfies Condition A on the set D if there exists x > 0 such 
that  

f ( a x  + (1 - o0y ) >_ a f ( x )  + (1 - q ) f ( y )  - a(1 -- ~ ) ~ l l ~  - yll ~ w ,  y ~ D, W e [0, 11. 

It was shown in [2] that  for a continuously differentiable convex function satisfying Condition A on a 
convex set D the following estimate holds: 

f ( x )  - f ( y )  ~ (9(x), x - y) - ~llx - yll 2 v~,  y ~ D. (2) 

Def in i t i on  2. The direction s # 0 is an e-normalized direction of descent at the point x if s can be chosen 
so as to  satisfy the condition 

(9(x), ~) + ell~ll* _< 0. 

Taking account of the estimate (2), one can show that an e-normalized direction of descent s at the 
point x for the function f ( x )  has the following properties: 

1) f ( x )  - f ( x  + As) > -A(1 - A)(g(x), s) > 0 for all A E (0, 1), 

2) f ( x )  - f ( x  + As) > A(1 - A)xll~ll 2 for all A E (0, 1), 

3) if f ( x )  is a convex function, then there exists/3 E [0, 1] such that the inequality f ( x ) -  f ( x  + s) = 
- ( g ( ~ ) ,  s) - /3x l l~ l l  ~ >__ o holds. 

In what follows we propose an relaxation method of solving the problem (1). Depending on the method 
of choosing the size of the recursion step, one can obtain various versions of the algorithm. The step can 
be chosen, for example, as follows [5]. Choose A E (0, 1) and determine the first index i = 1, 2 , . . . ,  at which 
the following inequality holds: 

f ( x k )  -- f ( x k  + AiSk) ~ - A i ( 1  - A)(g(xk), 8k). (3)  

In the present paper we propose to choose the step by dividing the quanti ty A until the first time the 
following weaker condition holds: 

f (xk)  -- f ( x k  + Aisk) ~ A i ( I  -- A)ellskll 2. "(4) 

Moreover, in the algorithms being studied the step Ak is controlled by the s-normalization of the 
direction of descent sk. 
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It is assumed that the point x0 6 D and the numbers A 6 (0, 1), r > 0, and a (0 < a < 1) are known. 
In what follows the recursive sequence is generated according to one of the following algorithms. 

A l g o r i t h m  1 (a method with adaptat ion of the parameter ek). Suppose the constant e0 > 0 has been 
chosen. 

O. At the point xk 6 D, k -= 0, 1 , , . . ,  compute a point yk such that  

(g(=~) ,yk - =~) + ~kl ly~ - =~11 = < ~k = a n  ( (g (=~ ) ,x  - =~) + ~ l l x  - =k l l= ) .  
-- z6D 

0 < a _< ak _< 1. If (g(zk), Yk -- xk) + CkllYk - xk][ 2 = 0, then zk is a solution of the problem (1); otherwise 
set sk = yk - xk and go to Step 1. 

1. Let ik be the first index i = 1 ,2 , . . . ,  at which inequality (3) holds (or inequality (4)); then set 
Ak = ~ik. Compute the point Xk+l = xk + Aksk, k = k + 1, and go to Step 2. 

2. If ik = 1, then set r = Ck. If ik > 1, then set gk+l = ~k/Aik-1 and go to Step 0. 

Algorithm 2 differs from Algorithm 1 in step 2: r = r for all k 6 L. We call Algorithm 2 nonrelazation, 
since the parameter  el, in the algorithm remains constant. 

R e m a r k  1. It is obvious that  the direction sk = yk - Xk is a x-normalized direction for all k. Indeed, 

(g (xk) ,yk - -Xk)+~ l lYk- -xk l l  ~ < ~kmin<g (=~ ) i x - - xk>+~ l l x - - xk l l  ~ < ,~ (<g(x~) ,x - -xk>+~ l lx - -xk l l  ~) v x  �9 D. 
zED 

from which, fo r  x = xk ,  we find t h a t  ( g ( x k ) , y k  -- xk )  + ~ l l y k  - xk l l  = _< 0. 

O p t i m a l i t y  T h e o r e m  1. Suppose 

1) f ( x )  is a continuously diEerentiable pseudoconvex function on the set D; 

2) there ezists ](x) ,  a pseudoconvex Lipschitz function, that extends f ( x )  to the whole space Rn. 

