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T H E  E X T E N S I O N  T H E O R Y  OF H E R M I T I A N  O P E R A T O R S  A N D  T H E  
M O M E N T  P R O B L E M  

V. A.  D e r k a c h  a n d  M .  M.  M a l a m u d  UDC 513.88+ 517.948+517.984 

I N T R O D U C T I O N  

This paper  is dedicated to further development of the theory of generalized resolvents, preresolvent, 
and resolvent matrices of a Hermit ian operator  A on a separable Hilbert space [j. The  role of the formula of 
generalized resolvents in the extension theory was expounded (on the condition that  the defect numbers  are 
equal to unity) by Naimark [55] and Krein [32], who showed that  it contains as a corollary the well-known 
Nevanlinna formula of the moment  problem. Krein [32] introduced the not ion of the  resolvent matrix. 
These notions and the results obtained at first for the case of a Hermit ian operator  with  the defect numbers  
(1,1) were generalized and developed afterward in the papers of these authors and their followers in the 
case of more general classes of operators and spaces. Simultaneously, the range of problems solved within 
the theory was extended. 

In content, the given paper  complements the papers of Krein et. al. [32-43, 58, 81-84] and continues 
our previous investigations on the extension theory of a Hermit ian operator  A whose domain ~ ( A )  is 
dense in [~. W e  consider extensions of a nondensely defined operator  A, and this enables us to extend the 
range of applicability of the operator approach to classical interpolation and boundary  problems. We use 
systematically an abstract  version of the Green identity formalized in the concept of a boundary-value space 
(in the case ~ ( A )  = I} see [12, 13, 18, 6, 79]. 

The  paper,  with the exception of Sec. 7, is devoted to  self-adjoint extensions of the operator  A. Note, 
however, that  even the investigation of t~-resolvent matrices of a Hermit ian operator  A with a dense domain 
~ (A)  leads to the consideration of some nondensely defined Hermit ian operator  as well as non-self-adjoint 
extensions of the lat ter  and their characteristic functions. 

In Sec. 1, which is preparatory, we present the necessary facts concerning linear relations, some classes 
of R-functions, and some propositions on the extension theory of a nondensely defined Hermit ian operator 
in a Hilbert space [1. H e r e  we recall the notion of a boundary-value space (BVS) H = {7/,rl,r?} of 
a nondensely defined Hermit ian operator A, the Weyl function M(A), anc~ the forbidden manifold 9rri 
corresponding to the BVS H, and also give some statements  of the extension theory from [53, 18, 79]. We 
mention only some elementary ones, which we need to describe the main  results of the paper:  

(1) the mapping  r = {F2, I'1} : A* --+ 7t (9 7 /def ines  the bijective correspondence between the set of 
proper extensions A (A C A C A*) of the operator  A and the set of linear relations 0 in 7/: 

0 = r i= { { r , ] , r , / }  : ]= { / , / ' }  e c A*}; (o.1) 

if 0 = B is an operator,  then  relation (0.1) takes its usual form 

d~o = d~B = ker  (r~ - B r 2 ) ;  (0.2) 

(2) the forbidden manifold 9rn = r { 0 , 9 1 } ,  where 91 = ~ ( A )  • corresponds in formula (0.1) to the 
Hermitian extension of A 

.4~,~ = A+  dl (dl = {0, 9l}); 

(3) an extension Ao is an operator if and only if ~'ri Cl 0 = {0}. Even the two last s tatements 
demonstrate  the utility of the forbidden manifold ~-rI, which plays an essential par t  in the extension theory. 
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In Sec. 2 we investigate 91-regular linear relations, tha t  is, a closed linear relat ion T such tha t  the linear 
manifold T + ~ is closed. In the case of proper  extensions T = .4(D A) of the  ope ra to r  A and 9l = ~ ( A )  a- 
this definition is equivalent to the definition of a regular extension of A [31, 64], whose role is well known 
[60]. We find new criteria for an extension .4 to be 91-regular, and here we ment ion  the following one: 
the linear manifold P ~ ( . 4 * )  is closed in 91. The  91-regularlty criteria of an extension A in terms of the 
forbidden manifold ~-n and the Weyl function M(A) are obtained. 

In Sec. 3 the generalized resolvents of a nondensely defined Hermit ian opera tor  A (~ (A)  = [~0,C [~) 
are studied. The  operator-valued function l:t~ = P( .4  : A) -1 ~0 i s  a generalized resolvent if .4 = A is a 
self-adjoint extension of the operator  A, acting in a Hilbert space ~ D [}, P is the or thogonal  project ion of 

onto ~. Here the following analog of the Krein formula for resolvents is obtained:  

Rx  = (A2 - A) -1 - 0'(A)(r(A) -b M(A))-I"r*(A), 

and all the parameters  from (0.3) are expressed in terms of BVS: 

(0.3) 

q(A) := {7(A),AT(A)] = (F2[~x)  -1, M ( A ) : =  FI~(A), r(A) = - F ( R ;  1 + A), (0.4) 

where A2 = kerF2,  M(A~ is a Weyl  function, 9~A is a defect subspace of the opera tor  A. As follows from 
(0.4) and (0.1), Rx  = (A-T(A) - A) -1 , tha t  is, for all h E [~, l:txh is a solution of some "boundary-value 
problem" for A* with the spectral parameter  r(A) in the boundary  condition, which coincides with (0.1) in 
the case r(A) _-- - 8  = const. 

Formula (0.3), as well as the Krein formula, establishes a bijective correspondence between the set 
of generalized resolvents {Rx} and the class -~n of Nevanlinna functions, comple ted  by the families of 
Nevanlinna linear relations. However, in contrast  to the case of a densely defined Hermit ian  operator  A, a 
self-adjoint relation .4 generating the generalized resolvent R:~ may be either an opera tor  or a linear relation. 
We find addit ional hypotheses about r(A) (M-admissibil i ty conditions) for the corresponding generalized 
resolvent to be generated by an operator.  They take the form 

3 lim iy((r(iy) + M(iy))- lh,  h) = lim iy(M-l(iy)h,  h) Vh E Vr~(0); 
~T~ ylor 

(0.5) 

s - l im "'-'y-l(v(~y) -b - - ' "  " ' 1 ~ / 1 ( ~ y ) )  - 1  -~" 0. 
yT~ 

(0.8) 

If A2 is an operator  (4----~ ~-rt(0) = {0}), the  M-admissibil i ty conditions may  be reduced to the single 
condition (0.6), which was obtained earlier in [51, 53]. Conversely, in the case A2 = A~- ~t (----~ ~-a(0) = 7/) 
conditions (0.5), (0.6) are equivalent to the following one: 

s - R- l i m  y-lT~iy}"" = O. in "/h_(v..} 
yToo 

The last condition coincides in the scalar case dim91 = d i m 7 / =  1 with the well-known Nevanlinna condition 
of the momen t  problem. 

The  formulas for generalized resolvents of a bounded  Hermitian operator  and a Hermit ian contraction 
proved differently in [70] and [40] are obtained here as corollaries of relations (0.3)-(0.7). 

We also thoroughly s tudy the M-admissibil i ty conditions. In particular,  the criterion for an operator- 
valued function v(A) with values in [7-/] to be M-admisslble is given in terms of the limit operator  T(iOO). 

In Sec. 4 the resolvent formula (0.3) is used to describe (in terms of abstract  boundary  conditions) the 
extensions of the operator  A with a gap (a,  fl), which bring to the gap a finite number  of discrete levels, 
as well as the extensions preserving the gap. These results are analogous to those obtained in [20, 21, 
79] for the case ~ ( A )  = [~. In particular,  the extensions with a finite negative spec t rum of a nonnegative 
operator  A > 0 are described. It should be emphasized that  just  the existence of two forms (0.1), (0.3) of 
the description of self-adjoint extensions A0 = A~ makes it possible to apply formula (0.3) not  only to the 
classical problems (of the type of the moment  problem),  but  also to boundary-value problems (see [20, 26, 

142 



50-52, 79]). We also describe the generalized resolvents of the operator A with the gap (a, fl), which are 
generated by self-adjoint extensions A in i)(D D) with the property stated above. 

In Sec. 5 it is shown that  each R-function Q(,k) satisfying the unique condition 0 E p(Im Q(i)) is a Weyl 
function of a Hermitian operator A whose domain is, generally speaking, nondense in [~. We propose three 
distinct proofs of this fact, connected with the three known functional models [71, 72, 75, 81] of a Hermitian 
operator A, which are constructed with the help of the function Q(A). Within each of these models we find 
a BVS for the linear relation A* such that the corresponding Weyl function coincides with Q(,~). The inner 
description of Q~- and QM-functions of Hermitian contractions [40] as well as of nonnegative operators [41] 
and also the description of spectral complements (in the sense of [69]) of bounded Hermitian operators are 
given here as corollaries of Theorem 5.1. 

The presence of the condition 0 E p(Im Q(i)) in Theorem 5.1 impelled us to consider in Sec. 6 generalized 
BVS's for nonclosed linear relations. Such a consideration allows us to omit the requirement 0 E p(Im Q(i)) 
in the assumptions of the preceding theorem on the realization of the R-function. The utility of generalized 
BVS's becomes clear below in studying the inverse problems for Q~- and QM-functions, for characteristic 
operator-valued functions (See. 7), preresolvent and resolvent matrices (Secs. 8, 9). 

In Sec. 7, in view of the needs of Sec. 8, we slightly deviate from the main "self-adjoint" direction 
of the article. Here we introduce the "class .As of almost solvable linear relations, which contains linear 
relations with two regular points A1, A2 such that  Im A1 �9 Im A2 < 0, and linear relations with a real 
regular point, in particular, bounded operators. We define the characteristic functions (CF) of a linear 
relation T e .As and show (Theorem 7.3) that they exhaust the class of J-contractive (holomorphic on C+) 
operator-valued functions W()~) acting in a finite-dimensional space and a wide class of such functions in 
an infinite-dimensional one. In the latter case an additional hypothesis on W()~) is formulated in terms of 
rigged Hilbert spaces. 

Each linear relation T may be considered as a proper extension of its Hermitian part A. The linear 
relation T of the class .As(A) C .As is characterized by the existence of a BVS II = {7-/, F~, F2} for A* such 
that T is related to a bounded linear operator B ~ [~] via Eq. (0.2). Although the class .As(A) does not 
exhaust the class Ex A of all proper extensions of A, it turns out to be very natural. Thus, in Theorem 7.1 
we obtain an explicit formula for the calculation of the CF WT(),) of the linear relation T = f tB(e .As(A)) 
in terms of the Weyl function M(A) and the boundary operator B(e  [~]): 

WT(A) = I-4- 2iK*(B* - M ( A ) ) - I K J  (Im B - KJK*) .  (0.8) 

In the case ~(A)  = [} this formula was found by the authors in [18, 26] anc~.,for a bounded operator T it 
coincides with the definition of a characteristic function due to Livgic [48, 8, 9] (M(A) = h i  if A = {0}). 

Precisely formula (0.8) enables us to prove for the operators (and linear relations) of the class .As the 
theorem on unitary equivalence, the multiplication theorem, and to solve the inverse problem of the theory 
of CF in complete analogy with the corresponding results of [48, 8, 9]. This formula is implied by the 
formula for resolvents (0.3) and then, in Sec. 8, is applied essentially to the proof of Theorem 8.3. 

In Sec. 8, preresolvent and resolvent matrices of a Hermitian operator A are invest igated.  These 
objects were introduced by Krein [32] in the case ~(A)  = [}, n• = 1, and naturally arise in the operator 
approach to classical problems of analysis of the type of the moment problem. Indeed, the set of solutions 
of a number of classical problems coincides with the set of ~-resolvents of a Hermitian operator A, that is, 
with the operator-valued functions of the form Ps  I/~, where P,.~ is a generalized resolvent of the operator 
A, ~ is a subspace of 0 (d im~ = n+(A)), called a module one. The description of all ~-resolvents of the 
operator A is given by the equality 

P ~ R A  I,~ -~- [Wll(~)T()t)  3v w12()~)][W21 (~)7"()t) -4- w22()t)] -1  , (0.9) 

which easily follows from the formula of resolvents (0.3). The matrix-valued function 
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is called a IIl~-resolvent matr ix  of the operator  A corresponding to the BVS II = {12,F~,F2}. Wn~(A) is 
related via a simple equality to the other  main  object of the theory, the H12-preresolvent matr ix  of the 
operator A: 

PAn.~(A) = (' M(A) 7"(A)['2, ) (0.10) 
k,Ps Pa(A2 - A) -x r,l~ 

It is useful to consider a nondensely defined Hermit ian operator  in s tudying the matrix-functions P.ln~(A) 
and Wn~(A), even in the case ~ ( A )  = O: 

A0 = AI12 • (0.n) 
If a linear relation A* is 12-regular, then the operator  A0 has a number  of "good" properties:  ~(A0)  = 122% 
A~ = A* + ~, the linear relation A* [12• = (A + ~)* is almost solvable, and, finally, 

P ~ ( A )  = 12. (0.12) 

Condition (0.12) is equivalent (see Sec. 2) to the 12-regularity condition for A*. If this condition is fulfilled 
(this is true, in particular,  if n+(A) = n_  (A) < c~), then a H12-preresolvent mat r ix  turns  out to b e n  Weyl 
function of the Hermit ian operator  A0 corresponding to a some specific BVS for the linear relation A~, and 
Wn~(A) proves to be a CF of the linear relation A* r12• = (A + ~)* 6 .4s (Ao) .  

One can easily deduce the last s ta tement  from formula (0.8) on account of the fact that  P.ln,-(A) is a 
Weyl function of the operator  A0. We derive from the same formula (0.8) the following one 

( - r 2 q * ( a )  (0.13) wn (A) = 

for the calculation of Wna(A) in terms of the operator-valued functions 7~(A) and Q(,~), which are abstract 
analogs of polynomials of the first and second kind [here 7~(A) is a skew project ion onto 12 in the decom- 
position 0 = (A - 1 ) e ( A ) 4  ~, Q(A) = Pe(A - ~ ) - 1 ( i  _ p(1))] .  In the case e ( A )  = 0 formula (0.13) was 
proved by the authors in [20, 21, 79]. Note also that  in the proof of (0.13) we used the expression for the 
Weyl function [see (8.16)] implied by the formula 

A* = A-~ 75*(A)!2Jc ~)*(A)t2, (0.14) 

which we can consider as an analog of the first Neumann formula. 
Section 9 is dedicated to inverse problems for preresolvent and resolvent matr ices  of an operator  A. The 

necessary and sufficient conditions for a holomorphic operator-valued function F(A) to be a preresolvent or 
resolvent matr ix  of a Hermit ian operator  are found. 

Finally, in Sec. 10 we apply the results from Secs. 3 and 4 to the t runca ted  Hamburger ,  Stieltjes, and 
Hausdorff moment  problems. The  t runcated  Hamburger  moment  problem consists in the following [4, 6, 
38]: given a sequence {Sk} 2~ of real numbers,  find the necessary and sufficient condi t ions  on {sk} 2~ which 
ensure the existence of a nonnegative measure da(t) such that  the following representat ion holds 

with some m > 0, and describe the set l)(s; I t )  of all solutions a(t) .  
The  number  m = s2,  - f s  t2"dcr(t) is called the mass at infinity [38]. In the framework of the operator 

approach the description of the set V(s, I t )  is reduced to the description of the set of 12-spectral (12 = {~}) 
functions cr(t) = (EA(t)H, 1) of a nondensely defined operator A and is given by formula (0.9), which 
coincides in this case with the Nevanlinna formula. The appearance  of the number  m in the t runcated 
moment  problem is implied by the existence of the linear relations A = .4", which are extensions of the 
nondensely, defined Hermit ian operator  A and rn = 0 if and only if a( t)  is generated by an operator  i .  In 
other words, the funct ion r(A) from equali ty (0.9) is M-admissible if and only if the corresponding measure 
da(t) satisfies the equality s2n = f~ t2"da(t). 
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Here we obtain the criterion for a solution of the problem (0.13), which has no mass on some intervals 
(aj , f l j ) ,  1 _< j < rn, and we give a description of these solutions. 

The results of the paper were partially amlounced in [24, 27, 28]. 
1. P R E L I M I N A R I E S  

1. Let 9 / b e  a separable Hilbert space. A linear relation T in 7"l is a linear manifold T in 9/(9 9/. 
We denote by C(9/) the set of closed linear relations in ~ (i.e., closed subspaces T C 7-I $ 7-/). For linear 
relations T, S e C(9/) we put (see [77-80]) 

~(T)  = { f  e 9/: 3f '  E X, { f , f ' }  e T};  

m(T)  = { f '  e g/ : 3 f  e g/, { f , f ' }  e T}; k e r T  = { f  e g/ : { f ,O} e T}; 

T(0) = {f '  :E 9 / :  {0, f '}  e T}; T(0) = {{0, f ' } :  f '  e T(0)}; 

aT = {{f, a f ' }  : { f , f ' }  e T}; T -1 -- {{ f ' , f }  : { f , f ' }  e T}; 

T + S = { { f , f '  + g'} : { f , f ' }  e T, { f ,g '}  e S}; 

S T =  { { f , g }  : 3f '  E g/ { f , f ' }  e T , { f ' , g }  E ,5'}; 

T*  = { { g , g ' }  : ( f ' , u )  = (f,g') V { f , f ' }  e T } .  

For a linear relation T e a'(9/) we define the resolvent set p(T) by 

p ( T ) = { A e C : k e r ( T  A ) = { 0 } ,  9 ~ ( T - A ) = ~ } ,  

the spectrum or(T) = C \ p(T), and we give the classification of the spectrum in the following way: 
a t (T)  {A e c ( T ) :  k e r ( T -  A) = { 0 } , ~ ( T -  A) -- 9/} - -  the continuous spectrum; 
ap(T) = {A e a ( T ) :  ker (T - A) r {0}} - -  the point spectrum; 
at(T) = cr(T) \ (ap(T) U ac(T)) - -  the residual spectrum of T. 
The set w(T) {(f ' ,  f )  : {f, f '} e T} is the numerical range of the relation T. A linear relation 

T e C(9/) is said to be Hermitian if w(T) C R (i.e., T C T*); nonnegative if w(T) C R+; dissipative if 
w(T) C C+ (C+ := {A '. Im A > 0})' A Hermitian (dissipative) relation T is said to be self-adjoint (maximal 
dissipative) if there does not exist an extension of T in the same class, or equivalently if p(T) 7t r 

We denote the set of closed (bounded)l inear  operators from 9/'(1 to 9/'/2 byte(9/1,9/-/2)([9/-/1,9/2]); in the 
case 9/1 = 9/2 = 9 /we  put C(9/) := C(9/, 9/), [9/] := [9/, 9/]. We regard C(9/) as a subset of C'(9/) identifying 
an operator T e C(9/) with its graph gr T = {{f ,  T f }  : f e ~(T)}  e C'(9/). Let Pn' be an orthogonal 
projection onto subspace 9/' C 9/. 

P r o p o s i t i o n  1.1 ([57]). Let T 6 C(9/) and w(T) C {A" Im (Ae i~~ > 0} (~0 e [0,2~r]). Then 
T(O) _L ~(T)  and the following decomposition holds: T = T' @ T(O), where T' e C(9/'), 9/' = 9/(9 T(O). 

In particular, if T is a self-adjoint (dissipative) linear relation, then its operator part  T possesses the 
same property and a(T') = a(T). The spectral function of a self-adjoint linear relation T is defined by the 
equality ET(A) :---- ET,(A)Pn,. 

2. Def in i t i on  1.2 ([29]). A family of linear relations r(A) e C'(9/) is said to be holomorphic on.A e C 
if there exist a space 9/1, and operator-valued functions r k~(A) with values in [7-[1,7-(] holomorphic on 
A such that r(A) admits the representation 

: h e 9 /1} .  ( I . I )  

The kernel k(A, #), which is defined on G x G and takes values in [9/], is said to have x negative squares 
on G if k(A,/~) = k*(/~, A) and for each n e Z+ and all choices of Aj e G and h j e  9/, j = 1 ,2 , . . .  ,n,  the 
Hermitian n x n-matrix ((k(),i, Aj)hi, hj)i,j=l has at most g (and for at least one collection of n, Aj, h i 
(1 <: j < n) exactly x) negative eigenvalues. 
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Definit ion 1.3 ([36, 811). Denote by N,,(n) (x e Z+)the class of families o] linear relations r(~) �9 
C(7"l) of form (1.1) holomorphic on C \ R such that r(~) = r*(X), p(r(~o)) ~ ~ for at least one ~o �9 C+ 
and the kernel kr()~, #) = ~*(~)r has ~ negative squares on C \ R. )~-~ 

Let -~n := N0(7-/) be the class of families of linear relations r ( D  of form (1.1) for which the kernel 
k~($,g) is normegative on C \ R. We shall write r($) �9 Rn if r($) �9 Rn and for all ~ �9 C+ it takes values 
in the set of maximal dissipative operators. The next proposition is well known. 

Propos i t ion  1.2. Let ~'(~) � 9  and ~o �9 C+. Then: 
(1) ~ = a  �9 ~(~(~0)) ~ - �9 p(r(~)) w e c \ ~ ;  
(2) ~ = a �9 ~ (~(~0) )  :. ~ �9 ~ ( ~ ( ~ ) )  w e c \  ~; 
(3) p(~(~0)) # z ~ p(~(~)) # ~ w �9 c \ ~; 
(4) ~(~0) �9 [u] ~ ~(~) �9 In1 w �9 c \ ~; 
(5) [r(~0)](0) # {0} ~ r(~)= T(~) e [r(~0)](0), T(~) �9 Rue[,(~o)l(0). 
Theorem (R. Nevanlinna [4-6]). An operator-valued function Q(~) with values in [T/] belongs to the 

class R~ if and only if it admits the following representation: 

Q ( A ) = C Q + B Q A +  ( t - A  l + t 2 )  d2( t ) '  (1.2) 

with some self-adjoint operators CQ, BQ e [7-/], BQ > O, and a nondecreasing funct ion ~( t )  = ~( t  - O) with 

values in [7-/] such tha t  L (1  + t2) -1 d~(t)  E [7-/]. 

D e f i n i t i o n  1.4 ([38]). Let - c r  < a < fl < oo and let E be one of the following sets: either [a, fl~ or 
R \ (~ ,~) .  We denote by S~n(E)( ,~n(E))  the class of families of linear relations v(A) 6 n ~  (r(A) 6 R ~ )  
if r(A) admits a holomorphic continuation to R \ E such that =l=v(x) > 0 Vx 6 R \ E .  

D e f i n i t i o n  1.5 ([19, 22]). Let E = R \  ((~,fl); x 6 Z+ and let w(A) = ~-~ for - c ~  < a < fl < ~ ,  

w(A) = A - / 3  for ~ = -cr  w(~) = (~ ~ A) -1 for fl = +cx). A family of linear relations v(A) 6 R ~  ( R ~  is 
,ai~ to belong to the cla,s S~ (E)(S~ (E)) i f~ (~) •  �9 ~ ( ~ )  

As was shown by Krein (see [38]) the classes S~~ coincide with the classes S~(E) .  The authors 
in [22, 25, 79] characterized functions v(A) �9 S~n~'(E) in terms of their zeros and "poles," the number  of 
which in E does not  exceed x. 

3. Let A be a Hermit ian operator  acting in a Hilbert space 0, generally speaking, with nondense domain 
~ ( d )  in 0, 00 = ~ (A) .  We denote by A* the adjoint linear relation, 92 = 0 e 00, ~ = {0,92} = A*(0); 
92~ = ker (A* - A) are the defect subspaces of A (A �9 C \ R); n•  = dim92• are the defect numbers  of 
A; /3(A) is the set of the points of regular type. 

We state some relevant definitions and proposit ions from [53, 79]. 
D e f i n i t i o n  1.6.  A tr@le II = {7-/,P1,F2} in which 7-( is a separable Hilbert space and F i �9 [A*,7-/] 

(j = 1,2), is a boundary-value space (BVS)  for a linear relation A* if: 
(1) 

( f ' , g )  - ( f ,g ' )  = ( r~ ] , r~o )~  - ( r ~ / , r i o ) ~  v ]  = { f , f ' } ,  ~ = {g,g'} �9 A*, (1.3) 

(2) the mapping r :  ] -~ { r ~ ] , r l ] }  #ore A* to u �9 ~ is surjeetive 
For a BVS for A* to exist it is necessary and sufficient that  the defect numbers  of the operator  A 

coincide (n+(d) = n_(n)) .  
D e f i n i t i o n  1.7. A closed extension A of A is said to be proper if A C ,4 C A*. We denote the set of 

proper extensions of A by EXA. Two proper extensions A~, A" �9 EXA are called disjoint if A~ f3 fI" -= A 
and transversal if, additionally, ~l + A" = A*. 

Naturally associated with each BVS are two transversal extensions A i = A~ = ker Fj �9 Ex A ( j  ---~ 1, 2). 
The inverse assertion also holds. 

P r o p o s i t i o n  1.3 ([18, 53]). Suppose that two extensions A i = A~ �9 Ex A (j = 1,2) are transversal. 
Then there exists a BVS { ~ , r ~ , r ~ }  for A* such that Aj = kerFi (j = 1,2). 

D e f i n i t i o n  1.8 ([51]). The manifold 9rn P ~  = {{F2fi, Fxfi}: f i =  {0, n} �9 ~ }  is a forbidden relation 
corresponding to B V S  II = {7-(, F1, I~2}. A linear relation 0 �9 C(7"() will be called admissible if Of3Un = {0}. 
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Clearly, ~'II is a Hermltian linear relation in ~ .  
P r o p o s i t i o n  1.4 ([26, 53]). The mapping F : ] --* { r 2 / , r l / }  #ore  A* to ~ �9 ~ is subjective and 

induces a topological isomorphism between A* /A  and 7-[ ~ 7"[ such that: 
(i) there exists a one-to-one correspondence between the set of extensions 2 �9 Ex A and the set of 

relations 0 �9 C(7"l) 
a = a ,  ~ 0 = r~i = { { r , / , r , / }  : ] � 9  (1.4) 

in this connection A1 ~ PAl = {7~, 0}, A2 ~ FA2 = {0, 7-/}; 
(2) -4o and A2 are disjoint igon  {o,u} = {o}(.: :. o �9 c(7-t)); 
(3) f~et and Ao, are transversal i# 015r 02 = 7"[ @ 7"[(01,02 �9 d(7"[)), in particular, Ao and As are 

transversal iff O �9 [7-l~; 
(4)~if SA �9 p(Ao~.) N p(-40:), then the transversality of Aox and Ao2 is equivalent to the condition 

0 �9 p((Ao~ - A) -1 - (An2 - A)-a); 
(5) if there exists ff �9 #(01)N p(02), then the transversality of .4o, and Ao2 is equivalent to the condition 

0 �9 p((01 - r  _ (as - r  
(6) if Oa �9 C'(~), 0 2 � 9  [7~], then the following equivalences hold: 

o14 02 =.7~ eT/-< > o �9 #(ol "o2)  u,~,(Ol - 02); 

(7) an eztension rio is Kermitian (self-adjoint, dissipative) iff the linear relation 0 �9 C(7-I) possesses 
the sam�9 

(8) Ao �9 C(b) 5.e., f~o is an operator) -~ > 0 n 9vr~ = {0}; 
(9) the extension Aj: n is Hermitian and takes the form 

f~J:a = A + ~  = {{f,  A f  +n}  : f �9 ~ (A) ,n  �9 ~} .  (1.5) 

4. Let 9lx = {{fx,Afx} : fx �9 9Ix} IA �9 •(A)), .~x := A-i- 9Ix. 
L e m m a  1.1 ([53]). Let A �9 iS(A), A �9 Ex A. Then the following equivalences hold: 
(1) A �9 p(.~) -' '.- A and Ax are transversal < y A* = ASr ~x;  
(2) A r ap(A) .'. > ~ and Ax are disjoint. 
The first assertion of Lemma 1.1 implies 
P r o p o s i t i o n  1.5 ([53, 79]). Suppose that H = {7-/,F1,Fs} is a BITS for the relation A*, ~rl is the 

orthogonal projection onto the first component in ~ @ 74.. The equalities 

#(~) = (r21~x) -1, 7(~)  = rlxi(A), (A �9 p(A2)) (1.6) 

define the operator-valued functions ~(),), 7(A) holomorphic on p(A2) with values in [7-/,~x] and [~,fftx] 
respectively. Furthermore, the following relations hold: 

7(A) = 7(#) + (A - #)(A2 - A)-17(#), (A,# �9 p(A2)); (1.7) 

7"(~) = FI{(A2 - A ) - I , I + A ( A 2  - A )  -1} (A e p(A2)). (1.8) 

C o r o l l a r y  1.1. ~ ( 0 )  = r{0,A2(O)} = 7*(A)A2(0) VA �9 p(A2). 
De f in i t i on  1.9. The operator-valued function M()~) defined for A �9 p(A2) by the equality 

M(~)r2/~ = r l /~ ,  (/~ = {fx,  Af~} e ~x ,~  �9 p(A2)) 

will be called a Weyl function of the operator A, corresponding to the BVS {7~,F1,F2}. 

( 1 . 9 )  
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Since, by Proposition 1.5, M(A) = F,$(A) is holomorphic on #(A2), takes values in [7"/], and satisfies 
the equality 

M(A) - M(#) = (A - #)7"(/2)7(A), (A,# �9 p(A2)), (1.10) 

it follows from (1.10) that M(A) �9 R~t and is a Q-function of the operator A, corresponding to the extension 
A2 [18, 53, 79]. 

In accordance with Lemma 1.1 and Proposition 1.4 we obtain 
P ropos i t ion  1.6 ([18, 30, 53]). Suppose thai {u, rl ,r2} is a BVSIor  A*, M(A) is the corresponding 

Weyl function, 0 �9 d(~),  and A �9 p(A2). Then the following equivalences hold: 
(1) A �9 p(Ao)-: '.- 0 �9 p(0-  M(A)); 
(2) A �9  > 0 � 9  ( i = p , c , r ) .  

L e t X  2 [7. /@7_/] , j= ( 0 0 I  ) = (Xik)J,k:l �9 i I  �9 [7-/~ 7-/]. We define the transformation X[O] in 

C(7-/) by the relation 
X[O] : :  {{X21f  ! + X22f, X l l f '  "Aft Xl2f} : {f,f'} �9 0}. (1.11) 

The connection between various BVS's is established by 
P ropos i t ion  1.7 ([30, 261). Suppose that II = {7-t, r l , r 2} ,  fI-- .{Tt,~,P~} are BVS's for A*, M(A) 

and AT/(A) are the corresponding Weyl functions, A �9 Ex A, O = FA, 0 = FA. Then: 
(1) there exists a J-unitary operator X �9 [TI @ 7~ such that 

(F1)~2 : ~X21 ~Xll  X22X12) ( I'll)F2 , 0-----X[O], 2~/(,~)-~-X[M(,~)]; (1.12) 

(2) the transformation X[O] can be defined as a linear-fractional transformation in the following cases: 
(a) if o �9 c(~),  then X[O] = (Xl~O + Xl~)(X210 + X~2)-~; 
(b) /f 0 �9 p(X21), then X[O] = �9 --1 * * )--1 (X21) Xll -~- (X21 (X210 -3 t- X22)-1; 
(3) if # �9 [u], then 0 �9 ;(X210 + X22), in particular, 0 �9 ;(X2~M(~) + X22) and 

2~/(A) ---- (XllM(A) Jr- X12)(X21M(A) "t- -3/22) -1 VA �9 C \ R. (1.13) 

Proof.  (1) It follows from identity (1.3) and Proposition 1.4 that there exists a J:unitary operator X 
such that 

~1 = XlIF1 + X12F2, f'2 = X21P1 + X22F2. (1.14) 

The equality 0 = X[0] easily follows from (1.4) and Proposition 1.4. 
(2a) Let 0 E C(7-/) and {h,h'} E (XllO + X12)(X210 + X22) -1. Then there exists f E 7-/such that 

h = (X218 + X22)f, h' = (Xl10 + X12)f. In view of (1.11) this yields {h, h'} �9 X[8]. The inverse inclusion 
is obvious. 

(2b) Rewrite the J-unitary conditions of X in the form 

= * * X X* X;1X21 X21Xll, X12 22 = 22X12, 

X* XllX;2 ---- Xl2X;1 , X21 22 -- X22X~l, 

Let {h, h'} E X[0], that is, the following equality holds: 

{h, hi} = {X21f' -t- X22f, X l l f '  H- X12f} 

Then we obtain from (1.15) X~lh - X~lh' = f ,  i.e., 

{h,X~lh'} E X;1 - ( X 2 1 0  Jr- X 22)  - 1 ,  

X;lX22 - X~,X12 = I; 

XllX~2 - X12X~l = I. 

(1.15) 

(1.16) 

({f, f '} e 0). (1.17) 

* --1 * * --1 0 . {h,h'} e (X2x) Xal - (X2a) (X21 +X22) -1 

148 



Analogously, one can check the inverse inclusion 

* - -1  * __ i X .  \ - - l t ' v "  0 ( X 2 1 )  X l l  k 21) 1~.21 -1 -X22)  - 1  C X[O]. 

(3) Let 0 = X[0] E [7-/]. Assume tha t  { f , f ' }  e 0 and h = X21f' + X22f = O. In view of (1.17) 
and the condition 8 E [7/], this implies tha t  h' = X11f' + X21f = O, f = X~lh - X~lh' = 0 and hence 
ker(X210 Jr X22) = {0}. It follows from (1.17) and the relation ~ (0 )  = 7 / t h a t  ~t(XalO -F Xa2) = 7 / ,  i.e., 
o E o(x21o + x=2). 

In particular,  for .4 = Ax we have 0 = M(A), 0 G.p(X21M(~) + X22) VA e C \ R, and the equality 
/17/(A) = X[M(A)] takes the form (1.13). 

t l . e m a r k  1.1. (1) If O(0) r {0}, then assertion 2a stops being true, for example,  if 0 = {0,7/}, then 
(Z l - -  0 ) ( I  + 0) -x = 71 @ ?/. 

