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Electrocardiographic shift equations for manifest hexadecapolar behavior due to 
eccentric location of equivalent generators of lesser degree have been derived and 
numerically validated. Under these conditions hexadecapolar properties emerge as 
first-order positional moments of eccentric octapole coefficients, second-order 
moments of quadripole coefficients, and third-order moments of dipole coefficients. 
Assuming that hexadecapolar field information can be successfully evaluated for 
beating heart preparations, including the intact human, the formulations presented 
herein should prove useful in determining the location of an equivalent cardiac gen- 
erator of lesser degree. 

I N T R O D U C T I O N  

The possibility of determining the location of the equivalent cardiac generator 
has posed a stimulating challenge to experimental electrocardiographers ever 
since Gabor and Nelson (1954) published a set of equations which indicated that 
this feat could be accomplished in the case of a dipolar source. Later, Geselowitz 
(1960) showed that the apparent quadripolar content of an equivalent generator 
depended in part upon where the origin of the reference system was located within 
the torso, which had been idealized into an electrically homogeneous, isotropic, 
realistically bounded volume conductor. In the pure case of a wholly dipolar 
source, true dipolar and manifest quadripolar content could be quantitatively 
evaluated from the distribution of potentials over a known torso surface configu- 
ration. The location of the generator could then be determined from solution of 
five linear simultaneous equations which contained the three components of 
dipole moment and five components of quadripole content. Translation of the ref- 
erence system to the origin thus determined caused apparent quadripolar content 
to vanish. 

Eventually the Gabor-Nelson and the Geselowitz formulations, although ap- 
pearing to differ somewhat from each other, were demonstrated to express vir- 
tually identical relationships (Brody et  al.,  1961). Within them appear first-order 
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positional moments of  dipole moment,  analogous to the static moments  of  
mechanics, from which the coordinates x, y, z of  dipole location are determined. 
Because of  their intimate relationship to generator  location they have come to be 
called the "shift  equations" of  electrocardiography. Subsequently,  other formula- 
tions of this genre have been developed, namely for the manifest octapolar content  
of eccentric dipoles and quadripoles (Brody, 1968). Recent  experiences in the lab- 
oratory suggest that eventually the next order  of generator approximation may 
prove experimentally applicable (Brody et  al., 1971; Horan  et  al., 1972). There-  
fore, in this report  we address ourselves to the problem of determining the hex- 
adecapolar behavior of an eccentric dipole, quadripole, and octapole. 

D E R I V A T I O N  OF  S H I F T  E Q U A T I O N S  

Burger and van Milaan (1946) showed that electrocardiographic potential V 
could be expressed, at least to a first approximation, as 

V = F i M  i, 

i =  1,2,3, (1) 

where M i and Fi are components  of heart and lead vector,  respectively. We 
(Brody et  al., 1961) later generalized this result to 

V = F i M  i + F~jM ~j + Fi~kM ijk + Fi jk iM i~t + �9 �9 " , i j , k , l ,  �9 �9 �9 = 1,2,3. (2) 

In this expression the indexed F and M symbols represent,  respectively, lead and 
heart tensors whose rank is expressed by the number of  indexes related to each 
symbol. The first scalar product  on the right of  the equation gives dipole contribu- 
tion to electrocardiographic potential (as in Eq. (1)), the second scalar product  in 
the running sum expresses quadripole contribution, etc. The  equation emphasizes 
not only the idea of successive approximations, but also the concept  that lead and 
generator characteristics can be separated from each other. 