A necessary and su]ficient condition for xk 6 D to be a min imum of f ( x )  on D is the inequality 

(g(xk) ,X--Xk)>_O V x E D .  (5) 

P r o o f .  The necessity is proved in analogy with Theorem 3 of [1, pp. 171-172]. 
Sujficiency. At the point xk inequality (5) holds for all x 6 D. Assume that  Xk is not a minimum , 

i.e., there exists i 6 D such that  f ( i )  < f ( xk ) .  Then the following inequality holds (cf. [4, pp. 47-48; 6]: 

o < S ( x k ) - f ( & ) < M ( g ( x k )  _ ~)  
- 11~-7~)11 , x ~  , 

where M is the Lipschitz constant for the function fi(x); hence (g(xk), ~ - x k )  < 0, contrary to the hypothesis 
of the theorem. �9 

O p t i m a l i t y  T h e o r e m  2. Suppose the hypotheses of Optimality Theorem 1 hold. Then a necessary and 
su~cient  condition for the point xk 6 D to be a minimum of the function f ( x )  on D is the following: 

3 c > 0 :  ( g ( = k ) , = - - = k ) + ~ l l = - - = k l l  = > o  V x  6 D .  (6)  

P r o o f .  Necessity. Let xk be a minimum of the function f ( x )  on the set D. It is required to show that (6) 
holds. By Optimality Theorem 1 we have 

(g (=~) ,=  - =k) + ~ll= - =kll = _> ( g ( = k ) , = - -  =k> >_ 0 w e D. 
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Sufficiency. Assume that  x~ is not a minimum point and ~ E D is such that f ( $ )  < f ( xk ) .  Then 
according to Optimality Theorem 1 we have (g(xk), ~: - x~) < 0. Let t be a number satisfying 0 < t < 
I(g(x~),~ - xk)l. It follows from inequality (6) that t/(ellYc - xtll 2) < 1. It is then easy to show that 
s = t(~ - xk)/(el[~ - xk[[ 2) is an e-normalized vector, and that  

t ( ( g ( x k ) , ~ - - x k ) + t ) < O ,  I1~11 < I1~-- =kll, (g(=~),s> + ellsll z = ell~ -- =kll ~ 

i.e., there exists a point zk = xk + s, zk E [~, xk] satisfying the inequality (g(xk), zk - xk) + ellzk - zk II= < o, 
and this contradicts (6). �9 

O p t i m a l i t y  T h e o r e m  3. Suppose the hypotheses of Optimality Theorem I holds. A necessary and suffi- 
cient condition for the point xk E D to be a minimum of f ( x )  on the set D is that 

3 ~  > 0 :  < g ( ~ k ) , V k - - x k ) + e l l Y k  xkll ~ = 0. (7) 

P r o o f .  "Necessity. By the choice of the direction of descent we have the inequality 

(g(xk),yk -- Xk) + e[[yk -- xk[[ 2 < ak min ((g(xk) ,x  - xk> + ~k[[x -- xk[[ 2) 
- -  xED 

-< ~ ' (<g(~) ,  �9 - ~ >  + ~ l l ~  - ~11 =) v x  E D.  

Hence for �9 = ~k we obtain <g(x~),V~ - ~ >  + ~llV~ - ~11 = -< 0. Then Eq. (7) holds, since the inequality 
<g(~k), y~ - ~ >  + ~flY~ - ~11 = < 0 would contradict the fact that ~ is a minimum point. 

Sufficiency. By the choice of the direction of descent we have (g(xk), x - xk) + ekllx - xkll = >__ 0 for ~al 
x E D. Therefore by Optimality Theorem 2 we conclude that Xk is a minimum. �9 

R e m a r k  2, If Sk is a g-normalized direction of descent, then ik = 1 for all k E L, i.e., Ak = A for A E (0, 1). 
It is obvious that  if sk is an c-normalized direction of descent for k E L with r > x, then sic is also a 
g-normalized direction. 

We shall now study the case when 8k is an e-normalized direction of descent, but  is not g-normalized. 

L e m m a  1. Suppose 

1) 0 < e  < ~ ,  ~ E (0 ,1 ) ,  
2) {xk}, k E L*, is a subsequence of {xk}, k E L, such that {sk}, k E L*, are e-normalized directions 

of descent, but not x'normalized directions, and that Ak is chosen according to condition (4): 
Then the estimate Ak > A2ex -1 holds for all k E L*. 