(2) The  forbidden relations ~'n and ~f~ corresponding to BVS's II and II are also connected by the 
relation ~II = X[~'n]. 

5. We characterize the forbidden relation .Tn in terms of the asymptot ic  behavior of the Weyl function. 
Letting 92"(A2) = 92 ~ A2 (0), we introduce the relation 

~-~ := F~I"(A2) = {r2,  F1}~I"(A2), (~ l"(A2)  --  {0,92"(A2)}).  (1.18/ 

As follows from the formulas 

~-n = r~t  = r I 0 , & ( 0 ) } 4  F~I"(A2) = {0, ~'r~(0)}4 ~'~ = ~r~(0)4  ~'~I, 

~'~ defines an operator  in 7/. In the general case ~ does not always coincide with the operator  par t  5r~i 
of the relation ~-n, but  ~'~ = ~'~I = 9vii if .Fn(0) = {0}. 

T h e o r e m  1.1 ([53]). Suppose that II = { 7 / , r l , r ~ }  ~s a BVS fo. A*, ~ = r ~  (j = 1,2), M(~) .nd 
~n are ~he corresponding Weyl function and forbidden ,elation. Then 

(1) h e 7t2 = ~(hvi]) -~ '.-limyt~r y(Im M(iy)h, h) < oe ~ limy?~r yIm (M( - i y )h ,  h) < ~ ;  
(2) for each h E 7/2 the,e ezist strong limits 

M(cx~)h := s - lira M(iy)h = s - lira M ( - i y ) h  = -~h;  (1.19) 

in this case M ( ~ )  = S~n if S:n(O) = {0}; 
(3) for all h E 7-( the following equalities hold: 

M(iy) 
BMh := s - lira . h = 7*(A)PA~(o)7(,~)h V,~ e C \ R; (1.20) 

y t~  zy 

hence BMh = 0 Vh e 7-t @ .T'I~(0) and BMh r 0 Vh e 5Cn(0) \ {0}. 
T h u s ,  BM 7 s 0 if and only if A2(0) ~t {0}; in other words the t e rm BM)~ is lacking in the integral 

representation (1.2) of the Weyl function M()  0 if and only if A2 is an operator.  
C o r o l l a r y  1.2. Suppose ~hat II = { 7 / , r x , r 2 } ,  II1 = { 7 / , r 2 , - r l }  a.e BrS's fo,  A*, M(~) and 

MI(~) = - M ( ~ )  -1 a,e ~he co,,espo~ding Weyt func~ions, AI(O) = A2(0) = {0} ~ BM, = BM. = 0. 
Then 

Ml(c~) = -M(cx~) -x. (1.21) 

Note that  relation (1.21) does not hold if the representation (1.2) of at least one of two functions M(A) or 

a _ ~ - I  , e l  = , e2 = �9 

Then we have 

M ( ~ )  = {{Ce2,aCel} : C E C}; 
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Therefore M1 (oo) r - M ( o o )  -1 . 
6. Subspaces 9]'x = 92x n [70 (A E C \ R) are called semidefect subspaces, and the numbers n~(A) = 

dim92~:i are semidefect numbers of the operator A. Clearly ~ are defect subspaces of the operator 
P~oA e C(~o). 

P r o p o s i t i o n  1.8 ([28, 53]). n+(~'n) = n•  = n~(A). 

P r o o f .  Choose a BVS for A* such that M(i) = i. Then Vf e 92~ ( ]  = {f ,  i f } ) ,  V[= {0, l} e ~ we 
obtain from (1.3) 

0 = 0) - (y,  l) = ( r l / ,  - r l  b , ,  = r l  i + (1.22) 

that is, F2 /  E ~)'~i(~'rI). Conversely, for all h e 921(~n) there exists ] E ~ i  such that  F2]  = h (since 
F2~l, = 7-/). It follows from (1.22) that ] e [}0 and hence ] e ~ .  Thus, the operator establishes an 
isomorphism between 92~ and 9~i(hrn); therefore n~(A) = n• [] 

2. R E G U L A R  O P E R A T O R S  A N D  R E G U L A R  E X T E N S I O N S  

1. Let M, N be closed subspaces in I}. As usual, the symbols M + N and Mhr N denote the sum and 
the direct sum of subspaces M, N. Since the sum of linear relations is denoted by the same symbol (see 
Sec. 1), i n order to avoid ambiguity we shall write additionally M, N E ~2 for the sum of subspaces M, N 
and, respectively, M, N E C(O) for the sum M + N of linear relations. 

L e m m a  2.1. Suppose that X ,  Y are Banach spaces, P is a linear continuous surjective mapping from 
X to Y ( P X  = Y), N = ker P. Then the range P M  of a closed subspace M is also closed if  and only if 
M + N is a closed subspace of X .  

P r o o f .  The necessity of this assertion follows from the equality 

P - I ( P M )  = M q- N ( N =  ke rP)  

and the continuity of P.  
Sufficiency. If M + N is a closed subspace of a Banach space X, the factor space (M + N ) / N  is 

also a Banach space. Since P X  = Y,  we have f rom the Banach theorem that P is an open mapping 
and the mapping /5 := X X / N  --* Y (P(x  + N) = Px,  x e X )  is a topological isomorphism. Hence 
P M  = P ( M  + N)  = P((M + N ) / N )  ~- (M + N ) / N  and, therefore, P M  is a closed space since (M + N ) / N  
is a closed space. 

We shall need the known result of T. Kato. As follows from the proof given below, this result is a 
consequence of the Banach theorem. 

P r o p o s i t i o n  2.1 ([29 p. 279]). Suppose that M and N are closed subspaces of a Banach space X ,  M • 
and N • are their annihilators in X*.  Then the linear manifold M + N is closed in X if  and only if  the 
linear manifold M • + N • is closed in X*, and in thin case the following equality holds: 

M • + N • = (M N N) x. (2.1) 

P r o o f .  Let 7r 1 : X ~ X / N  and 7r2 : X* ~ X * / M  • be factor-mappings. Let P1 = zrl [M, P2 = r2 IN • 
It follows from the equality (P l f ,  g) = ( f + N , g )  = ( f ,g)  = ( f , g + M  • = ( f ,  P2g) Vf E M, g E N • and the 
relations (X /N)*  = N • M* = X * / M  • that  P2 = P~*. By virtue of the Banach theorem on an operator 
with a closed range, the range of P1 is closed if and only if  the range of P2 is closed. Further, in accordance 
with Lemma 2.1 we obtain that the linear manifold M + N (M • + N • is closed if and only if the range 

�9 7rl(M) = P I M  (Tr2(N -t') = P2N • is closed. 
2. Let M and N be subspaces of Hilbert space [~. We define (after [29, p. 276]) the minimal opening 

7(M, N) of subspaces M and N by the formula 

:=  inf  Ilu - PNul l  
Ilu -- PMraNUI[ = 7 ( N ,  M ) ( <  1). 

(2.2) 
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In the  case M n N = {0} the opening 7(M,N)  coincides with the sine of the minimal angle between 
M and N :  7(M, N) = sin(M, N). 

Propos i t ion  2.2. Let M and N be subspaces of a Hilbert space. The following assertions are equiva- 
lent: 

(1) 7(M,N) > 0; 
(2) linear manifold M + N is closed in b; 
(3) linear manifold M "k + N "k is closed in b; 
(4) linear manifold PN• is closed in N-k; 
(5) linear manifold PNM -k is closed in N. 
Proof .  The equivalence (1) -: :- (2) was proved in [29, Theorem IV.4.2] and the equivalence (2) r 

(3) is contained in Proposition 2.1. Equivalences (2) -' ~- (4), (3) .' > (5) follow from Lemma 2.1, used for 
operators PN• PN E [0]. [] 

3. Let A be a closed linear operator in b identified with its graph gr A, ~(A) = I)0 C b, 9)tx = 
(A - A)~(A), 9I~, = 9Jt~-, 92 = 0 @ 00, ~x  = {{fx, ,~fx} : fx E 91x}, A* be the adjoint linear relation, 
and let ~ = {0, 9l} be its multivalued part. The following direct decomposition, which is an analog of the 
Neumann formula ([74, 77, 80]; see also [31, 64]) holds: 

A* = A+ ~ x +  ~X (A E C \ R). (2.3) 

At the same time the decomposition 

~(A*) = ~(A) + 91x + 92X ()~ E C \ R) (2.4) 

is not a direct sum. The ambiguity in (2.4) is described by the following proposition. 
Propos i t ion  2.3 ([31]). Vectors fx G 91x and - f x  G 92X are congruent modulo ~(A)  (that is, 

3fA e ~(A) :  IA q- Ix + fx = O) /f and only if there exists a unique vector n e 91 such that 

fx = fx = - B r a n  (n e 92). 

 his case Ilfxll = Ilfxll n = -  )(AfA + h A  + ~ f X ) .  
It follows from Proposition 2.3 that an operator defined by the equality 

Vr = P,a,n (Vn E 91) (2.5) 

is an isometric operator acting from 92X" = Pmx92 onto 92~ = Pm~92, named a forbidden operator. The 
notion of a forbidden operator was introduced in [54], its role in the extension theory of operator A was 
clarified in [31]. As shown in [31], manifolds 91~ are closed (or nonclosed) only simultaneously for all 
A E C \ R. In the former case the operator A is called regular; in the latter case it is called singular [64]. 

Let A~p be the operator adjoint to the operator A G C(b0, 0), 
L e m m a  2.2. Let 92~ = 91x G 91~ = 91x n Oo be a semidefect subspace of A. Then the following direct 

decomposition (analogous to the Neumann formula) holds: 

~(A*) = ~(Aop) = ~(A)(+)-i - 91~-i- 91~_i-i- 91~', (2.6) 

where ~iA) (+) is the closure o f~ (A)  in the graph-norm of the operator A;p. 

Proof .  Making use of formula (2.4), we show that --" --" " ~---~+).  91_i C 91i + By virtue of Proposition 2.3 
lineals 91• are linearly dependent modulo ~(A) and 

92"  = 91_, n (~(A)4 92~) C ~(A)4 91~. (2.7) 
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If f - i  ~ ~ i ,  then according to (2.7) there exists f(_~.) e fit~i (n e 9l) such that f(~.) = f(A n) + f~n) --. f - i  

(f(A ") e ~(A), f[") e 91i) for n --* co. It follows from (2.5) that f(--'~) = V~r - i  and, consequently, there 
exist the limits 

- "  
fi  : =  n) = lim V/f(~ ) -  E fiti, fA := lira f(A~)e ~(A)  "(+). 

n ---~OO 

Thus f - i  fA + fi and the inclusion ~ "  ~ "  = fit_~ C ~(A) (+) +fiti is proved. In view of formula (2.4) this implies 
that 

~ H  
~(A*) C (~(A)(+)4 fit~-i- 9l'_.~) + 9l,.  

The inverse inclusion is evident since fit• C 91i C ~(A*). [] 
Corol la ry  2.1. Let A be a regular Hermit• operator. Then 

~(A*) = ~ (A)4  fit~4 fitS• fit~'. (2.8) 

Corol la ry  2.2. The following relations hold: 

Pmfit),= P ~  = P ~ ( A * )  = Pm~(Aop ) (VA e C+ U C_). (2.9) 

Propos i t ion  2.4. Let A be a IIermitian operator in b, ~ E C \ R.  Then the following assertions are 
equivalent: (1) "r(~X, fit) > 0; (2) 9XX + fit is closed; (3) "r(fit~, b0) > 0; (4) m~ + bo = b; (5) fit~4 b0 = b; 
(6) m~ is closed; (7) ,P~fit:, = P~fit7 = P ~ ( A * )  is closed. 

The proof follows from Proposition 2.2 and Corollary 2.2. 
R e m a r k  2.1. One can easily deduce from item (7) of Proposition 2.4 and relations (2.9) that the 

assertions (1)-(7) of Proposition 2.4 are fulfilled or are not fulfilled simultaneously for all A E C \ I~. In 
particular, linear manifolds fit~ are closed or are not closed simultaneously for all A E C \ R. 

4. Def ini t ion 2.1. Let 9I be a subspace in b. A linear relation T E C(b) will be called 91-regular if a 
linear manifold T + ~ is closed in b 2 = b @ b (recall that ~ = {0, fit]. c b2). 

P ropos i t ion  2.5. Suppose that {~,rl,r~]. is a B V S  for A*, 0 e C(7-l), A = As is a proper extension 
of an operator A, 5~ii is a forbidden relation, 9I = bo A. Then the following assertions are equivalent: 

(1) .4 is 91-regular extension of A; 
(2) linear relation P~oA is clo~ed; 
(3) linear manifold p ~ ( A * )  is closed in fit; 
(4) linear manifold 0 + .~'rI is closed in 7"[ @ 7-[. 
Proof .  (1) ~ (2). Since ~ •  = b @ b0 it follows from Proposition 2.2 that .4 is an 91-regular extension 

of A if and only if the linear manifold 

P ~ o  -~ = ( { f ,  Phof'} : ( f , f ' )  e A} (2.1o) 

is closed. It remains to note that the manifold P~$~o.4 coincides with the product P~0 ~ of the linear 
relations P~0 and .4. 

(1) ~ (3). Let J be an isometry in b @ b defined by the equality J{h l ,  h2} = { h 2 , - h i } .  According 
to Proposition 2.2 the linear manifolds A + ~ ,  A• + ~ •  A* + J R  • = j ( ~ x  + ~lx), and Pj~A* are closed 
only simultaneously. It remains to note that PjmA* = Pm~(A*).  

(1) r (4). Since the mapping F induces a topological isomorphism between A*/A  and 7-/@ 7-/, the 
equivalence (1) r (4) is a consequence of the equality, r(/0 + ~) = e + y.. [] 

Coro l la ry  2.3. Under the assumptions of Proposition 2.5 the following assertions are equivalent: (1) 
A is an 91-regular operator; (2) P~oA is a closed operator; (3) P ~ ( A * )  = fit; (4) ~'n is a closed linear 
relation in 7-l; (5) fit'~ = P~x fit is closed in fit• (~ e ~(A)). 

R e m a r k  2.2. As follows from the equivalences (1) ~ (5) of Corollary 2.3 and (1) ~ (2) of 
Proposition 2.5, the notion of 91-regularity coincides with the notion of regularity both for a Hermit• 
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operator A [31] and for its extension A E e(~) [64] if m = t]~. Other  regularity criteria for extensions 
A e g([)) are given in [60]. 

C o r o l l a r y  2 .4 .  Under the assumptions of  Proponition 2.5 the following holds: 
(1) Ai = kerFi is an 92-regular eztensio~ iffT"ll = F i ~  is closed in 7-I (i = 1,2); 
(2) if ~-o is an 9~-regular operator, then ~R(U-~ - O) is closed in 7"l; 
(3) if As is an 92-regular operator and B 6 [7/], ~hen 92-regularity of an exZennion -4B = ker (Vl - BF2) 

is equivalent to the condition 

> 0 :  II( 'n - B)hl l  _ ellhll Vh E 7-/2 = F s ~  ( 2 .11 )  

P r o o f .  (1) Consider the case i = 1. Since 0 :=  rA1 = {7/, 0}, the first assertion follows from item (4) 
of Proposition 2.5 and the equality O + .T'n = 7-/~ ~R(.T'n) = 7"l ~ 7-/1. 

(2) Since 0 + ~ n  is a closed linear relation, its multivalued part  (0 + ~-n)(0) is closed in 7-/. Now the 
assertion follows from the relation fft(.TH -- 0) = (~'r[ + 0)(0). 

(3) Condition (2.11) is equivalent to the fact that fft(~'n - B) is closed in 7-/. Now it remains to use 
the relation 

gr .Tn-i- gr B = gr B-]-(0, fft(Y'n - B)} (2.12) 

and ~o note that the minimal opening between the subspaces in (2.12 / is positive. [] 

C o r o l l a r y  2.5. Suppose that ~I E Ex A is a Hermitian extension of A such that codim~(.4)  < co and 
A* is 92-regular. Then all proper extensions A I E Ex .~ of A are also 92-regular. 

Proo f .  By virtue of Proposition 2.5 P ~ ( A )  is closed in 92. It follows from the relation cod im~(A)  = 
n < co that dim(92 @ P ~ ( . 4 ) )  < n. For all A' e Ex 2 the inclusions A C (A')* C .4" imply that the linear 
manifold P ~ ( ( A ' ) * )  is closed and, therefore, A' is an 92-regular extension of A. [] 

5 .  P r o p o s i t i o n  2.6. Suppose that H = {7-/, F~, F2} is a B VS for A*, ~ is a forbidden relation, M(1) 
is the corresponding Weyl function with integral representation (1.2 1. Then 

1]s m(B  ) = 

I/2 2 Proo f .  Owing to Theorem 1.1 we have BM = 7*(i)PA2(O)~(i). This implies that I]BM hll = 
r r ~ l / 2 ~  IIPA2(0) (i)hll (Vh e ~ )  and the operator U, defined by the equality ' - ' ' - ' M  ' "  = P A ; ( O ) " / ( i ) h  (h E 7-//, is an 

1/2 1:~1/2 TT, isometry from 9~(B M ) onto As(0) since As(O)f~gJ~-i C 92ngJt_i = {0} ([53]). Hence ~M ~" = 7(i)*PA~(O) 
1/s and U* is an isometrical operator from Ap(0) onto ~R(B M ). In accordance with Corollary 1.1 

1/2 . 1/2 
~'n(0) = "F(i)A2(0) = m ( B  M U ) = m ( B  M ). [] 

C o r o l l a r y  2.6. Under the assumptions of PropositiOn 2.6 the following equality holds: 

-~'YI ~:~ 1/2 " 1 / 2  " 
= (B M )+  gr M(ico) = {0,9~ (B M )}+ gr M(ico).  (2.14) 

The proof follows from (2.13) and relations ~rr~ = ~n(0)-~ ~-~, ~'~ = gr M(ic~) (see Theorem I.I). 
P r o p o s i t i o n  2.7. Under the assumptions of Proposition 2.6 the following assertions are equivalent: 

(1) m (BM) is closed in ~ ;  (2) YH(0) is closed in ~ ;  (3) 7(As(0),A1) > 0; (4) 7(~(A2),92~) > 0; (5) 
7(Aa(0),9)tX) > 0 V,k e C \ R .  

P r o o f .  The equivalences (1) r (2) and (4)r (5) are consequences of relation (2.13) and Proposition 
2.2. The equivalence (2) ~ (3) follows from Lemma 2.1 and the equality ~-n(0) = r lA=(0) .  Now it remains 
to show that (5) .'. :. (2). If 7(As(0),ff)~-i) > 0, then according to Proposition 2.2 PAp(O)92i is closed. Since 
As(0) n ff)I-i = {0} we have PAp(O)92i = A2(0) and hence PA,(O)92i = A2(O). Making use of Lemma 2.1 
and relations kerr*( / )  = if)I-i, ~/(Ap(0),gJI_i) > 0 we conclude that ~'n(0) = 3'*(i)A2(0) = 7*(i)PA,(O)92i 
is closed in 7-l. 
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Conversely, if "y(A2(0), 9Y~_~) -- 0, then according to L e m m a  2.1 and Proposi t ion 2.2 we have tha t  the 
linear manifolds A2(0)-i- ~ _ ~  and ~'n(0) = "r*(0)A2(0) are nonclosed. [] 

R e m a r k  2.3.  One can easily deduce Proposi t ion 2.7 f rom Proposi t ion 2.2 and the next assertion: if 
M,  N are subspaces in [J, then  the following equivalence holds: M + N is closed -~ ~- the range Of the 
operator  PNPM • IN is closed. In turn  this assertion is a consequence of the equivalence 

IIPNPMII < 1 ~ IIPNPMINII < 1 

held if M n N = {0}. 
Now we shall  characterize the regularity of an operator  A in terms of the Weyl function. 
P r o p o s i t i o n  2.8.  Suppose that II = {7~,F1,F2} is a BVS ]or A*, M(A) is the corresponding Weyl 

function, 9I = ~(A)  • = [}~. Then ~he operator A i8 91-regular if and only if the linear manifolds ~ (BM), 
gr M ( ~ )  are closed and form an acute angle (here BM i~ a coe~cient of A in ~he integral representation 
(1.2) of M(~)). 

P r o o f .  If A is a regular operator,  then ~ n  = F ~  and .T'ri(0) axe closed. Since . ~  = F{0,91 @ As(0)} 
is the range of the subspace {0, 91 @ As(0)} C A* and F �9 [A*,7-/@ 7~] is a bounded  operator,  it follows 
from the equality 

.~n = F ~ =  ~ - ~ ) - b  F{0,91 @ A2(0)} = .~rI("~)4 .T'fi (2.15) 

and the known theorem from [45, p. 11] that  5v~ is closed. In accordance with (2.13) and Proposi t ion 2.2 

we obtain 7(gVr~(0), ~ )  > 0. To complete the proof of the direct assertion it remains to note that  by virtue 
//~I/2~ 

of Theorem 1.1 and Proposi t ion 2.6 5v~ = gr M(c~) and ~'II(0) = ~ k ~ , M  2. 

The inverse assertion follows immediately from (2.15) and Corollary 2.3. [] 
R e m a r k  2.4.  (1) Suppose that  M(co)  is a bounded  operator .  This is true, for example, if 7"/2 is 

closed. In this case .T'E(0) and .T'~ form an acute angle. If, additionally, an extension A2 is 91-regular, then 
the operator A is 91-regular if and only if ~n(0)  is closed. In particular,  A is 91-regular if A2(0) = {0}, or 
more generally, i f d i m A 2 ( 0 )  < co. In the case dim91 = r one can easily construct  examples of 91-regular 
extensions A2 �9 C(O)@C(O) of operator  the A, that  is, not 91-regular. To this end we must  choose the Weyl 
function M(A) such tha t  7-12 = 7-/2(M) is a closed subspace and 9~ (B) is not. 

(2) An operator  A2 is a nonregular  extension of a regular operator  A if and only if an operator  M(cx)) is 
closed but  unbounded.  In the general case (A2(0) r {0})A is a nonregular  extension of a regular operator  

A if and only if gr M(co)  and ff~ (B) are closed, 7(9~ (B) ,g r  M ( ~ ) )  > 0 bu t  the operator  M(c~) is 
unbounded.  

In the next example we produce a Weyl function M(A) such tha t  V ( ~ - n ( 0 ) , ~ )  = 0 and M ( ~ )  is an 
unbounded  operator.  (0 

E x a m p l e  2.1.  Let L0 = L~ �9 C(7-/0), L = L0 �9 C(7-/), 7-/= 7-10 @ 7-/0. We put  

L( 1 M()0  = BA + t - A  
t 

1 + t 2 )(1 + ts) dE(t) ,  

where E(t) is the spectral  function of the operator L, and B = P1 is the orthogonal  project ion onto 
7t 1 := {0} @ T/0. It is easy to see that  7-/2 = ~(L0)  @ {0} and 

= - , , h  + + e),tE( )h Vh �9 7/2. 

(0) 
Therefore, M(oc)  -- - L r ~ s  = L0 

~R (B) -- 9~ (P1) = 7"/1 we have 

: 7-12 -'* ~1 and the linear manifold gr M(cx~) is closed. Since 

~ n  = {{0, hi} + {h2,M(~)h2} : hi �9 7-l~,h2 �9 T12} = T12 @ 7"l 1 
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and ~II is nonclosed. It  follows f rom w tha t  there exists an operator  A and a BVS {7"/, F1, F~ } such that  
M(A) coincides with the corresponding Weyl function. 

P r o p o s i t i o n  2.9.  Suppose that J ,  X E [7/(B ~ are the same as in Proposition 1.7 M(),) e Rn ,  

0 e p(Im M(i)) and ~ ( ~ )  = X[M(~)] (see (1.12)) The~ the linear manifold ~ M ) 4  gr M(oo) and 
fit ("B~)4 gr hT/(cx~) are either closed or not simultaneously, that is, the property of linear manifold (2.14) 
to be closed is invariant under the transformation group (2.12). 

The proof follows from Theorem 5.1 and Propositions 2.8 and 1.7. 
C o r o l l a r y  2.7.  I f  under the assumptions of Proposition 2.9 BM = Bgi = O, then gr M(c~) and 

gr/~r(c~) are either closed or not simultaneously. 
R e m a r k  2.5. If M(),) contains a linear term BM~, then  the proper ty  of linear manifolds gr M(c~) 

and 9~ (BM) to be closed is not invariant under  the t ransformation group (1.12). Thus,  in example 2.1, 
gr M(o~) is closed while Kr ~(o~)  is not closed if 

B K t : =  lira hT/(A) 
A=iy-'*oo ~ --~ O. 

We give one more 91-regularity criterion for extensions A E Ex A. 

P r o p o s i t i o n  2.10.  Let A be a Hermitian operator in [}, [J0 = ~ (A) ,  9l = [} @ Do, A E Ex A. Then 
~(2~)  := (A - ) 0 - 1 ~  C ~'~A := 9ix(A) and the following equivalence holds: .4 is an 91-regular extension 
. - .  ~ (~ )  is a closed subspace. 

P r o o f .  The  inclusion 91~(.~.) C 91x is a consequence of the condition A E Ex A. Clearly, .4 + ~ = 
.4+ ~ " ,  where 9~" = 91 @ -4(0). Assume that  the linear manifold 9~(-4) is closed, nk E 91", { h ,  f~} e A, 

and the sequence { h ,  f~ + nk} converges to f = {f, g} as k --~ oo. This  implies tha t  f~ - Ark + nk converges 
to g -- At, and by the equality (A - A)- l (f~ _ )~h) = h there exists 

lira (ft. - A)-ank = (A - A)-l(g _ At) _ f e 91~(-4). (2.16) 

Since 9~(A)  is closed, we obtain from (2.16) that  the sequence nk converges to some vector n E 91" and 
the sequence f~ converges to vector f '  = g - n .  Therefore g = f '  + n  arid f = {f,  f '  + n }  E .4~- ~ "  = . 4 + ~ ,  
i.e., the linear manifold A + ~ is closed. 

Conversely, assume tha t  the linear manifoid .4 + 91 is closed, n~ E 92", and the sequence (A - ,~)-ln~ 
converges to h as k --~ c~. Then  it follows from the relation 

{(~ ~,)-i ,, - _ _ 

- n k , A ( A -  ~)- ln~ } = {(A~ )0-1n~, [ / +  ~(2 ~)-l]n~} -- {0,n~} e ,~4 ~)'~" 
r 

that  the sequence n" 91" = I, E also converges to some vector n E 9l". This  implies tha t  h (_4 - )0 -1n  and 
~ ( A )  is closed. [] 

R e m a r k  2.6. In the case .4 = .4" we can choose a BVS II = {7/, Fx, F2 } such that  .4 = ker F2 =: A2. 
Now Proposit ion 2.9 is implied by Corollary 2.4 and the relation 

F~{(A2 - ~ ) - l h ,  ~(A2 - ~)-~h} = r ~ { 0 , - h }  - - , .  r2qtx(A) = r2q t  =: 7/2 

since the mapping F2 I~x(A) : 9ix(A) ---* 7 / i s  a topological isomorphism and the  linear manifolds 9~(A)  
and ~ ( A )  are isomorphic. 

3. F O R M U L A  F O R  G E N E R A L I Z E D  R E S O L V E N T S  
O F  A N O N D E N S E L Y  D E F I N E D  H E R M I T I A N  O P E R A T O R  

1. An operator-valued R-function Q(A) (E R n )  with values in [7/] is characterized by the following 
Nevanlinna integral representat ion (see [4-61) 
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in which CQ = C~ e [7"~, BQ > 0, E(t) = E(t - 0) is a nondecreasing operator-valued function with values 
in [7/] such that  

fK(1 dE(t) e [7"/]. (3.2) + t2) -1 

Denote by 7-/2(Q) the linear manifold consisting of h E 7"/, such that 

t~)[h] = lira y(Im Q(iy)h,h) < co (~( t~) )  = 7~2(Q)). (3.3) 
/tToo 

In view of the equality 

f l  d(E(t)h,h) (3.4) 
y2 

y(Im Q(iy)h, h) = y2(BQh, h) + t 2 + y2 

[which is implied by (3.1)], the linear manifold 7"/2(Q) may be characterized differently: 

7-/2(Q) = 7~u(Q) n ke rBq ,  7~2 = {h e 7-/: fm d(E(t)h, h) < co}. (3.5) 

As a rule, the notations CQ, BQ, [Q, 7-/2(Q), and others will be used without the subscript Q, which 
will be written explicitly only to avoid ambiguity from time to time. 

P r o p o s i t i o n  3.1. Assume that Q(A) e RT~ and takes values in [7-{]. Then: 
(1) for all h E ~2  = ~2(Q),  A e C+ u C_ the integrals 

~ dE(t)h dE(t)h Q2(A) := (3.6) 
Q2(,,~) := t -- a ' I t l -  

converge in the strong sense and for every h E 7-[2 the vector-valued function Q(A)h admits the representation 

[ (3.7) Q(),)h = ZQh + J~ t - 

in which ZQ is a Hermitian operator in ~ ,  ~(ZQ) = ~2; 
(2) for every h ~ 7-12 the relations 

s - lira Q2(iy)h = s - lim Q.2(iy)h = O, s - lira Q(iy)h = ZQh (3.8) 
~Too ~T~ ~Too 

are true and if the linear manifold 7-(2 is closed, the operator ZQ is bounded; 
(3) for every y e R and h e 77t2 the integral 

~ ltldE(t)h 
Q2R(iy)h := r162 t 2 + y2 (~(02R(iY)) = 7t2) (3.9) 

converges in the strong sense and the operator (~2a(iy) is closable; 
(4) /f BQ = 0 and ZQ - CQ < O, then the operator ZQ is closable. 
P r o o f .  (1) Although the strong convergence of the integrals (3.6) can easily be proved with the help of 

the Cauchy-Bunyakovsky inequality, for our purposes it is more convenient to use the generalized Naimark 
lemma [5, 8]. According to this lemma we have 

dE(t) = (1 + t2)K * dE(t)K, (3.10) 

where E(t)  = E( t  - 0) is the orthogonal resolution of the identity for an operator L = L* acting in a 
separable Hilbert space 0, K E [7-/, I~]. Taking into account (3.10), we may rewrite the second condition in 
(3.5) in the form 

jfm(1 + t 2 ) d ( E ( t ) g h ,  g h )  ".- K h  ~(L) ,  (3.11) < OO E 
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that is, ~ ( L K )  = ~ ( K * L K )  = ~2. The representation 

r 7---A 3_oo\~----~ - -+  +K* _oo~dE(t)Kh (3.12) 

shows that the strong convergence of the integral on the left-hand side of (3.12) is equivalent to the conver- 
gence of the integral fs~ dE(QKh in the strong sense, which holds true if condition (3.11) is satisfied [5]. 
Now for every h 6 ~2 the integral representation (3.1) of the vector-valued function Q(A)h may be written 
in the form in (3.7), where 

r _ ZQh = CQh - J-do 1 + t ~ = CQh dot dE(t)Kh = (CQ - K ,  LK)h,  (3.13) 

that is, ZQ = (Cq - K*LK)~7-12 is the restriction of the operator CQ - K*LK to 7/2. 
(2) Since for all h 6 7-/2 g h  6 ~(L)  = ~ ( ( I  + L2)1/2), we may put hi = (I  + L2)l /2gh and rewrite 

equality (3.12) in the form 

~ d ~ ( t ) h  = L2)l/2(L A)_ 1 hi. Q2(A)h = t - A K*(I  + (3.14) 

Relations (3.8) are implied by (3.14) and by the evident equality s -  limiTed(I+ L2)x/2(L-  i y ) - l f  = 0 
vf o. 

If the linear manifold 7/2 is closed, ZQ is a bounded linear operator, since it is the strong limit of a 
sequence of bounded operators [see (3.8)]. 

(3) The strong convergence of the integral (3.9) and, consequently, the correctness of the definition of 
the operator Q2a(iy) are implied by statement (1). 

Setting T = [L]l/2(L2 + y2)-1/2(I + L2)1/2K, we find that 

T*T D K*ILI . ( I  + L2)(L 2 + y 2 ) - l K  = 02R(iY). 

The latter immediately leads to the closability of the operator Q,2R(iy). 
(4) Since BQ = 0, we have ~ i  = 7-/2 and K*LK = CQ - ZQ >_ O. Let 01 := K~2  and L~ := Po~LIIh, 

L1 >_ 0. Introducing the hard (Friedrichs) extension LIF of the operator L1 >_ 0, we obtain 

1/2 . 1/2 K * L K - - - K * L I K C K * L 1 F K C  (L1FK) (L1FK).  

