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A large part o f  the response from catfish retinal neurons evoked by a white-noise 
modulated light stimulus is reconstructed by the linear and the second-order nonlinear 
components, which shows that the first- and second-order kernels represent the major 
response characteristics. In catfish retina, amacrine cells are classified as type-C and 
type-N cells. Type-C cells produce a stable and stereotyped second-order kernel that 
can be reproduced by squaring an underdamped first-order kernel. This is a linear 
fUter followed by a static nonlinearity and is modeled by a cascade of  the Wiener 
structure. A second-order kernel from the other class o f  amacrine cells, type-N cells, 
is reproduced by a simple linear filtering o f  type-C cell response. This is a static non- 
linearity sandwiched between two linear filters and is modelled by a cascade o f  the 
Korenberg structure. These findings may greatly simplify future attempts to recon- 
struct retinal circuitry and may give some insight into the process o f  complex signal 
processing in the inner part o f  the vertebrate retina. 
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I N T R O D U C T I O N  

Vertebrate retinas receive and process an enormous amount of  information on the 
photic environment, which fluctuates continuously in time and space. The output 
from the retina to the brain, on the other hand, is a series of  (discrete) spike trains 
of  less than 0.5 KHz in (carrier) frequency. The amount of  information contained 
in the spike train, therefore, is very limited compared with that contained in visual 
inputs. To cope with this disparity, the vertebrate retina has evolved two strategies: 
one is to have a large number of parallel lines or optic nerves and the other is to 
introduce nonlinearity to compress the amount of  information. 

Results by Sakuranaga and Naka (16,17,18) showed that the essential features of 
the responses from catfish retinal neurons evoked by a white-noise modulated light 
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could be reconstructed with a reasonable degree of  accuracy by the first- to third- 
order kernels. Sakuranaga and Naka further showed that a large part of the nonlinear 
response was accounted for by the second-order model rather than by the third-order 
model (17,18). Although dynamic response of  retinal neurons may contain higher- 
order nonlinearities, the signature of the dynamic responses can be described mostly 
by first- and second-order kernels. 

The vertebrate retina has a class of  cells referred to as the amacrine cells. In cat- 
fish, the amacrine cells are classified into two classes, type-C and -N cells. Type-C 
amacrine cells, often referenced as the transient amacrine cells, are found in many 
lower vertebrate retinas, including mudpuppy (22), goldfish (3,4) and frog (9). A step 
of  light given in the dark produces sharp transient depolarizations both at the onset 
and offsets of the stimulus. Typical responses f rom type-C and -N amacrine cells 
evoked by step modulations of  a mean luminance are shown in Fig. 3. 

Earlier analyses have shown that responses from type-C amacrine cells are highly 
nonlinear (l 1,18) and the mean square errors (MSE) of  the linear model (predicted 
by the first-order kernel) are more than 90070, whereas the second-order model 
improved the MSE by as much as 60~ Type-N amacrine cells are known as the 
sustained amacrine cell in other retinas because steps of light given in the dark 
produce a sustained polarization (4). In catfish, sharp transient depolarizations and 
oscillations were seen superposed on the steady depolarization (17,2) of  type-N cell 
responses. 

In this article we will analyze the second-order nonlinearity produced by amacrine 
cells in reference to the cascade models. Conclusions drawn are: (1) There is one 
primordial second-order nonlinearity that is generated by type-C amacrine cells. (2) 
The nonlinearity is static and the cell response to white-noise input can be synthesized 
by squaring the output of  a differentiating (bandpass) filter. This is a cascade model 
of  Wiener structure in which a linear filter is followed by a static nonlinearity. (3) 
The second-order nonlinearity observed in amacrine cells of  the second type, type- 
N, can be reproduced by linear filtering of type-C cell responses. This is a cascade 
model of  Korenberg structure. Although we do not have any physiological evidence 
to show that such filtering and squaring are actually taking place in the catfish ret- 
ina, these structures are the simplest formal models to account for the modulation 
responses from the amacrine cells. 

MATERIALS A N D  M E T H O D S  

Biological 

Materials used were the eye-cup preparations of channel catfish, Ictalurus punc- 
tatus. Experimental and stimulation procedures have been described elsewhere (1,2). 