P r o o f .  If tl, = 1 for all k E L*, thenAk = A, and the assertion of the lemmaholds .  Let L C L* b e a  
sequence such that ik ~ 1 for all k E L. Since the step size was divided (ik # 1), the quantity Aik-a does 
not satisfy inequality (4). Then Aik-1 > Aex-1.  If we assume the contrary, i.e., Air-1 < Ae:,-1, we obtain 

f(xk) -- f(xk + 2"- l sk )  > ~ i ' - l ( - - < g ( x k ) ,  sk) -- ~ ' - l - - I l s k l l ~ )  
_> ~ - ~ ( - < g ( ~ ) ,  sk> - ~ellskll =) _> ) ~ i 1 ' - - 1 ( 1  - -  A)e[[skll ~ 

and this contradicts the fact that ik is the first index for which inequality (4)holds .  Hence Ak = A ik > 
A2e~ -1 for all k E L*. �9 

It can be shown that if the step is chosen according to condition (3), then it is also bounded below. 
Lemma 1 now implies the estimate x > e/A ik-2. This estimate is used in Algorithm 1 for adaptation 

of the parameter  ek. 

L e m m a  2. / f  

1) f ( x )  is a convex function that is defined on a convex closed set D C Rn, 
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2) X* is a nonempty bounded set, 

then for any relaxation sequence {x4}, k E L, x4 E D, the inequalities IIz4 - p i l l  < u < ~ wilt hold. 

P r o o f .  Let C = f(zo) - f* ,  where f*  = f(Pl). Then f ( z k )  - f* < C for all k = 0 ,1 ,2 , . . . ,  since 
f (x4+l)  < f ( xk ) .  We assume that the assertion of the lemma is false, i.e., there exists a sequence {xk} 
for winch II~k - p i l l  --, oo as k --, oo. Then for an arbitrary e > 0 there exist indices k such that 
p(z4,x*) = IIx4 - p i l l  > s. For these k we consider yt, = ellzk - p i l l - l z k  - (1 -~ l lx4  - p i [ l - X ) p l  �9 It is 

�9 X obvious that yk C [P4, k] and p(yk ,X*)  = Iluk - p i l l  = ~, i.e., yk E G, = {x E D :  p (x ,X*)  = e}. The set 
G, is bounded and closed, and consequently min ( f ( z )  - f*)  = ~ > 0. Therefore- 

zEG, 

0 < ~ S f (Yk ) - -  f*. (8) 

It follows from the convexity of the function f ( x )  that 

f(w4) ~ ~llz4-pill-~ f(xk)-(1-~llx<~pill-X)f(pi) = f* +~llx4-pill-X(f(xk)- f *) ~ f* +~llx4-pil[ -1. 

Since we are assuming that I I ~ - p i l l  -~ +oo as k -~ +oo, we find that  lira f (y4)  = f*,  and this contradicts 
4---*00 

(8). �9 

If the sequence {x4} constructed using Algorithm 2 is finite, then a solution of the problem (1) will 
have been obtained by construction. But if the sequence {x4} is infinite, the following theorem establishes 
conditions for it to converge to a solution of the problem (1). 

C o n v e r g e n c e  T h e o r e m .  I f  

1) f ( x )  is a pseudoconvez function satisfying condition A on a convex compact set D with constant 
x > O ,  

2) there exists ](z) ,  a pseudoconvex s function, that extends the function f ( x )  to the whole 
space Nn, 

3) there exist 0, 7 > 0 such that 0 < IIg(x)ll < 7 < o~ for all x e D, 

4) the step size A4 is chosen according to condition (3), 

then the sequence {xk}, k E L, converges as a functional, and 

f(~4) - f* = o ( 1 / k ) .  

P r o o f .  It is obvious that f (P l )  = f*. By the pseudoconvexity of f ( x )  we have the following inequalities 
[3, pp. 47-48; 5]: 

0 < f ( x k ) - -  f(Pl) -< M( IIg(x4)llg(x4) ,x4 - p l )  _ < MO-a(g(x4) ,x4 - P'k) Vk  E L, 

where M is the Lipschitz constant of the function f (x ) .  Therefore (g(x4),pl  - x4) < 0 for all k E L. Let 
X * LI C L be the set of subscripts k such that  the inequalities (g( 4),Pk -- x4) + ~[[Pl -- xk][ 2 < 0 hold and 

L2 C L the set of subscripts k for which the opposite inequality holds. It is easy to show that  the vector 

f P l - : 4  V k E  L1, 

q4 = / ~',(p~-.*~) v k  e L2, 0 < tk = I(g(~k) ,pl  - x4>l, 

is (s/A)-normalized. Then the point z4 = x~ + q4, k E L, is such that 

1) zk e [xk,pI], since IIz4 -~411 < II~k - p i l l ,  
2) (g(z4), z4 - z4> + eA -I Ilz~ - ~4112 < o. 
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I. Let us consider the case 0 < s < g. We distinguish L3 C L, the set of subscripts such that  sk, is a 
g-normalized direction of descent for k fi La. We then have 