Hence follows statement (4). 
Corollary 3.1. L e i  II = (u, rl,r2} be a B V S  /or  a relation A* , ch *hat A2(O) = {0}, be 

the Weyl function corresponding to ~he BVS H, and 3:n = F~  be the forbidden operator. Then 3:n = ZM. 
The result can be proved by a comparison of relation (3.8) with assertion 1 of Theorem 1.1. 
R e m a r k  3.1. We give an example showing that if the condition ZQ - C o >_ 0 is not satisfied, the 

operator ZQ may be nonclosable. 
Let operators L0 and K0 act in 0 = 12(1, oo) with an orthogonal basis {e,,}~ r and let these operators 

be defined by the formulas Loen -- n2en, K ; e .  1 Setting 7"/ 0 @ [), L _ " ( 0 L0)  \ 6 C(7-/), = ~el. = L0 0 
" K  / 

(0')~ (lo.) K = K0 6 [7/], and taking f,, = 6 ~ ,  we have fn --* 0 as n --* do, although K*LKfn  = 

( 0  ~ r 0. We define a function Q(~) by the formula 
\ el ) 

L 1 t 
Q(A)= ( t - s  1 + t 2 )  K*dEL(t)K" 
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Then 7"/2 = ~ (L0)  $ (7-/O ei)  and the operator  ZQ = - K * L K  is nonclosable. 
P r o p o s i t i o n  3.2.  Assume that Q(A) E R~t and takes values in [7-/]. Then the following statements 

hold true (the notation in Proposition 3.1 and in what follows is the same): 
(1) for every h e 7/0 := k e r Z q ( C  7-/2) there exists a finite limit 

tQ[h] := lim iy(Q(-iy)h,  h) < oo Vh e 7"to (3.16) 
y$oo 

and the q,,adratic form tQ(Z( tQ)=  7 /0 (Q) )  is nonnegati~e and closed; 
(2) the nonnegati,,e self-adjoint operator TQ = T5 e C ( U o )  associated with the form tQ #n accordance 

with the first representation theorem [29]) is bounded if and only if the linear manifold 7/0 is closed. In the 
former case the following strong limit exists: 

s - l im iyQo(-iy)  = Tc2(e [~o1) ,  
ld'oo 

(3.17) 

where Qo(-iu) :=  PmQ(- iy ) I7 /o ;  
(3) if 7/~ = 7 /and  0 e p(Im Q(i)), then the linear manifold 7/0 is closed, T~ = B? 1 and the equalities 

3s - R - lim iyQo(-iy)  = TQ = B7  ~, 
yl'oo 

(3 .1s )  

tQ[h] = lira i y (Q(- iy )h ,h)  = IIT~/2hll ~ = IIBTl/2hll~ Vh e 7~0, yTcx~ 

(in which B1 := BQ1 IF((BQ,) and BQ, is the coefficient at A in the integral representation (3.1) of the 
function Qa(A)=  - Q - I ( A ) )  hold true. 

P r o o f .  It follows from equality (3.7) that  the limit 

j(_•d tQ[h] := lim iy(Q(-iy)h,  h) = (E(t)h, h) 
yToo 

Vh E 7/0 (3.19) 

exists and the quadrat ic  form t = tQ is nonnegative. In order to establish that  this form is closed, we first 

show that  the quadrat ic  form t (2) := t~ ) of the form in (3.3) is closed. We remark  that  the graph of the 

operator  T2 := (I + L2)l/2K [7/2 is closed since it is the intersection of two closed subspaces 

gr T2 = gr ( ( I  + L2)1/2K) r (ker BQ $ [~). 

Formulas (3.3), (3.10) and the equality 

t(2)[h] = d(E(t)h,h) = 1 + t2)d(E(t)Kh, Kh) = [IT~hll 2 
OQ 

(3.20)  

imply that  the quadrat ic  form t (2) = t(~ 2) is closed. We show that  the operator  To := T2 I7/0 is closed. If 
hn E ~(To), hn ---* h, and Tohn ---* g as n ---* 0% then h E ~(T2)  = 7/2 and T2h = g, owing to the fact that  
T2 is closed. Since ~(ZQ) = 7/2 C ~(LK) ,  according to (3.13) we have 

[ILK(h. - h)ll = = IlT=(h. - h ) l ]  2 - I I K ( h .  - h)ll 2. 

From this we conclude tha t  0 = Zc2h, --~ ZQh = 0 as n ---* oo, that  is, h E kerZQ = 7-/0. The  latter  proves 
that  To is closed and consequently the quadratic form t is closed by vir tue of the equali ty 

s t[h] :=  d(~, ( t )h,  h)  = IIToh[I 2 Vh e 7/0.  (3 .21)  
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(2) Equality (3.21) shows that  the operator  T = Tq = T~To associated with the form ~ is self- 
. I I ~  �9 adjoint. Since ~(T1/2) = ~ ( t )  = 7"/o, the linear manifold 7./0 is dosed  if and only ff the operator T~' ~s 

bounded (the Hellinger theorem),  but  the latter is equivalent to the boundedness  of the operator Tr Since 
:l: ~oo d(E(t)h,h) < oo for all h ~ 7/~ we have nonnegative operators  defined correctly for every h 6 7~0 
by the formulas 

[ ~  ~dr~(,)~, 
]0 ~ yt~r~(,)h R~(-i~)h = P,~o t~ + ~ ' Vh E 7-/0. 

The boundedness of the operators  R~(-iy) is evident. The  operators R~(- iy)  are bounded  in view of their 
closability (Proposit ion 3.1) and  the fact that  linear manifold 7"/0 is closed. We can easily see that  

F litIn(nl(--~y)h,h) = d(E(t)h,h) =(Th,  h), 
y! c~ 

w - lira R~(-i_u) = O. y1"r (3.22) 

Since the weak convergence of Rl(- iy)  to T is monotone and the operators  R~(- iy)  axe nonnegative, 
the convergence in the weak sense in (3.22) implies that  these operators converge also in the strong sense. 
Therefore, relation (3.17) is implied by the equality 

i y Q 0 ( - i y )  = n , ( - i y )  + i n ~ + ( - i y )  - i n ~ - ( - i y ) .  

(3) If 7./2 = 7/, the representat ion (3.7) holds true for all h 6 7- /and ZQ = Z~ 6 [~] (see Proposit ion 
3.1). From this we obtain that  7-/0 = ker ZQ is closed. Let 

Q(.~) = (Q00('~) Q01(*~)~ ZQ = ( ZOo Z01) (0 0 ) 
QIO(~) Ql1(*~) / ' Zlo Zll ~--- 0 Zll 

be block-matrix representat ions of the operator-valued function Q(~) and of the operator  ZQ corresponding 
to decomposition 7-/-- 7./0 @ 7./1 (7"/1 = 7/~). Then we have 

Q~j(~) = Pu, Q~)Iuj  = z~j + Pu, / f f  d~(t) 
t -  ~ I7/~ (i,j -- O, 1), (3.23) 

Q00(A) = Q0(A), and ker Z n  = {0}. It follows from the condition 0 e p(Im Q(i)) that  0 e p(Q00(A)) for all 
A E C+ U C_ and by the Frobenius formula, we have 

Q-I(A) = ( Qol + QolQolG-1QloQo 1 -QolGQ_OlG-1 ) 
_G-1QloQo 1 

(3.24) 

where G(A) :=  QI~()~) - Qlo(~)Qol(A)Qo~(A); since Q~(A) : -  _ Q - I ( A )  e R n  and takes values in [7/], we 
can conclude that 

3~-  lira Q~(iy) Q-l(iy) ~t~ iy -- s - l im = BQ~ > O, BQ~ E [7.//]. 
~Too - i y  

By virtue of s ta tement  (2), the following limit exists in the strong sense: s - l im iyQo(-iy) = TQ(E 
y$oo 

[7./0]) since the linear manifold 7./0 is closed. Using this result and applying s ta tement  (2) to the function 
Q(A) - ZQ, we can see that  the following strong limits exist: 

c00 := s - l i m ~ T ~ ( i y ) - l Q o l ( - @  = T~  1, C01 := s - l im~T~ i y Q 0 1 ( - i y ) ,  
Cl0 :=  ~ - l i m ~ t ~  i u Q ~ 0 ( - i y )  = C$1, C11 := ~ - lim~Tr162 i y [ Q l , ( - i y )  - Z11]. 

(3.25) 
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We have from (3.25) 

an - lim iyQlo (-iy)Qoo 1 (-iy)Qox ( - iy )  = CT)l Coo 001 
y?oo 

(3.26) 

and consequently 
3s - lim Qao(-iy)Qoo(-iy)Qol(-iy) = O. 

y?oo 
(3.27) 

Since 0 E p(Im Q(i)), we have 0 E p(Im G(A)), i.e., G(A) is a Weyl function corresponding to some BVS 
(see Theorem 5.1). Using (3.23), (3.25), and (3.27), we can see that  Ba = 0 and 

Za := .s - lim G(iv) = s - lim "' "" "[./ll(,y) Z l l .  
yToo yToc 

Since ker Z n  = ker Za = {0}, according to Theorem 1.1 we have 

a-~(iv) (3.28) Ba-l  = s - lim - -  = O. 
~?oo iy 

We obtain from (3.25) and (3.28) that  

s - lim Q~176 (iy) + Qoo 1 (iv)Qol (iy)G -1 (iy)Qlo(iy)Qoo 1 (iy) 
~too - i y  

= s - "  , , ,-~-a,, ,limt_iy,-a~C00k:y).. =Coo="-.~ a. 
yToo 

Consequently, (3.28) and (3.29) lead us to the relation 

(3.29) 

B Q , = s - l i m Q - ~ ( - i Y ) = (  Ca~ 00) = (TQoa ~ )  
~too iy 0 

proving statement (3). [] 
R e m a r k  3.2. (1) It is noteworthy that  a finite limit exists in (3.16) not only for all h E 7-/0 - ker ZQ. 

The following equivalence provides a sharper result: 

lim [iy(Q(-iy)h, h)[ < oo .: ': (ZQh, h) = O. (3.30) 
ytoo 

(2) Define an operator S by the relation 

s Sh = dZo(t)h, Z0(t) = P~0~(t)  r~0 (3.31) 
oo 

on the set ~ ( S )  of the vectors for which the latter integral converges in the strong sense. If ~ ( S )  is dense 
in 7"/--0, then the operator TQ is the Friedrichs extension of the operator S and the relation 

s - R -  lim iyQo (- iy)  = TQ 
y ?oo 

holds true. 
3) It must be mentioned that  the invertibility of the operator Q11(i) in [7"(] [the fact has been used for 

proving assertion (3)] holds true provided that 0 e p(Im Q(i)), but  it may not be true when 0 E p(Q(i)). 
The preresolvent matrix of a Hermitian operator A gives a proper example (see w 

In what follows we shall need 
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L e m m a  3 . 1 .  Assume thai S. �9 [7/1, T,~-�9 d(7~) .  / f  

3 s -  lim Sn = S, 3 s -  R -  
n--~OO 

lira T,~ = T, 

and there exist numbers*) r �9 An(S.) ,  r �9 A~(T.)  such that Cx + ~2 �9 An(S,, + T . )  for all n �9 Z+, then 
the following strong resolvent limit exists: 

s - R -  l i m ( S , + T , , ) = S + T .  
lnL --..* O 0  

that  

P r o o f .  Since S = s -  l im S . ,  we have S �9 [7/]. We derive from this and from the relation (~ �9 z ~ ( S . )  

3s - l im ( S .  - r  ( S  - r  �9 [7-/]. (3 .32)  
. -"* O0 

Moreover, we have 

s - lira (2". r -1  = ( T  - r - 1 ,  r �9 A~(T,~). " (3.33) 

Now the condition r + r 6 Ab(S.  + T. )  and the equality 

Z " ( S .  - -  C n ) ( S n  4- T .  - r - r  - 1  : [ I 4 -  ( S n  - r  - r  - 1  ( 3 . 3 4 )  

imply that  X~ -1 is a uniformly bounded sequence if X ,  := 14- (Sn - r - r by definition. It follows 
from this, (3.32), and (3.33) that  the following two limits exist: 

s - l i m . - ~ o o  X .  = I +  ( S  - r  - r - 1 ,  
s - lim,_.oo X Z  1 = [ I +  (S - (1)(T - (2)-1] -1. (3.35) 

We obtain from (3.35) and (3.34) that  

3s . . . . . . .  l i m ( S , + T n  G r  s l i m ( S ,  r .X.-1] 

~-~ --(S -~ r  - 1  { [ / 4 -  (S - -  r  - -  r  - 1  - I} 

= - ( S  - C a ) - ~ [ ( T  - r  - (2  4- 5' - C a ) - a  - I ]  = ( T  + S - Cz - r  - ~  . [ ]  

C o r o l l a r y  3.2.  Assume that operators S .  E [7t] and linear relations T,, E C(H) are m-accretive. I f  
the strong limit s - lim,-~oo S,~ = S ezists, then the following two relations are equivalent: 

~ s -  R -  l im T.  = T e .~ g s -  R -  lim ( S .  + T . )  = S + T. 
. - - ' * 0 0  . -- '+ 0 0  

C o r o l l a r y  3.3.  Assume that a sequence T .  = 2"* E C(~)  converges in the strong resolvent sense: 
T = s - R - l im.~oo T.  and K = K* E [7-/]. Then the limit 

s - R -  l i m ( T . + K ) = T + K  

exists. 
2. We recall that  the operator-valued function Rx = P(.4 - A) -1 [[J holomorphic in C• U C_ is called 

the generalized pseudoresolvent of an operator  A and the nota t ion l:tx E P ~ A  is used if A(e d(~)) is the 
self-adjoint extension of A going out into a larger Hilbert space ~ D [J, P -- P~ is the orthogonal projection 

*) Following [29], we denote the domains of boundedness  and of the strong convergence of the sequence 
(T.  - r by Ab(T. )  and As(T,,) respectively. 
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of b onto b. The set of generalized resolvents lq.x �9 Pf}A for which 2 �9 C(b) ( tha t  is, 2 is an operator) is 
denoted by flA. 

The collection of extensions .4 = .4" �9 C(b) generating the resolvent Rx ~ P~A contains minimal 
extensions, i.e., such that  

e b = - P)CA - : e c +  u c _ } .  (3.36) 

A minimal extension is not unique although two arbitrary minimal extensions A (i) e C(~i) (i = 1, 2) 
are unitary isomorphic. Moreover, there exists an isometric isomorphism U from ~l onto [J2 such that 
Uf  = f for all f E b and ~r.~(x) = ~(2), where (l{h,g} = {Uh, Ug} for all h,9 �9 ~. 

In what follows we shall always: assume that  the resolvent RA �9 P~A is generated by the minimal 
extension .4. 

According to a well-known Naimark theorem [5, 54] (and the generalization of this theorem relating to 
linear relations .4 [77]), the generalized resolvent can be characterized by the integral representation 

f , ' ~  dZ(t) / ?  dE(i) 
r t  = oo - -s  = oo Y - -g r b = ( A - A)  - r b , 

in which ~(t) = Z ( t -  0) is a nondecreasing operator-valued function, E(t) is an orthogonal spectral function 

~ ( - o o )  = E ( - o o )  - lim E(t) = 0, Z(oo) := s - lira E(t) is an orthogonal projection of ~ onto ~(A),  
t l -oo  tT+c~ 

~(oo) = P~E(oo)[O := s - l im(- iy)R( iy) .  
yT~ 

The following equivalences are evidently true: 

~(+oo)  = I~ ~ E(+oo)  = Ifi z. > Ra  e 9tA -.' :- A e C(b). (3.37) 

The following evident lemma will be useful for our further consideration. 
L e m m a  3.2. Assume that h ,  E ~ ,  3 lim hn = h, Xn E [7/], and S s -  lim X,~ = X.  Then there 

7 1 - - " 0 0  n " - ~  O 0  

exists the limit lim Xnhn : Xh.  

L e m m a  3.3. Assume that II = {7-/,Va,V2) is a BVS for a relation a*, for which Ax(0) = {0), that 
is A I e  C([j), M(A) is the corresponding Weft function, MI(A) = - M ( A )  -1, ~'n is the forbidden linear 
manifold. Then the limit 

t[h] := tM, [h] = lim iy(M -a (if)h, h) (3.38) 
yToo 

exists for all h e 9rn(O). 
P r o o f .  The operator-valued function MI(A) = - M ( ~ )  -1 is the Weyl function corresponding to the 

BVS l I ] =  {7-/, F2, -F1  ), the forbidden linear manifold 5rrh is an operator (Yri, (0) = {0} ~ A1 (0) = {0)), 
and ~'rIt = -Sr~ x. In view of Corollary 3.1 we have 9Vrh = Mi(oo) and ke rMl(oo)  = ker.T'nt~'n(0). 
Applying relation (3.16) to the equality Q(A) = MI(A), we obtain relation (3.38). I-1 

T h e o r e m  3.1.  Assume that H = ( x ,  r l , r ~ }  is a BVSIor a relation A* for which An(0) = {0), M(A) 
is the corresponding Weyl function. Then: 

(1) the equality 
(-40 - A) - I  = (A2 - A) -a + 7(A)(0 - M(A))-lT*(A) (3.39) 

establishes a bijective correspondence between the resolvents Rx = (20 - A) -1 of the proper extensions Ao 
of an operator A and the closed linear relations 0 in 7-l; 

(2) the formula 

R;~ = P(.4 - A) -1 [O = (A2 - A)- '  - 7(A)(r(A) + M(~))-10'*(A) 

establishes ~ bijecZive correspondence beiween R~, ~ Pf~A and r(A) e Rn;  
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(3) t t x =  (A-,-(x) - A)-I,  that is, for every g E b, Rxg  is the solution of the boundary-value problem 
with the spectral parameter r( ~ ) in the boundary condition: 

{ f , g }  e A* - A, e - r ( 1 ) ,  (3.41) 

where ] {t,g + AS} �9 A*; 
(4) I:tx e f~a in formula (3.40) if and only if r(A) satisfies the following conditions: 

�9 (a) q limy-.oo iy((r(iy) + M(iy))  -x h, h) = tM~[h] Vh E Jcn(O); (3.42) 
(b) s - limu__.oo (r(iy)q-M(iy))-I = O, (3.43) 

where M I ( A ) = - M ( A ) - ' .  
P roof .  Assertions (1)-(3) have been proved in [53] (in the case 9 ( A )  = ll they have been established 

in [20, 79]). We shall prove assertion (4). 

Necessity. (a) Let ~i = .~* �9 C(6), that is, 2 is an operator. Putt ing A2("~6) = {{0, f } :  f e As(0)}, 
[11 = A2(0) a-, and b = 111 �9 A2(0), we can easily see that 

s - lim iv(A2 - iy) -1 = --PA~(O)" = -P~t .  
71---* o o  

(3.44) 

If l:t~ E ~A, then it follows from (3.37) and (3.44) that 

s - lim iy[(A2 - iy) -1 - Rip] = I PA2(O) • = PA2(O). (3.45) 

Further, we use the equality (see Proposition 1.5) 

7*(A)f = PI{(A2 - A) , l f ,  f + A(A2 - ,~)-af} ( f  E [~). (3.46) 

We obtain from (3.46) that 

7*(A)I = r l {0 , f}  V / e  A2(0), VA e C+ tO C_. (3.47) 

In particular, 7*(A)A2(0) = ar rlA,('-6) VA e C+ U C_. 
It can also be seen from (3.47) that 7*(,~)f does not depend on A e C+ U C_ for every f e A2(0). 

Setting h = 7*( i ) f (=  7*(A)f VA E C+ U C_) for f E A2(0) and taking into account the resolvent formula 
(3.40) and equality (3.45), we get the relation 

lim A(( r (A)+M(A)) -ah ,  h ) =  lim A(( r (A)+M(A)) - lT*(A)f ,7*(~) f )  
)~=iy--*e~ )~=iy---*~ 

= lim A([(A2 - A) -1 - (A-r(x) - ,~)- l ] f , f )  = Ilfll Vh E .Tn(0). (3.48) 

In particular, relation (3.48) is true in the case r(A) = 0 also (since A1 E C([})), that is, for h = 7*(,~)f, 
f E A2(0) we have 

t[h] := tM, [h] = lim i y ( M - l ( i y ) h ,  h) = Ilfll ~. (3.49) 

Relations (3.48), (3.49), and (3.37) imply that condition (3.42) is satisfied. 

(b) Being self-adjoint, the linear relation A2 admits the canonical decomposition A2 = A S @ A2(0), in 
which A S is the operator part of the linear relation A2 and ~(A2) = ~(A~) _l_ A2(0). Therefore, it follows 
from (3.46) that Vf e ~(A~) 

lim i y T * ( - i y ) f  = lim rxIiy(A2 - i y ) - l f ,  iy(A2 - iy)-XA'=f} = - P l { f , A ' 2 f  }. (3.50) 
yToo ?jToo 
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Since G(A) := -(7"(A)+ M(A)) ' I  e n n  and takes values in [7-/1, the integral representation (3.1) implies 
that the limit B e  = s - lim G(A)/A exists. If we observe that PA,(o)f = 0 Vf  e ~ ( A t )  C As(0) • we can 

A---*OO 
obtain from (3.45), (3.50), the resolvent formula (3.40), and from Lemma 3.2 that  

0 = nlPA,(0)fll s = x--.oolim A(7(A)(r(A ) + M ( ~ ) ) - l T * ( A ) f , f )  = - x--.oolim (-G-~AT*(A)f, AT"(A)f ) 

where ,~ = iy. Consequently, we have 

= _ IIB~PF~ { f, At f)II 2, (3.51) 

1/s 
B G Fl(gr At) = 0 ==~ BaFl (g r  At)  = 0. (3.52) 

On the other hand, (3.48) evidently implies that 

Vh e J=n(0). (3.53) 

It follows from (3.52), (3.53), and the equality 

7-t = r l A s  = r l g r  Atbr r l A ~ 5 )  = r l g r  A t 4  Yn(O) 

that condition (3.43) is satisfied. 
SuJficiency. Suppose that R.~ E Pf~A and conditions (a) and (b) are satisfied. Then 

s - lira iyRiy = s l i r a  P~( f f~  - iy) -1 Ib = - P ~ Q ,  
y "."* oO ~1""* 00 

(3.54) 

where Q is the orthoprojection of ~ onto .4(0) • C ~. Since A = A* is a minimal extension, we have 
.4(0) C 0 (see [80]). Now the resolvent formula (3.40) and condition (a) imply that Vf E As(0) and for 
h = 7*( i ) f (=  7*(A)f) VA E C+ U C_) 

= lira iy((r(iy) + M( i y ) ) - I  h, h) ((P~Q - PA2(O)a.)f, f )  = lira iy(((A2 - iy) -1 - Riu)f,  f )  ~t~ yToo 

r_ ~ I n (  M - l (  i y ) h ,  h ) = ~II1 iy ( [ (  A s - i y )  -1  - (A 1 - i y ) - l ] f , f ) =  ( [ / -  PA2(O)-t.]f , f )  = [Ifl[ s 

Thus we have 
(P~Qf, f )  = Ilfll s = = ~ ( I - Q ) f = O  V f E  A2(0). 

Further, condition (c) means that Ba  = 0 (G(A) = - ( r ( A ) +  M(A))-I) .  
formula (3.40) and equality (3.51) lead to the relation 

lira iy[(A2 - iy) -1 - lRiu]f = 0 Vf E As(0) • 
yToo 

(3.55) 

Therefore, the resolvent 

which [if we take into account (3.54) and (3.44)] means that 

(p~Qf, f )  _ j[f[[s = 0 ===~ ( I Q ) f  = 0 Vf  E As(0)  • (3.56) 

Since b = A2(0) @ A2(0) • we derive from (3.55) and (3.56) that Q f  = f V f  E b, that is, 1} c~A(0) • 
A(0) _l_ I}_ The latter, together with condition (3.36) (A is a minimal extension), mean that A(0) = (0), 
that is, A is an operator. [] 

Def in i t ion  3.1. A holomorphic family of relations r(A) E /~n will be called M-admissible i f  the 
generalized resolvent R~ E ~A corresponding to it in formula (3.40) is generated by an operator A = A*. 
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Consequently, if A1 = A~ e C(b), then the family r(A) is M-admissible if and only if conditions (3.42) 
and (3.43) axe satisfied. 

C o r o l l a r y  3.4. Assume that under the conditions of Theorem 3.1 we have At(O) # {0}. Then the 
condition of M-admissibility (3.43) stays true, but condition (3,42) takes the following form : Vh E ~'iI(0) 

3 lim(iy[r(-iy) + M( ' iy) l  -~ h,h) = ~m iv([M(-iy) + K] -~ h,h), 
~?oo 

(3.42') 

where K = K* is an operator (e  [7/])) such that A K(0) = {0} (that is, Ak is an operator). 
P r o o f .  It is not dimcult to see that an operator K = K* E [7-/] such that gr K C1 ~'ii{0} exists 

and therefore 2~g(0) = {0}. Let n '  = {X, r~, r~} be a BVS for which F~ = F1 - Kr~, M'(,~) be the 
corresponding Weyl function. Then S'IV(0) = ~II(0), M'(A) = M(A) - K ,  A~ = kerr~ = A~r, and 
condition (3.41), which determines the generalized resolvent Rx,  takes the form 

e + K ( ]  e A*). 

Thus relation (3.42') is implied by (3.42) and the relation A~(0) = {0}. On account of the equality 
BM'  = B M  condition (3.43) remains true. 

3. We should remark that  the condition of M-admissibility for r(A) reduces to condition (3.43) or 
(3.42) if A2(0) = {0} or A2 = 2/-Fn(:= A +  91) respectively. If A2(0) = {0}, then we derive from Theorem 
3.1 and Corollary 3.2 that the following holds true. 

C o r o l l a r y  3.5 ([53]). Let II = {7/ , r1 , r2}  be a BVS Ior a relation A* for which A2(O) = {0}, M(A) 
be the corresponding Weft function. Then equality (3.40) establishes a bijective correspondence between 
P~A ~- ~'~A and r(A) E Rn satisfying condition (3.43). It is a well-known fact that an indeterminate part 
(r()0)(0) of a family r(A) does not depend on A E C+ and r ( )  0 = gr rl(A) �9 {0, [r(A)](0)} ([36, 77]), where 
rl(A) is the operator part of the relation r(A), rx(A) e C(7-/1), 7/1 = 7t @ (T(A))(O). If  TI()~ ) takes values ~n 
[7/1], we define a Hermit/an relation r(oo) by putting r(cx 0 = rl(oo) @ {0, (r(A))(0)}, where 

n(o )h = - lira n ( i y ) h  
yToo 

Vh E 7/~(n ). 

We characterize the condition of M-admisslbility (3.43) in terms of the relation r(c~). 
P r o p o s i t i o n  3.3. Let 1I = {7/KF1,F2} be a BVS for a relation A* for which A2 is an operator 

(A2(0) -- {0}), M(A) and ,~II are the corresponding Weft function and the forbidden linear manifold 
respectively, r(A) e R~t. I f  the operator-valued function rl(A) takes values in/-HI], then condition (3.43) of 
M-admissibility of the family r(A) and the admissibility condition of the relation - r ( c r  @ {O, fft (B~/2)} 
are equivalent, that is, the following equivalence holds true: 

s - l ira A - I ( r ( A )  + M(A) )  - I  = 0 4--> { - r ( o o )  (3 {0 ,m (BI,./2)}} N ~'n - {0} .  
A--*oo 

Proof. Consider (for simplicity) the case rl(A) = r(A) (that is, (r(A))(O) = {0}). Since 0 E 
p(Im M(i)), we have 0 E p(Im (M(i) + and according to Theorem 51 := + is a 
Weyl function corresponding to a BVS II' {7-/, ' ' = = r l , r ~ } .  Then we h a v e - G ( A )  -1 - ( M ( A ) + r ( A ) )  -1. and 

t t . it is the Weyl function corresponding to the BVS II" = {7/, F 2 , - F  1}, in view of Theorem 1.1 the condition 

s - lira 6( iy ) - I  - 0 means that A~ = kerr~ is an operator. Since the zero operator ~ = O7t = {7/,0} 
yToo y 

corresponds to the extension A~ in formula (1.4), that is, A~ = -4o, it follows from Proposition 1.4 that 
A~(0) = {0} -: ~- O~ N ~II, = {0}, where the forbidden linear manifold .TII, of the BVS II' ,  on account of 
Proposition 2.8, is of the form ~'II, = gr G(cx~)4 {0,gt (B~/2)}. Since A2(0) = {0}, it follows that  BM = O, 
that is, Ba = B~ and gr M(c~) = ~'n (Theorem 1.1). Thus, the condition On  N ~'II, = {0} is equivalent to 
the following one: 

[ - r (o~)  �9 {0,m (B~/~)}] n ~ n  = {0}. [] 
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C o r o l l a r y  3.5.  Under the conditions of Proposition 3.3 the implication 

s -  lira A-!(7"(A)-t -M(A))  -1 = 0 .  y - r ( o o ) f q ~ ' r i =  {0} 
A=iyTe~ 

holds true. If, in addition, B n = O, then the implication must be replaced by the equivalence. 
C o r o l l a r y  3.6. Let the conditions of Proposition 3.3 be satisfied and the family r(,\)  �9 R n  be M- 

admissible. Then for every ,~0(�9 C+ UC_) the relation -r(Ao) is admissible, that in, (-r(A0))ngVrt = {0}. 
Proof .  If (-r(Ao)) N .T'n r {0} for some Ao E C, then 3(0 r E ker(v()~o) + 9Vn). Consequently 

k := (r(A0)h, h) = - ( ~ n h ,  h) is real and thus for every )~ �9 C+ we have (r(A)h, h) = k. It follows that 
h �9 7-(2(r) and 

r(A)h = v(~o)h V~ �9 C+ ==~ r(eo)h = lim r(iy)h = r (~o)h  = -gVl~h. 
~Too 

In view of Corollary 3.5, the latter is in contradiction with the M-admissibility of the family 7-(A). [] 
C o r o l l a r y  3.7.  All the families ~-(A) 6 l~lT-t are M-admissible if and only if ~ (A )  = [J. 
P r o o f .  In the case Ag(0) = {0} the statement follows from Proposition 3.3 and an evident equivalence, 

name ly ,  E ) ( A )  = t) .' '.. :::D(.T'n) = { 0 } .  [ ]  
4. R e m a r k  3.4 Assume that the conditions of Theorem 3.1 are satisfied, ~t'/1 = 1~1~'~ ----- ~'/ ,  and 

r(i) �9 [7-/]. Then, according to Proposition (3.2), the M-admissibility condition (3.42) can be made more 
precise: 

3 lira iy([r(iy) Jr M(iy)] -1 h, h) = (B -a h, h) Vh �9 9Vr[(0). (3.57) 
tjloo 

We denote by B = BM in (3.57) the coefficient of A in the integral representation (3.1) of the Weyl function 
M(A). The equality (3.57) is true, in particular, provided that A2 = A4 qt, since 

A2 = A q - ~ - :  ~-Yri = {0,?/} .+-->. Yri (0)=7- / . :  .~. 7/~ = ~ , k e r Y f f  1 =7-(. ( 3 5 s )  

In the latter case, condition (3.42) can be rewritten in a more simple form. 
C o r o l l a r y  3.8. Under the conditions of Theorem 3.1 assume that A2 = A~rrf := A+ ~ .  

family T(A) 6 R ~  is M-admissible if and only if the limit 
Then the 

- R - lira , ( i y )  _ 0 (3.59) 
ytoo y 

e=i,t,. Zn the latter case, ~(~) e R~ (that is, ( , (A)(0)  = {0} for all ~ e C + )  Zn v,rticular, i /~(~) takes 
~al~es in [~], condition (3.59) takes the form 

B ,  = s - l im(iy)- lr( iy)  = 0 (3.59) 
ttToo 

P r o o f .  Since 7-/0(-M -a)  = 9vn(0) = 7-I [see (3.58)], the existence of the strong limit 

s- -  l i m i y M - l ( i y ) =  B - l ( =  BM x) e [7-/] 
yToo 

(3.6o) 

can be established by applying Proposition 3.2 to the operator-valued function Q(A) = - M ( A )  -a.  Suppose 
that T(A) is M-admissible. Then for the operator-valued function G(A) := - ( r ( A )  + M(A)) -1 and for 
arbitrary h E 7"[ - .F'r~(0) the weak limit in (3.42) exists and, on account of the equivalence (3.30), we see 
that (ZGh, h) = 0 for all h E 7"/. It follows from assertion (2) Of Proposition 3.2 and relations (3.60) and 
(3.42) that the strong limit exists and the equality 

s -  lim i yG( iy )= s -  lira " {v(iy) + M(iy ) )  -1 = B_ 1 (3.61) 
tt 1"oo yToo \ ~y / 
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is true. From (3.60) and (3.61) we obtain the following relation: 

3s - R -  lim r( iy)  + M(iy)  = B = s - t im M( iy )  
~T~ iy y t ~  iy 

(3.62) 

Since operators (iy) - 1 M ( i y )  and relations ( i y ) - '  r(iy)  axe m-accretive for y > 0, (3.59) follows from (3.62) 
and Corollary 3.2. 

Conversely, equality (3.59) and (once again) Corollary 3.2 imply relations (3.62). Since B -x E [7-/] 
and 0 E p(r(iy) + M(iy)) ,  we derive (3.61) and, consequently, (3.42) from (3.62). The latter proves the 
M-admissibility of r(A). The inclusion r(A) E R n  is a consequence of equality (3.59). 

The converse of Corollary 3.8 holds. 
P r o p o s i t i o n  3.4. Assume that 1I = {7-/, Fa,F2} is a B V S  for a relation A*, M(A) is the corresponding 

Weyl function, ~'n is the forbidden linear manifold. Then the condition of M-admissibili ty of the family 
r(A) is equivalent to condition (3.59) if  and on ly / fUn(0)  = TI. In this case the operator A and its eztensions 
An, Az are 91-regular, A~(0) 9I, and n~(A)  = O. 

P r o o f .  According to Corollary 3.8, the equivalence (3.42) . ' .  '.. (3.59) is true if the condition Un(0) = 
7"{(< ~- Az - A-~ ~) is satisfied. Taking into account Corollaries 2.3 and 2.4, we derive from (3.58) that 
the relations A, Ax, and A2 are 01-regular since the linear manifolds Un = {0,7-{}, 7-ll = P l ~  = ~ ,  
7-12 = P z ~  = {0} are closed. Proposition 1.8 implies the equalities n'+(A) = n•  = 0. 