Data aquisition and analysis 

The time course of  the white-noise stimulus and resulting cellular responses were 
initially stored on analog tape (NFR 3000 Data recorder, Sony Corp., Tokyo) and 
digitized off-line at a rate of  500 Hz and stored in the memory of  a VAX 11/780 
computer (Digital Equipment Corp., Marlboro, MA). For analysis both the digitized 
response and the stimulus were filtered (0.1 to 100 Hz) to remove DC components, 
spurious noise and slow baseline drifts. First- and second-order kernels were com- 
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puted by crosscorrelating the input, white-noise modulation, I ( t ) ,  against the out- 
put, V ( t ) ,  as 

h i ( r )  = ( 1 / P ) V ( t ) I ( t -  r )  , (1) 

h 2 ( r l , r 2 )  = ( 1 / 2 p 2 ) v ( t ) I ( t  - r l ) l ( t  - z2) , (2) 

where h (r) is the first-order kernel, h ('/'1, T2) is the second-order kernel and P is the 
power of stimulus. In a linear system the first-order kernel is the system's impulse 
response, whereas in a nonlinear system the kernel is the best linear approximation 
o f  the impulse response. In the case of light stimulus, the impulse response is pro- 
duced by a short pulse of light superposed on a mean luminance, I0. Higher-order 
kernels are produced by the part of the response that is not accounted for by the lin- 
ear component.  Second-order kernels are produced by crosscorrelation between the 
white-noise input and the part of  the response produced by second-order nonlinearity. 
Therefore the second-order kernel is an indication of the deviation from linear super- 
position of two responses evoked by two flashes (superposed on a mean luminance, 
lo) that arrive with an interval of  (r~ - rz). Figure 1A shows a typical second-order 
kernel in a three-dimensional plot (bird's eye view): the kernel has two time axes and 
the third axis represents the strength of  nonlinear interaction. This kernel, similar to 
the one published by Schetzen (Fig. 13.7-6 in (19)), represents the second-order non- 
linearity produced by a square-law device. The three-dimensional structure can be 
replotted on two dimensions as shown in Fig. lB. In this plot the peaks and valleys 
in the three-dimensional plot are shown by contour lines. The positive peaks, depolar- 
izations in neural response, are shown by continuous lines and negative valleys, 
hyperpolarization in neural response, by dotted lines. The kernel has two time axes 
for the two inputs (Fig. 1). As the two inputs are interchangeable, the kernel is sym- 
metric around the diagonal. Peaks or valleys on the diagonal are produced by a non- 
linear summation of  two impulse responses produced by two inputs arriving 
simultaneously, i.e. rl  = r2. We reconstructed first- and second-order models by 
convoluting a light stimulus, I ( t ) ,  with a first- or second-order kernel. The accuracy 
of  the model's prediction was indicated by the MSEs between the models and the 
actual cellular responses. Detailed definitions of terms and computational algorithms 
and the theoretical treatment of the extension of white-noise analysis to spike trains 
can be found in Sakuranaga and Naka (16,17,18) and Sakuranaga et al. (15). 

MODELS 

A physical or biological system can formally be identified by an analysis of input 
and output data. One of  the techniques available for the identification of nonlinear 
systems is the cascade approach. Three cascade structures have been studied; the 
Hammerstein, Wiener and Korenberg structures are shown in Fig. 2. The Korenberg 
structure is often referred to as the sandwich or LNL structure. The Hammerstein 
structure is a static nonlinearity followed by a dynamic linear filter, whereas the 
Weiner structure is a dynamic linear filter followed by a static nonlinearity. In the 
Korenberg structure, a static nonlinearity is sandwiched between two dynamic linear 
filters. Victor and Shapley (21) showed that the neuron network leading to the gen- 
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I~3URE 1. A typical second-order kernel displayed in two different ways. (A) Three-dimensional pre- 
sentation: Cellular depolarizations are by positive peaks and hyperpolarizations by negative valleys. 
Two time axes and the third amplitude axis are shown. (B) Contour-map representation: Depolari- 
zations are sh~.,v,d by continuous lines and hyperpolarizations by dashed lines. The kernel has a four- 
eye signature to show that the nonlinearity is the kind produced by a square-law device. 

eration of  a class of  cat retinal ganglion cells, Y-cells, could be modelled by a Koren- 
berg structure or a sandwich model. 

