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RELAXATION METHODS WITH STEP REGULATION FOR SOLVING
CONSTRAINED OPTIMIZATION PROBLEMS

Z. R. Gabidullina UDC 519.853

We study the problem
min f(2), (1)

where f(z) is a continuously differentiable pseudoconvex function satisfying condition A (introduced in [2])
on a convex closed set D C R,,.

We use the following notation: g(z) is the gradient of the function f(z) at the point z, z¢ is the point
of initial approximation, f* = nggf(a:), X*={z*e€ D: f(z*) = f*}, L = {0,1,...}, and p; is the

z
projection of the recursion point z; on the set X*.
Definition 1 [2]. A continuous function f satisfies Condition A on the set D if there exists » > 0 such
that
flaz +(1 - a) 2 af(@) + (1 - 0)f(¥) - a(l = a)xlls =yl Va,y€ D, Vaeo,1.

It was shown in [2] that for a continuously differentiable convex function satisfying Condition A on a
convex set D the following estimate holds:

f(@)= f(y) > (9(z),x —y) — x|z = y||* Vz,y€D. (2)

Definition 2. The direction s # 0 is an £-normalized direction of descent at the point z if s can be chosen
so as to satisfy the condition

{9(z),s) +ellslI* <0.
Taking account of the estimate (2), one can show that an e-normalized direction of descent s at the
point z for the function f(z) has the following properties:
1) f(z) = f(z + As) > =M1 = A){g(z), s) > 0 for all A € (0,1),
2) f(z) — f(z + As) = A(1 — A)x||s||? for all A € (0,1),
3) if f(z) is a convex function, then there exists 8 € [0, 1] such that the inequality f(z) — f(z +s) =
—(g(z),s) — Bx|s||? = 0 holds.

In what follows we propose an relaxation method of solving the problem (1). Depending on the method
of choosing the size of the recursion step, one can obtain various versions of the algorithm. The step can
be chosen, for example, as follows [5]. Choose A € (0,1) and determine the first index ¢ = 1,2,..., at which
the following inequality holds:

Flar) = flze + Ase) 2 =2 (1 = X){g(zx), 58)- (3)

In the present paper we propose to choose the step by dividing the quantity A until the first time the
following weaker condition holds:

Flzr) = fze + Nsr) = X(1 = Nellsxll. (4)

Moreover, in the algorithms being studied the step Ap is controlled by the e-normalization of the
direction of descent si.
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It is assumed that the point z¢ € D and the numbers A € (0,1), ¢ > 0, and ¢ (0 < ¢ < 1) are known.
In what follows the recursive sequence is generated according to one of the following algorithms.

Algorithm 1 (a method with adaptation of the parameter €;). Suppose the constant ¢y > 0 has been
chosen.
0. At the point zx € D, k =0, 1,..., compute a point y; such that

(9(zx), v — z&) + exllye — zr||® < ok min ((9(zk),z — z&) +exllz — zx|[?).

0<o<or <1 If (g(xk),yx — k) + €kllyx — z4]|® = 0, then z is a solution of the problem (1); otherwise
set sy = yr — rx and go to Step 1.

1. Let 1) be the first index ¢ = 1,2,..., at which inequality (3) holds (or inequality (4)); then set
Ax = A*. Compute the point zxy1 = 2§ + Agsk, K =k + 1, and go to Step 2.

2. If i =1, then set ex41 = €k. If ix > 1, then set €441 = x/A* ™! and go to Step 0.
~.

Algorithm 2 differs from Algorithm 1 in step 2: £x = ¢q for all k € L. We call Algorithm 2 nonrelazation,
since the parameter ¢; in the algorithm remains constant.