Our earlier development  of lead tensor theory was based on the concept  of the 
electrocardiographic lead field (McFee  et  al., 1952; Brody and Romans,  1953). 
By definition the lead field is that scalar potential (voltage, as distinguished from a 
streamline field) function u which is produced in the torso when an electrocar- 
diographic connect ion is reciprocally energized with one unit of  current from an 
external source. In this context,  then, lead tensors of increasing rank are defined 
by 

F~ = Ou/Ox i, 

F~j = 1/2! 02u/Ox~Ox ~, (3) 
Fijk = 1/3! 03u/Ox~OxJOx ~, etc. 

i j , k , .  �9 - =  1,2,3, 

where the x i are Cartesian coordinates x 1 = z, x z = x, x a = y. The  heart  tensor 
components  were shown to be formed from the outer  products  of unit direct ion-  
vector  components ,  each such element multiplied by an appropriate scalar value 
of dipole or multipole moment  (Brody et al., 1961). The  exact structure of the 
dipole-multipole current  signularities need not concern us in this communication. 
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T A B L E  1 
FIRST RANK TENSOR COMPONENTS OF FIRST DEGREE IDEAL LEAD FIELDS 

(cf. Eqs. (3) and (4)) 
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Associa ted  
m Series F1 F2 F3 coefficient 

0 cos 1 al o 
l COS 1 all 
1 sin 1 bn  

Further ,  in developing lead tensor  theory,  we found it useful to deal with 
restricted forms of the reciprocally generated potential  functions which we termed 
"ideal lead fields." These  may be expressed as 

2 ( n - - m ) !  r , ( C o s m r h ) p f l , , ( c o s  0), (4) 
u = 1 + 8 , , ~  ( n + m ) !  \ sin mq~ 

where r cos 0 = z, r sin 0 cos 4) = x, r sin 0 sin 6 = Y; Pnm( cos 0) are associated 
Legendre  functions of  the nth degree and ruth order;  8m ~ = 1 if m = 0 and is 
otherwise zero. Each of these functions is t ransformable  to a homogeneous  alge- 
braic expression of the same degree. By repeated partial differentiation of these 
various expressions down to constant  terms,  tableaux can be generated which in- 
dicate the exact  " interact ion"  between each ideal lead configuration and the corre- 
sponding generator  component  which it senses. Although such tables have been 
published previously (Brody et al., 1961), they are repeated here (Tables 1,2, and 
3) because  the information which they contain is centrally important  to the devel- 
opment  which follows. 

In Tables  1,2, and 3, lead tensors are gathered together,  line-by-line, into usable 
packets  of  information. The  generator  coefficient associated with each such 
grouping is listed in the right hand column of the table on the same line. Since the 
lead tensors were  derived f rom ideally sensing connections,  it can be deduced 
f rom the second line of  Table  3, for example,  that for some sort  of  octapole gener- 
ator the aal coefficient will amount  to 

aal = (M m + M 112 + MlZ~)/3 -- M222/4 -- (M zaa + M aa2 + Ma2a)/12. (5) 

By this kind of manipulation heart tensors are likewise gathered into packets  

T A B L E  2 
SECOND RANK TENSOR COMPONENTS OF SECOND DEGREE IDEAL LEAD FIELDS 

(cf. Eqs. (3) and (4)) 

Assoc ia ted  
m Series F~I F2~ F33 F~2 F23 F3~ coefficient 

0 cos 1 --1/2 --1/2 a20 
1 COS 1/2 a21 
1 sin x/2 b2~ 
2 cos a/4 1/4 az~ 

2 sin 1/4 b22 
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which express  their respect ive contributions to individual generator  com- 
ponents.  The  necessary  permutat ions of  the indices are included in the above  
expression. With two identical indices there are three permutat ions,  as shown. 
With all three indices different there would be six permutat ions.  

The  hexadecapolar  behavior  of  eccentric, lower-degree generators  may now be 
determined. As an illustrative example  we will take the case of  the a41 coefficient. 
The  ideal lead field for this coefficient is to be found in the cosine series of  Eq. (4), 
with n = 4, and m = 1. Trans formed  to Cartesian coordinates,  this express ion 
becomes  

u = x z [ z  2 -  3/4 (x 2 + y2)]. (6) 

E c c e n t r i c  D i p o l e  

The  first-rank lead tensors are, by Eq. (3), 

F~ = 3x[z 2 -  (x 2 + y2)/4], 
F2 = z [ z  2 -  3(3x 2 + y2)/4],  (7) 

Fa = - - 3 / 2  xyz .  