The special case of  the Wiener structure (23) is a linear filter with a first-order ker- 
nel or an impulse response, g ( r ) ,  followed by a squaring device (19,7). The system 
has the characteristic 

f0 c~ z ( t )  = g ( r ) x ( t  - r )dr ,  (3) 

y ( t )  --- z2( t) ,  (4) 
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FIGURE 2. Block diagrams of three cascade models, the Hammerstein, Wiener, and Korenberg struc- 
tures. L's are linear filters and NL's are static nonlinearity. 

and therefore 

y ( t )  = g ( z ) x ( t  - r ) d r  

fro" = g ( r l ) g ( r 2 ) x ( t  - r l ) x ( t  - r z ) d r l d r 2 .  (5) 

Thus, the kernels of  this system are 

hj ( r )  = O, (6) 

h 2 ( r l , r 2 )  = g ( r l ) g ( r 2 ) .  (7) 

This relationship shows that the second-order kernel of this model can be produced 
by knowing the first-order kernel o f  the linear filter. 

RESULTS 

Power spectra of  the responses from type-C and -N amacrine cells evoked by 
white-noise modulated light stimuli are shown in Fig. 4, together with the spectra of  
the linear and second-order nonlinear models. The linear model for the type-C cell 
had a power 20 dB less than that of  the cellular responses, but the second-order 
model predicted the cell responses with a reasonable degree of  accuracy, except in the 
high-frequency region (Fig. 4A). Indeed the MSE for the linear, model was 90o70, 
whereas that for the second-order model was 45o7o. The error in prediction was prob- 
ably due to the presence o f  higher-order components in the high-frequency region. 
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FIGURE 3. Responses from type-C (A1 ,A2) and type-N amacrine cells (B1 ,B2) evoked either by incre- 
mental or decremental steps from a mean luminance. The type-C cell produced similar on-off tran- 
sient depolarizations at the on- and off-sets of step modulation (A1,A2).  The type-N cell produced 
much more complex responses (B1,B2). Dotted lines indicate dark levels. 
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FIGURE 4. Power spectra of light inputs, actual responses (marked RESPONSE), linear predictions 
(marked 1st-ORDER) and prediction by the first- and second-order kernels (marked 2rid ORDER). 
Spectra in (A) were from a type-C cell and those in (B) were from a type-N cell. Note that type-C 
cell's response is predicted fairly well by the second-order kemei, except in the high-frequency region. 
The first-order kernei's prediction was very poor. In the type-N cell, the first- and second-order ker- 
nels predicted parts of the cell's response to show that the cell had linear as well as nonlinear com- 
ponents. 
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For the type-N cell, the linear model predicted cell response quite well for the mid- 
frequency region around 10 Hz (MSE of 55~ whereas the second-order model 
improved the model prediction for the lower- and higher-frequency regions (MSE of 
the second-order model was 35%). As in the case of the type-C cell, the presence of 
higher-order components was indicated. These results are similar to those reported 
in earlier papers (17,18) and show that second-order nonlinearity is important in pro- 
ducing dynamic responses in catfish type-C and -N amacrine cells. 

Catfish type-C cells produce stable and stereotyped second-order kernels, one 
example of which is shown in Fig. 5A (18). The kernel has a characteristic configu- 
ration (signature) with two on-diagonal positive (depolarizing) peaks and two off- 
diagonal negative (hyperpolarizing) valleys. The on-diagonal second peak is usually 
smaller than the first peak. The structure was referred to as the four- or three-eye ker- 
nels by Sakuranaga and Naka (18), the latter being the kernels whose on-diagonal sec- 
ond peak was very small. As the kernel is a quadratic function, it is symmetric 
around the diagonal. The cuts made through the peak and valley parallel to the two 
time axes (dotted lines in Fig. 5A) produce differentiated (bandpassed) waveforms 
which are also shown. The waveform of the cuts shown here are similar to that of 
the impulse response or the first-order kernel from bipolar cells (11,16). The cardi- 
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FIGURE 5. (A) Actua l  second-order kernel from catfish type-C amacrine cell w i th  a typical four-eye 
signature. Cuts are made through the peaks and valleys parallel to  the two time axes. Two cuts are 
shown next  to each t ime axis. The diagonal cut  is superposed by the squared product of the cut  
in dashed line, (B) Second-order kernel produced by a Wiener structure in which the l inear f i l ter was 
the cut shown in (A) and the nonlinearity was a square- law device, Two second-order kernels are 
very similar. 
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nal point is that the peaks and valleys of the kernel form a square, the bases of which 
are parallel to theJtwo time axes. This shows that the kernel can be produced by the 
squaring of cuts made through the peak and valley. For example, the initial on- 
diagonal peak is produced by a multiplication of the two initial peaks of the cuts and 
the off-diagonal valleys by a multiplication of the initial peak of one of the cuts by 
the negative valley of the other cut (multiplication of the two dimensions). Type-C 
cell response, therefore, can be reconstructed by squaring a differentiating impulse 
response. 