Necessity. If the condition Un(0) - 7-I is violated, then choose h r ben(0) and a relation 0 = 0* E C(7-/) 
with properties 0(0) = {#h : /~ E C} and 0 N .T'n = {0}. Then the family r(A) = - 0  is M-admissible 
although condition (3.59) is not satisfied: 

s - R - lim : ~  # 0 since (T(~)/~ + i)-'h = o 
~too A 

VA E C+. [] 

R e m a r k  3.5. The formula of generalized resolvents (3.40) [but without formula (3.41) and the connec- 
tion with a BVS] has been obtained in [82] and generalizes a well-known Krein formula [32, 33], which has 
been established by Krein in the case ~ (A)  = ~ for operators with finite deficiency index n•  = n < co 
and by Saakyan [581 in the case n•  = co (see also [36, 37]). The following condition of M-admissibility 
has also been obtained in [82]: 

0 

lira y-X (QT(iy)h, h) = 0 Vh e 7-{, (3.63) 
YT~ 

where Q,-(A) := M(A) - [M(A) - M(A0)I[M(A) + r(A)] -1 [M(A) - M(A0)]. 
Condition (3.63) does not depend on whether A2 is an operator or a relation. Note, in addition, that 

formulas of generalized resolvents similar to (3.40) were obtained (in the case A2(0) = {0}) from the Shtraus 
formula in [1, 2, 61]. The connection of the Shtraus formula with (3.40) was analyzed also in [53]. 

5. At this point we shall consider the case of a bounded Hermitian operator A with ~ (A)  = Do C D. 
P r o p o s i t i o n  3.5. Assume that A is a bounded Hermitian operator in D, ~ ( A )  = I)o, 9] = D @ Do = D1, 

and A = .4" is an extension of A of the form 

:Aoo A0a)  
"~ = \An0 A n  

(A O E [0i,Di] ( i , j  = 0, 1)), 

Then: (1) the relation A* is of the form A* = {{ f ,  f i f  + n }  : f E Do,n E ?R}: 
(2) the collection 

7-l = 9l, r ~ { f , / i f  + n} = n, F 2 { f , / ~ f  + n} = P ~ f  (3.64) 

forms the B V S  for the relation A*; 
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(3) the 7-field 7(A) and the Weyl funetion M(A) corresponding ~o the BVS (3.64) are of the form 

7(A) = Im - (Aoo - A),IAo~, M(A) = Aim - An + A,o(Aoo - A)-tAo~. (3.65) 

Proof .  The first and the second assertion are evident. Further, according to the Frobenius formula 
(3.24), we have 

Boo -(A00- A)-IA01Bn) 
( A  - ~ ) - 1  = B1o B~I  ' Btt := -(Aim - A n  + A ~ o ( A o o  - A)-~A0t) -~, (3.66) 

where the form of the submatrices Boo, B10 of the operator matrix (A - -  , ~ ) - 1  is not important. It is not 
difficult to see that 91~ = (A - A)-~91. Thus f~ E 91~ -'. '.. f~ = (A - A)-~n (n E 9l) and 

r 2 ] ~  = r2 {.f~,,~I~} = r~{ (A - ) , ) - l n , , \ ( A  - ,~ ) - ln}  = Pm(A - ,~)-ln. (3.67) 

Putting h := Pm(A - A)- ln  = ,[Aim - A n  + Alo(Aoo - A)-lA01]-an = B n n ,  we obtain from (3.66) and 
(3.67) that 

7 ( A ) h = ~ r , ( F 2 [ ~ ) - , h = ( A _  A)-an = ( - ( A 0 0 - 2 ) - l A o l h ) .  

Expression (3.65) for 7(A) has been obtained. The formula M(A) = FI"~(A) = {7(A), AT(A)} enables us to 
determine M(A). [] 

Coro l la ry  3.9. Under the condition of Proposition 3.5 suppose tha~ All = O, that is, A = Ao = / 
Aoo A01 

\ 

( A,o a~1)" Then the Weyl function co~responding to the BVS n = { ~ , r l , r ~ }  of the Iorm in (3.64) 

coincides with the spectral complement of the operator A (in the sense of [69]); M(A) = AI + A10(A00 - 
)~)-1A01. 

Corollary 3.4 together with formulas (3.65) for 7(A) and M(A) enables us to obtain a description of 
the class ~'~A Of generalized resolvents of a bounded Hermitian operator A. Such a description has been 
obtained in a different way (and without the connection with a BVS and "boundary-value problems") by 
Shtraus [70]. 

Note, in addition, that the proper extension As = ker ( r l  - BI'2), (B E C(91)) of the operator A in 
the BVS (3.64) is of the form 

Aoo Aol ) 
A s =  An0 A n + B  ' BEC(91). (3.68) 

According to Proposition 1.6 we obtain (for A E p(Aoo)) the equivalences 

AEp(AB)- :  ' . O E p ( B - M ( A ) ) ,  AEai(AB)- ' .  : - 0 E a i ( B - M ( A ) )  ( i=p ,c , r ) .  

The first of these equivalences was proved differently in the case An  = O in [70]. 
6. Let A be a Hermitian contraction in [1 with ~(A) =: ~0. It is well known (see [5, 34]) that the 

collection CA(O) of all the self-adjoint contractive extensions (sc-extensions) of the operator A forms an 
operator segment: 

A,  := nr~in < A <_ AM := Am~x, A E CA(O) C [[11. (3.69) 

If the operator A is considered in ~ = [1 @ [11 the extremai extensions A~, and AM are of the form (see [40]) 

A . =  - h i  ' A N =  h ,  " 
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Denote by f/A(R \ [--1,1]) the collection of generalized resolvents Rx = p~(2 ._  A)-II~ e f~A which are 
generated by sc-extensions A 6 [~] of the operator A. It follows from (3.69) and (3.70) that  the inequalities 

( A M  - -  A) -1 < Rx = Po(.4 - )~)-1 [~ < (A/j - ~)-1 (~ e ]1~ \ [ - 1 ,  1]) (3.71) 

are true. 
P r o p o s i t i o n  3.6. Assume that the eztensions AM and A~ are disjoint, C := (AM - A~)[92, A .  = 

{{ f ,  A u f  + 01 /2h} :  f 6 b0, h 6 92}. Then: (1) a collection l-I" = in which 

F ~ f  : = C - 1 1 2 ( f ' - A M f )  r~f :=C-1/2(f'-Azf), (]= {f,f'}eA.), (3.72) 

forms a generalized (in the sense of Definition 6.1) B V S  of the relation A , ;  (2) the 7-field and the Weyl 
function corresponding to the B VS II ~ are of the form 

7(),) = - R " ( ~ ) C  1/2 M , ( ~ )  = I + C'/2R"()~)C llz ,  (R"()~) = ( A ,  - ~)-1); (3.73) 

(3) if  A~ and AM are transversal, then 0 6 p(C), A .  = A* and II~ is the ordinary B V S  for the relation 
A*. 

P r o o f .  (1) The relations r i : A. --~ 92 (j = 1,2) are evidently surjective and closed. Further, 
V] = { f ,  f ' } ,  ~ = {g, g'} 6 A .  we have 

( r f ] ,  s  - (s  Fx~#)n = ( C - 1 / 2 ( f  ' - AM f ) ,  C-1/2(g ' - A ,g ) )  - ( C - 1 / 2 ( f  ' - A , f ) ,  C-1/2(g ' - AMg)) 

= ( C - 1 / 2 ( f  ' - A ~ f  - Cyf )C-X/2(g  ' - A ,g ) )  

- ( C - ' / 2 ( f  ' - A , f ) ,  C-1/Z(g ' - A~g - Ca) ) = ( f '  - A~ f , g )  - ( f , g '  - A , g )  = ( f ' , g )  - ( f ,g ' ) .  

(2) We can easily see that 92x = (A~, - ,\)-192, 92~ := A, Cl 92x = (A~, - ~)-1C1/292 and for all 
A 6 C \ [-1,  1], 92~, = 92x. It follows that Vfx = {A,AA},  where fx  = (A~, - A ) - l C ' / 2 n ,  n 6 92, we have 

FM]x  = C - ' / 2 ( A A  - A ,  fx)  = C-1/2()~ - A , ) ( A ,  - A) - IC1/2n  = - n .  

Consequently,  ~(~)n = - f x ,  7(A)n = - f x  = - ( A ,  - '~) -~C1/2n .  The first of equalities (3.73) has just 
been proved. The second equality is irh)lied by the relations 

M(A)n = F~"~(A)n = - C - 1 / 2 ( A  - AM)R"(A)C1/2n = [I + CI/2R~(A)C~/2]n. 

(3) The extensions A~ and AM are transversal if and only if 0 6 p(C) (see Proposition 1.4). Thus, 
(3.72) implies that the mapping r : A* ~ 92 ~ 92 is transversal. 

R e m a r k  3.6. Since P~ A. = 92 and ker P~ = AM, the collection II M = {fit, P M, F M } = {92, F~ , -F~}  
forms a generalized BVS such that the corresponding Weyl function MM(A) is of the form 

MM()Q ~--- - M / j ( ~ )  -1 = - / "  "t- c l l 2 ( A M  - )~ ) -1c l /2 .  (3.74) 

The functions M~,(A) and MM(A) coincide with the functions Q,(A) and QM(A) from [40]. 
P r o p o s i t i o n  3.7. Assume that A is a Hermitian contraction, II ~ = {92,P~, F~} is a B V S  of the form 

in (3.72) corresponding to the relation A*. Then the equality 

R x  = R"()~) - R"(A)C1/2(M,(A)  + r ( A ) ) - I c I / 2 R " ( A )  (3.75) 

establishes a bijective correspondence between generalized sc-resolvents R x  6 ~'~A(R \ [--1, 1]) and r(A) 6 

P r o o f .  Necessity. Formula (3.75) is implied by Theorem 3.1 and Proposition 3.6. The operator-valued 
functions Rx, R"(A), and Mu(A) are holomorphic in R \ [-1,1].  
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Consequently, ( 3.75 ) shows that the family ~'(A )+ M~ ( A ) and, therefore, ~'( A ) is holomorphic in R\[- I, I] 
since M~,(A) is boundedly holomorphic in R \ [-1, 1]. 

Since AM and A~, and defined in the BVS (3.72) by the equations AM = ker r~ (~=~ r(A) = O) and 
A. = kerr~(r r(A) = {0,~}), applying the extremal property (3.71) to RM(A) = (AM -- A) -~ and to 
the generalized resolvent R~ = (.g,_~(A) - A) -~ , we obtain that for all A ~ R \ [-1, I] 

n"(a)-aM(,~)='r(~,)M;~(@r*(a)>o (,(A) + M. (A) ) - '  > 0, 

7(A)[M~-I(A) - ( r (A) -Jr: M~(A) ) - l lT * (A )  = (-4-r(A) - A ) - '  - (AM -- A) -~ > O. 

It follows that 

(3.76) 

~1#()~)--1 __~ (T()~) 21- Mb(~))  -1 > 0 ,'- r(A) + M~(A) > Mu(A) y r (A) > 0 (VA ~ R \ [ -1 ,  1]). 

Consequently, r(A) e :~[-I, 1]. 
Since RA = P(.4 - A) -1 [[~ is a generalized sc-resolvent, .4 is a contraction, -4(0) = {0}, and ~'(A) is 

M-admissible. Note that we can easily verify that the M-admissibility condition, which, in view of the 
equality As(0) = A~(0) = {0}, is of the form in (3.43), is satisfied. By virtue of (3.74) we have M~(A) > 0 
VA 6 ]R \ [-1, 1]. Thus, for A > 1, T-(A) e .~7~[-1, 1] the following implication is true: 

~T(~) -}- )~M~()~) ~ )~M/~()~) > 0, ;- )~-I(T() 0 + Mb(~))  -1 ~ , ,~-1M~'1()~) .  

Consequently, s - l i m  /~--I(T(,~) + M# ( / ~ ) )  - 1  = s - lira /~-1M;1(~) = O, and (3.43) is proved. 
M+oo At+co 

Sufficiency. Let 7-(A)E S n [ - 1 ,  1]. Since M,(A) �9 MM(A) = - I  VA e C \ [-1,  1] and M~,(x) > O, 
T(X) > 0 VX e R \ [--1, 1], we have 0 e p(v(X) + M,(x))  Vx E ]R \ [-1,  1]. In view of Proposition 1.6, 
x E p(.4-~(~)) Vx E ]R \ [-1,  1] a n d ,  consequently, (A_~(x) - A) -1 --- R.x is regular in C \ [-1,  1]. Thus, the 
resolvent (_4 - A) -~ is regular in C \ [-1,  1] and .4 is a contraction. 

R e m a r k  3.7. Another proof of the implication [JAIl < 1 ~ r(A) E $7~ can be derived from the 
resolvent formula (3.75) and the following properties of the functions M,(A), MM(A): 

M , ( + I )  : =  s - l ira  M j , ( x )  = 0,  M M ( - - 1 )  = s --  lim MM(X) = 0.  ( 3 . 7 7 )  
x i l  2:T--1 

R e m a r k  3.8. The formula 

R~ = RM(A) - RM(A)C'/2(MM(A) + r(A))- IC' /2RM(A) (A E p(A))  (3.78) 

is similar to (3.75) and establishes a bijective correspondence between generalized sc-resolvents RA and 
r(A) E S~[-1 ,  1], where MM(A) is of the form in (3.74). Formula (3.78) can be obtMned by application of 
Theorem 3.t to the BVS rl M = {91,r~,r~} = {91 ,PL-Pf} .  

Def in i t ion  3.2 [40]. An operator-valued function k(A) with values in [9l] is related to the class 
Kg~[-1, 1] if: 

(1) k(A) e n~;  
(2) k(A) is hoto~orphic in ~ \ [ -1 ,  1] and 0 < k(A) < 1. 
L e m m a  3.4 [40]. If  0 < K <_ Ix,  then 0 E p(I - K + MI,(A)K ) VA E R \ [ -1 ,  1]. 
P roof .  Let A0 E R \ [-1,  1]. Then 3e > 0 : M~,(A0) > eI~. Therefore, we have the implications 

z~ - Z + K 1 / 2 M . ( A o ) K  1/~ > Z~ - (1 - ~)Z  - -~  0 ~ p(Z~ - K + KI /2M~(Ao)K ~/~) - - .  0 ~ p(Z~ K + 
M~(Ao)K). [] 

The transformation ~'(A) --* k(A) = ( I+r(A))  -1 establishes a bijeetive mapping from the class S~[ -1 ,  1] 
onto the class K ~ [ - 1 ,  1]. Consequently, by putting k(A) -- ( I  + r(A)) -~ in (3.75) and taking into consider- 
ation Lemma 3.4, we get the main result of [40] (see also [82]). 
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T h e o r e m  [40]. The equality 

P"i = -R.#(~) - .R#('~)cl/2k('~)[ I + (Mj,(A) 0k(.~)1-1C1/2_1~(,~) (3.79) 

establishes a bijective correspondence between the class of operator-valued functions Kgt[-1,  1] and the col- 
lection {R'(A)} of all generalized sc-resolvents of operator A. 

Moreover, there is a one-to-one correspondence between canonical sc-resolvents and constants k(A) = 
K �9 [0, I~] in (3.79). 

4. E X T E N S I O N S  O F  A H E R M I T I A N  O P E R A T O R  W I T H  A G A P  

1. Let A be a nonnegative Hermit ian operator  in b: (A f ,  f )  > 0 V f  �9 ~ ( A ) .  As is known [5, 34], in 
the class Ex A(--oo, 0) (~(A)  = b) of nonnegative self-adjoint extensions of densely defined operator A 
there exists the greatest (the hard  or Friedrichs) extension AF and the least ( the soft or Krein) extension 
AK, such that  for all A �9 Ex A(--cx~, 0), ~[AF] c ~[A] g_ ~[A~] ,  and 

AK[f] < -4If] < AF[f] V f  �9 ~[AF]. (4.1) 

In the case of a nondensely defined operator  A the class Ex A(--oo, 0) is also nonempty,  but  sometimes 
it does not contain any operator.  We define (after [73]) the extensions AF and AK as the strong resolvent 
limits of the linear relations A~ = A-i- ~ :  

AF = s -- R - lim .4~, AK = s -- R - lim.A~. (4.2) 
zi-oo zTO 

In this case the extremal property (4.1) remains true and takes the following equivalent form: 

(AF -- A)-I < (A - A)-I < (AK -- A)-x VA �9 ( - ~ , 0 ) ,  .4 �9 Ex A(--c~, 0). (4.3) 

An extension AF is always a linear relation AF(O) = 92 = i)#, while AK may be an operator.  Moreover, an 
extension AK is an operator  if and only if the class Ex n(--c~, 0) contains an operator.  A criterion for this 
to be true was obtained in [73]. 

It is noteworthy that  (Aa) f  =- AF + a if a > 0 and hence the first inequality in (4.3) remains true if 
< - a  and A �9 Ex A(--(X),--a). 

Let T = T* >_ fl be a self-adjoint se~ ibounded  below operator in I}, ~ ( T )  = I)0. As usual, ~[T] stands 
for the closure of ~ ( T )  endowed with the norm I[fll~" = (1 -  )llfll + (T f ,  f ) ,  f �9 ~ ( T ) .  A closure of 
the form (T f ,  f )  is denoted by either tT[f] or T[f] = T[ f , f ] .  Clearly ~[T]  = ~ ( ( T - / ~ ) t / 2 ) .  We put  
~[8] = ~[T] for a linear relation 0 = 0* > fl with the operator  part  T = T* > ~. 

D e f i n i t i o n  4.1.  Let t be a closed semibounded below quadratic form with a nondense (generally 
speaking) domain ~( t )  in b(~(t)  = b0 C i]). A semibounded below linear relation 0 = O* is said to be 
associated with the form t and is written t = to if 0(0) = 92 = !)o l and the operator part T = T* of the linear 
relation 0 is associated (in accordance with the first representation theorem [29]) with the form t considered 
in b0- 

Clearly, ~( ta)  = ~[0] = ~[T]. 
P r o p o s i t i o n  4.1.  Let {tn}~ ~ be a nondecreasing sequence of closed linear forms in [} semibounded 

below by 7, 
7<---tl--<t2 < _ . . . < _ t n _ . . . ,  

and let On = 0~, �9 C([}) be a linear relation associated with tn. Then: 
(1) the sequence On converges in the strong resolvent sense to a linear relation 0 = 0* > 7 (0 := 

s - R - l imn-ooo.) ;  
(2) if t = to is a form associated with O, then 

~( t )  = ~[O] = ( f  �9 N ~ ( t , )  : liraoot,[fl < oo}. 
n>l 

(4.4) 
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The first s ta tement  is a simple generalization to the case of linear relations of the well-known result 
of Kato [29]; the second one was proved by the authors  in the case ~({~) = 0 [20, 79] and furnished the 
answer to the problem posed in [29, p. 570]. In the general case these s ta tements  can be proved in the 
same way. 

P r o p o s i t i o n  4.2 .  Suppose that II = { ~ , F ] , F 2 )  is a B V S  for a linear relation A* such that A2 > O, 
M(  ~ ) is the corresponding Weft  function, a > O. Then 

(1) there exists a strong resolvent limit 

M(0)  := s -  R - l i m  ~'" "~w(x) 
xTo 

I~RI ~ 

R lira 

which is a semibounded below (above) self-adjoint linear relation in 7-[; 
(2) the linear relation U(O) = M(O)* ( i ( - ~ )  = M ( - o o ) ' )  is associated with the closed quadratic 

form 
to[f] = ~ o ( M ( x ) f , f )  ( t _ ~ [ f  I = ,~i..m ( M ( x ) f , f ) )  (4.5) 

with the domain 
~( t0)  = i f :  ~ o ( M ( x ) f , f )  < co} = ~ ( ( M ( 0 )  - M(-a))~/2) ,  (4.6) 

~ ( t _ ~ )  = { f  : ~imoo(M(z)f,f) > -oo}  = ~ ( ( M ( - a )  - M(-cr  (4.6') 

(3) in this connection A2 and AK are disjoint extension, if and only if M(O) is an operator (M(0) �9 
c(7~)), A2 a~d AN ~re transversal extensions if ~nd only if M(O) �9 [7~]; 

(4) one can determine AF and AN by the boundary conditions 

AK = {]  = { f , f ' }  �9 A*:  {r~],rl]} �9 M(0)} = t - 'M(0) ,  

AF = { ] =  { f , f ' }  �9 A*:  {r~y, ri]} �9 M ( - o o ) }  = F - a M ( - ~ ) ,  

which in the case M(O) �9 C(7"[), M ( - ~ )  �9 C(7-[) can be rewritten in the form 

AK = ker (F1 - M(0)F2) ,  AF = ker (r~ - M ( - c o ) r 2 ) .  (4.7) 

P r o o f .  (1) By virtue of the condition A2 > 0, M(A) is holomorphic on ( - o o ,  0) and hence it is 
monotonically increasing there. Therefore, for some a > 0 the operator-valued function (M(x)  + a) -1 
is nonnegative and monotonical ly decreasing on ( - 1 , 0 ) .  This implies that  there exists a strong limit 
T := s - l im,T0(M(x ) + a)  -1. Now it remains to put  M(0)  = T -1 - a.  

(2) The  second s ta tement  is a consequence of Proposi t ion 4.1, while relation (4.6) is implied by (4.4). 
(3) Sta tement  3 is implied by Proposit ion 1.4 and the next s ta tement  (4). 
(4) Let .4.  = A 4  ~t. .  Then  ~ .  = k e r ( P l _ _  M ( z ) P 2 ) .  By  set t ing 0 = F A g  = {r2,rl}AN we apply 

the resolvent formula (3.39) to the extensions A ,  and AN.  We have 

(2~x + 1)--1 __ (A K + 1 ) - 1  = 7 ( _ l ) [ ( M ( x  ) _ M ( _ I ) ) - I  _ (8 - M ( - 1 ) ) - 1 1 7 " ( - 1 ) .  (4 .8)  

Passing to the limit in (4.8) as x ~ 0 and taking into account (4.2) and Corollary 3.3, we obtain 8 = 
s - R - lim.To M ( x )  =: M(O). 

C o r o l l a r y  4.1 .  Under the assumptions of Proposition 4.2 the following equivalences hold: 

A2 = AF .'. '~ lim (M(z )h ,h )  = - c ~  V h e T - / \ { 0 } ,  (4.9) 

A2 -- AK .~ '.. l i ,~(M(x)h,h)  = +co Vh e 7-l\ {0}. (4.10) 
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Proof .  If A2 -- AK is the Krein extension of the operator A, then M(0) = FAK = {0, 7"l} is a linear 
relation with zero operator part. Then the implication => in (4.10) is implied by relations (4.5) and (4:6). 
Conversely, it follows from (4.10) that ~(to)  = {0}, where to is defined by (4.5), (4.6). Therefore, the 
linear relation M(0) associated with to takes the form M(0) = {0, 7-/}, whence AK = AM(O) = A2 and the 
equivalence (4.10) is proved. In complete analogy with this result we may prove the equivalence (4.9). [] 

Corollary 4.2. Suppose that M(A) is the Weyl function corresponding t 0 a B VS II = {7/, Yl, Y2} such 
that A2 = AF. Then: 

(1) there exists a unique nonnegative self-adjoint extension of A > 0 if and only if 

~o(M(x)h ,h )  = -boo Vh E T l \  {0}; (4.11) 

(2) there ezists a nonnegative eztension ft. = A* e C(b) if and only if M(O)N~H = {0} (if, additionally, 
= o, then the latter  ondition . ay be repla ed by foUo ing one: M(O) e 

Proof .  The first statement is implied by (4.9) and (4.10), and the second one follows from Proposition 
1.4 and the extremal property (4.2). Now it remains to note that under the assumption n'a=(A ) = 0 the 
equivalence M(0) N ~'H --- ~.0} < =::-:M(0) e C(7-/) is a consequence of the relation AF(O) ---- 9I = [~o ~. 

R e m a r k  4.1. (1) If, ur~der the assumptions of Corollary 4.2, A2 = AK, then relation (4.11) must be 
replaced by the following one: 

lim (M(x)h, h) -- - c~  Vh e 7-I \ {0}, (4.11') 

and the conditions M(0)fl  5rn = {0} and M(0) G C(~) must be replaced by the conditions M ( - o o ) n  ~n  = 
{0} and M ( - o o )  e C(~), respectively. 

(2) Proposition 4.2 and Corollaries 4.1, 4.2 in the case ~(A)  = [} were proved by the authors [20, 79]. 
If D(A) = ~0 ~ [~ and A is a bounded operator, then Propositions 4.2 and 4.3 yield the result of Shtraus 
[69]. In this case n~(d)  = 0 and it follows from (3.65), (4.5) that 

t0[h] = fi~o((XI ~ + Alo(Aoo - x)- lAol)h,h)  = IIAol/2Aolhll 2 Vh e ~(to) 

and the following equivalences hold: 
(a) At< E C([~) -' :-  M(0) E C(~); o 
(b) AK E [b] ". :" M(0) E [7-/]. 
(3) The other criterion for a nonnegative operator A to have a nonnegative self-adjoint extension 

.4 = A* G Ex A(--oo, 0) (positive closability of an operator A) was obtained in [73]. 
P r o p o s i t i o n  4.3. Suppose that AF and AK are disjoint extensions of operator A > O, C := 2[(I + 

A~:) -1 - (I + AF) -1 rgl-i, C = C @ C, A.  := AF + C1/29t-1. Then: 
(1) the tTiple H = with 

F F / =  -x/'2C-1/2[f - ( I  + A K ) - I ( f  ' + f)],  
FFf  =v~C-1 /2[ f  - ( I + A F ) - I ( f  ' + f)], f = { f , f ' } 6 A ,  

(4.12) 

is a generalized BVS (see w for the Telation A,,  kerr~ = AF, kerr[ = A K ;  

(2) the 7-field and the Weyl function corresponding to the BVS H E take the form 

"~F()~) = (v f2 ) - I  [~ -b (1 + A)(AF - ~)-11C1/2,  (4.13) 

MR(A) = - I  + (1 + A)C'/2[I + (1 + A)(AF -- A)-1]C1/2; (4.14) 

(3) /f the extensions AF and At< are transversal ones, then 0 E p(C), A.  = A* = AFAr A - I ,  and H E 
is a B VS for the relation A*. 

173 



P r o o f .  (1) Let g e 92--1 aIld ]F = {rE,fiE} e AF. Sett ing n = gIVe,  f = fF'q-C1/2n, f '  = fF--Cl /2n 
we obtain 

1 f 
v/~P2{/,  : } = C-1/2[: - ( I  + A F ) - I ( :  ' +/ )]  = C " / 2 [ f F  + C1/2n - ( I  + A F ) - I ( f F  + f~)] = n. 

Therefore the mapping  F F :  A. --* 92-1 is surjective. Further,  for all ] = { f , f ' } ,  # = {g, g'} e A.  we 
have 

( r , / ,  r , j )  - (r2/,  r,~) 

= 2(C-I/2[f - (I + AF)-I(f ' + f)], C-I/2[g - (I + AK)-I(g ' + g)]) 

- 2 ( C - 1 / 2 [ f - ( I  + A/.~)-' ( f  + f ) ] , C - 1 / 2 [ g - ( I  + A F ) - I ( g  ' + g)]) ' 

= (C -f12 {2f  + [C - 2 ( I  + Ag' ) - ' ] ( f '  + f ) } ,  C -f12 [g - ( I  + AI~) -1 (g' + g)]) 

- ( C - ' / 2 [ f  - ( I  + A/.t-)- I(f  ' + f)], C - ' / 2 { 2 g  + [C - 2( I  + Aa-)- ' ] (g'  + g)) 

= ( f ' ,  g)  - ( f ,  g') .  

(2) Let ~F(A) = {TF(A), ATE(A)}. Then  it follows from (4.12), (4.13) that  

rF'~F(A)h = C- ' /2[ I  + (A + 1)(AF -- A) -1 -- (A + 1)(AF -- A)-']C1/2h = h Vh E 92--1, 

and the "/-field of the extension AF takes the form in (4.13), Further,  we have 

MF( /~ )  = r [ ' ~ F ( , ~ )  = - C  -112 {X + (1 --[-- .~) (AF -- A)-I  _ (1 + )~)(I + AK) -111 + (1 + )~)(AF -- ,~)-1]}C'/2 

: - - . /  "~ 1 ( 1  + ~ ) C 1 / 2 [ f  -'{ - (1 + A)(AF - ,~ ) -1 ]C1 /2 .  

Therefore, the ~Areyl function MF(A) takes the form in (4.14). 
(3) In accordance with Proposi t ion 1.4 the transversality of AF and AK is equivalent to the condition 

0 E p(C). Corollary 6.1 implies that  I I  E is a BVS for the linear relation A* : A .  = AF-J- ~)'[--1- Besides, 
setting 

f = V'2(l + AF)-IC-I/2(~ol + qo2) + ~2~2C1/2qo2, f' = ~c-1/~(~, + ~) v~f 

for all ~ , ,  ~2 E 92-1 we obtain the equalities F{] = ~{ (i = 1, 2), which prove the surjectivity of the 
mapping F. [] 

R e m a r k  4.2.  (1) Note that  A.  = ~[AK] fq A* ~ ( A )  = Ij. This relation is implied by the following 
formula given in [52]: ~[AK] = ~[AF] + 7(--~)92-~ and the equality 7 ( - 1 )  = C 1/2. 

(2) The  mapping  F1 : A.  --* 92-1 is surjective and kerF1 = AK. Therefore, in accordance with 
Proposit ion 6.2, the function MK(,~) : =  - M F ( A )  - 1  is the Weyl function corresponding to the generalized 
BVS II K = { 9 2 _ , , r [ , r ~ }  = {92_, , r ; ,  - r ,  ~} and takes the form 

MK(,~) = --MF(,~) -1 = I + 2-1(1 + ,~)C1/2[I + (1 + A)(AK - A ) - I ] c  1/2. (4.15) 

2. Let II -- {7-/,F1,F2} be a BVS such that  A2 = AF. Then  the resolvent formula~(3.39)~and 
the extremal proper ty  (4.3) of the Friedrichs extension AF yield the following implication: Ae -- A~ is 
semibounded below --4- 0(E C(IH)) is semibounded below. Simple examples (see [20, 79]) show tha t  the 
inverse implicat ion does not hold in the general case. In  order to formulate the corresponding criterion we 
introduce 
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Def in i t i on  4.2. An operator-valued function M(~) e Rn  holomorphic on (-oo,0) is said to be 
uniformly convergent to -oo as z ~ -oo if for all N > 0 there ezists XN < 0 such that M(ZN) < -NIT~. 

It is clear that this condition is equivalent ~o the following one: 

lira II(M(z) - M(x0)-~ l l  = 0 (x0 < 0). (4.16) 

In the case d i m ~  < oo this condition is equivalent to condition (4.9), which characterizes the Weyl function 
of the Friedrichs extension AF; in the general case (4.16) is stronger than (4.9). 

P r o p o s i t i o n  4.4. Suppose that A >_. O, {7"/,Fl,F2} is a BVS for A* such that A2 = AF, M(A) is 
the corresponding Weyl function. The following conditions are equivalent if and only if M(A) uniformly 
converges to - o o  as x --* - o o :  

(a) the linear relation 8 = O* e d(Tl) is semibounded below; 
(b) the eztension As E Ex A is semibounded below. 
C o r o l l a r y  4.3. Suppose that under the assumptions of Proposition 4.4 the eztension AF has the 

discrete spectrum, that is, (AF + I) -a E ~oo. Then the equivalence (a) -' .'- (b) holds. 
Proposition 4.4 andCorol lary  4.3 were proved in [20, 79] for the case ~ (A)  = I)0. The proof in the 

general case is analogous. Corollary 4.3 in the case ~ (A)  = If was obtained earlier in [12]. 
Corollary 4.4. Suppose that under the assumptions of Proposition 4.4 the multivalued part .~n(O) of 

the forbidden manifold ~n is closed and W+(A) = nL(A) < oo. Then the equivalence (a) -~ > (b) holds. 

The proof is implied by the integral representation of M(),) and the equality fit ( B ~  2) = ~'a(0). [] 
In particular, the equivalence (a) -' :- (b) holds if A is an 9~-regular operator and W+(A) = 0 (~--:,- 

AF = A-b 9l). 
3. Def in i t i on  4.3. A Hermitian operator A is said to have a gap (~,~) if 

II(A a +z~fll > ~ -  ~ 2 - 2 Ilfll v f  e ~ ( A ) .  (4.17) 

Inequality (4.17) is equivalent to the following one: 

IIAfll 2 - (~ + ~)(Af, f )  + ~/~llfll ~ > 0 v f  E ~ ( A )  (4.18) 

and in the case a = - o o  it turns into the irmquality (Af,  f )  >_ Zllfll 2, which means that  the operator A is 
semibounded below. 

Ex A(a,/3) stands for the set of proper self-adjoint extensions A of A with the gap (a,  fl) 

A E E x A ( ~ , ~ ) q - - - & A = A * D A , [ [ f ' - ~ + 2 ~ f l I > ~ - ~ I I f [  [ V{f , f ' }  E A. (4.19) 
- 2 

As in the case of nonnegative operators, there exist extremal extensions An, A# E Ex A(a, t~) defined by 
the equalities 

.4~, := s - R - lim.4~, .4# := s - R - lim.4~ x e (a,  fl), (4.20) 
xJ.a zt# 

where A,  = A 4  ~ , .  
P r o p o s i t i o n  4.5. The eztensions A~, Aa possess the following eztremal property in the class A E 

Sx  A(a, ~): 
(A~ - z )  -x  < (.'~ - x )  -a  < (A~  - x )  -x  x e ( a , / ~ ) .  (4 .21)  

The proof is analogous to the one contained in [20, 79] for the case ~ ( A )  = [}. Inequalities (4.21) for 
x = (oL + fl)/2 are implied by (3.69) and relations 

2 c;  +~ ~ ~ -  ~ + ~  2 ' 
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in which C ,  and 0 M  are  the minimum and maximum contractive extensions of Hermitian contraction 
C := P - ~ ( A -  ~2-~) -1. Let now x r ~2+-~. Since 6~(z)= ( z - r ) ( 1 - r z )  -1 e R for r = ( 2 x - ( a + f l ) ) / ( ~ - a )  
the transformation 6~(T) = (T - r)(I - rT) -1 maps the operator segment - I  _< T <: I onto itself and keeps 
the order relation true. Therefore (3.69) yields 

( ~ ( c ) ) .  = ~ ( c . )  < s~(O) < ~ (cM)  = (6~(c))M. 