Remark 1. It is obvious that the direction sy = yx — % is a s»-normalized direction for all k. Indeed,

(9(2r), ye =) +oellyr—aill* < 0w min(g(er), s—ax) +xelle—zk|? < o ((9(za), 721} +sel|e~2k|?) Yz € D.

from which, for ¢ = z¢, we find that (g(zk), yx — z&) + >|lyx — z||* < 0.
Optimality Theorem 1. Suppose

1) f(z) i3 a continvously differentiable pseudoconvez function on the set D;
2) there ezists f(:c), a pseudoconver Lipschitz function, that extends f(z) to the whole space R,.

A necessary and sufficient condition for zx € D to be a minimum of f(z) on D is the inequality
(9(zx),z —xx) 20 VzeD. : (5)
Proof. The necessity is proved in analogy with Theorem 3 of [1, pp. 171-172].

Sufficiency. At the point zi inequality (5) holds for all z € D. Assume that z; is not a minimum ,
i.e., there exists £ € D such that f(Z) < f(zx). Then the following inequality holds (cf. [4, pp. 47-48; 6]:

0 < flex) - 2) < M8 0 - 3),

where M is the Lipschitz constant for the function f (z); hence (g(z), E~zr) < 0, contrary to the hypothesis
of the theorem. M

Optimality Theorem 2. Suppose the hypotheses of Optimality Theorem 1 hold. Then a necessary and
sufficient condition for the point i € D to be a minimum of the function f(z) on D is the following:

Je>0: (g(zr),z—zk) +ellz —z|* >0 VzeD. (6)

Proof. N ecessity. Let zp be a minimum of the function f(z) on the set D. It is required to show that (6)
holds. By Optimality Theorem 1 we have

(9(zx), @ — zk) +elle — 2> 2 {9(zx),2 —24) 20 Vz € D.
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Sufficiency. Assume that rj is not a minimum point and # € D is such that f(Z) < f(zx). Then
according to Optimality Theorem 1 we have (g(zx),Z — zx) < 0. Let ¢ be a number satisfying 0 < t <
{g(zk),Z — zi)|. It follows from inequality (6) that ¢/(¢||Z — z||?) < 1. It is then easy to show that
s = t(Z — zx)/(e]|# — zx)|*) is an e-normalized vector, and that

t

e (9@ Z —2x) +1) <0 lsl] < 12—zl

(9(z1), ) +ells|* =

i.e., there exists a point zx = zx + s, 2 € [, 2] satisfying the inequality (g(zy), 2k — zi) +¢l|zx — 2|2 < O,
and this contradicts (6). W

Optimality Theorem 3. Suppose the hypotheses of Optimality Theorem 1 holds. A necessary and suffi-
cient condition for the point z € D to be a minimum of f(z) on the set D is that

Je>0: (g(zk)yr — &) +ellye — &> = 0. (7

Proof. ‘Necessity. By the choice of the direction of descent we have the inequality

(9(z1)y yr — z&) +ellyr — 222 < 0k min ((9(zx), z — z) + éxllz — z&|?)

< o({g(z1), = — zk) + el — 24]f?) Vo € D.

Hence for z = z; we obtain (g(zx), yx — &) + €l]jlyx — z&||2 < 0. Then Eq. (7) holds, since the inequality
{(g(zx), yx — &) + €|lyx — zx||? < 0 would contradict the fact that zx is a minimum point.

Sufficiency. By the choice of the direction of descent we have {g(zy), T — z&) + €x)lz — zx||* > 0 for all
z € D. Therefore by Optimality Theorem 2 we conclude that z; is a minimum. B

Remark 2. If s; is a »-normalized direction of descent, then iy = 1 forall k € L, i.e., A\ = A for A € (0,1).
It is obvious that if s; is an e-normalized direction of descent for k¥ € L with € > s, then s; is also a
»-normalized direction.

We shall now study the case when s is an e-normalized direction of descent, but is not »-normalized.

Lemma 1. Suppose

1)0<e<s, A€(0,1),

2) {zx}, k € L*, is a subsequence of {zi}, k € L, such that {sx}, k € L*, are e-normalized directions
of descent, but not xc-normalized directions, and that A\ is chosen according to condition (4).