Mathematically, this operation is represented by 

h2(7"1,7"2) =g(7"1)g(rz),  (8) 

where g(r) is the first-order kernel represented by the cut of the second-order ker- 
nel shown in Fig. 5A. If T1 = 7"2, then h2(7"1,7"1) = (g(7"1)) 2. This shows that the 
diagonal cut of the second-order kernel is obtained by squaring the cut. As shown 
in Fig. 5A, this is exactly the case. 

Type-C cell response, therefore, can be reproduced by a cascade model of Wie- 
ner structure. The kernel shown in Fig. 5B was constructed by squaring the output 
of a linear filter which was one of the cuts obtained in Fig. 5A. Bipolar cells produce 
a modulation response that is linearly related to the input modulation, and the cells' 
impulse response or the first-order kernel is differentiating or underdamped (16). In 
catfish retina, therefore, the linear dynamic filter is the output of the bipolar cells. 
In type-C cells, the bipolar cell input is instantly squared to produce the cell's char- 
acteristic nonlinear response. 

Type-N cells, the other amacrine cell, yield second-order kernels of various config- 
urations that are more complex than the kernels from type-C cells (17,19). Second- 
order kernels of type-N cells have alternating peaks and valleys elongated perpendic- 
ular to the diagonal. Peaks and valleys in kernels from type-N amacrine ceils and 
most ganglion ceils do not form a square. Such kernels could not be produced by a 
simple squaring of bandpassed impulse responses. We have, however, found that 
almost all second-order kernels from type-N amacrine and ganglion ceils are repro- 
duced by linear bandpass filtering performed on the second-order kernel of type-C 
amacrine cells. Thus, visual inspection of the kernels can lead to immediate predic- 
tions with regard to subsequent modeling. 

Figure 6 shows the process of reconstruction of a second-order kernel from a 
type-C second-order kernel. The output of Wiener structure with the second-order 
kernel shown in Fig. 6A was filtered by a second linear filter, and the filter's output 
was crosscorrelated against the white-noise input to produce a second-order cross- 
correlation shown in Fig. 6B. The reconstructed second-order product (Fig. 6B) is 
not exactly the same as the actual second-order kernel produced by the type-N cell 
(Fig. 6C), in the sense that the peaks and valleys are elongated perpendicular to the 
diagonal. The structure of the second-order kernel produced by type-N cells varies 
from cell to cell and is not as stereotyped as that produced by type-C ceils (5). How- 
ever, a common feature of type-N second-order kernels is that their alternate peaks 
and valleys do not form a square as do type-C second-order kernels. We used several 
different linear filters that may produce a second-order crosscorrelated product iden- 
tical to the actual type-N second-order kernel, but we have not yet succeeded in finding 
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FIGURE 6. (A) Typical type-C second-order kernel. (B) Second-order kernel produced by a linear filter- 
ing of the output of the type-C cell (AI. An impulse response of the linear filter is shown. (C) Second- 
order kernel from catfish type-N cell, 

such linear filters. Quantitative as well as qualitative measurements of the difference 
between the actual kernel and the reconstructed product have yet to be made. 

Thus, we found that the second-order nonlinearity produced by type-N cells and 
by most ganglion cells can be approximated by the Korenberg structure, in which a 
static nonlinearity is sandwiched between two linear filters. Various identification 
schemes for Korenberg structure are described in Korenberg and Hunter (6). 

DISCUSSION 

In this study we have shown that second-order nonlinearities produced by two 
types of amacrine ceils, type-C and type-N, can be replaced by cascade models of 
Wiener and Korenberg structures. These two theoretically derived structures have 
often been discussed, and it may not be a mere coincidence that these two models are 
found in catfish amacrine cells. In catfish retina, a large proportion and the signa- 
ture of dynamic responses of amacrine cells were approximated by first- and second- 
order Wiener kernels, although higher-order nonlinearities definitely exist in the ceils' 
dynamic response. We have found, however, that these higher-order components 
account for a much smaller proportion of the modulation response, and that higher- 
order nonlinearities produce sharp corners and peaks and oscillatory activities (17). 