By virtue of the equality 6r(C) = 2-1(/3 - c~)(1 - r2)(A - x) -1 - r we obtain (4.21) for x 7t (~ + fl)/2. [] 
P r o p o s i t i o n  4.6.  Suppose that II = {7"L, F1,F2} is a BVS for A*, such that A2 e Ex A(a,/~) and 

M( A ) is the corresponding Weyl function. Then: 
(1) there exists a strong resolvent limit 

M ( a )  = M(a)*  := s - R - l imM(x)  (M(fl) = M(~)* := s - R - lim M(x)), (4.22) 
zTB 

(2) the linear relation M(a) = M(a)* (M(~) = M(fl)*) is associated with the semibounded above 
(below) form 

t~[ f ]  = ~(M(x)f,f) ( tB[f]  = ~i~(M(x)f,f)) (4.23) 

with the domain (for xo E (a, ~)) 

~ ( t . )  = { f :  l i~ l (M(x ) f , f ) l  < (x)} = ~ ( ( M ( x o ) -  M(a))l/2), (4.24) 

~(tB) = {f  : f i~ l (M(x ) f , f ) l  < cr = ~((M(fl)  - M(xo))l/2), 

i.e., t.. = tM(c~), t B = tM(B); 
(3) the disjointness of the extensions A2 and A~ (A2 and fiB) is equivalent to the condition M(a) e 

C(7/) (M(fl) �9 C(7/), their transversality is equivalent to the inclusion M(a)  �9 [7-/] (M(fl) �9 [7/1); 
(4) the extensions ft,~, ft B are defined by the boundary conditions 

ft~ = { f  = { f , f ' }  e A*:  {r~f, r l f }  e M(a)} = r - lM(a) ;  
;~B = ( ]  = { f , f ' }  e A*: ( r ~ ] , r l ] }  e M(Z)) = r - lM(#) ;  

(4.25) 

i.e., ,4a = f~M(a), "4B = 2~M(B)" Under  the assumption M(a) E C(7-I) conditions (4.25) take the form 

~ .  = ker  ( r l  - M ( a ) r 2 ) ,  -4B = ker (P~ - M ( ~ ) F 2 ) .  (4.26) 

We omit the proof of Proposition 4.6, which is analogous to the proof of Proposition 4.2. 
C o r o l l a r y  4.5.  Under the assumptions of Proposition 4.6, the following relations hold: 

A2 = fl~ ~ ;. ~ ( M ( x ) h , h )  = - o o  

A2 = L * -*  ~ ( M ( x ) h ,  h ) =  +oo 

Vh e U \ {0), 

Vh E 7 / \  {0}. (4.27) 

C o r o l l a r y  4.6.  Suppose that A is a ttermitian operator with gap (a,~), II = {7/,F1,F:} is a BVS 
for A* such that A2 -- As,  M()~) is the corresponding Weyl function. Then the operator A has the unique 
extension A = .4" e Ex A(O~, ~) (that is, A~ = AB) if and only if 

~ ( M ( x ) h , h ) =  +oo V h e 7 / \  {0}. (4.28) 

4. Let >t_(t) be the number of negative squares of the form t, i.e., the maximum dimension of negative 
linear manifolds contained in the cone g _ ( t )  := {f  E ~( t )  \ {0} : tiff < 0} U {0}. We determine x_(T)  
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for the operator T = T* by the equality >:_(T) = dim ET(-C~, 0). If T is an operator associated with the 
closed form t, then in view of the mini-max principle >:_(t) = ~ _ ( T ) .  We shall need the following two 
elementary lemmas. 

L e m m a  4.1. Let t,, be a monotonically decreasing sequence of symmetric semibounded above forms, 
which converges to the form t: 

~imo~[f] = till v f � 9  ~(t) = A ~(t.)  
,>1 

Then >:_(t) = >:-(tn) for n large enough. I f  the forms t,, are closed and T .  = T*. are operators associated 
with the forms U, then >:_(t) = ~:_(T,,) for n large enough. (T11) 

L e m m a  4.2. Suppose that [/1 C 11, To = IkT21 �9 [bl,b] is a nonnegative operator, T = r* ( � 9  [111) is 

its extension which has the block-matrix representation 

Cr11 T12  
T = ~T21 T22] '  (Tij �9 [11j,11i] ( i , j  = 1,2), T12 = T~*I) (4.29) 

which corresponds to the orthogonal decomposition 11 = I11 @ 112. If  there ezists a nonnegative eztension 
T = T* �9 [[l] of the form in (4.29), then 

f q,1/2 (1) ~ ,-'11 ) D 9l (T~I) and the operator S := Tnl/2T;1 is well defined and bounded; 
(2) the operator T = Train with T22 = S*S is the least one in the class Ex To(--cx~, O) of nonnegative 

extensions of the operator To; 
(3) x_(T)  = >:-(T~2 - S 'S ) ,  if T = T*(6 [[1]) is an eztension of the form in (4.29). 
The proof of the first two statements can be found in [61], the third statement is proved in [53]. 
T h e o r e m  4.1. Suppose that H - {n,r~,r~} is a BVS for A* such that A2 �9 Ex A(a, fl) and A2, 

[t~ are disjoint, M()  0 is the corresponding Weyl function, 0 = 0"(6 d(7-l)) is a semibounded below linear 
relation, ~(t0) C ~(tM(~)). Then 

(1) dim E~o (a, /9 ) < > : - ( t o -  tMCa)); 
(2) /f A2 = -4~, then the following equivalence holds: 

d i m E A , ( a  , ~) = n ~ x_(t0 - LM(~)) = n; (4.30) 

(3) if, additionally, the form to -tM(fl) i6 closable and Ta = T~ is a linear relation associated with this 
form, then there ezists 

s - a - ~ ( 0  - M ( x ) ) = T  z (4.31) 

and the following equivalence holds: 

dimEA0(a,/~ ) = n ~ 4 -  >:_(T~) = n, (4.32) 

in which TZ = 0 - M(/3) /f 3 (0 )  C ~(M(f l ) ) .  
P r o o f .  Let g = (-40 - A)f. Then for all A �9 p(-40) n (a,  ~) we have 

( (5 .o  - ~ ) ( ~ o  - A ) - ' g ,  g)  = IIAofll 2 - (~  + A)(Aof, f) + ~Allfll 2. 

Hence for all n �9 7,,+ we obtain the equivalence 

d i m E A , ( a , ~ )  = n ~ x-((fi,0 - a)(,g-0 A) - I )  = n VA �9 (~0,r (4.33) 

where fl0 is close enough to fl and such that  (~0, fl) C p(.4o). In particular, in the case n = 0 the equivalence 
(4.33) takes the form 

,i0 = Ex A(~,~)  r (~i0 -- ~)(r _ ) , ) , !  > 0 v ~ e  (z~,~).  
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By virtue of the extremal property (4.21) of the extension 2. .  the operator Tmi, = (2~ - r - A) -1 
is minimum in the class Ex To(--oo, 0) of nonnegative extensions T = T* of the operator To = (A - 
a)(A - A)-x �9 [~X~, ~]. Therefore, the operators To, T = (20 - a)Aa - A) -1,  and Tmin have the following 
block-matrix representations with respect to the decomposi t ion b = ffJI;~ f3 9l.~: 

To = k, T21 ' T . =  T21 T22 ' = 1 k T21 S*S ' 
(4.34) 

where S -- T~l/2T~l. If 20 = 2 ;  is an extension of A such that  d imEi , ( rx ,  fl ) = n, then it follows from 
(4.33), (4.34), and Lemma 4.2 that for all A �9 (rio, fl) 

n = d i m E i , ( a ,  fl ) = x_((Ao - a ) ( A a -  A) -1) 

= X - - ( ( i 0  - -  O ~ ) ( i 0  - -  ~ ) - -1  _ ( i c ~  - -  O~) ( i r  - -  ~ ) - - 1 )  = ~ t * - - ( ( i 0  - -  ,~)--1 __ ( i .  - -  ~ ) - - 1 ) .  ( 4 . 3 5 )  

According to Proposition 4.6 and (4.25), (4.26) we have 2~  = AM(,). Since i ( a )  - / ( A )  < 0 VA �9 (rio, fl), 
equality (4.35) and the resolvent formula (3.39) yield the estimate 

n = >t_[(8 - M(A)) -1 - (M(a) - M(A)) -1] < x_((0 - M(A)) -1) VA �9 (fl0,fl). (4.36) 

The inclusion ~( ta )  C ~(tM(~)) and Lemma 4.1 imply the equivalence 

. _ ( e  - M(~) )  = . w �9 (Z0,Z).'. .-' - _ ( t 0  - tM(,)) = n, (4.37) 

which, on account of (4.35), proves the first statement. 
If A2 = 2~,  then M ( a )  -- F2~ -- {0,7/}, whence (M0x) - M(A)) -1 = O and inequality (4.36) turns 

into the equality. In this case relations (4.36) and (4.37) prove the implication 

d imEA,(a ,  fl) = n --4- x - ( t a  - tMCZ)) = n. 

These arguments carried out in reverse order yield the equivalence in the last implication. 
If the form to - tM(fl) is closable and Tfl = T~ is a linear relation associated with its closure, then the 

convergence theorem for sectorial forms [29, p. 563] implies that there exists a strong resolvent limit in 
(4.31), and (4.31) holds. Now the equivalence (4.32) is a consequence of (4.30). 

C o r o l l a r y  4.7.  Suppose that under the assumptions of Theorem 4.1 A2 and 2~ are transversal exten- 
sions (r M(fl) �9 [7/]). Then dimEAo(a,  fl ) < x_(O - M(fl)). If, additionally, A2 = Aa, then 

d imE~,(a ,  fl) = x_(O - M(fl)). 

C o r o l l a r y  4.8. Suppose that under the assumptions of Theorem 4.1 A2 = 2 a .  Then 

d i m S i ,  (cz, x0 ) = x _ ( O -  i ( x o ) )  Vx0 e (a,t /) .  (4.38) 

In the case A2 • 2,~ we have dimEia(~X, xo ) < x _ ( O -  M(xo)). 
C o r o l l a r y  4.9. Suppose that all conditions of Theorem 4.1, except for the last one, are .fulfilled and 

A2 = 2 ~ ( =  -4M(~)). Then 

20 �9 Ex A(a, fl) ~ ~(t0)  C ~(tMC~)), to - tM(~) >-- 0. (4.39) 

Xn the ease M(Z)  �9 [U] (4'.39)takes the form 2o �9 Ex a ( ~ , Z )  ~ Y 0 _> M(Z). 
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P r o o f .  It follows from Corollary 4.8 that the next implication holds: Aa ~ Ex A(a, 1~) ~ O -- M(z)  > 
0 Vz �9 (a,  f~), whence (M(z ) f ,  f )  <_ t0[f] for all f �9 ~(ta) .  Now it remains to apply Lemma 4.1 and (4.23), 
(4.24). [] 

C o r o l l a r y  4.10.  Let, under the assumptions of Theorem 4.1, (~, f~) = ( - o o ,  0) and let A2 = AF be 
the Friedrich~ extension of the operator A >_ O. Then the equivalence~ (4.30), (4.32), (4.38), and (4.39) take 
the form 

n = d imE~i , ( -oo ,0  ) .: ~- g - ( to  - tMr = n; 

d i m E ~ , ( - c ~ , 0 )  = n ~ g- (To)  = n; 

dimE~,C-cc,  zo) = n ." '.. g_CO- M ( x o ) ) = n  (Xo �9 (-oo, O)); 

A8 >__ 0 -: ~ ~)(t0) C ~)(tM(0)), t8 -- tM(0) >_ 0. 

(4.30') 
(4.32') 

(4.~8') i 

(4.39') 

R e m a r k  4.3. (1) Generally speaking, it is impossible to characterize the spectrum of an extension 
-40 in the gap (a,  f~) in terms of the linear relation T~ in the case of a nonclosable form to - tM(O), as was 
done in Corollaries 4.7 and 4.9. In [20, 79] examples were constructed in which x_(Tf~) -- 0 (<-----~. TZ > 0) 
but dimEfio(a,/~ ) > 0. 

(2) As follows from the examples given in [79], the condition ~(t0)  C ~(tM(O)) in Theorem 4.1 is 
essential. It is fulfilled automatically if the family 0 - M(x)  is uniformly semibounded below, i.e., 

3c �9 ~ : 0 - M(x)  > cIn Vx �9 (v~,fl). (4.40) 

Indeed this implies 
~ ( M ( x ) f , f )  < t [ f ] -c l [ f [ ]  2 V f  �9 ~(to), 

= d  in view of Proposition 4.6 [see (4.24)] f �9 ~(tM(~)). Note also that the inclusion ~(t0) C ~ ( t . ( ~ ) )  
does not imply (4.40). 

(3) Let ~ (A)  = t}. In this case another proof of Theorem 4.1 was given in [20, 79]. A more simple 
proof, similar to the one stated above, was obtained in [52]. If A is a positively defined operator (i.e., 
(-oo, e) C p(dF) for some ~ > 0), ~ (A)  = i3, and II = {7/ , r~ , r~} is a BVS such that Az = A t ,  A1 = AK, 
then M(0) -- 0, tM(0) = 0, and the equivalences (4.30'), (4.32'), (4.38') coincide with the results of Birman 
[7] (see also [34] in the case n+(A) < oo). 

5. Denote by Pf l" (a , /3)  ( ~ " ( a ,  8)) the set of generalized pseudoresolvents (resolvents) Rx = P(A - 
A) -1 F[~ of an operator A, generated by extensions A acting in ~ C [J, such that  dim EA, (a, fl) = g and 
(3.36) holds, o 

T h e o r e m  4.2. Suppose that A is a Hermitian operator with gap ((~,/~), II = { 7 / , r , , r ~ }  ~s a BVS 
for A* such that A2 = Aa and A1 := ke r f s  is an operator, M(A) is the corresponding WeyI function and 
M(/~) �9 [7t] (i.e., As and fl~ are transversal eztensions). Then the formula 

R~ = (As - A) -1 - 7(A)(v(A) -b M(A) - M(fl))-IT*(A) (4.41) 

establishes a one-to-one correspondence between RA e Pf~"(o~,fl) and (v(A) �9 S~"(a,~) .  Moreover, R:~ �9 
~"(~, fl) if and only if the function 7-(A) - M(fl) i8 M-admissible. 

C o r o l l a r y  4.11. Suppose that A i8 a nonnegative Hermitian operator, n~(A) = 0, II = {7/,r,,r2} is 
a BVSfor  A* such that A2 = AF, M(O) �9 [7/] (i.e., AF and AK are transversal). Thenfor:rnula (4.41) in 
which As = Av,  M(Z) = M(O), establishes a one-to-one come,pond�9 between R~ �9 Pa"( -o~ ,  O) and 
r(A) �9 S-"(O, oo). Moreover, Ra �9 ~2"(-c~, O) if and only if 

s - R - l i m y - l r t , y ~ ' "  " . . =  0. 
yToo 

P roo f .  AI (=  kerr1)  is an operator since A2(0) = 9] = [J~. Moreover, it follows from the condition 
n'i(A ) = 0 that A2 = AF = A 4  ~ (=: -4~n). Therefore, the desired statement is implied by Theorem 4.2 
and Corollary 3.8. [] 
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R e m a r k  4.4.  In the case ~ ( A )  = [) Theorem4 .2  was proved in [20, 79] by vir tue of the theorem ~:bout 
zeros and "poles" of an operator-valued funct ion  f r o m t h e  class S - " ( R  \ (~,/3)) (see [22, 25, 79]). A more 
simple proof which is not  based on the above-mentioned theorem was obta ined in [17]. Note tha t  a s im i l a r  
result was obtained earlier in [82] for the case n+(A) < oo, (~,/3) - (-r If, in addit ion,  A~ - A~r 
then t h e  generalized resolvents corresponding to the nonnegative extensions of A (class 12~ 0)) with 
an admissibility condit ion of the form in (3.63) were described in [83]. 

We omit the proof  of Theorem 4.2 since i n  the case ~ ( A )  = I}0 r [}one can deduce it f rom Theorem 
3.1 in the same way as was done for the cas e ~ ( A )  = ~ in [20, 79, !7]. We also omit  descriptions of various 
classes of non-self-adjoint extensions. These problems will be considered in another  paper  (see [52] in the 
case ~ ( A )  = ~). 

5. F U N C T I O N A L  M O D E L S  A N D  T H E  R E A L I Z A T I O N  
O F  A N  R - F U N C T I O N  A S  A W E Y L  F U N C T I O N  

It was shown in [81,83] tha t  any R-function 

Q(A) = BA + c + ~- A 1 + t 2) d~(~), E [~], (5.1) J~ l + t ~ 

satisfying the condition 

" ' . 0 e p ( I m Q ( A ) )  V A E C + U C _ ) ,  (5.2) 0 e p(Im Q(z))(.. ', 

is a Q-function of some Hermit ian operator.  To this end a special functional  model  was used,  constructed 
by the R-function Q()~). In the definite case these results can be derived also from other  functional  models 
(see, for example [71]). In this section for some functional models constructed by  the R-function Q(A) we 
determine BVS's such tha t  the corresponding Weyl functions coincide with Q(A). 

1. Consider, following Krein and Langer [81, 83], the linear space ~ of functions defined on (2+ U C -  
with finite support  and values in 7-/written in the form 

/=Z~A (f~ e u, A e c+ v c _ ) ,  
A 

where 6A is a formal symbol (the delta-function) and only a finite number  of fx E 7-I is distinct i rom zero. 'l'be 
space ~ is endowed with the possibly degenerate nonnegative inner product  ( f  = ~] 6a |  g = Y] 6t, |  

(Q(A)-Q*(,)t g,,). 
( f , g )~=~  ~-~ J~, (5.3) 

The quotient space ~ / J  ( J  -- ~ M ~_c) can be canonically extended to the Hilbert space ~(Q)  (see [81]). 
Consider the linear manifold 

(5.4) 

in o ~ ~ and the corresponding subspace G C .~ @ ~. 
P r o p o s i t i o n  5.1.  Let Q(A) be an operator-valued function of ~he form in (5.1) satisfying condition 

(5.2), and le~ G be a linear relation in ~ defined by (5.4). Then 
(1) mappings Xj : G ~ TI (j = 1,2) 

xl(/) = ~ Q(~)A, x~(/)= ~ A  (S = ~ 6;, | f;,) (5.5) 

can be ez~ended ~,o ~he continuous mappings F~,F2 E [G,7"/] and ~he collection II' = {~-I~ ,F1,F2} fOrTll8 a 
BV5 for the relation G; 
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(2) A := G* is a simple Hermitian operator coinciding with the closure of the operator Ao 

A0 = { ]  = { S ~  e.f~,,r,),~, �9 I~,} e z e  z :  x , ( ] )  = x , ( ] )  = 0}; (5.~) 

(3) the "[.field of the linear relation A2 := kerr2 takes the form 7()~)h = 8x O h(h E 7-l), and the 
corresponding Weyl function M(~) Fl~'(~) coincides with Q(A). 

Proof .  (1) We show that the mappings X~ d ~ "H(j = 1, 2) can be correctly extended to the quotient 

space O / 0 C l ( ~ ) .  Indeed, if ] - - { . f , f ' }  = { Z d i X  | f.~, Z A'X | f.X~E~ ~):~, then. V#EC+,hE 7-/ 

(Q( ) - Q  (~') :~,,hh , (5.7) 

(Q(~)-: Q-*(-") ~f~, h), : 

It follows from (5.7), (5.8) that 

(5.8) 

( f '  - ~ f ,  5~, | h)z = ~([Q(A) -Q*(~)lfx,h)n = O. (5.9) 

By virtue of (5.9) and an analogous equality for p we have 

~( [Q( /~)  - Q*(#)]fx, h)n = 2i(Im Q(~)xg-f, h)7-t = 0 Vh e 7[. (5.10) 

Since 0 e p(Im Q(#)), we obtain the equality X 2 / =  ~ f~ = 0 V / e  0 N (~l @ a). It also follows from (5.9) 
that X l f  = ~ Q(A)h = 0 V] E O cl (3 (9 :~). Thus the mappings xj(J = 1, 2) induce the quotient mappings 

^ ^ 

Xi :GIG r'l (~ @ ~) --o 7-/, which we denote by the same symbols. 
Now we show that the mappings Xi (J = 1, 2) can be extended by continuity to G. The continuity of 

X1 follows from the estimate ( ]  = {Y~. 6x | fx, ~ A6x | fx}) 
C 0  

= E ( [ "  + - 

>_ (Bx2(f),X2(f)) ~ + ~ ( 1  + t2)-ld(~(t)X2(]),X2(]))~l 

= (Im Q(i)x2(f),x2(f))7~ >_ c, llx~(f)ll~ (el > 0). 

In order to prove the estimate II]ll~e~ >- c~llXl(])ll~ it is sufficient to u s e  the relation 

]]fH~(9~ ~--" -- E (  1 "Jl- ,~)(Q--I(~_~)- Q--I(~)Q('~)f)~'Q(]'t)Yla ) 

and the integral representation of the function _Q--I()~) (cf. i[26]). 
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from (5.3), (5.5) tha t  the Green formula holds: 

( f ' g ) ~  - ( f ' g ' ) e  = E \ a ' -  ~ 
,~,# 

x-, rQ(~) - Q*(,)~ 

)~,p ~,p 

- ~(A,Q( , )g~)u  (xl(/),x~(~))u - (x~(/),xl(~))u. (5.11) 

Making use of the continuity of the mappings  Xj : G --~ 7"/(j = 1, 2) we extend equality (5.11) to G 
(] ,  ~ E G). To prove the surjectivity of tl~e mapping  I ~ {F2, F1} : G ~ 7-/~B 7-( we put  for all hi ,  h2 E 7-/ 
f = ~i | fi -- ~-i | f - i ,  where 

fi  = 1 ( I r a  Q(i ) ) - l (h l  - Q ( - i ) h 2 ) ,  f - i  = 1 ( I r a  Q(i ) ) - l (h l  - Q(i)h2). 

Then we have X1 ( ] )  = hi ,  X2(]) = h2. 
(2) Let A := G*. It follows from the Green formula (1.3) that  the operator  A coincides with the closure 

of an operator A0. 
(3) Lett ing in (5.11) g = ~x | h, ] 6 A0 we have 

( (d  - A ) f ,  ~x | h)~ = (Fx],  h)n - (F2],  Q(A)h)n = O, 

that  is, { { ~  | h} : h e 7-[} C 92x (A E C \ R). In view of the equality F~(6x | h) = h we obtain that  the 
following equality holds: 

92~ = {Sx | h : h E 7-/}, 

and the operator-valued function 7(A) : 7(A)h = 5x | h is a -/-field of the extension A2. Moreover, the Weyl 
function M(A),  corresponding to the BVS H I, coincides with Q(A): 

M(A)h = r,-~(A)h = x,  {6~ | h, A ~  | h} = Q(A)h. [] 

2. In this section, we consider another  realization of an R-function as a Weyl function, based on the 
representation of a self-adjoint operator  as an operator  of mult iplication in L2(d~, Tl). 

Let Q ( A ) ( e  RT~) have an integral representation (5.1) with an operator  measured E(t),  and let 
L2(dE, 7-() be the  space of vector-valued functions f ( t )  on R with values in 7-i such tha t  

:= f (d~(t)f( t) , f( t))7-t  < c~. llfllL~(dr.,~) 

We define the space Ij(Q) = 7-[n @ L2(d~,7-t), where 7-/B = 9~ (B 1/2) is a Hilbert space endowed with 
the scalar product  

(hl,h2)7~B := (B-1/2hl,B-1/2h2)7-t,  (5.12) 

and consider the  self-adjoint relation A in I~: 

= {{O $ f(t), ~ ~ t f ( t ) }  : f(t), t.f(t) ~ L~(d~,, 7-/), b e 7-in}. (5.13) 

Let A be the Hermit ian  operator  defined by the relation 

A = {{O $ f(t), b ~ tf(t)} ~ a :  f~ d~(t)f(t) + ~ = 0}. (5.14) 
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It is easy to see that the operator A is dosed. 
Propos i t ion  5.2. Let Q(,~) ( � 9  Rn)  be an operator-valued function of the form in (5.1) satisfying 

condition (5.2), and let A be an operator of the form in (5.14). Then 
(1) the defect subspace 9~x of the operator A takes the form 

h 
9~x -- {Bh @ ~_  ~ : h �9 7"/}; (5.15) 

(2) the adjoint linear relation A* coincides with the relation A. of the form 

A. = {{b@ f(t) ,b @ ](t)} �9 [~ @ b:  Bh �9 ~ ] ( t ) - t f ( t )  = - h , b  = Bh}; 

(3) the triple II" = {7"/,F1,F2}, where r~, F2 are defined by the equalities 

f dr.rt t] ).+l(O F 1 ] = b + C h +  , , l + t 2  , 

F2] = h ( / =  {be  f ( t ) , b@/ ( t ) }  �9 A.), 

is a B VS for A* and A2 := ker F2 - -4; 
(4) an operator-valued function 7()~), defined by the equality 

h (5.18) Bh@ 

is a 7-field of the eztension -~2, and Q( A ) coincides with the Weyl function M( )~) corresponding to the B VS 
I X  II . 

Proof.  (1) It follows from (5.14)that Bh@ ~ �9 9~x Vh e ~.  By virtue of the relation 0 �9 p(Im Q(i)) 
and identity 

[ d(~(t)h, h)n (5.19) ' 

we obtain relation (5.15) and the surjectivity of the mapping 7(A) �9 [7-/,~x]. 
(2) Making use of (5.15) and the equality A* = A4 ~i,  we represent the vector ] = { be f(t), b@ ](t)} �9 

A* in the form o 

] = {b @ f( t) ,  b @ ](t)} = ]o + hi = {B h @ f(t) ,  ( iBh + bo) @ ( t f ( t )  - h)}, (5.20) 

where bo = b - iBh, fo := {0 @ f0(t), b0 @ fro(t)} �9 .4, hi := {Sh  @ th-~_i,iBh @ ~-i} �9 ~'" 
Thus A* C A.. In order to prove the inverse inclusion given ] = {b @ f ( t ) ,  b @ ](t)} �9 -~ we put 

fo(t) = f ( t )  - h(t - i) -1, bo = b - iBh. By virtue of (5.16) we have 

fro(t) = ](t) - i h ( t -  i) -1 e L2(dE,~), b0 e 7-/s, 

and hence {0 @ fo(t), bo @ fro(t)} E O. This implies that ] = ]o + hi e A*. 
(3) Let f j  = {fj ,  f~} = {Bhj@ f j ( ~ ) , b j @  f j ( t )}  e A*, f i j ( t ) - t f j ( t ) =  . h i  e 7-[ ( j  = 1,2). Thenwe 

have 
( r l ]1 ,  r2L)  - (r2]1, r,L)  = - (bl, 
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This proves the Green formula. 
To prove the surjectivity of the mapping r : ~] : , :  ( r ~ ] , r l ] }  we not~ that A =:A2 := kerF2 and 

] = {0 @ (1 + t2)- lh,  Bh (9 t(1 + t2)-lh} e A2; Vh E 7(. '~ After the application of the mapping r l  to ] we 
obtain the equality 

F1] = Bh -t7 f~(1 + t2) L' d~(t)h = Jim Q(i)lh, 

which, on account of the condition 0 e p(Im Q(i)), implies that F~A2 = 7/. Now (5.15) and (5.17) yield 
that F2~i = 7"/. The surjectivity of F is a simple consequence of the relation A* = A~-i- ~li. 

(4) It follows from the definition of V(,\) that 

Therefore ~(A) = (F2 I~,~) -1 and V(A)is a V-field of an extension A2 = ker F2. Further, in accordance with 
(1.9), we obtain the equality 

M ( ~ ) h = r l ~ r ( a ) h = r ~ { B h e  , aBh e t _---2S } + + ( l + a t ) d r , ( t ) h  

which shows that M(,~) coincides with Q(),). [] 
Corol lary 5.1. If, under assumptions of Proposition 5.2, Q(,~) satisfies the condition l im(Q(iy)/y) = 

yToo 
0 5.e., B = 0), then b = nz(dE,7-(), A = As is an operator of multiplication in L2(dE,7-/), and the operator 
A is defined by the usual condition: 

A = A b(A),~(A)= (f e ~(.~) L dP,(t) f ( t )= 0}. (5.21) 

3. Consider, after [75, 71], the Hilbert space ~(Q)  of vector-valued functions F(,~) on C+ U C_ with 
values in 7-/of the form 

f dZ(t) f ( t )  Tls 91 (B1/2),f(t)  e L2(dP,,7-I)) (5.22) Eta) = b + 7 - - 2  (b E 

endowed with the scalar product 

(F1,F2)~(Q) = (bl,b2)x~ + (fl,  f2)L,(d~.,X) ( F / e  ~ ( Q ) ; j  = 1,2). (5.23) 

The mapping U:  b @ f( t)  --~' F(A) establishes an isometrical isomorphism from I~(Q) onto ~(Q)  and with 
this isomorphism the operator A in I~(Q) is isomorphic to the operator of multiplication in !/3(Q), which we 
denote by the same symbol 

A = {{f(,~), ,~F(,~)} : r(,~), ,~F() 0 e !lil(Q)}. (5.24) 

P ropos i t i on  5.3. Suppose that Q(A)(E RT~) is an operator-valued function of the form in (5.1), 
satisfying condition (5.2), and A is an operator of the form in (5.24). Then 

(1) the defec~ subspace 9Ix of the operator A takes the form 

= h e (5.25)  
t # - ~  J 

(2) the adjoint relation A* coincides with the relation 

A.  = { { F ( ~ ) , P ( ~ ) } e  ~ (Q)2  : 3hi,h~ e X , P ( ~ )  - ~F(~) = ha - Q(;gh~}; (5.26) 
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(a) the tri~te n'" = {u,  r x , r d ,  ~here I"1, F2 are defined by the equalitiea FjF(A) = h j  (j = 
1,2;~'(A) e A*) is a BVS /or A*; 

(4) the "~-field of the relation A2 = ker F2 take~ the form "~()Oh Q(~)-Q(~)h and the corresponding ~- - )~  

w ~l  ~ncUo~ M(~) = r~#(~) ~oin~ide, ~ith Q(~). 
Proof .  (1) After the application of the mapping U we obtain from (5.18) 

_• ~ d~(t) Q(~) - Q ( ~ )  h fi g~a. 
V { B ~ e  } = B n +  ( t - U ) ( t - a )  h =  u - a  

(2, 3) Analogously, it follows from (5.16) that V / =  {bED f( t ) 'b  r  e A* 

v ] =  v{~e I(0,~ �9 ](t)} = {F(a),k(~)} = $'(a), 

where 

Taking into account the relations ](t) - i f ( t )  = - h ,  b = Bh  we have 

(5.27) 

= b + C h +  dE(t) f ( t )  l + t  z - B A + C +  dE(t) ~ - A  l + t  2 

where 

< = ~ + ch + f dr~(t)tf~ + ! r  _ r~/, 
j~ l + t a  

h = ha - Q(A)h2, 

h2 =r~] .  (5.28) 

This proves the inclusion A* C A.. Conversely, let F = {F()~), F(),)} E A.. Then there exist hi, 
h2 E H such that ~'()~) = AF(,~) - h~ + Q(~)h~_. By virtue of (5.27) we obtain the equality 

L dE(t) f ( t )  dE(t)( t f ( t )  - hz) (5.29) 

which, on account of the uniqueness of the repr~sentation (5.22), gives b = Bh2, fi(t) - t f ( t )  = -h2.  This 
implies that {b r f( t) ,  b @ ](t)} e U-XA*U and A.  = A*. Note that simultaneously it was shown that the 
triple 1I m = {H, F1,F=} is a BVS for A*. 

(4) It follows from the equality 

that F2hx = h, rlh~ = Q(A)h. Therefore 7(A)h = Q(x)-Q(~)h and Q(A) coincides with the Well function 
A - - #  

M(A) corresponding to the BVS H'". [] 
4. In this section we shall distinguish all objects connected with the BVS (5.4) by one prime and the 

others connected with the BVS (5.16) by two primes. In the proof of Proposition 5.3 an isomorphism of 
BVS's II" and H m was established. In the next proposition the same is proved for BVS's 1-I ~ and II". 

I I Propos i t i on  5.4. Under the assumptions of Propositions 5.1 and 5.2 BVS's H r = {7-/,F1,F2} and 
II H II" = {H,F a,I '2) are isomorphic, i.e., there exists an isometrical isomorphism U from y~(Q) onto [)(Q) 

such tha~ UA' = A"U, r l  = r'~'O, r'~ = r'~'O, ~here 0 = U r V. 
Proof .  We define art operator U0 on the span of subspaees 9~x (,k E C+ U C_) by the equality 

h 
UoT'(A)h = Uo(5x | h) = {Bh @ ~ _  ~ } = 3,"(A)h (h e Tl). (5.a0) 
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It follows from (5.3), (5.19)that U0 ' isanisometrical operator and can be extended to the i,omorphism U 

from ~(Q) in to  [}(Q). For ] = E.lg~.@.h~, A6x | h~} we,have 

(r/= E:,{Bh~ e( t  - ~)'~h~, ),(Bhj, e ( t -  ~)-~hx)} = E~  -~(A)h~, 
r"/ (5.31) r ; '~)/= E~O(~)h~ = r l ] ,  r~'O/= E~ h~ = ~ 

It follows from (5.31) that UA' = A"U. [] 
Each of the Propositions 5.1-5..3 contains, in particular, the following 
T h e o r e m  5.1. An operator-valued function M(A) holomorphic on C+ U c ,  with values in [7-/] is a 

Weyl function of some simple Hermitian operator corresponding to some B VS H -= {7-/, F1,F2} if and only 
if: 

(1) M(A)eRn;(2)Oep(ImM(A)) VA e C+ Ur  
As was shown in [51, 53] (in the case ~(A)  = [} see [20, 79]) the Weyl function M(A), corresponding 

to a BVS II = {7"/, F1, F2}, is a Q-function o f  a Hermitian operator A, corresponding to the extension 
A2 = ker F2. The inverse assertion also holds: each Q-function of an operator A is its Weyl function (see 
w Therefore, Theorem 5.1 is a conseciuence of the results obtained in [81, 83] on the inverse problem for 
a Q-function. However, we stated Propositions 5.1-5.3 since the constructions of the model operators will 
be used in what follows (see Sees. 7-9). 