From Eq. 1 and Table  1 it follows directly that 

a4, = Fla lo  + F2aH + F3611, (8) 

where  al0, al,, and b,, are the Z-,  X-, and Y-oriented components  of  dipole 
moment .  

E c c e n t r i c  Q u a d r i p o l e  

The second-rank lead tensors,  by  Eq. (3), are 

F l l  = 3xz,  

F22 = --9/4 xz ,  
F33 = --3/4 xz ,  

Fig = 3[z 2 -- (3x 2 + y2) /4] /2  (9) 

F13 = - - 3 / 4  xy ,  

F23 = --3/4 yz .  

Note  that the sum of the F ,  is zero, as would be expected  in dealing with a conser-  
vat ive field. F21, F31, and F32 are not given because  of lead tensor  symmetry .  Gath-  
ering terms together  in accordance with the groupings shown in Table  2 gives 

a41 = 3xz(a2o --  a22) + 3[z 2 -- (3x  z + y2) /4]a2,  -- 3xyb21/2 -- 3yzb22, (10) 

where the a2,, and b2m are the coefficients of  an eccentric quadripole located at x, 

y, z. 

E c c e n t r i c  O c t a p o l e  

Proceeding according to Fijk ~ 1/30Fij/Ox k 

F l l  I = X, 

F,2~ = - -3x /4  ( 11 ) 

F133 = - - x /4 ,  
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F211 : Z, 

F222 = --3z/4, 
- F233 = - - z / 4 ,  

F311 = F322 = F333 = 0, 
F123 = --y/4. 

Third-rank tensor terms may now be gathered together according to the grouping 
shown in Table 3, giving 

a4a = x ( a 3 0  - -  3a32) + 3za31 - -  3yb32, (12) 

where the a3m and b3m are generator coefficients of an eccentric octapole located at 
x, y, z. 

The  remaining a4m and b4m were similarly determined for current signularities of 
less than fourth degree. The resulting formulations are listed in the appendix. As 
can be seen, manifest hexadecapolar  behavior emerges as first-order moments of 
octapolar coefficients, second-order moments of quadripolar coefficients, and 
third-order moments of  dipolar components.  In order  to validate the derivations, 
as well as to guard against inadvertent error,  all orders of dipole, quadripole, and 
octapole sources were successively placed (numerically) at a representative ec- 
centric location within a Gaussian sphere of unit radius. Resulting voltages were 
computed for several hundred locations over  the spherical reference surface, and, 
from these, even-degree multipole coefficients through the eighth degree were in- 
versely determined by least-squares solution of  the several hundred equations 
which were derived from the above information. Truncat ion error  in series repre- 
sentation of  the various current  sources was minimized by limiting eccentricity to 
less than 20%. The  fourth-degree (hexadecapolar) coefficients, thus obtained, did 
not differ materially from the values predicted by the shift equations, thus, serving 
to confirm their accuracy. 

D I S C U S S I O N  

In electrocardiography the cardiac region is commonly treated as the site of a 
time-varying distribution of active electrical sources. For  regions external to a 
Gaussian sphere of radius, R, which contains all of  the active sources, field poten- 
tials may be efficiently and uniquely represented by the multipole expansion 

1 ~ ( R ) "  
v -  41ry ~--1 Y,(0,6); Yn(O,d~)= an0P,~ 0) 