:(xk) - f (xk+, )  > -A(I  - A)(g(xk), sk> _> -A(1  - A)(<g(xk),sk) + ell~kll 2) Vk e L3. (9) 

Let L4 = L \ L3. Then, taking account of the assertion of Lemma 1, we have 

f(~k) - f(~k+,) >_ -~k(1 - ,~)(9(~k), ~k) > -,V-~:'(I - ,~)(g(~k), ~ )  
> - A 2 ~ g - l ( 1  -A)( (g(zk) , sk)  +~llskll 2) V k e  L4. (10) 

From estimates (9) and (10) we obtain 

f (~k) -  :(xk+x) >_ --Cl((g(~,,,),sk) + ~ll.klt =) W ~ L, 

where C1 = A2~g-l(1 - A). Extending this estimate by taking account of the choice of the direction of 
descent sk, we obtain 

f ( ~ k ) -  f(x,,+x ) >__ -Cx(  (g(xk ),y,, - xk) + ~IIw -- x~ll ~) --> --ClO'k zrn~)( (g(xk ),T. -- Xk) + ~ll �9 --xkll ~-) 

_> - - C l ~ ( ( g ( x ~ ) , ~ - - ~ >  +=l l~--~kl l  =) w ~ D, Vk 6 L. (11) 

II. In the case ~ > g > 0 we have, in analogy with estimate (11), 

f ( xk )  - f (xk+l)  >_ -A(1 - A)((y(zk),Sk) + ~ll~kll =) 
>_ - ~ ( 1  - ~ )~ ( (g ( .k ) , z  - ~k) + ~11~ - zkll ~) v z  ~ O, Yk E L. (12) 

Thus it follows from estimates (11) and (12) that there exists a constant C > 0 such that the following 
inequalities hold: 

f ( xk )  - f ( x k + l )  > - C ( ( g ( x k ) , x  --xk> + ~11~- ~kll =) w ~ D , V k  6 L. 

For x = zk we obtain in particular from this inequality 

f ( x k )  - f (xk+ l )  _> -C((g(xk) ,  zk - xk) + ~llzk - =kll ~) _> - C ( 1  - A)(g(xk), qk) Vk 6 L. 

Then if ~7 = sup I1~ - vii, we have the inequalities 
x,y6D 

f ( x k )  - f (xk+l)  >_ C(1 - ,~)(g(xk), xk - P'k) > C(1 - A)(r/7) -1 (g(xk), xk - p'k) 2 Vk  6 L, .  (13) 

We have the following inequalities: 

f ( x k ) -  /(Xk+l) _> O ( 1 -  A) .Ark [IPk--%kll = ( g ( ~ ) ' ~  --P;'> -- > CA(le~ 2 A)(g(~k),x~ _pD= Vk ~ L=. (14) 

It follows from estimates (13) and (14) that  

:(z~) - :(xk+~) > C2(g(xk),z~, -p*~)2 V k  6 L, 

where 6'2 = C(1 - A)r/-~ rain {7 -1, (st/) -~ } > 0. Let C3 = 89-M-2C2. Then f ( z k )  - f(xk+~) > C3(f(x/,) - 
f(p*~))2. Therefore according to Lemma 4 of [1, p. 102] the sequence {z~ }, k 6 L, converges in the functional 
sense: f ( xk )  f* <_ C ~ k  -~. �9 

The convergence of the method when the step size is chosen from the condition (4) is proved similarly. 
Here the following estimate is used in the proof: f (x~)  - f (xk+,)  >_ --Ak(1 + A~g(e(1 - , ~ ) ) - 1 ) - 1  ( g ( x k ) ,  3k). 
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We remark that if the function f ( z )  to be minimized is convex, we need not require the set D to be 
bounded in order to obtain an estimate of the rate of convergence; it suffices that  the set X* be bounded. 
In this situation Condition 2 in the convergence theorem is superfluous. 

It follows from the condition x < +oo that after a finite number of increases of ek in Algorithm 1 this 
quantity exceeds x and ceases to change. From that point on the relaxation algorithm begins to work with 
a fixed constant e >__ x; hence the convergence of Algorithm 1 follows from the convergence theorem. We 
remark that from that  point on At, = A, k = 0,1, . . . .  Here in order to compute the reeursion step only two 
computations of the objective function are carried out. 
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