Note also that the first model was used in [81, 83] and the third one (in the case n+(A) = n_(A) < oo) 
in [71, 72], where an isomorphism of the model operators was also established. 

R e m a r k  5.1. As follows from the  proof of Propositions 5.1-5.3, under the assumptions of Theorem 
5.1, A2 is an operator if and only if 

s - lim y - l M ( i y )  = O, (5.32) 
yTor 

and A is a densely defined operator if, additionally, 

lim yIm (M(iy)h, h) = +cr Vh e 7-l. (5.33) 
yTcr 

Note also that if M(A) is a rational matrix-valued function (d imT/<  oo) of the form 

k 
A1 

M(A) B A + C 4 - E t j Z A ,  
j = l  

then dim [~(M) < cr and the following equality holds: 

dim 0(M) = rank B + E rank A 1. 
j=l 

(5.34) 

5. The next lemma is a generalization of Lemma 1.1 from [40]. 
L e m m a  5.1. Let Q(x) (a < x < b) be a nonnegative operator-valued function with values in C(7"~) 

such tha~: 
(1) Q(x) is a monotonically increasing function on (a, b), i.e., t~: : -  tQ(~:)(tq(~)[f] = ]lQ(x)a/2 f[I 2) is a 

monotonically increasi,~g [on (a, b)] family of forms; 
(2) 0 e p(Q(x)) Vx e (a,b); 

(3) li~t,[/] = +o~ vf  e ~1 N z(t,) ,  / # 0, ~1 = n. 
z<b 

The, the,e e:ists ~ - ~ m Q ( : ) - '  = O. Conversely, co,~ditio,s (1), (2), a,~d the last equality imply that 

186 



Proof. Let g e 7/i \ {0}. According to condition (3) we have 

VM > 0 qz0 E (a ,b ) :  IIO(~)'/~gll ~ >__ MIIgll 2 V= e [=o,b). 

Letting f := Q(xo)ll2g we obtain MIIQ,(=o)-*/sIII ~ < Ilfll 2. Making use of condition (2) and the well- 
known (see [29]) implication 

{:q(.~) )_ tO(E, ) > 0 Y O(Xl) -1 ___ Q(z2) -1 (Zl > x2), 

we obtain the inequality MIIQ(=)-I/sIIIZ <_ Ilfll z V= e [=0, b). 
This implies that  l i ~  IIQ(z) -1/~/11 = 0 v/E 7~ and hence s - limit6 Q(x)-l l2 O. Now, by virtue of the 

uniform boundedness principle, we have s - i~ Q(m) -I = O. [] 

Lemm~ 5.2. Let n = {n, rl,r2}, I~ = {n, Px,P,} be BVS's for A*, and let M(~), ~(~) ae the 
corresponding Weyl functions. If  ker f s  = kerF2, then there exist operators K,  K* E [7-/]; X,  X -1 E [7-/] 

~uch th=t rs = x - ~ r ~ ,  r l  = x * ( r l  + g r 2 ) ,  (5.35) 
M(A) = X*M(A)X  + X * K X .  

If, addi~ional!y, kerr1 = ker~l,  then g + 0 and ~ (~ )  = X*M(~)X.  
One can easily deduce Lemma 5.2 from formulas (1.12), (1.13) and the evident implication kerI'2 = 

ker I'2 ==~ X21 -- 0. 
In what follows we repeatedly apply Corollary 4.1. In view of its importance we give a simple proof 

which does not use the formula of resolvents. 
P r o p o s i t i o n  5.5. Suppose that A _> 0, H = {u, r l , r s }  i~ ~ BVSfor A* such that As >_ O, M(A) is 

the corresponding Weft function. Then the equality As = AF (As = AK) holds if and only if 

lim (M(x)h,h)=-oo (}ivm(M(x)h,h) = +oo) Vh E 7-/\ {0}. (5.36) 

P r o o f .  Necessity. Let A2 = AF. Then ~(A2)  = ~0 :-- ~ ( A ) ,  A2(0) -- 9l :-- [} @ i)0 (see [781). By 
virtue of (1.7) and (1.10) we obtain the equality 

M(A) -- C -k (A Jr 1)7"( -1) [ I  + (A + 1)(A2 - A) - l lPov( -1 )  + AT*(-1)P1v(-1) ,  
O 

where P0 := P~0, P1 = I - P0, C = M ( - 1 )  + 7" ( -1 )P17( -1 ) .  It follows from (5.37) t h a t  

(5.37) 

/o r162 t +  1 
(M(~)h, h) = (Ch, h) + (~ + 1) t _ ~ dllE, PoV(-1)hll~ + ~tlPlV(-1)hll~, (5.37') 

where Et is the resolution of identity of the operator A~ E C(00). The operator part A S of the linear relation 
A2 is a Friedrichs extension of the operator A I = PoA E C([]0). In accordance with the extremal property 
of the Friedrichs extension [34] we have 

~o ~176 f )  = +oo VI  E 9]~_1 := 91-1(A'). (5.38) 

Now relation (5.36) follows from (5.37') and (5.38). 
Sufficiency. Suppose that  II -- {7~,F1,I'2} is a BVS for A*, such that  A2 >_ 0 and the corresponding 

Weyl function_M(A) satisfies condition (5.36). Consider side by side with II the other BVS fI = {7-(, f ' l ,  F2} 
such that ker P2 = AF. As shown above, its corresponding Weyl function ]I~/(A) satisfies condition (5.36) 
and is connected with M(A) by equality (1.13). Rewriting (1.13) in the form 

2t~/(A) -1 [X12M(A) -1 + X n ]  = X22M(A) -1 + X21 
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we pass to the limit as A --+ - co .  In accordance with  Lemma 5.1 there exists 

s ~ lim /tT/(A)-I = s - lira M(A) -1 = 0 
M-oo M-co 

and hence X2, 0. This implies that 3 X ~  1 Xi'z e [7"~, F1 = X21Pl + x22r2 = X22F2 and, therefore, 
ker F2 = ker F2 = AF. [] 

We shall call (after [39]) the Q~- and QM-functions of a nonnegative operator A the operator-valued 
functions X*Q~(A)X and X*Q~M(A)X with X, X -1 �9 [Tmq and Q~(A), Q~/(A) defined by equalities (4.14), 
(4.15). In Sec. 4 we have determined BVS's such that their corresponding Weyl functions coincide with 
Q~(A) and QkI(A). By virtue of (4.14), (4.15), and Proposition 5.5 any Q,(QM)-function is a Weyl function, 
corresponding to some BVS, such that A2 = AF, A1 = AK (A1 = AF, A2 = AK). 

Propos i t i on  5.6. Let Q(A) �9 R ~  be an operator-valued function with values in [~] satisfying condition 
(5.2). Then]or Q(A) to be a Q~-function of a nonnegative operator it is necessary and su~cient that the 
following conditions hold: 

(1) Q(A) is holo,~orphic on C \ S+; 
(2) lim~_oo(Q(x)h, h) = - co  Vh �9 7"l \ {0}; 
(3) s - lim Q(x) = O. 

=TO 
Proof .  Owing to Theorem 5.1 Q(A) is a Weyl function of some Hermitian operator A corresponding 

to the BVS II = {7-(,F1,F2}. By virtue of condition (1) the operator A is nonnegative. It follows from 
Proposition 5.5 and condition (2) that A2 := kerF2 = AF.  Analogously, making use of Lemma 5.1 and 
condition (3) we have A~ := kerF1 = AK. Now we obtain by Lemma 5.2 the equality Q(A) = X*MF(A)X 
( x  �9 [~, 91-d, x - '  �9 [91_,, ~]).  [] 

Coro l la ry  5.2. (1) A Q,-function belongs to the class S~ (that is, Q(x) < 0 Vx �9 N-) ;  
(2) the following equivalence holds: 

O ( A )  = l / , :  :, s - l i r a  y-lQ(iy) = 0.  ( 5 . 3 9 )  
!ltoo 

Proof .  (1) The inequality Q(x) < 0 (z e • - )  follows from the monotonicity of Q(x) on R_ and the 
condition Q(0) = s - l i m Q ( x )  = 0. (2) The equivalence (5.39) is a consequence of Remark 5.1 and the 

zT0 
relation AF(O) = 9l = [}~. 

Analogously one can prove 
P r o p o s i t i o n  5.6'. Let Q(A) be an R~-function with values in [7-/] satisfying condition (5.2). Then 

Q(A) is a QM-function of a nonnegative operator if and only if the following conditions hold: 
(I) Q(A) is holomorphic on C \ R+; 
(2) ~p0(Q(x)h, h) = +co r h e a \  {0}; 

(3) ~ - lim Q(x) = 0. 
X~--OO 

Corol la ry  5.2'. Let Q(A) be a QM-function of a rionnegative operator. Then: 
(1) Q(~) e s ~  + := s ~ ( ~ + ,  0) (that is, Q(~) >_ 0 W e R_); 
(2) the following equivalence holds: 

~(A) = i) ~ lira z(Q(x)h, h) = - co  
X~--OO 

Vh e ~ \ {o). 

R e m a r k  5.2. In the case ~(A) = 0, Propositions 5.6 and 5.6' were presented in [39]. 
6. In Sec. 3 BVS's l'I" = {u,r[,r~) and n M = {u, rV,rV} were constructed, such that the 

corresponding Weyl functions take the form in (3.73), (3.74) and coincide with Q~- and QM-functions of a 
Hermitian contraction from [40]. The full inner characterization of Q~- and QM-functions of a Hermitian 
contraction was obtained in [40]. We now give another proof of this fact, based on Propositions 5.1 and 5.5. 

P r o p o s i t i o n  5.7 ([40]). Let M(A) be an Rn-function with values in [7-/] satisfying condition (5.2). 
Then M(A) is a Q~-function of a simple Hcrmitian contraction if and only if: 
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(1) M(A)is  holomorphic o n  C \  [-1,11; 
(2) lim:~t_l(M(A)h,h) = co Vh E 7-/\ {0}; 
(3) s - l i m M ( A ) = 0 ;  

All 
(4) s--  lim M()  0 = I. 

Moo 
Proof .  Neceaai~y. Suppose that A is a Hermitian contraction, IP' = {7~,F~',F~} is a BVS for A* 

of the form in (3,72), and M ( A ) =  Q~,(A). The operator -4-1 defined [cf. (4.2)] by the equality .4-1 := 
s - R - lira 2 , ( A ,  := A+ ~ )  is the least one in the class Ex A(--oo,--1) of all extensions A = A* such 

= T - i  r 

that .4 k - I .  In particular, -4-1 E CA(O) is a minimal element in the class of sc-extensions of the operator 
A. Therefore,-g--1 --- A~, = kerF2. Owing to Proposition 5.5, condition (2) is fulfilled. Analogously, an 
extension A+I -- s - R - l i m - 4 z  isa  maximal element in the classes Ex A(1, -boo) and CA(0)(C Ex A(1, -boo)). 

=s 
This implies that  A+I = AM = kerr  and according to Proposition 5.5 we have l ~ ( M - 1 ( z ) h ,  h) = -boo. 

Condition (3) now follows from the monotonicity of M(x)  on (1, oo) and Lemma 5.1. Clearly, condition (4) 
for M(A) of the form in (3.73) is fulfilled. 

S~i~ciency. It follows from Theorem 5.1 that the function M(A) is a Weyl function of some simple 
Hermitian operator A' corresponding to some BVS II' = {91, I'~, r~ } (without loss of generality we assume 
that 7-/= 91 = 0~). By virtue of condition (1) the extension 

E [b j, bd (i , j  --- 1,2)) 

is a contraction. It follows from conditions (2), (3), Proposition 5.5, and Lemma 5.1 that A~ --- A~,, A~ = 
AM. Thus we may apply Lemma 5.2 to conclude that the Weyl functions M(A) and Q~,(A) corresponding 

I I r [ p  to BVS's II' {91, F1, F2} and -- {91, F~', F~} of the form in (3.72) are connected with the equality 

M(A) = X*Q~,(A)X = X*( I  + CI/2(A~, - , , ~ ) - 1 C 1 / 2 ) X ,  (5.40) 

where X, X -1 E [91], C = (AM -- A~,)[m. It follows from (5.40) and condition (4) that X * X  = I, i.e., X is 
a unitary operator in 9I. 

We consider an isometric operator U = I~o ~ X  E [D] and put P}' -- F}0 (j = 1,2), U = U ~ U. We 
show that the Weyl function of the operator A" = UA' corresponding to the BVS H" = {9I,-1 p ' ' ,~2 j  p ' ' I  for 
(A")* = U*A*U is a Q~,-function of the Hermitian contraction A". Indeed, A~ and C" take the forms 

tO 

,, ( Aoo A;oX ) 
A~, -- U*A~,U = X'A10 X * A u X  ' 

II C" - (A~4 - A~,)[~ -= X * C X .  

It follows now from relations 
corresponding to the BVS II": 

(5.40), (3.73) that M(A) coincide with the Weyl function M"(A) of A" 

M"(A) = I -b X*C1/2X(U*(Aj,  - A) - IU)X*C~/2X -- I -b (C")1/2(A~ - ~ ) - l ( c n ) l / 2  ~- M(/~). 

( A00 '~ 7. Let A = \A10 ] be a bounded Hermitian operator in [J with a nondense domain 00 (Ai0 E [[~0, [)i] 

(i ---- 0, 1)), [h -= ~ .  In Proposition 3.5 a BVS for A* was constructed, such that the corresponding Weyl 
function coincides with the spectral complement of the operator A [69] 

M(A) = AI~I -b Alo( Aoo - A)'IA01. (5.41) 

The next proposition contains a full inner description of the operator-functions of the form in (5.41) 
(i.e., spectral complements). 
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Proposition 5.8. Let M(A) be an RTc-function satisfying condition, (5.2). Then for M(A) to be a 
spectral complement of some bounded Herrnitian operator it is necessary and su~cient  that the following 
conditions hold: 

(1) M(A) is holomo,~hic ezterior to some segment [a,b]; 

(2) s -  lira M ( A ) =  I~; 
x-.-,oo 

(3) s -  lim ( M ( A ) -  Aim) = 0 .  
A---~oo 

Proof .  According to Theorem 5.1 there exist a Herrnitlan operator A ' ( ~ ( A O =  00) and a BVS 
II' = {fit, F~, F~} for (A')* such that the corresponding Weyl function coincides with M(A). Making use of 
Theorem 1.1 and condition (2), we conclude that A~ = kerr~ is a linear relation and A~.(0) = fit -- 0~. It 
follows from conditions (1), (2), and Proposition 1.6 that A~ = ker F~ is a bounded operator. In particular, 

the operator A ' =  (Alo]A~176 ~ (Aoo E [00],A10 E [00,fit]) is a bounded operator too. 

Let II = {n , r~ , r~}  be a BVS of the form in (3.64). Since kerr~ = kerr~  = A 4  6l we obtain from 
Lemma 5.2 the equality 

M(A) = X*[AIm + A~o(Aoo - A)-~A01]X + ]i, 

where Y = Y*, X,  X -1 E [fit]. It now follows from conditions (2), (3) that X * X  = I and Y = 0 and, 
therefore, 

M(A) = Aim + Z*Alo(Aoo - A)-aAo~X. 

(A~176 
Consider the operator A = ~, X A10 and the BVS of the form in (3.64) for the linear relation A*. Then 

by virtue of Proposition 3.5 we have that the corresponding Weyl function coincides with M(A). [] 
8. We give one simple application of Theorem 5.1. 

\ 

Let A b e  aHermi t i anma t r i x in  00 = C  n. Consider aborderedmat r ix  A I = A ~  = (aA, g ) ( a =  
J 

fi, g E C " ) a s  an extension of the operator A0 = ( g A . ) E  [cn, On+l] and a BVS II -- {7-(, I~1, F2) of the 

form (3.64) for the linear relation A; = { { f , ~ x f  + c} : f E C"+l,c E C). It follows from (5.41) that the 
Weyl function M(A) corresponding to the BVS II takes the form 

M(A) = A - a + g*(A - A)-ag = 
det(A1 - A) 
det(A -- A) 

e R. (5.42) 

This implies the alternation of the eigenvalues {Ak}~' a n d  {Ak}~ +1 of matrices A and A1, which is usually 
derived from the Courant-Fisher principle [47]. 

Making use of Proposition 5.8, one can easily deduce the inverse assertion, which is also well known 
(see, for example, [47]). 

P ropos i t i on  5.9. Suppose that {Ak}~' and {A~}~ +] are two alternating collections of numbers 

1 A] _< AI _< A~ _< A2 _< . . .  < A~ < A, < A.+I, (5.43) 

d = diag {AI~A2,...,An} is a diagonalmatriz. Then there ezist8 a bordering A1 = (gA. ga) ofthe matrl:~ 

d such that a(d l )  = {A~}~ +1. 
Proof .  Suppose that we have strict inequalities in (5.43) (one can easily deduce the general case to 

this one) and define a function M(A) and a number a = 5 by formulas 

n-I-1 n n-I-1 n 

M(A) = H (A - A } ) / H ( A  - A j )  , a = Z A1 - Z Aj. (5.44) 
j = l  j + l  j = l  i'1-1 

IgO 



Clearly, M(,~) + a satisfies the conditions of Proposition 5.8 and, therefore, M(,~) is the Weyl function 
corresponding to some BVS of the form in (3.64) for A ~ and taking the form in (5.42). It follows from 

" :) (5.34), (5.44) that dim [~0 = n, dim [} = n + I, and A0 = E [C n, C"+l],  A �9 [C"]. Note finally 

that the zeros of M(A) coincide with the eigenvalues of the matriX Al = ( Ag. ga) and the poles of M(A) 

coincide with the eigenvalues of the linear relation As := ker F2 and, therefore, wi th  the eigenvalues of the 
matrix A. [] 

6. G E N E R A L I Z E D  S P A C E S  O F  B O U N D A R Y  V A L U E S  

1. In this section we generalize the notion of a BVS to nonclosed linear relations, which enables us to 
realize an arbitrary Rn- func t ion  [without condition (5.2)] as a Weyl  function. Let A be a closed operator 
in [}, A* be an adjoint linear relation, and A. (C A) be a linear relation dense in A*. 

Def in i t i on  6.1. A triple {n,r~,rs}, in which 7-[ is a gilbert space and ri (j = 1,2) are closable 
mappings from A.  to 7-l, will be called a generalized B VS for a linear relation A .  if: 

(1) Fs is a surjective mapping; 
(2) As := kerF2 is a self-adjoint relation; 
(3) for all ] = { f , f ' } ,  ~ = {g,g'} �9 A .  the Green formula holds: 

( f ' , g ) - ( f , g ' )  = (r,/,r2~)~ -(r2/,r~)~. (6.1) 

One can easily deduce 
P r o p o s i t i o n  6.1. Let A1, As be disjoint self-adjoint extensions of an operator A. Then there exists 

a generalized BVS {~,F1,F2} for the linear relation A.  := A~ + A2 such that Aj = k e r F / ( j  = 1,2). 
L e m m a  6.1. Let II = {7-/,F1,F2} be a generalized resolvent of a nonclosed linear relation A. .  Then 

the following assertions hold: 
(1) A. = A2+ 9l* (~ �9 p(As)), where 9I I = A.  n 91:~ is dense in 91x, 
(2) r lAs = ~ ;  
(3) k e r r  = A, m ( r )  = n �9 H ( r  = { r s , r l } ) .  
Proo f .  (1) Since As = A~, the following decomposition holds: 

A* = A2 + 9l~ (A �9 p(A2)). (6.2) 

It follows from the inclusion A. D As that A. =/~2 q- ~li,  where 9I 1 = 9Ix O A..  Since the angle between 
A2 and ~l~ is acute, the equivalence A', = A* -'. ; -  9l I = 9lx holds. 

(2) Assume that there exists h e 7-t such that h .L FIA2. It follows from condition (1) of Definition 6.1 
that for some f = { f , f ' }  e A. we have F s f  = h. Making use of the Green formula (6.1) we obtain for all 

= {g,g'} �9 As the equality 

( f ' , g )  - (y ,g ' )  = - ( r s / , r l ~ ) ~  = - ( h ,  F l~ )~  = 0. 

The condition A2 = A~ implies that / = { f , f ' }  e A2 and h2 = r 2 ]  = 0. 
(3) Let ] = { f  , y '}  e kerr .  Then it follows from formula (6.1) that  (f ' ,  g) = ( f  , g') for all ~ = {g, g!} E 

A. and hence { f , f ' }  e (A.)* = A. Therefore, kerF C A. Conversely, if / e A C A2 -- kerr2 ,  then 
(F1/, F2~)n = 0 for all g e A..  With regard to condition (1) this implies that ] e kerF1.  

Finally, we show that  ~R ( r )  = 7-I @ 7-/. For some {h2, hi} e 7-/$ 7-I we choose ]~  e ~l I such that 

F2/x -- h2. In accordance with assertion (2 ) there  exists a sequence f~") E A2 such that lira F,f~ n) = 
T$-- '*OO 

hi - Fx/x. Then it follows from the equMities 

(-) r , ( / ~  + f~. ) = h2, lira r l ( / ~  + S~ ")) = h~ 
n - ' - *  O 0  
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that {ha,h2} e 9t (F). [] 
Let ~ra be an orthogonal projection Onto the first component in 6ta = {{fa; M~} : A E 91a}. 

�9 L e m m a  6.2.  The equalities "~(A) = (F~ I ~ ] )  -x, 7 ( A ) =  ~r~'~(A) define holomor~hic on p(A~) operator, 
valued functions with values in [7/, hal  and [7/, 91~], respectively. The function 7()0 is a 7-field of extension 
A2, i.e., the following relation holds: 

"),(A) = 7(~) + (,~ - C)(A2 - ~ ) - 1 , , / ( ~ )  V)~,~ E p(A2). (6.a) 

The proof follows immediately from (6.2) and Definition 6.1. In the same way as in [79, 53] one can obtain 
the relation 

-r*(X)h = r~{(A~ - ,~)-~h, h + )~(A2 - -  A)-ah} (h E 7/, ,~ E p(A2)). (6.4) 

Def in i t ion  6.2. The operator-valued function M(,X), defined for all )~ E p(A2) by the equality 

M(A)F2]x = F1]a Y]a e 91"~, (6.5) 

will be called a Weyl function of the operator A corresponding to the generalized BVS II = {7/, Fa, 1"2} for 
the linear relation A..  

It is easy to see that the equality (6.5) is equivalent to the following one: 

M(,~) = FI~(,~). (6.6) 

Since the operator F~ is closable, the function M(,k) = FI"~(A) is a well-defined, holomorphic on p(A2), 
operator-valued function with values in [7/]. It follows from (6.3), (6.4) that 

M(,~) - M*(#)  = (,~ - p)7*(/.t);/(,~) (V,X,l~ e p(A2)). (6.7) 

P r o p o s i t i o n  6.2. Suppose that H = {7/, F1, F~} is a generalized BVS for the linear relation A.,  M()~) 
is the corresponding Weyl function. Then 

(I) Oep(ImM(i))r ?~(F)=X@X (-' :.A,=A*); 
(2) 0 e p(M(i)) .: :. 91 (Fi) = 7/. If, additionally, A, = A~, then the operator-valued function 

- M ( ~ )  -~ is the Weyl function corresponding to the generalized B VS H1 = { 7 / , - r 2 ,  r l } .  
P r o o f .  (1) Let 0 E p(Im M(i)). Then it follows from (6.7) that the mapping 7(,~) E [7/,91~] is 

surjective, and hence 9l I = 91~, 9l (7"(~)) = 7/. By virtue of (6.4) we have the equality rlA= = 7/, which, 
with regard to the relation F 2 ~  = 7"/, leads to the equality 91 (P) = 7/@ 7/. 

Conversely, if 91 (F) = 7-/@ 7/, then for all h E 7 / the re  exists .f e A. such that  Y2] = 0, Y l f  = h. 
Thus ] E A2 and r~A2 = 7/. It follows from (6.4) that the mapping "),*(,~) as well as V(,~) is surjective and, 
owing to (6.7), we have 0 E p(Im M(A)) for all ,~ E C+. 

(2) Theimpl icat ionOEp(M(i) )  ~-91(F~)=7-/ isevident .  Assume that  91(Fx) = 7/. Then it follows 
from the decomposition A. = A i + !3l~ (j = 1, 2) that the mappings F i : fill --* 7 / a r e  isomorphic and, 
therefore, 0 E p(M(,~)) VA e C \ N. [] 

C o r o l l a r y  6.1. If  extensions A~ and A2 are transversal, then the BVS H --- {7-/,F~,F2} is an ordinary 
one ( ~--.. 91 (r) = 7 / � 9  7/). 

Indeed, if A. -- A*, then 91~, = 91~ and the mapping 7(,~) e [7/, 91~] is an isomorphism. It follows from 
(6.7) that 0 e p(Im M(i)) and by virtue of Proposition 6.2 91 (F) = 7/@ 7/. 

In the case 0 E p(M(i)) the following proposition holds. 
P r o p o s i t i o n  6.3. Suppose that II = {7/, F1, F2}  i s  a generalized BITS and M(,~) is the corresponding 

Weyl function. Then there exists a rigging 7/+ C 7 /C  7/-  of the gilbert space 7-l ([6]) such that 
(I) F2 may be extended by continuity to the continuous mapping 1"2 E [A*,7/_]; 
(2) ~(~) admits  a continuation to ~(~) e [7/-,91~] such tha~ ~*(~) e [91~,7/+] (~ e C \ R); 
(3) Im M(,k) e [7/-,7/+],  (Im M(,~)) -a e [7/+,7/-] for all A E C \ R. 
P r o o f .  Let 7/_ be a completion of the space 7/, endowed with the metric 

I lhll- = (Ira M(i)h,h) '/2 (h e 7/), (6.8) 
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and 7/+ -- ~R ((Im M(i ) )  x/s) be a Hilbert space with the norm 

I l f l l ~  = II(Im M ( i ) ) - ' / s  fll~( = II(Im M ( i ) ) - x  fll ~ _ Vf e ~R (Ira (M(i ) ) ) .  (6.9) 

Then the triple of Hilbert spaces 7"l+ C 7"l C 7-/_ is a Hgging of ~ (see [6]), and the operator Ira M(i )  is an 
isometry from H_ onto ~ +  by virtue of (6.9). 

It follows from (6.7), (6.8) that 1lT( i )h l l  s = I lh l lL  ~ for all h e 7"i. This implies that the operator 
7(i) may be continued to the isometrical operator 7(i) e [7/-, 9Ill. By virtue of equality (6.3)we have 
7(A) e [7/_,fftx] for all A e C \ R. 

Owing to the fact that the angle between As a n d ~ x  is acute, we obtain Fs [91x = "~(X) -~ e [~x, 7-/_] 
and, therefore, the operator Fs may be extended to the continuous mapping Fs ~ [A*,7/_]. [] 

R e m a r k  6.1. F~ is a continuous mapping from A* into 7-l+ if M(i) e [7-/_.,7/+]. Indeed, making 
use of the decomposition A. = As4 ~ and the equalities Fx] = 7*(X)(f' )~f), Fx]x = M(A)7-1(A)fx 
( ]  = i f ,  f '} e As, .}x ~ ~l~), we obtain that the restrictions of F1 onto As and 9l~, are continuous mappings 
from A* into 7/+. The desired statement now follows from the fact that the angle between As and ~x is 
acute. 

T h e o r e m  6.1. For a holomorphic on C+ U C_ operator-valued funct ion Q(A) with values in [7-/] to 
be a Weyl funct ion of a simple Hermit ian operator corresponding to a generalized B VS it is necessary and 
suJflcient that Q(X) ~ RT~. 

Proof .  Consider a space ~(Q)  and a Hermitian operator A of the form (5.24). Let A, be a linear 
relation defined by equalities (5.26) and F1, F2 be the mappings from A. to 7"l defined by the formulas 

r~P  = L (J = ~, 2); .~ = iF, _~} ~ A., _~(#) - #F(/~) -- f~ - Q(#)fs. 

The mapping F is closed. Indeed, assume that -~n = {Fn(/z),/~n(/z)} converges to /~  = {F(/z),/5(#)} 
in the space ~(Q)S as n ~ c~ and FF,, = tJ2l~(n),Jl~(n) Jl converges to if2, f~ } in 7/@ 7-/. Then the pointwise 
convergence also takes place, and it follows from the equalities .F,,(#) - I~F,~(#) = ff'~) - Q(~)f~'*) that 
_~(/~) - #F(#) = f~ - Q(#)/2. Therefore F = iF, _~} e A* and F_~ = {I~, f~ }. 

The surjectivity of the mapping F follows from the relation 

r~{h~(,), Ah~(~)} = h, h~(,) = Q(A) - Q(#)h, h e 7/. (6.10) 
A - #  

In order to prove the Green formula we put for F = iF, _F} E A., r = iV, G} E A. 
O 

�9 (,) = P(,) - ~ F ( , )  e ~ ( q ) ,  ~ (~)  6 ( , )  - ~a (~ )  e ~ ( q ) ,  (6.11) 

With regard to (6.11) we obtain the evident equality 

(P, a)~(q)  - (F, d)~(Q) = (~,  G)~(Q) - (r,  ~)~(,~). 

Let f j  = Fj.F, gj = FiG (j = 1,2). Then it follows from (6.11) and the relations 

_fi'(#) - # F ( # )  = f l  - Q(#) f2 ,  6 ( # )  - #G(#)  = gl - Q(Iz)gs 

(6.12) 

(r 

that the vector-functions F(#) and G(/~) can be represented in the form 

r - r  O( , )  - ~-Q(~)f2 ~ + - a (~ )  = ~ ( ~ ) -  ~(~) F(#) 
- # -  ' / ~ - A  

Taking into account the equalities 

(~(~), ~ ( ' 1 -  r = ( ~ ( ~  - ~(~1 

Q(~,) - Q(~) 
+ 

/ z - A  g 2 .  
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( ( I ) (p , )  ' (/,~ - -  ~ ) - - 1  (QCfll)  - -  Q(~))g2)~(Q) ~" ((~(,~), g2)7"l; 

((/~ - A)=!(Q(/~) - Q(A))f2, ~(/z))~a(Q) = (f2, ~(A))~t, 

we obtain after the substitution F(/z) an d G(/~) in (6.12): 

(~, v)~r162 - (F, r162  = (V(~) ,  g~)~ - (f~, V(X))~. 

Equality (6.1) is a consequence of (6.14), relations 

(6.14) 

r i p  = r + Q(~)A, r l 0  = ~(~) + Q(X)g~, r~k  = f~, r ~  = g,, 

and equality Q(A) = Q*(A). 

~" Q(~)-QO,) h, h E 7-l} we have Since 9 ~  = ( ~ 

F~{ Q(A)-Q(g)h'AA-g Q(~-Q(g)h~-~ , = Q(A)h ,  A E C \ R. (6.15) 

This implies that  the Weyl function M(A) corresponding to the generalized BVS II = {7-/, F1, F2 } coincides 
with Q(~). [] 

R e m a r k  6.2. As in 5.2, a function M(A) E R~ can be realized as a Weyl function of an operator A 
in the space t}(M) = 7/z @ L2(d~, 7/) with B and d~ defined by (5.1). In this case the operator A and the 
linear relation A, can be defined by equalities (5.14), (5.16), but unlike in Proposition 5.2 A. # A*. The 
generalized BVS for A, should be defined by (5.17). 

7. CHARACTERISTIC FUNCTIONS OF LINEAR RELATIONS 

1. Def in i t i on  7.1. A closed linear relation T E ((b) is said to be almost solvable if there ezists a 
Hermitian relation A and its self-adjoint extension .4 such that T E Ex A and .4 + T = A*. We denote by 
.As the set of almost solvable linear relations, and write .As (A) := .As f lEx A for the set of almost solvable 
extensions of A. 

P r o p o s i t i o n  7.1. A proper extension T of A belongs to the class As (A) if and only if there exist a 
B y s  H = { 7 / , r l , r ~ }  and an operator B e [~l  such that T = -4B = ker(r :  - BF2).  