Figure 7 shows a simplified neural circuitry in the catfish inner retinal layer. Ceils 
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FIGURE 7. Simplified neuron circuitry of catfish inner retina. The modulation responses of bipolar 
cells (B) are predicted by first-order kernels with a small degree of error. The kernels are differen- 
tiated showing the bandpass or underdamped nature of the cell response. Primordial secOnd-order 
nonlinearity is produced in type-C amacdne cells through a process equivalent to squaring. The output 
of type-C cells is transmitted to type-N cells through a linear filter. Type-N cells receive their linear 
components from bipolar cells. Ganglion cells transform analog signals into a series of spike dis- 
charges, a point process, which carry results of information transaction within the retina. 

in the outer retina, receptors, horizontal cells (2,20-22) and bipolar cells (11,16) 
respond linearly to input modulation. The bandpassed or underdamped linear 
responses of bipolar cells are transmitted to ganglion cells. Dynamic responses of 
type-N amacrine cells contain linear (20-60%) and second-order nonlinear compo- 
nents (15-30% of the total responses) (5). The second-order nonlinearity produced 
by type-N cells is characteristic of the cell, and the cell's linear response properties, 
which are represented by the first-order Wiener kernel, resemble those of bipolar 
cells. Therefore, it is reasonable to assume that the linear signals are directly trans- 
mitted from bipolar cells without much modification. Primordial second-order non- 
linearity is produced in type-C ceils. The nonlinearity is static, and can be replaced 
by a process equivalent to a squaring of the bandpass or underdamped linear sub- 
system. In the retina, the underdamped linear subsystem can be found in the dynamic 
responses of bipolar ceils. Thus, the second-order nonlinearity which characterizes 
the dynamic responses of type-C cells can be described by a cascade of Wiener struc- 
ture in which a linear subsystem is followed by a static nonlinearity. The output of 
type-C amacrine cells is fed into type-N amacrine cells through a second bandpass 
linear filter. The process results in producing the cells' characteristic second-order 
nonlinearity. The second-order nonlinearity produced by type-N cells can be replaced 
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by a cascade of Korenberg structure. The nonlinearities produced in these amacrine 
ceils are transmitted without much transformation to the ganglion cells. Ganglion 
cells receive linear signals from bipolar and type-N amacrine cells and second-order 
nonlinear signals from type-C and -N amacrine cells and generate spikes. Sakuranaga 
et al. (15) and Sakai and Naka (14) reported that crosscorrelation between the orig- 
inal white-noise input and the spike discharges (transformed into point process) 
recovers the linear and the second-order nonlinear components. They also found that 
first- and second-order kernels computed from the spike trains are virtually identi- 
cal to those from analog responses from bipolar and type-C and -N amacrine cells. 
The two basic second-order nonlinearities produced in the amacrine ce l l s -one  
replaced by Wiener structure, the other by Korenberg s t ruc tu re -a re  transmitted to 
the brain without much modification. 

Victor and Shapely (21) proposed a model for Y ganglion cells in cats, in which 
a static nonlinearity was sandwiched between two linear filters. They speculated that 
the first linear filter was the output of the bipolar cells and that the static nonlinearity 
originated in amacrine cells. This is exactly what we have discussed. Both cat and cat- 
fish seem to share a common scheme to generate nonlinearity. The static nonlinearity 
is a rectification in the cat and a squaring in the catfish. The difference is the pres- 
ence of  higher-order nonlinearities in the cat model and their absence in the catfish 
model. Cells in the lower vertebrate retinas produce responses similar to those found 
in catfish retina, and the scheme shown in Fig. 7 may be applicable to other retinas. 

There are three major problems to be solved: (a) We have to devise algorithms to 
estimate higher-order kernels with more accuracy. This will enable us to assess the 
role of  higher-order kernels and also allow us to distinguish between cat and catfish 
models. (b) We have to devise algorithms so that the second linear filters in the cas- 
cade model can be estimated. In this paper the second linear filter was "guessed." 
(c) We should obtain experimentally the transfer functions among the neurons in the 
inner retina. This can be done by injecting white-noise signal into one neuron and 
recording a resulting response from another neuron. By combining the results from 
these three research areas, we should be able to produce a reasonably well defined 
circuitry of  catfish inner retina. 
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