+ ~ (a,m cos mc h +bnm sin m(a) Pnm (cos 0); r > R, (13) 
m=l 

where r, 0, 6 are conventional  spherical coordinates,  v is field potential external to 
the Gaussian reference sphere, y is the specific conductivity of  the medium, the 
Y,(0,6) are surface spherical harmonics, and the anm and bnm are equivalent gener- 
ator coefficients. The  medium is implicitly treated as being homogeneous and iso- 
tropic, at least external to the surface r = R. Because net flux is zero, Eq. (13) con- 
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ta ins  no un ipo le  t e rm,  and  the  ser ies  beg ins  wi th  n ~- 1 and  its c o r r e s p o n d i n g  th ree  
d ipo le  t e rms .  T h e r e  a re  five quad r ipo l e  t e rms  for  n = 2, s e v e n  o c t a p o l e  t e r m s  for  
n = 3, etc.  Beginning  wi th  the  d ipo le  t e rms ,  field po ten t i a l s  a re  a t t e n u a t e d ,  r e s p e c -  
t ive ly ,  a c c o r d i n g  to the  i nve r se  square ,  cubic ,  quar t ic ,  etc.  laws .  

D e s p i t e  the  c o m p a c t n e s s  and  gene ra l i t y  o f  Eq.  (13), it is still  no t  k n o w n  to w h a t  
deg ree  the  ser ies  f o r m u l a t i o n  w o u l d  have  to be  ca r r i ed  to  a v o i d  loss  o f  s ignif icant  
field i n fo rma t ion  th rough  t r u n c a t i o n  error .  I t  s eems  c lea r  f rom p r e v i o u s  exper i -  
men ta l  o b s e r v a t i o n  ( H o r a n  et  al., 1963) tha t  a s ingle f ixed - loca t ion  d ipo le ,  or  even  
a single mov ing  d ipo le ,  c a n n o t  r e l i ab ly  a c c o u n t  for  the  d i s t r i bu t ion  o f  field po t en -  
t ials  o v e r  a c o n d u c t o r  surface .  Cl in ica l  inves t iga t ion  o f  the  effect  o f  r e m o v i n g  
d ipo la r  c o n t e n t  f rom the  sur face  po ten t i a l  d i s t r i bu t ion  f o u n d  in m a p s  o f  n o r m a l  
h u m a n s  has  y i e l d e d  la rge  r e s idua l  s ignals  w h i c h  h a v e  not,  as  ye t ,  b e e n  c h a r a c t e r -  
i zed  as  to the  f r ac t iona l  c o n t e n t  o f  h igher  o r d e r  c o m p o n e n t s  ( H o r a n  et  al., 1972). 
L a b o r a t o r y  e x p e r i e n c e  wi th  i so l a t ed  r abb i t  and  tu r t le  hea r t s  c o n t a i n e d  wi th in  an 
a c c u r a t e l y  f ab r i ca t ed ,  e l ec t ro ly te - f i l l ed  sphe r i ca l  c h a m b e r  ind ica t e s  tha t  a signifi- 
can t  i n c r e m e n t  o f  f ield i n fo rma t ion  is ga ined  b y  quan t i t a t i ve  eva lua t i on  o f  oc-  

t apo l a r  c o n t e n t  ( B r o d y  et  al., 1971). E v e n  in this  f a v o r a b l e  s i tua t ion ,  h o w e v e r ,  

s o m e  o f  the  p r e p a r a t i o n s  show a p p r e c i a b l e  a m o u n t s  o f  g r e a t e r - t h a n - o c t a p o l e  
r e s idua l  s ignal .  W e ,  t he re fo re ,  be l i eve  tha t  e v a l u a t i o n  of  t he  n e x t  deg ree  of  c u r r e n t  
s ingular i ty ,  n a m e l y  the  h e x a d e c a p o l e ,  m a y  p r o v e  r eward ing .  In  an t i c ipa t i on  o f  the  
need  to  p r o c e s s  such  in fo rma t ion  we  have  de r ived ,  and  p r e s e n t  here in ,  the  e lec-  
t r o c a r d i o g r a p h i c  shift  equa t ions  w h i c h  pe r t a in  to the  h e x a d e c a p o l e .  