P r o o f .  Assume that T e -As (A), A = A* E Ex A, and A + T  = A*. We choose a BVS II = {7/, FI, F2} 
such that ker F2 = A. By virtue of Proposition 1.4 the transversality of A and T is equivalent to the condition 
B := FT E [7/]. [] 

To prove the next proposition we need 
L e m m a  7.1 (cf. [26]). Suppose that 7~ is a Krein~space and ~ +  are maximal uniformly positive and 

uniformly negative subspaces in 7/, O is a subspace in 7t such that 

(7.1) 

Then there exists a hypermazimal neutral subspace ~1)~o transversal to O. 
P r o o f .  Let 7~ = if)I+ [+]ff~[~ ] be a canonical decomposition of the Krein space ~ ,  and let [l" I]a be the 

corresponding Hilbert norm in ~ .  It follows from Proposition 1.4 that the angular operators B and K of 
the subspaces 0 and if)I_ with respect to the decomposition 7~ = if)I+ [+]ff)~[~], 

O = g r B =  {{~v,B~v} : ~ E ~ ( B )  c ~ ( B ) = ~ [ ~ ] } ,  f f ~ _ = g r K =  { { % K ~ }  :~E~OI[~]}, 

rrKlI ['t'] ~ ' [!)9t~],!YJt+]. Moreover, we have [[KIla ~ 1 e (e > 0) satisfy the conditions B E ~k + , +), K E 

since ~ _  is a uniformly negative subspace. In accordance with Proposition 1.4 the condition 0~- ~)I_ = 
ensures the invertibility of the operator B - K. Therefore, the operator U in the polar decomposition of 

B - K is an isometric operator from f f ~ ]  onto if/I+, and R > 0. Since U*B + I = R + I +  U 'K ,  we have 
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R e ( U ' B )  > r  and 0 e p(U*B + I). Thus (U + B) ~'1 e [7~] and by virtue of Proposition 1.4 the subspace 
0 is transversal to the hypermaximal neutral subspace 

~x0 = (I- v)~x~l = gr (-V) = {{,,-V~} : ~ e ~Xt~}.[] 

Proposition 7.2. Let II = {7~,rl,r2} be a BVS for A*, 0 e ~(~). Then each # the fono~ing 
conditions is su~cient for ~.o to belong to the cla~s .As (A): 

(1) ~A1, A~ ~ p(20) u ~o(20), I~ ~I.  I~  A~ < 0; 
(2) 3A1,A2 ep(0) l, Jo'e(0), IITtAI'A2 <f0; 
(3) 0 e C(7- 0 ,  ~ ( 0 )  = ~ ( 0 " ) ,  Im 0 = [7-/]. 

�9 P r o o f .  (1) Suppose that  the first condition is fulfilled. Then it follows from Proposition 1.6 that 
0 E p(O - M(Aj)) U a,(O - M(),j))  (j = 1,2). In accordance with Proposition 1.4 the last conditions 
are equivalent to relations (7.1), where 93Ij = gr M(~'j) = {{h,M(Xj)h} : h E 7-/}. By the condition 
M(X) E Rn ,  we obtain that  •tl is uniformly positive if Ira A1 > 0 and •I2 is uniformly negative if 
Im A2 < 0. Now it remains to apply Lemma 7.1. 

(2) The second assertion can be proved in the same way if we put ffYtj = gr (Aj ln)  = {{h, Ajh}: h E 7-l} 
(j = 1, 2) and notice that  99tj ( j  = 1, 2) and 0 satisfy the conditions of Lemma 7.1, provided that Im X1 > 0, 
Im A2 < 0. 

(3) The third assertion follows from item (2). [] 
2. Suppose that  T G As (A), II = {~,rl ,r=} is a BVS for A* such that T = ker(F1 - B F 2 ) ,  B 6[7-/]; 

RT(A) = (T - A) -1 is the resolvent of T. We define the operator-valued functions RT(A) 6 [IL A*] and 
F2(A) e [92x, 7-/] by the equalities 

RT(A)f := {{RT(A)f, f + ART(A)/} : f e I~}, A c p(T); (7.2) 

r~(A)fx := r~/x = r2{fx, Aft} (/x e 92x, A e p(A2)). (7.3) 

Def in i t i on  7.2. Let ~ = (B, TI;K,J ,E)  be a colligation (see [S]) (i.e., E is a Hilbert space and 
K 6 [E,7-/], J G [E] are linear operators such that J = J* = j - l .  Im B = KJK* .  An operator-valued 
function defined by the equality 

WT(A) = I + 2iK'F2hT.(A)F~(X)KJ (A c p(T*)) (7.4) 

will be called a characteristic function (CF) of T, and WT(A) will be said to belong to the class As. We 
shall write WT(A) E A~ if additionally k e r K  = {0}. 

T h e o r e m  7.1. Suppose that II = {7-(,rl ,r2} is a BVS for the linear relation A*, M(A)  is the 
corresponding Wey l function, B G [7-/], qo = ( B, 7-[; K, J, E) is a colligation. Then the corresponding CF of 
the relation T := An takes the form 

WT(A) = I + 2iK*(B* - M(A)) - 1 K J .  (7.5) 

Proof.  Making use of the relations F2/~A2(A) = O, F2~(A) --- I7~, 7*(A)F2(A) - In, we obtain from 
(3.39), (7.4) for ~ e p(T*) 

F2flT-(A) = P2{hA~(A) + 5(A)(B* - M(A))-IT*(A)} = (B* - M(A))-'7*(A), (7.6) 

Wr(A) = I + 2ig*r2/%T. (A)r~(X)KJ = I + 2ig*r2 {Ra,(A) + -~(A)(B* - M(A)) -17*(X)}r~(~)gJ 

= I + 2 ig*(B*  - M ( A ) ) - I K J .  [] (7.7) 

Corollary 7.1. In the case ~ ( A )  = l} formula (7.5) was obtained by the authors in [18, 26]. In this 
case definition (7.4) of the CF WT(A) takes the form . 

WT(A) I + 2iK*F2(T* ~- A)'IF~(),)KJ, (7.8) 
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 he,e n = { x ,  rm,r=} i, a BVSIo, A*, r ,  �9 [ ~ ( A * ) , n ] , ' r 2 ( A )  = r= r91 . 
R e m a r k  7.2.  If boundary  spaces ~, ~ '  and boundazyope ra to r s  F, F I for T and - T *  (in the sense o f  

[67]) are defined by the  equalities ~ = / Y  = K*7-/, F = K ' F 2  rT, F' = K ' F 2  IT*, then  one can easily show 
(see [18]) that  WT(A) coincides with the characteristic function of Shtrans [67] in the case ~ ( A )  = 0 and 
with its generalization [10] to a linear relation in the case ~ ( A )  r 0- 

( ) A00: " is its Hermit ian  par t  (i.e., A = T I ~ ( A ) ,  where R e m a r k  7:3.  Suppose tha t  T �9 [0], A = A10 

= = k e r T , ) ,  n = { 9 1 , r , , r = }  is a B V S  fo r  the linear relation A* defined by equalities (3.64), 

('A00 A~o~ and can be 91 = 0 @ ~o, Tn  = PmT[91. Then  the operator  T admits  the representat ion T kAi0  T n  
/ 

defined i n t h e  BVS (3.64) by the equality gr T = ker(r~ - Br=) with B = T n -  A n  �9 [91]. In accordance 
with Theorem 7.1 a CF of the operator  T t a k e s t h e  form in (7.5), where M(A) is defined by formula (3.65). 
Recall that  M(~)  coincides with the spectral  complement  of the operator  A if Ai i  = (}, 

If we consider an operator  T as an extension of the operator A = {0} (~0 = ~(A) = {0}), then T = B, 
M(~) = AIn (for A n  = O). In this case formula (7.5) for the calculation of a CF takes the form 

W(A)I  + 2ig*(T* - )~)-l g J  (7.9) 

and coincides with the definition of Liv~ic [48, 8, 9]. 
The  utili ty of a colligation ~o = (B, 7~; K, J, E)  with ker K r {0} can be illustrated, in particular, by 

the following example. 
E x a m p l e .  Suppose that  II = {7"/, F1, I~2} iS a BVS for A*, B = B* �9 [7-/], T = T* = -4B, ~ = 

(B,7_l;K,J,E) isacolligation w i t h E =  Tl@Tl, j =  ( I ~  0 ) 0 - I n  ' K = (In,  I~).  Then  according to (7.5) 

we have 
\ 

WT(A) = In~'~ + 2i(B* - M(A)) - i  ( I n  - I x  ) (7.10) 

3. P r o p o s i t i o n  7.3.  Let T �9 Ex A be ~he maximal dissipative extension of A, C = (T - i)(T + i) -1, 
= (~ - i)(~ + i) -1 . Then ~he CF WT()~) coincides wi~h ~he CF of IVagy and Foia,~ (see [59]). 

P r o o f .  (1) The  defect operator  D c  = ( I -  C 'C)  ~/2 of the contract ion C admits  the representation 

D2c = 2 i R T ( - - i ) -  2 i R ~ ( - i ) -  4 R ~ ( - i ) R T ( - i ) .  (7.n) 

After the subst i tut ion / = { I , f ' }  = RT(--i)h, ~ = {g,g'} = R T ( - i ) h ' ( h , h '  �9 O) we obtain from (7.2) and 
the Green identi ty (1.3) 

2( B IF2 RT(- i )h ,  F2 RT(- i )h ' )n  = i { ( f  , g') - (I ' ,  g)} 

= i{ (RT( - i )h ,  h' - iRT( - i )h ' )  - (h - i RT( - i )h ,  R T ( - i ) h ' )  } = 2 - 1 ( D ~  h, h'). 

This implies that  the mapping  V : D c h  ~ 2BI /~F2RT(- i )h  is isometric. In the  same way one can show 

that  the mapping  V. : D c . h  --* 2B~I/2F2RT.(-i)h is an isometry. 
(2) Consider an operator-valued function ITd(A) = V.Oc(r -a with Oc(~) defined by the equality 

8c(r = D c . ( I  - (C * ) - l ( (  - C) (r �9 p(C*)). 

Then we have 

17V(A)VDc = V . S c ( ( ) D c  = V .Dc .  ( I  - (C*) -1 (~ - C) = 2B~z/2F2kT �9 ( i ) [ ' I  + (A + i)RT(--i)]. 

Making use of (7.6) and  the relation gx := 2(r2hT. (~))*B~/2~ e 91x, ~ e 7/, we obtain f rom the Green 

identity applied to the vectors ] = .~T(--i)h, gx = {gx, ~gx} �9 ~tX 

-(ITV(A)VDch, ~o)x = ([I - (A + i )RT( - i ) ]h ,  gi)~ = ((I  - iRT( - i ) )h ,  gi)~ - (RT( - i )h ,  ~gi)~ 
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= ( r , ] , r , o x ) n  - (r ],rl0x)n = ((B - ox)n 

= 2 (B~/2  r 2 R r .  (;~)r~ (,X)(B - M(~) )r~ /~r ( - i )h ,  ~o)n 

= 2 ( B ~ / ~ ( B  * - M(~))-a(B - M()O)Fj~T(--i)h, ~)u 

= 2((I + 2iB~I2(B * - M()t)) -1BXl/2)Baz 12 R r ( - i ) h ,  ~o)~t = (WT(,~)VDoh, ~o)7(. 

This implies that WT(A) = -14r(A) = -V.Oc(C)V -x. 
4. Let W(~) E As be a CF of a linear relation T = As E .As (A). Put 

O~ = span {7(~)(B* - M(,X)) -1Kh ,  7(~)(B - M(),)) - 1 K h ' :  ,k e p(T*); h,h'  e 7-@ 

Notice that I]w is a reducing subsDace for the relation T and on I} (9 0w T induces a self-adjoint linear 
relation. 

T h e o r e m  7.2. Suppose that A i are germitian operators in l}j, J = J* = J-~ E [7-/], Wj() 0 E As are 
Cf's of relations Tj = ABi E As (Aj) (j = 1,2). /f  on some neighborhood of the point ~o E p(T~)n p(T~) 
Wx()t) --= W2(X) and I}w1 = Ow2, then the linear relations Ta and T2 are unitarily equivalent. 

We omit the proof, which is straightforward (see [8, 67]). The following corollary results from (7.9), 
(7.10), and Theorem 7.2. 

Coro l la ry  7.1. A Weyl function M(A) corresponding to a BVS II = {~ ,Ft ,F2}  defines the simple 
part of a Hermitian operator up to unitary equivalence. 

Since M(~) is a Q-function of a Hermitian operator corresponding to an extension A2 (see [79, 53]), by 
virtue of Corollary 7.1 a Q-function is a unitary invariant of a simple Hermitian operator A (see [81, 83]). 
Further, from Corollary 7.1 and formulas (3.65), (3.73) follow these well-known assertions: a bounded simple 
Hermitian operator (as well as a BVS l'I = {7-/, F1,1"2 }) is defined uniquely (up to unitary equivalence ) either 
by a spectral complement of a Hermitian operator A [69] or by its Qu-function Qt,()~) [40]. 

5. Let W(A) E As. Define an operator-valued function V()~) holomorphic on C+ U C-  by the equality 

V(s = K*(BR - M ( A ) ) - I K  (,k e p(ABR)). (7.12) 

L e m m a  7.2. For all A e p(-4~)N (C+ U C_) there exists (I + W()~)) -I e [E l a n d  

V(A) = i ( I -  W(A)(I + W(A))- '  J. (7.13) 

P r o o f  (cf. [26]). It follows from the relation 
O 

(B* - M(A)) -x - ( B R -  M(A)) -x -= i(B* - M(A)) - 1 K J K * ( B R -  M(A)) ,  1 

multiplied from the left by 2iK* and from the right by K J  that 

W(A) - I -  2iV(~)J = i(W(s - I)V(~)J. 

This implies that (W(A) + I)(1 - iV(A)J) = 2I. Equality (7.13) is a consequence of the last relation and 
the next one, (I - iV(A)J)(W(A) + I) = 2I, which can be established in the same way. 

We mention the following properties of W(,k) E Aj and V(A). 
L e m m a  7.3. (a) Y(~) e RE; (b) Im A(J - W*(A)JW(~)) > O, 

Im A(J - W(A)JW*()~)) >__ 0 VA E p(T*); 

(c) J - W(A)JW*(A) = J - W*(A)JW(A) = 0 VA E p(T*) fq p(T); (d) for all )~ E p(T) fq p(T*) there ezists 
W-X(A), and the following equalities hold: 

wr( ) - 1  = = sw;(x)s. (7.15) 
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Proof .  Making use of (7.12) and;the condition Im A. Im M(A) > 0 we obtain the inequality 

I m V ( A ) = K * ( B R - M ( A ) ) ' t l m M ( A ) ( B R - M * ( A ) ) - a K > O  (A �9 C+). (7.16) 

Assertions (b) and (c) follow from the identity 

V(,~)  - V*(l. t  ) = 2i(.[ Jr- W(,~))-I ( S -  W ( , ~ ) J W * ( ~ ) ) ( I  -[- W*(fi)) -1. 

Equalities (7.15) are the consequences of (7.9) and the identity 

(B* - M(A)) -1 - ( B  " M ( A ) )  -1 = 2i(B* : M ( A ) ) - I K J K * ( B  - M(A)) -1. F1 

(7.17) 

Propos i t i on  7.4. Lef W(A) �9 A~. The triple II' = {u,  r l , r ~ } ,  ~here 

I B + B *  
r l ]  = K*r2]  r'2] = K-I (BRr~  - r ~ ) /  (]  �9 A . , B R  - ~ ), 

is a generalized B V S f o r  the relation A. = {]  e A* : (BRF~ = F1)]  e ~R (K)}. The Weylfunction of the 
operator A corresponding to the BVS II' coincides with V(A). If, additionally, 0 e p(Im V(i)), then the 
triple II' is a B VS of the relation A,  = A*. 

Proof .  Indeed, it follows from the condition FIA2 = 7-I that F~(A. ~ A2) = 7-/. The relation kerF2 = 
AB~ ---- (-4SR)* and the Green formula (6.1) are evident. We prove that the mapping F~ is closable. Suppose 
that i n  converges to 0 in A* and F~],~ = g -~ ( r~  - BRr~)] ,  converges to h in 7-t as n --* ~ .  Letting 
hn = (F1 - BaF2)j?,, we have h,, ~ 0, K-ahn  --* h as n ~ c~. This implies h = 0. 

It follows from Definition 1.6 and the relations 

that the Weyl function MI(A) corresponding to the BVS II' takes the form Ma(A) = K*(BR - M(A))-XK 
and coincides with V(A). 

According to Propositions 6.3 and 7.4, given an operator-valued function W(A) E A~, we can define 
the rigging E~ v C E C Z W of the Hilbert space Z (see [6]) with the help of formulas (6.14), (6.15), letting 
here M(A) = V(A). Then by virtue of (7.12) 

Z W+ = m ((Ira V(i)) 1/2) = m (K*), Ilhll - = II(Im V(i))-l/ h]12 = II(K*)- lhl l2 ,  (7.18) 

and the space E W is a completion of E endowed with the norm 

I[hll 2_ = (Im V(i)h,h) = IlK*hi[ 2 (h e E). (7.19) 

Notice also that Im V(i) is an isometry from E_ W onto E W and K* e [E,E~] ,  K e JEW,E] are isomor- 
phisms. 

L e m m a  7.4. Let W(A) E A~. Then we have 
(a) V(A) e [EW, E~V], V-l (~)  e [E~,EW_ ] VA e C \ R; 

(b) [ I -  i Jr(A)] e [E_ W] VA E p(2~) \ R. 
Proof .  Assertion (a) is a consequence of (7.12). As follows from Lemma 7.2, for all k E p(A*B) \ R 

there exists ( I -  iV(A)J) -1 e [E]. Note that I -  iJY(A) e [E_] and ( I -  iJV(A))E_ C E_ since for all 
g e E_ the equation (I  - iJV(A))h = g has the solution h = g + i(I  - i JV(k ) ) JV(k )g  e E_. Assertion 
(b) is now a consequence of the Banach theorem. [] 

We give a criterion for a holomorphic operator-valued function W(A) to belong to the class A ~ 
T h e o r e m  7.3. Let W(A) be an operator-valued function with values in [E] holomorl~hic on a domain 

G C C+, J = J* = j - x  e [E]. Then for the condition W(A) e A~ to hold it is necessary and sufficient 
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that - 1  6 p(W(A)) for all A E G and the operator-valued function V(A) with values in [E] and defined by 
equality (7.13) has the holomorphie continuation on C+ such that:: 

(1) Im V(A) > 0, ker(Im V(A)) -- {0} VA 6 C+; 
w w (,+__>. - I ) J  E W w [ _ ,E+ l) W C+. (2) V(A) 6 [S_ ,E+ ] (W(A) E 6 

Proof .  The necessity of the conditions of Theorem 7.3 follows from Lemmas 7.2-7.4. 
Sufficiency. Let g ( e  fEW,El) be a closure of an operator (Ira V(i))l/2; K* 6 [E, EW], M0(A) = 

( K * ) - I V ( A ) K .  It follows from conditions (1) and (2) that M0(A) 6 RE and takes values in [E]. Moreover, 
0 6 p(Im M0(A)) for all A6 C \ R  since Im M(i)  = I.  This implies that the operator-valued function 
M(A) = -M0(A) -1 = - K V ( A ) - I K  * E RE also satisfies the conditions of Proposition 5.1 and therefore 
there exists a Hermitian operator A and a BVS II = {7"/,FI,F2} for A* such that M(A) is the Weyl function 
of the operator A corresponding to the BVS II. 

Setting B = i K J K *  we define an extension T = -4B 6 ,&s (A)by the condition AB = ker (Fi - Br2). 
By conditions 

( Z -  iJV(A)) -~ e [E_ ~1 W e G, 

(B* - M(A)) - i  = ( K * ) - I v ( A ) ( I  - i J V ( A ) ) - a K :  1 E [E] VA 6 G 

we obtain from (7.9), (7.13) that 

WT(A) = I + 2iK'(B* "M(A) )  - 1 K J  = I + 2 i V ( A ) ( I - i J V ( A ) ) - l s  = 

=s(z+isv (A) (z - i sv (~) ) - l s=w(~) .  [] 

R e m a r k  7.4. The description of CF's of operators with densely defined Hermitian parts was obtained 
in [18, 26]. Under the assumptions of Theorem 7.3 an operator-valued function W(A) is a CF of some 
almost solvable extension of a densely defined Hermitian operator if in addition to conditions (1) and (2) 
of Theorem 7.3 the following relations hold: 

(3) lira V,iy______~)( _ O, 
~Too y 

(4) } ~ y ( I m  V ( i y ) h , h ) =  oo vh e E_ ~ \ {0}. 

P ropos i t ion  7.5. Let W(A) be an operator-valued function with values in [E], holomorphic on the 
domain G(C C), J = J* = j - i  6 [E]. For the condition W(A)E A~ to hold it is necessary that the 
following conditions hold: 

(1) J = W * ( A ) J W ( A ) > 0 ,  J n - W ( A ) J W * ( A ) > O  V A 6 C + N G ,  

and it is sufficient that the first of condition (1) and the following conditions (2) hold: 

(2) o e p ( s  - w * ( ~ ) s w ( ~ ) ) ,  0 e p(s - w ( A ) s w * ( ~ ) )  w e c +  n a.  

Proof .  The necessity of conditions (1) in the case W(A) 6 A~ was proved in Lemma 7.3. 
Sufficiency. Let us prove the implications 

0 e p ( : -  w*(~) Jw(~) )  : - i  e ~(w(~)), o e p(J -  w(x)sw*(A)) ~ - i  e ~(w*(~)). 

If - 1  • tS(W(A)), then there exists a sequence {fn} (llfnll = 1) such that W(A)f,~ = - f n  + hn, h,~ -~ O. In 
view of the relation 

( J f , ,  f,~) - ( J W (  A ) f , ,  W(A)fn) = -2Re  ( J f , ,  hn) - ( Jhn,  hn) --} 0, 

this contradicts (2). Therefore, - 1  E ~(W(A)) and the operator-function V(A) = i ( I - W ( A ) ) ( I  + W(A)) -1 
is well defined. Further, each of the hypotheses (1) on W(A)is equivalent to condition (1) of Theorem 7.3 
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on V(A). By virtue of (7.17) the hypothesis (2) is equivalent to the condition 0 �9 p(Im V(i)). This implies 
E W = E W [see (7.18), (7.19)], and condition (2) of Theorem 7.3 is fulfined. [] 

Corollary 7.2. Assume that J = J* = J-~ �9 [E], d i m E  = n < oo, and W(A) is an operator-valued 
function with values in [E] holomorphic .on some domain Gw C C+. For W(A) to be a CF of the class A ~ 
of some linear relation T ~ .As it is necessary and sufficient that the first of conditions (1) from Proposition 
7.5. holds. 

Proo f .  Since d i m E  = n <  co, we have 0 �9 p(J - W*( )SW(a))and consequently 0 �9 p(J - 
W(A)JW*(A)). Corollary 7.2 now follows from Proposition 7.5. [] 

6. Def in i t i on  7.3. s b = I)1 ~ b2 and let Pj be an orthogonaI projection from I} onto I}i (j = 1, 2). 
A Hnear relation T �9 d(l)) is the coupling of the linear relations T~ �9 C(bj) (J = 1,2) and is written 
T = T~ VT2 if 

= T (ba$ b,), = {{e2f,  {/, ]'} �9 T}. (7.20) 

P r o p o s i t i o n  7.6. Let T �9 d([}) and T = T1VT2. Then: 
(1) T* = T~VT;;  (2) T -1 : T ~ V T ~ ;  (3) i / T  i (j = 1,2) and T = T~VT2 are operators in bj 

(j = 1, 2) and l), then the subspace I)l is invariant for T, and 

T f = T~f V f �9 ~(T)  N bl, T2P2f = P2T f V f �9 ~(T) .  

Proo f .  (1) Assume that {g,g'} �9 T �9 f3(l~2 @ b2). Then for all { f , f ' }  �9 T we have {P2f, P2f'} �9 7"2, 

(g, P2f') = (g, f ' )  = (g', f )  = (g', P2/) ,  

and hence {g, g'} �9 T~. Analogously, if {g, g'} �9 T*, then (Pig, f ' )  = (g, f ' )  = (Pig', f )  V{f, f '} �9 T I C  T, 
and therefore {Pig, Pig'} �9 T{. Statement (2) is evident. 

(3) Assume that T, T1, T2 are operators and f �9 ~ ( T )  N Ih. Then by virtue of (7.20) we have 
{P2f, P2Tf} = {0, P2Tf} �9 gr T2 and, consequently, P2Tf  = 0, that  is, T f  E Ih. The first relation in 
(7.20) yields {f, T f }  �9 gr 7'1 and hence T ~ f =  T f  for all f �9 ~ ( T )  fq I)z. [] 

R e m a r k  7.6. One can conclude from the following example that  all the conditions Tj �9 C(I)j) (3" = 1, 2) 
in statement (3) from Proposition 7.6 are essential. Let I~ = 12(-co, cx~), lh =/211, oo), I~2 = I~ @ Ih, and let 
U be a bilateral shift in 12(-cx~,oo); T~ = U[I~I, T2 = (V* [I)2)*. Then the equality U = TxVT2 holds and 
by virtue of item (2) of Proposition 7.6 we have U -~ = T I I V T ~  ~. Here U - I ,  T~ -~ are operators in IL lh; 
T2 -1 is a linear relation in I)2 and lh is not invaxiant subspace for U -1. 

Recall (see [8]) that a colligation q0 = (B, 7-(; K,  J, E)  is a product ~ = ~01~P2 of the coUigation ~o I = 
(Bj ,Hj ;K,  J ,E) (j = 1,2) if 

TI = 7-ll @ 7"[2, B = BxPnl + B2P~t~ + 2iKIJK~P~t2, K = K1 + 1(2. (7.21) 

T h e o r e m  7.4. Suppose that A i are Hermitian operators in l)j, {u j , r { , rg}  are BVS's /or A~; B i e 
[7-[j]; ~oj = (Bj ,Tl j ;Kj ,  J ,E)  are coIligations; W/(A) are the corresponding CF of the extensions fie, 

(j = 1,2). Define a BVS for the relation A* = A~ e A [  by the equalities rk  = r ~  ) ~P(~) (k = 1,2) and put 
= qolqo2. Then f ie  = f inlVfin2,  P(fin,) A P(fiB~) C P(fiS), and the corresponding Weylfunction W(A) 

of the extension fib takes the form 

= wl(A),  w2(x) vA �9 ?(fiB,) n p(fin2). (7.22) 

�9 Proof (cf. [8]). Let ] = {f,/'} e fib N(DI �9 [)2). Then Elf = BE2] and it follows from (7.21) that 
r~ l ) ]  = BIF~ 1)] and hence f e fiB1. Making use of the relation / = { f , f ' }  �9 AB we obtain from (7.21) 
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that r~){P~f, P2f '} = B~P~){P2f, P~f'}, that is, {P~f,P~f'} erich,. Thus fi.s = d ~ , V A s , .  By virtue 
of Proposition 1.6 (B~ - M/(A)) -1 �9 [~i]  for all A �9 p(A~,) f'! p(A~,), and the following equality holds: 

( B . _ M ( A ) ) - x  ( B ~ _ M l ( A ) ) - l P n t  �9 -x . �9 -x �9 B* = +(B2 -M2(A) )  P~t ,+2z(B2-M2(A))  K 2 J K x (  1-Mx(A))-IP~t , ,  
(7.23) 

Theorem 7.1 and (7.23) yield equality (7.22). [] 
R e m a r k  7.7. Theorems 7.2-7.4 are generalizations of the corresponding statements of Brodskii-Liv~ic 

[8, 9, 48], and coincide with them in the case I}0 = {0} ( y A = {0}, M(A) = A). Definition 7.2 of the class 
jts (A) enables us to prove Theorems 7.2=7.4 in the same way as was done in [8, 01 (in the case ~(A)  -- D, 
see also [18, 26]).  

The CF of various classes of unbounded operators have been investigated from different points of view 
by many authors (see [46, 60, 67] and the bibliography in [60]). The inverse problem for the CF defined 
by means of biextension theory was considered in [60], and the multiplication theorem was obtained in [46, 
66]. 

In the framework of Shtraus' approach, the multiplication theorem was obtained for the case ~(A)  = [1 
(for ~(A)  1s I), see [10]) provided that the coupling is regular. This assumption corresponds to the relations 
ker gx = {0}, ~t (K/') = ~t (K~) in our approach. 

8. P R E R E S O L V E N T  A N D  R E S O L V E N T  M A T R I C E S  OF A H E R M I T I A N  O P E R A T O R  

1. Let s be a subspace of I~. A point A E C is sa id to  be s for a Hermitian operator A [42] if 
A e ~(A) and 

[j = 93/~ 5c s (gJIx = (A - A)~(A)). (8.1) 

Let p(A,s  be the set of s points of A, ps(A;s := p(A;s p(A;s We define (after [42]) two 
holomorphic on p(A; 2.) operator-valued functions 7)(A) and Q(A): :P(A) is a skew projection onto s parallel 
to 93/~, Q(A) = Pa(A - A) - I ( I  - "P(A)). 

Operator-valued functions 7)(A), Q(A) E [I~, s and 7)*(A), Q*(A) with values in [~, Ij] have the following 
properties: 

7~(A)Af = AP(A)f Vf e [~; (8.2) 

Q(A)Af = AQ(A)f + P~f  Vf E ~; (8.3) 

75*(A)l := {7)*(A)I, A:P*(A)I} e A* Vle  ~; (8.4) 

O.*(A)I := {Q*(A)I, AQ*(A)I + I} e A* V l e s  (8.5) 
O 

P(A)I = l, Ps = I~, P*(A)P~ = P*(A); (8.6) 

Q(A)I = 0, PaQ*(A) = 0, Q*(A)Pa = Q*(A). (8.7) 

It is easy to see that P*(A) isomorphically maps s onto 91~, and Pa r 91.~ = (p*(A)) -1 �9 [9t~, s 
The next proposition is an analog of the first Neumann formula. 
P r o p o s i t i o n  8.1. Let s be a subspace in [}, A �9 p,(A;s  Then the following direct decomposition 

holds: 
A* = A 4 75"(A)s 4 Q*(A)C, (8.8) 

while the decomposition ~(A*)  = ~(A)  + P*(A)s + ~*(A)s is not direct if and only if ~ ( A )  is ~. The 
equality 

fA + 7~*(A)k -{- Q*(A)I = 0 (fA �9 ~(A);  l, k �9 ~) 

is fulfilled if and only if there ezists n �9 9~ := D~ such that 

l=p(~)n ,  k = -Q(~)n, fA= (A=~) - l ( r -7 ' (~ ) )n -  (8.9) 

Oon~rsely, if ~ e p(A; s and/ormul~ (8.8) holds, then ~ eps(A; ~). 
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P r o o f .  T h e  inclusion A +  75"(~)s Q*( I ) s  C A* is obvious. Let { f , f ' }  C A*, A C ps(A; s Then 
there exist l ~ 12, f A e ~ (  A ) such that 

y' - A f  = (A - A)fA § I. (8.10) 

It follows from (8.5), (8.10) that  {f  - fA -- Q*(A)I, 0} E A* - ,~, that  is, f - fA -- Q*(A)/ e 91X" By virtue 
of the equality 7~*(1)12 = 91~, there exists k E 12 such that  f - - f A  -- Q*(1)I = :P*(A)k and hence 

y = / ~  + p*(1)~ + ~*(~)t.  ( s . n )  

Relations (8.10), (8.11) imply 
/ '  = A f A  + A79*(1)k + AQ*(1)I + l. (8.11') 

Therefore, {f, f ' }  ~ A Jr 75"(I)12 -i- Q*(I)12; moreover the decomposition (8.8) is a direct sum since l, k, 
fA are defined uniquely by (8.10), (8.11): 

l =  P ( ~ ) ( f ' - ~ f ) ,  f a  = ( A - A ) - l ( I - P ( 1 ) ) ( f ' - ~ f ) ,  k = P e ( f - y a )  = P e I - a ( 1 ) ( I ' - I f ) .  (8.~2) 

If {0, / '}  E A*, then n := f '  E 9I and formulas (8.12) take the form (8,9), 
Conversely, vectors l, k, fA defined by (8.9) are connected by relation (8.11), in which f = 0. 
Assume now that A E p(A; 12) and relation (8.8) is fulfilled. Then for all g e 0 there exists {f, f '}  e A* 

such that f '  - Af = g since ffl(A* - i )  = [~. Formula (8.8) implies that f '  - Af = (A - A)fA + l for 
s o m e  fA E ~ ( A ) ,  l E 12 and therefore 0 = 9JtX + 12. It is easy to see that 9Jtj, Cl 12 = {0}. Indeed, 
if (A - A)fA + l = 0, then fA + Q*(A)/ ~ 91j, and by virtue of the relation P*(1)12 = 91X there exists 
k ~ 12 such that fA + Q*(A)I + :P*(A)k = 0. Making use of the equality (A - A)fA + l = 0 we obtain 
fA + ~b*(A)k + Q*(A)I = 0 and hence fA = l = k = 0. So [) = (A - A)~(A) 4 12 and A e p(A; 12). [] 

2. Suppose that II = {7-/, F1, F2} is a BVS for A*, M(A) is the corresponding Weyl function, 7(A) is 
a "~-field of the extension A2 ~ Ex A- A block operator-valued function 92II~(A) of the form 

fa11()~) a12(~)~ [ i()~) ~/*(~) [,~ 9.1ri~(1) ~,a21(A) a22(A),] := \ P ~ 7 ( 1 )  P s  -1 r12 ] 
(A e p(A2)) (8.13) 

is the preresolvent matrix of the operator A, corresponding to the BVS H = {H, r l ,  F2 }. 
The next proposition is well known. 
P r o p o s i t i o n  8.2. Suppose ~ha~ 1I = {7-/,rl,F2} is a B V S  for A*, 12 i~ a sub,pace of O. 

following hold: (1) 9/he(A) E Rue~: ; (2 )  a1:(10) -1 e [7-/,121 z. :. 10 E p(A;12). 
P r o o f .  (1) It follows from (8.14), (1.7), (1.10) that 

9/(I) - 92"(1) 1 [ M(A) - M*(A) 
I - ~ = ~ _ i \ P ~ ( ~ ( 1 )  - e(~))  

( -  _ b*(X) - '~*(I)]  r 12 12"~] 
A)Ps - A)-I(A2 - A)-I [ 

Then the 

f 7*(A)7(A) 7*(A)(A2 - A)-I [ 12 ) =:  T*(A)T(A), (8.14) 
= k,P~:(A2 - ~ ) - ' - ~ ( I )  P~:(A~ - I ) - I ( A ~  " ~ , ) - 1  r 12 

where T(A) = {7(1),(A2 - 1 )  -1 r 12} e [7-/@/2, I)]. This implies (Img.l(A)h,h) = ImA[[T(A)h[[ 2 _> 0 

VA ~ C+ .'. '. fl(1) ~ Rue~:. 
(2) If A e p(A; 12), then the operator Pg r 91.~ e [91j,, 12] is invertible and, therefore, a2x (),) = Pe7(A) is 

an isomorphism from 7-/onto 12. 
Conversely, assume that  the operator  a12(1) is invertible. Then Ps = 12 and by virtue of Proposition 

2.2 the following direct decomposition holds: 0 = 12 -i- ffJb, i.e., 1 E p(A; 12). [] 
R e m a r k  8.1.  The inclusion P.ln~(A) E R ~ e e  is a consequence of the Silvester identity, the relation 

M(A) E R~,  and the following equalitiesi 

Ima2~ - (a21 - a~2)(Imall)-l(a12 a~l) = P~:(A2 - X)-IPmx(A2 - 1) -1 [ 12, (8.15) 
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corresponding to the BVS II = {~, Fx, r2 }. 
P r o p o s i t i o n  8.3. I, et Wuz(A) be a IIs matriz 

{7~, r l ,  r~}. Then 

(Pz(A2 - A)-~P~x(A~ - A)-I/,I) = l lPmx(A~ - A)- ' I I I  z -> 0. (8.16) 

3. If p(A; .~) ~ ~ ,  then the matrix 

Wrh(~) := ( a~C~)a'~(~)-~ ~(~)a~(~)5~a~'(~) - a~(~) ~ (8.~7) 

is defined and holomorphie on the set p(A; .if). It is said to be the II~-resolvent matrix of the operator A, 

of A, corresponding to the B V S  II = 

w*(~)sw(x)-s w(~)sw*(~)-s ( o  -~z) (8a8) 
i ( ~  - ~,) >_ o,  i ( ~  - ~) >_ o,  J = i x  �9 

Proof .  The following identities hold: 

Straightforward calculations give the equalities 

J - W*(A)JW(A)  = i(Y~-X(~)*(~*(A) -~t(A))Y, (A) -~, 
J - W(A)JW*(A)  = i(Y2(A)-I(P~*(A) - 9~(A))(Y2(A) -1)*, 

(8a9) 

(8.20) 

in which 

( ~  
Ya(A) - x =  a71(A) ar)(A)an(A) ' 

- I  a~2(A) ' 

y2(A)-I {a22(A)a11(A) ~D I) 
= ~, ate(A) 

The invertibility of the operators Ya(A) and Y2(A) for all A E p(A;~) is a consequence of the evident 
equivalences: 

0Ep(Y/(A)) ( i = 1 , 2 )  .,' y 0�9 < Y AEp(A;I~). 