Then the estimate Ap > A2 holds for all k € L*.

Proof. If iy = 1 for all k € L*, then Ay = A, and the assertion of the lemma holds. Let 3 CL"bea
sequence such that i # 1 for all k € L. Since the step size was divided (ix # 1), the quantity At~1 does
not satisfy inequality (4). Then A*~! > Aesx~!. If we assume the contrary, i.e., A*~! < Xesx™!, we obtain

flze) = flae + X% sk) 2 A7 (—(g(ar), s) — A+ oesi) .
> X% (—(g(z), st) = Aellsell®) 2 AT = Nellsil|*.

and this contradicts the fact that iz is the first index for which inequality (4) holds. Hence A\; = A >
Mexlforallke L*. B

It can be shown that if the step is chosen according to condition (3), then it is also bounded below.
Lemma 1 now implies the estimate s > ¢/A* 2, This estimate is used in Algorithm 1 for adaptation
of the parameter ;.

Lemma 2. If
1) f(z) is a convez function that is defined on a convez closed set D C R,
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2) X* is a nonempty bounded set,
then for any relazation sequence {zi}, k € L, zx € D, the inequalities ||zx — p}|| < 7 < oo will hold.
Proof. Let C = f(zo) — f*, where f* = f(p;). Then f(zx) — f* < C for all k = 0,1,2,..., since
f(zr41) £ f(zk). We assume that the assertion of the lemma is false, i.e., there exists a sequence {z}
for which ||zx — p}|]| — oo as k — oco. Then for an arbitrary ¢ > 0 there exist indices k such that
p(zk, X*) = ||zx — p}|| = €. For these k we consider yx = ¢z — pil "'z — (1 — glzx — P3| )P} It is
obvious that yx € [p}, zx] and p(ys, X*) = |y — pi|| = ¢, 1e., ys € Ge = {z € D : p(z,X*) = e}. The set -
G. is bounded and closed, and consequently nelgl (f(z) = f*) = € > 0. Therefore

0< &< flye) - f. ®
It follows from the convexity of the function f(z) that
flyr) < ellee—pil ™ Flze) = (1 —ellza—pkll ) f(PE) = f* +eller —pil 7 (F(ze) = ) < f*+ellze—pil ™

Since we are assuming that ||zx —pil| — +o0 as k¥ — +00, we find that klirn f(yx) = f*, and this contradicts
-— 00

(8). m

If the sequence {z;} constructed using Algorithm 2 is finite, then a solution of the problem (1) will
have been obtained by construction. But if the sequence {z} is infinite, the following theorem establishes
conditions for it to converge to a solution of the problem (1).
Convergence Theorem. If

1) f(z) is a pseudoconvez function satisfying condition A on a conver compact set D with constant
x>0,

2) there ezists f(z), a pseudoconver Lipschitzian function, that extends the function f(z) to the whole
space Ry,

3) there exzist 8,7 > 0 such that § < |lg(z)|| ¥ < o0 for allz € D,
4) the step size Ag i3 chosen according to condition (3),

then the sequence {z\}, k € L, converges as a functional, and

f(zi) — f* = O(1/k).

Proof. It is obvious that f(p;) = f*. By the pseudoconvexity of f(z) we have the following inequalities
[3, pp. 47-48; 5]:

0 < flen) = Fp) < M{ L o = i) < MO g(an), ok = pi) VEEL,

where M is the Lipschitz constant of the function f(z). Therefore (g(x),pi — zx) < 0 for all k € L. Let
Ly C L be the set of subscripts k such that the inequalities (g(z+), pf — zx) + $llpt — z&]|* < 0 hold and
L, C L the set of subscripts & for which the opposite inequality holds. It is easy to show that the vector