A P P E N D I X - H E X A D E C A P O L A R  S H I F T  E Q U A T I O N S  2 

F o r  E c c e n t r i c  D i p o l e  

a4o = 2z(2z 2 - -  3x 2 - -  3y2)alo --  3/2 (4z 2 --  x 2 - -  y2) (xaia + ybal ) ,  

a4a = 3x(z  2 - x2/4 --  y2/4)alo + z ( z  2 - 9/4 x 2 - 3/4 y2)a11 - 3/2 x y z  b~l, 

b41 = 3 y ( z  2 - x2/4 - y2/4)alo - 3/2 x y z  a l l  + z ( z  2 - 3/4 x 2 - -  9/4 y2)b l l ,  

a42 = z/2 (x 2 -- y2)alo + x /6  (3z 2 - -  x 2 ) a ~  --  y /6  (3Z 2 --  y~)b~i, 

b42 = x y z  a~o + y /2  (z  z --  x2/2 -- y2/6)aai + x /2  (z 2 - -  x2/6 -- y2/2)blx,  

a43 = x /24  (x 2 - 3y2)ai0 + z/8 (x 2 - y 2 ) a n  - -  x y z / 4  b,1, 

b43 = y /24  (3x 2 --  y2)a~o + x y z / 4  a l x  Jr- Z/8  ( x  2 - -  y 2 ) b ~ ,  

a44 = x /48  (x 2 - -  3y2)a11 --  y/48 (3x 2 --  y2)bal ,  
b44 : y/48 (3x 2 --  y2)aaa + x /48 (x 2 - -  3y2)bH. 

F o r  E c c e n t r i c  Q u a d r i p o l e  

a4o = 3(2z 2 - x 2 - y2)a2o - 12xz a21 - 12yz bz~ + 3(x  2 - -  y2)a2z + 6xy bzz, 

Ct41 = 3xz(a~o --  a22) + 3(z  2 --  3x2/4 - -  y2/4)a2a --  3xy/2 b2~ - 3yz b22, 

b41 = 3yz(a~o + a22) --  3xy /2  a21 + 3(z  2 - -  x2/4 -- 3y2/4)b2a - 3xz b22, 

z In accord with modern  practice, Z serves  as the polar axis in these  formulations.  In the previously 
published octapolar shift equat ions (Brody, 1968) X was employed as the polar axis. The  earlier equa- 
t ions can readily be made  to conform to the present  formulat ions by replacing x by z, y by x, and z by y. 
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a42 : (x ~ -- y2 ) /4  a20 + z(xa2x -- yb2~) + ( z  2 - -  x2/2 -- y2/2)a2z,  

b4z = x y / 2  azo + z(ya2a + xb21) + (z  2 --  x2/2 - yZ/2)bz2, 

a43 = (x z - y2) /8  a2a - x y / 4  b21 + z /2  (x a22 - y b22) ,  

b43 : xy /4  a2~ + (x z -- y2) /8  b21 -t- z/2 (y a22 + x b22) ,  

a44 = ( x  2 - y~)/8  a22 - -  xy /4  b22, 

b44 = xy /4  a22 + (x  2 - y2) /8  b22. 

F o r  E c c e n t r i c  O c t a p o l e  

a4o = 4z a3o -- 6x  a31 -- 6y b31, 

a41 = x(a3o - 3a32) + 3z  a31 - -  3y  bzz, 

b4~ = Y(aao + 3aa2)  § 3z  b31 - 3x  b32, 

a42 = 2z a32 + x /2  (a31 - 2a33) - y /2  (b3~ + 2ba3) ,  

b42 = 2z b32 + y /2  (a3~ + 2a33) + x /2  (b3, - 2b3~) ,  

a43 = x /2  a32 --  y /2  b32 + z aa3, 

b43 = y /2  aa2 + x /2  b32 + z ba3, 

a44 = x /2  a33 - y /2  ba3, 

b44 = y /2  a33 + x / 2  b3a. 
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