Py — Tk Vke L,
dk

Ay (py =)
iy Yk € Ly, 0 < te = |(g(zx), Pt — za)l,

is (¢/A\)-normalized. Then the point z; = = + ¢, k € L, is such that
1) zx € [zk,p}), since [|zk — zi|| < |lzk — PEl,
2) (g(zr), zx — zi) + X7z — 242 < 0.
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L. Let us consider the case 0 < ¢ < ». We distinguish Ly C L, the set of subscripts such that sg, is a
se-normalized direction of descent for k € L;. We then have

f(z) = flmre1) 2 =M1 = A){g(zx), ) = =M1 = A)({g(24), sx) +ellsel|®) Yk € Ls. (9)
Let Ly = L\ L3. Then, taking account of the assertion of Lemma 1, we have

f(zr) = f(2re1) 2 =2 (1 = A){g(zr), 88) > =227 (1 = A){g(zk), 5x)
> —Nex1(1 = A)({g(zr), s&) + el|sk||?) Y € Ly (10)

From estimates (9) and (10) we obtain

flzi) = flzrs1) 2 —Cr({g(zs), i) +ellsilf®) YR € L,

where C; = A%ex~}(1 — )\). Extending this estimate by taking account of the choice of the direction of
descent sj, we obtain

f(xkj — f(zr41) 2 —=C1({g(zk), yk — k) + €llyi — zx]|?) > —Cio% ggg((g(zk),z — zx) +el|lz — z&?)
> —Cio({g(zk),z — zi) +ellz — z]|*) VzeD, Vke L. (11)

II. In the case € > 3 > 0 we have, in analogy with estimate (11),

flze) = f(@re1) 2 =M1 = N ({g(zk), se) +ells )
> =M1 - No({g(zk),z — zx) + €|z — zi]|*) Vz € D,Vk€ L. (12)

Thus it follows from estimates (11) and (12) that there exists a constant C > 0 such that the following
inequalities hold:

f(ze) = f(zrs1) 2 —~C({g(zx), 2 — 2x) +ellz — 2i]|*) Yz € D,VEk € L.
For z = z; we obtain in particular from this inequality
f(zi) = f(rt1) 2 —=C({g(z), 2k — zi) +ellzk — zi[|*) 2 —=C(1 = A){g(zk), qx) VE € L.

Then if = sup ||z — y||, we have the inequalities
z,y€D :

flzk) = fzea1) 2 C(1 = Ng(zx), 2 — pi) = C(1 = N)(7y) " g(zi), 2 — pk)* VEE L. (13)
We have the following inequalities:

Aty
—z?

S A=)

f(zk) - f($k+1) 2 C(l - ’\)”pz (g(xk)amk —PZ) = T(g(zk)’mk —Pi)z Vk e L2' (14)

It follows from estimates (13) and (14) that
Flzx) = f(zr41) 2 Cog(zr), 2k — i) VE € L,
where C; = C(1 - \)p™'min {y7%,(en)~1} > 0. Let C3 = M ~2C;. Then f(zi) — f(zr41) > Cs(f(zx) -

f(p}))?. Therefore according to Lemma 4 of [1, p. 102] the sequence {zx}, k € L, converges in the functional
sense: f(zx)— f*<C;7k~ L W

The convergence of the method when the step size is chosen from the condition (4) is proved similarly.
Here the following estimate is used in the proof: f(zi)— f(zr41) = —Me(1+ Apse(e(1= X)) ") " (g(zr), ).
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We remark that if the function f(z) to be minimized is convex, we need not require the set D to be

bounded in order to obtain an estimate of the rate of convergence; it suffices that the set X* be bounded.

In

this situation Condition 2 in the convergence theorem is superfluous.
It follows from the condition s < +o0o that after a finite number of increases of €; in Algorithm 1 this

quantity exceeds s and ceases to change. From that point on the relaxation algorithm begins to work with
a fixed constant ¢ > s; hence the convergence of Algorithm 1 follows from the convergence theorem. We
remark that from that point on Ay = A, £ =0,1,.... Here in order to compute the recursion step only two
computations of the objective function are carried out.
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