Relations (8.18) are implied by (8.20) and Proposition 8.2. [] 
T h e o r e m  8.1. Suppose that A i8 a Hermitian operator ~ ( A )  = Oo C_ O, ,~ is a aubspace,of Ij, 

p(A;s r ~, H = {u, r l , r~}  is a B V S y o r  A* 

\ ~(~) ] �9 [0, ~ �9 ~], r = r ,  ' 

Then the operator-valued function 

r162 := (r~*(~))* = (-r~*(~) 
- r l ~ ' ( ~ )  \ 

r~*(~) '~*  (d*(~) = ( -~*(~) ,#*(~) )  (8.22) 
r,~*(A)) ' 
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satisfies $he identi~y 

l~rls = J + i(A - #)G(A)G*(U) (A,# 6 p(A; :2). (8.23) 

If, additionally, p~(A; :2) ~ ~, ~hen the matriz I~ne(A) = (Fr with the IIs matriz 
Wae( A ): 

17Vn~(A) = Wrte(A) .for all A E p(A; ~). 

Proof .  (1) Let I = (l i ,  I2}, 
it follows from (8.4)-(8.7) that 

k { k ~ , k ~ } e ~ @ s  ] = { f , f ' } = G * ( l z ) l ,  ~ = { g , g ' }  G*(A)/~.Then 

(f', g) - (f, g') = (#f -/i, g) - (f, ~g - kl ) "~ (~ -- A)(f, g)+ (f, kl ) - (/i, g) = (/2 - A)(f, g) - (ll, k2) + (/2, kl) 

= i(Sl, k) + (~ -  ~)(a*(z)t,a*(A)k). (8.24) 

On the other hand, the Green identity (1.2) and (8.22) yield 

(: ' ,g)-(I ,g')  = ( r l ] , r ~ o ) - ( r ~ ] , r i o ) = i ( s r f ,  r~=i(JY:~(~)t,~v:~e(A)k). (8.25) 

After the comparison of (8.24) and (8.25) we obtain (8.23). 
(2) Let p~(A;:2) r O and A e p~(A,:2). Show that 0 e p(l/Vne(A)). Indeed if I e ker l/Vne(A), then we 

have 
-0*(A)ll + 7~*(~)12 e kerr1 n kerr~ = A. 

Taking account of (8.8) we obtain Q*(~)ll = ~5*(A)12 = 0 and, by virtue of (8.5), (8.6), 11 = 12 = 0. 
Moreover, it follows from (8.8) that ~R(W~s = r A *  = :2 �9 :2 and, therefore, 0 E p(W~e(A)) -#J ": 0 e 
p(ITVrie(A)). Now (8.23) implies (for # = ~) 

~:i~(~):~(~) = s, ~'~(~]J~:~i~(~) = J. (8.26) 

The latter equality is a consequence of the former and the condition 0 E p(l/V~e(A)). 
(3) Setting for all A E p(A; :2) 

~h(A) :* A * = - r ~ Q  ( ) ,  ~ ( A ) =  r~*(A)', ' (8.27) 
~h(A) = -r~Q*(~), wh(A) = r~,*(A) 

we obtain explicit formulas for the components of the matrix PAne(A) by means of wi*j(A): 

�9 - * - - - 1  all(A) = M ( A ) =  w22(A)w21(,~ ) , (8.28) 

since 0 e p(w2~(A)) for all A e p(A;:2). Further, it follows from (8.6) and (8.27) that  for all l G 

:. a21(A) = peT(A) =W~l(~) -1, al2(A) = a~l(~)=,w21(.~)- ~. (8.29) 

To find the expression of a2~(A) = Pe(A2 - A) -1 I ~ we consider the problem 

(g, l) e (A* - A), F2~ = F2 (g, l + Ag) = 0 (~ = {g, l + Ag)). (8.30) 

It follows from (8.8) that  this problem has a solution of the form g = Q*(~)k~ - 7~*(~)k2 with k~, ks e :2. 
Taking account of (8.27), (8.4), and (8.5) we obtain 

r~o = r~*(~)k~ - r ~ * ( i ) ~  = - ~ h ( ~ ) k ~  - ~(A)~" - = o ,  
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setting kx = I we have 
= [ ~ * ( x )  + p*CX)w;xCX)-'~h(X)]I = (A~ - ,~)-'l, 

322(A) = Ps + 'P*(X)'w~I(X)-lw~I(X)] = u3~I(A)-I"o3;I(X). 

Thus, the preresolvent matrix has the form (for A �9 p,(A; .~)) 

and hence kz = (w~(X))-xw~x(X)kx. Making u s e  of the relation {g ,k , }  = Q*(~,)kx -75*(~)kz �9 A* - A and 

(8.3~) 

(8.32) 

~n,:(,~) = ( ' ; ~ ( ~ )  ,,,~1(;~)_,',,,~1(,~)_-"~ 
k'tO~l(~) -1 'W~I('~')--lw~'I(~) ) (8.33) 

(4) Now it follows from (8.26) and (8.29)-(8.32) that for all ,~ E p,(A; .~) 

~ n ( ~ ) ~ , ~ ( a ) - i  = ~ , ( X ) - ~ h ( , ~ ) ~ l ( ~ )  = ~ ( ~ ) ,  ~ ,~ (a ) - ,  = ~ 1 ( ~ ) ,  
a~2 (~ )a~  (~)7 ~ 311 (~) - a~l (~) = wl~ ( ~ ) ~ h  (,~)~0~ i(5,)-1 (8.34) 

-w~x(~)7 a = w,2(A)w~x(~)w~,(~)-a = w~2(I), (8,35) 

a12( I )  -xaaa(,~) = w2~(,~)w~2(~)w;~(~) -1 = w22(.~). (8.36) 

These equalities yield that IJ, rne(,~) = Wne(,~) for all A �9 p,(A; ,~). [] 
R e m a r k  8 .2 .  Identity (8.23) means that the operator-valued function I~V'r~z(A) given by (8.22) is an 

s matrix of the operator A in the sense of [42, 43]. Hence Theorem 8.1, which was proved by the 
authors in [21, 79] for the case ~ (A)  = I~, shows how to calculate the Hs matrix of A on the one 
hand, and establishes the equivalence of the definitions in'[42] and (8.17) on the other hand. 

R e m a r k  8.3. Every s matrix W(,~) of A in the sense of [42] (i.e., which satisfies (8.23)) can 
be expressed in the form (8.22) for a suitable choice of the BVS. Indeed W()  0 may be connected with some 
Ha~-resolvent matrix Wa(~) corresponding to the BVS H1 = {s F I, r~} by the formula W(1) = WI()~)U, 
where U is a J-uni tary operator in ~ $ o Sett ing {F2, F 1 } * 1 1 . = V { r 2 , r l }  we obtain from (8.22) for the 
BVS H = {~, F1, Fg_ } 

,~ w ~ ( ~ )  = r 0 * ( ~ )  = v*r~0*(~ )  = v * w L ~ ( ~  ) 

and, therefore, Wnr(,~) = Wn,e( )0U = W(,~). 
4. Now we obtain the explicit form of the BVS II for the latter equality to hold. 
P r o p o s i t i o n  8.4. Suppose that A is a Hermitian operator in f~, .C is a subspace of b such that 

p,(A;s  # Z, ~r~ is an orthogonal projection onto the kth component of,~ @ s (k = 1,2). /f  W(A) 
is an operator-valued function with values in [s @ s such that (8.23) holds and O �9 p(W(#)) for some 
# �9 ps(A; s then the triple H = {s F1, P2} of  thgform 

r l / =  r2w*(lQl, F 2 / =  ~q W'(~z)l, 
V / =  ]A + G*(#)I, f A e A ,  t = c o l ( h , h )  e ~ $ Z  

(8.37) 

is a BVS for A* and, Wrts = W(1) for alia e ps(A;.C). Equalities (8.23), (8.37) tale the following more 
simple forms if # = p = a and W(a) = I: 

w(A) = z + i(A - a)c(A)c*(a)s,  (,8.38) 

F~f = -79(a)(f ' - af), F a / =  Ps  - Q(a)(f '  - af), ] = { f , f ' }  E A*. (8.39) 

P r o o f .  Let / = . ~  + G*(#)I, ~ = ~A + G*(#)k e A*, ~A = {gA, AgA}, k = col (kl, k2) E .~ @.~, and 
I = # e p~(A; 2.). Then (8.23) implies 

( f ' ,  g) - ( f ,  g') = i (J l ,  k) + (f~ - i~)(G*(IJ)l, G*(I.Qk) = i ( [J  + i (#  - f z )G(p)G*(~) ] l ,  k) = i ( W ( ~ ) J W * ( u ) I ,  k) 

= i(JW*(#)l, W*(#)k) = ( ,~W*(u)t ,  ~1W*(u)k)e - (~, W*(#)l, ~2W'(#)~)~= ( r l ] ,  r~0)~ - ( r~ / ,  r l0)~,  
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v~hich proves the Green formuta (L3).,~Making use O f (8 .8)and the condition 0 �9 p(W*(#))  we conclude 
that the mapping F = iF2, vi}: A* ---* s (9 12 is surjective since r'A* = rO*(#)(~Z (9 s = w*(#) ( s  (9 s  
Thus the triple II = {13, Fa, r2} is a~BV.S forA*. The equality Wg~(#) = W(#) is implied by (8.22). Taking 
account of Remark 8.3 we obtm_'n the equality Wgs = W(A) for all A �9 p,(A; 1~). 

In the case # = a and W(a)  I One can easily deduce from (8.37), (8.3) the equalities 

(11) 
r ~ ]  = , ~ , w ( ~ ) l  = ~ t~ = 12 = P ~ f  - o . (~ ) ( f '  - ~ f ) ,  

F2] = rra W(a) l  = 7r~l= l~ = "79(a) ( f  ' - a f )  V]  = i f ,  f ' }  �9 A*, 

which coincide with (8.39). [] 
The next corollary is an analog of the second Neumann formula. 
Corol lary 8.1. Suppose that # �9 p~(A;l~) ~ Z, II = {7/ , r1 , r2}  is a BITS for_ A*,~and l'Vng(A) is 

the corresponding II~-resolvent matrix of the form in (8.22). Then every extension A = A* �9 Ex A takes 
the form 

A =  A 5r G*(#)W*(#)- '0  A -i- G*(#)s (8.40) 

where 0 = O* �9 d(~ and ~ := W*(#) '10 = {I �9 ~ (9 12: W*(#)l  �9 0}. Relation (8.40) takes the more 
simple form 2 = A 5r G*(a)O if # = a = ~ �9 ps(A; 12) and W(a)  = I.  

Proof .  By virtue of (1.4) the mapping r = iF2, Pa } defines a bijective correspondence (of. [53]): 

A = (A)* �9 Ex  ~ .: :, 0 := r i  �9 d ( ~ ) ,  (8.41) 

On the other hand, in view of formula (8.8), for all / �9 A* there exists l �9 1~ (9 ~ such that / = ]A + G*(#)l. 
In accordance with Theorem 8.1, F f  = W*(#)l  and the equivalence (8.41) taking the form 

] = fA + G*(#)l �9 A .;--4. F]  = W*(#) l  �9 0 .' '.. l �9 W*(fi)-10 

proves relation (8.40). [] 
R e m a r k  8.4. (a) The triple (8.37) is a generalized BVS of the linear relation 

A. = A + 7 5 * ( A ) ~ +  Q*(A)s A*) 

if, under the assumptions of Proposition 8.4, 0 e crc(W(A)). 
(b) Corollary 8.1 holds true also for maximally dissipative extensions .4 E Ex A. 
5. In the next theorem we show that a preresolvent matrix 9.1IIs of an operator A with finite defect 

numbers is a Weyl function of the operator A [ 1~ • and find the criterion for this to be true in the case 
dim~ = n+(A) = oo. 

T h e o r e m  8.2. Suppose that A is a IIermitian operator in I~, 11o = ~ ( A ) ,  ~ is a subspaee of b 
such that s  = {0}, II = { 7 / , r 1 , r 2 }  i8 a B V S  for A*, 9.1n~(A) and Writ(A) are the corresponding 
preresolvent and resolvent matrices. Then the following assertions are equivalent: (1) P s  = l~; 
(2) the linear relation A* is 12-regular; (3) the domain of the operator Ao = A r 13• = A Cl (~•  (9 b) is dense 
in (91 5r ~)•  and A~ = A* 5r ~ = { { f , f '  + l} : { f , f ' }  �9 A*, l  �9 1]}; (4) the operator A is l~-regular, and 

linear relations T : A 5r ~ and T* = A* I !~• = A* f3 (12 • (9 11) are transversal; 
(5) 0 �9 p(Q(A)Q*(A)) VA �9 p(A;l~); 
(6) 0 �9 p ( J -  W~s VA �9 p(A;12); 
(7) 0 �9 p(ImP.lne(A)) VA �9 p(d;~O). 
In this case the triple Hi = {7-I (9 Z, F~, F~}, in which 

F~] = { F l { f , f ' } , P ~ f } ,  F~] = {F2{f , f ' } , - l}  ( ]  = { f , f '  + l} e A;) ,  (8.42) 

is a B V S  for the linear relation A~, and the IIP.-preresolvent matrix 92n~(A) coincides with the Weyl function 
of the operator Ao, corresponding to the B V S  1-I1. 

206 



Proo f .  (1) ~ (2). The relation ~ N 91 = {0} implies that P s  g. Therefore the equivalence 
of statement (1) and (2) follows from Proposition 2.5. 

(2) -.' '.- (3). By virtue of the relation A ~ =  [AN (s177 ~ ~)]* = A* 4- ~, the linear manifold A* 4- ~ is 
closed if and only if A~ = A* 4- ~. In this case ~ 4- 91 = (A* 4- ~)(0) is a closed subspace and, therefore, 
~(A0) a" = s 4- fit, i.e., ~(A0) = (s  4- 9I) • 

(1) -'. '.. (4). Let Pz~(A)  = s Then P e~ (A*)  = s and, owing to Proposition 2.5, the operator A is 
s Hence the linear manifold A + s is dosed and the following equalities hold: 

T* (A 4- f2)* = j ( A  4- f2) • j ( A  • Cl ~.• = A* Cl (1~ J" @ I)) = A* r ~• 

where j{hx, h2} = {h2 , -h i} .  The disjointness of the extensions T, T* E Ex A0 is implied by the condition 
910/3 = {0}. Indeed, let ] = { f , f '  + l} e T = A 4 ~ •  e A,l  e s and ] e T* = A* [ ~• Then 
{0, l} e A* and hence I e 91. Therefore I = 0 since ~ N  91 = {0} and 

] = { f , I ' }  E A* [ ~• ==*. f e ~ j" 't ] E A r ~ •  Ao. 

Now it remains to prove the inclusion T + T *  D A~. Let {f, f '  +/} e A* Jr ~ = A~, where ] = {f, f '}  e 
A*, I �9  In view of the relation Pe~(A)  =/3  there exists ~ = {g,g'} �9 A such that Ps  = PEg. Then 
we have 

{ f , f ' + l } = { g , g ' + l } + { f - g , f ' - g ' } e T + T *  

since {g, g' + l} �9 T := A 4- 2., {f  - g, f '  - g'} E A fq (/3• @ I)) = T*. 
(4) -~, :. (1). Assume that A is an ~O-regular operator and T, T* are transversal extensions of A0. Then 

w e  h a v e  

A* = T* + T = (A* fq (/3• @ t))) + (A 4- ~) (8.43) 

and, therefore, ~(A*) = (~(A*) fl/3• 4- ~(A).  This implies the equality P ~ ( A * )  = Ps =/3  and 
according to Proposition 2.5 the linear relation A* is/3-regular. 

(1) ~ (5). It follow, s from the definition of Q(A) that 

~(Q(A)) = Ps - A)-I ( I  - P(A))I) = Ps = Ps (8.44) 

This yields that statement (1) is equivalent to the condition ~R(Q(A)) = s [for all A E p(A;/3)1 which, in 
turn, is equivalent to statement (5). 

(1) ~ (6). The stated equivalence is a consequence of identity (8.21) and the equivalence (1) r 
(5). ~ 

(1) 4----v (7). This equivalence is implied by the equivalence (1) < ';. (6) and identity (8.19). 
/ ? We show now that the triple II1 = {7-I e with F~, P~ defined by (8.42) forms a BVS of the 

linear relation A*. Indeed, with regard to (8.43), the mapping F' = {F~, F~ } is surjective since 

r'(A* n (s  �9 b)) = (7~ �9 {0}) ~ (7-t ~ {0}), r ' (A 4- ~) = ({0} m s  �9 ({0} �9 s 

The proof of the Green identity (1.3) is straightforward. Let f = { f , f '  + /),  0 = {g , f  + k} e 
A ~ ( { f , f ' } , { g , f }  e A*;l,k e s Then we have 

( f '  + t, g) - (f ,  g' + k) = ( f ' ,  g) - (S, g') + ( f , - k )  - ( - t ,  g) 

= ( r l { f , f ' } , r 2 ( g , g ' } ) x  - ( r 2 { f , f ' } , r ~ { g , g ' } ) n  + ( P ~ f , - k ) ~  -- ( - l , P ~ g ) ~  

= ( r l ] ,  r ~ 0 ) ~  - ( r ~ ] , r i 0 ) ~ e ~ .  

Consider the linear manifold 

911(A0) := 9ix(A) 4- ( A 2 -  ,X)-!s C 9ix(A0). (8.45) 

207 



By virtue of the condition s N f i t=  {0} this~is a direct sum and fi~(A0) = fix(A0). It follows from (1.6), 
(1.8), (1.9) that for all 

�9 f~ = {fA, AA} = {fa, f':-- I} E ~*A(Ao) (fA = 7(A)hTF (As - A)-ll ,  f ' = AA + l) 

we have 
r2h = {r~{7(~)h + (As - A)-~I, AT(X)h + l + A(A2 - X)-~I}, l} = {h, l}, 

r~ ]x = { r ~ ( , ~ ) h  + r~ {(As - ,~)-~l, t + ,~(A2 - ,~)-xt}, PzT(,~)h + Pe(A2  - ~ ) - ~ t }  

= {M(A)h + 7*(X)I, Ps + Ps - X)-ll} = ~in~(A)F~fx. 

(8.46) 

(8.47) 

By virtue of (8.46) F ~  = 7-[ (D ~ and the inclusion in (8.45) may be replaced by the equality fi~(A0) = 
fix(A0). Now it follows from (8.47) that M(A) =92nz(A). [] 

Here we provide another proof of the latter statement. 
P r o p o s i t i o n  8.5. Let, under the assumptions: of Theorem 8.2, one of the equivalent conditions (1)-(7) 

be fulfilled. Then the Weyl function M(A) corresponding to a BVS H1 of the form in (8.42) coincides with 
the II~-preresolvent matrix P~ns 

The proof is based on the analog of the Neumann formula (8.8) and, therefore, may be applied only if 
p,(A; ~) ~ 0. Setting f~ = G*(X)I, l = col (5,4) e s �9 s and making use of the relation 

]x = {fx, Af~} = G*(A)I + {0, l l )  e ~x(A0) C A~ = A* q- ~, (8.48) 

we obtain from (8.48), (8.42), and (8.27): 

I~ /X~ (I~l(-d*(~)ll-~-~*(~)12)) (W~2(~) W~(~))  ( l l~;  
12 = 0 \12] 

^ - -  ^ - -  

I~2f~= ~, --11 P*(A)12)) = ( -]l 

By virtue of the equality W~2(~)W~I(~)--lw~I(~)- W~2(~ ) = W21(~) -1 we obtain the following expression 
for the Weyl function: 

0 ~ W~I(~) -1 W~X (~)--1W~1(~) 

[ W~2(~)W_~I (~) -1 . W21 (~i -1 
= ~ W~I()~) -1 W~2(~)--lw~I(~)fl " 

(8.49) 

After the comparison of (8.49) and (8.33) we obtain the desired equality M(A) = 9.1II~(A). [] 
In the next proposition we give a direct proof of the ~-regularity criterion of the linear relation A*. 
P r o p o s i t i o n  8.6. Under the assumptions of Theorem 8.2 the following assertions are equivalent: 
(1) the linear relation A* is ~-regular; 
(2) 0 e p(Imean~(~));  
(3) there exists e > 0 such that for all h E 7-l, l E ~, the following inequality of the acute angle holds: 

117(A)h + (As - A)-alll ~ 6(llfll + Illll); (8.50) 

(4) fix(A0) = fi~(A) 5r (A2 - .,~)--1 ~. 
P roo f .  
(2) .' '.- (3). This equivalence follows from (8.14) and (8.16). 
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(3) -: ~, (4). By virtue of (8.50) the linear manifold (A2 - ) , ) -1s  is closed. Since 0 e P(7"(~)7(~)) and 
IImxl-lllll >__ II(& - A)-xll[ we obtain from (8.50) that the angle between 91~(A) and (A2 - A)-12` is acute. 

Conversely, in accordance with Theorem 2.4 of [45] it follows from decomposition (4) that the linear 
manifold (A2 - A)-~s is closed and, therefore, inequality (8.50) holds. 

(3) ==~ (1). Let us show using inequality (8.50) that  the linear manifold A* + ~ is closed. Let the 
sequence {7(A)f,, + (A2 - )0-1h,, ,  h,, -4- ln}(e (A* - )0 Jr ~) converge to {f, f ' }  as n ~ ~o (fn �9 [), IT, �9 2`). 
Then Pohn = Po(hn + ln) ~ Poff =: h" as n --* co and, therefore, 

lira (A2 - A ) - l P 0 h .  = (A2 - A ) - l h  ", lira [7(A)fn + (A2 - A)-XP~.hn] = f - (A2 - A)-xP0ff, 
ltl,--'*OO 

where P0 = Po0. It follows from inequality (8.50) that lim,,--.oo f,~ = g and lim,,__.r162 Pah,, = h'. Therefore 

3 lim h , , = h  I + h ' = h ,  
ltl.==~OO 

3 lim lr, = f '  - h =: l �9 2` :- l i r a  ( A 2  - . ~ ) - l h n  = (A2  - A)-~h, 
�9 t "=-t'OO ~ " ~  OO 

lim 7(A)f, ,  = 7() ,)f '  > {f, f '}  = {7(),)g + (A2 - A) -1 h, h + l} �9 (A* - A) jr ~. 
n ' - - ' *  OO 

So, the linear manifold (A* - A) jr ~ is closed and, therefore, the same is true for the linear manifold 
A * + ~ .  

P r o p o s i t i o n  8.7. Let the conditions of Theorem 8:2 be satisfied and 0 �9 a(Im PAne(i)). Then 
(1) dimker (ImpAne(i)) = dim2`0, where 2`o = 2` n 9t and 

ker (ImpAne(A)) = {{P2{0, " l} ,  l}:  l �9 2`0}; (8.51) 

(2) if 0 �9 a(ImpAne(i)), then the triple Hi = { ~  @ 2` , r l , r~}  fo ms a generalized BVS  for the anent 
relation Ao. = A* ~- ~; 

(3) if 0 r  ,(ImpAne(0), then the triple Hi = fo . s a generalized for the 
relation Ao.(4--4. 0 �9 p(pAne(i)) if and only if A~ = kerP~ is 2.-regular. 

In this case the Weyl function corresponding to the B V S  II~ coincides with the function -pArie(),) -1 
P r o o f .  (1) It follows from (8.13), (8.15), (8.16), and the condition 0 �9 p( ImM(i ) )  that 

0 e ap(ImpAiIe(i)) -'. :- kerP~x(A2 - ,~)-1 r 2` # {0}. 

Equality ( A 2 -  /\)--12` f] 91,,~ = ( A 2 -  A)-12`0 implies  relation (8.51). Therefore dims = 
dim ker (Im PAne(A)). o 

(2) It is easy to verify that the mapping P2: A0. --~ 7-/ @ 2` is surjective, the mapping 
F = {F2, FI}: A0, -* ( ~  @ 2`)2 is closed, and A2( -  kerF2) = A~. The Green identity is verified above [see 
(8.44)1. 

(3) The extension A~ = A1 f3 (2`• ~ [j) + s = kerF~ is self-adjoint in essence. Indeed 

(A'~)* = j{(A1 (3 (2`• @ ~) + ~)• = j ( ( A t  x ~ (2` @ {0})) f3 ([) @ 2`• = (A~ + ~) t3 (2`• @ [)) = i~ .  

It follows that (A~)* = A~ iff A1 is 2`-regular. Further, if ker (ImpAne(i)) = {0}, then 2` • 9I = {0} and the 
linear manifold Ps  is dense in 2`. Since FIA* -- 7~, the equivalence 9t(F~) = 7-I ~ 2` .'..'- P e ~ ( A )  = 2. 
holds. By Proposition 2.5 the relation Pe~(A1)  = 2` means that the extension A1 = A~ is 2`-regular. It 
remains to note that by Proposition 6.2 the mapping I'~: A* --* 7-/is surjective iff 0 E p(pA1]e(i)). In this 
case the function -PAIts -1 is the Weyl function corresponding to the generalized BVS II~. [] 

R e m a r k  8.5. Assertion (3) can be proved in another way. Indeed, as follows from the Frobenius 
formula (3.66) and the condition 0 e p(M(A)) V,X E C+, the matrix parle(),) is invertible iff 0 �9 p(a22 - 
a21a'~a12). But by the resolvent formula (3.39) 

a22 -- a21a111812 = Ps A) -1 - 3'(A)M(A)T!3'*(~)] .I 2` = Pc(A1 - A) -1 1 2`- 
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Therefore, 0 E #(9/n~(A)) .~ y O E p(Pt.(A1 -:  A) ' !  r )2). I t  remains to no te  t h a t  by Proposi t ion 2.9 
0 E;p(Ps " A) -1 I )2 if and only if the extension ! A1 = kerr~ D A0 is )2-regular ()2 C ~(A0)•  

�9 6. In this 'section weshal l  show that  the II)2-resolvent matr ix  Wns coincides with the characteristic 
operator-valued function of some almost solvable linear relation. We shall also obta in  from this fact a new 
proof of formula (8.22), 

T h e o r e m  8.3.  Let A be a Hermitian operator in I}, ~o = ~(A) ,  )2 be a subspace of D such tha~ 
dim)2 = n+(A) and )2092 = {0}. Let also II = {)2,r~,r~} be a BVS for A*, Wrts be the corresponding 
Weyl function, Ao = A r )2.1. := AN()2• ~b) .  I1the linear relation A* is )2-regular, then: (1) P ~ ( A )  = )2; 
(2) A~ = A* 4 ~ ; ( 3 )  the triple 1-I9. =-{)2@)2 , r i ' , rg} ,  where 

r~f= {r2{f,f'} + l,r~{f,Y'} + Pef}, 
, ^  1 

r~y = -~ ( - r~ { f , 1 ' )  +P, , l , r , (1 , f ' }  - l } ,  (8.52) 
V z  

forms a BVS for A; (here { f , f ' }  �9 A*, l �9 s ] = { f , f '  +l}); (4) the linear relation T := A Jr ~ is closed, 
almost solvable (T �9 .As (A0)), and p(T) = p(A; )2). The eztensions T and T* = A* r )2• := A* N ()2• @ Ij) 
of a Hermitian operator A are transversal and can be defined by the equalities 

T = ker (r~' + ijr~') ,  T* = ker (r~' - i J rg) ,  

o - I e )  
that is, T = ( ; to)_~j ,  T* = (Ao) i j ,  where J = i Xe o ; (5) the n)2-reso l .ent  matri~ Wne(~)  

coincides wi~h the characteristic operator-function WT*(A) of the linear relation T* = (-4o)iJ(�9 As (A0)) 
corresponding tO the colIigation ~o = (i J, )2; 1, J, )2) and has the form 

I/VI-Is = ,]'(M2(A) - iJ)(M2(A) + i J ) - l J  = WT*(A) (A �9 p(T)), (8.53) 

where M2(A) is the Weyl function of the operator Ao corresponding to the BVS II2; (6) formula (8.22) for 
WT. (A) = Wne(A) holds. 

P r o o f .  We present the proof under  several headings. Assertions (1) and  (2) have been proved earlier 
(see the proof of Theorem 8.2). 

(3) The Green identi ty is simply verified. Let us show that  the mapping  r "  = t-2sv", ~lJr"~ maps A~ onto 
)24. Pu t  l = (ll - 14)/2, and choose ]1 = { f , f ' }  �9 A* such that  r l . f l  = (12 - 13)/2, r 2 f l  = (ll + 14)/2. 
Since _ P ~ ( A )  = o we can choose 1A �9 ~(A)  such that  PefA = (12 + 4)/2  -- k, where k = Pzf .  Put t ing  
] =  ]1 + { f A , d f A ) +  {0, l) we obtain the required equalities: r ~ ' ] =  {11,12), F ~ ' f =  {la,14}. 

(4) When .f = { f , f '  + l} �9 A* + 5 the inclusion ] �9 T = A + 2, is characterized by the equalities 

r 1 f = col {l, Ps l~2f = col {P~ f , - l } ,  

that  is, ] E T - '  '.. ] E ker (r~' + iJr~,).  In other words -iJ = r"T  and iJ  = F"T*,  that  is, T = (.40)-i J, 
T* = (-40)iJ. Since 0 e p(J) and J = Ira(i  J) ,  it follows from Proposi t ion 1.4 that  the extensions T and T* 
are transversal. Since T - A = {{f, (A - A)f + l} :  f E ~ (A) ,  l E )2), we have 

fft(T - A) = (A - A)~(A) 5r )2 = ff)~a ~- ~, ke r (T  - A) = { f  e ~ ( A ) :  (A - A)f e )2}. (8.54) 

Hence the equivalence A E p(T) .: ;. A e p(A; )2). 
(5) Let M2(A) be a Weyl function of an operator  A0, corresponding to the BVS II2 of the form in (8.52). 

Let us include the operator  B = iJ  in the colligation ~o = (B,)2, K;  J,)2), where K = [Bt[ 1/2 = [J[ = Is 
J = sgn BI.  In view of Theorem 7.1, the characteristic operator-function has the  form 

WT. (A) = I + 2i((iJ)* - M2(A))-I J -- J(M2(A) - iJ)(M2(A) + i J ) - l  J. (8.55) 
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By Theorem 8.2 the IIl2-preresolvent matrix ~tnz(),) coincides with the Weyl function M~ (A) Of the operator 
A0 corresponding to the BVS II {1~ (3 t2, ~ = F1,1" 2 } of the form in (8.42). 

But the BVS II1 and H2 of the form in (8.42) and (8.52) are related as 

where I = Is 

( r l t~  ( X l l  X,2 ~ ( r i ~  X ( I l l  
r~] = \X=l x =  ] \ r u  \ r U '  (8.56) 

I ' X12 ~'~" ' X21 -"~'~ ' X 2 2 =  ' (8.6r) 

/eXla X12 ~ 
and the operator X = kX21 X22 / is J2-unitary in s @ s (that is, X * J z X  = X J 2 X *  = 

( ~ 
S=), 

M2(,~) : (Xl l~ . (~)  Jv X12)(X21~].(,~) -1- X22)-1 

_ I - - I  a21 -- a l l  a22 -- a12 
, 

all  + a21 a12 -4- a22 I I 

Let us denote by Y~(A) and Y2(A) -x the first and the second factor on the right-hand side of equality (8.58). 
it follows from (8.55) and (8.58) that 

WT" (/~ ) = J ' (YIY;  1 -- i J ) (Y1Y21  -t- i J ) - l  J = ( JY1 -- iY2 )( JY1 -Jr iY2 ) -1 

J ( ) (  )-' = 2i -aza -a22 1 --all --al2 
0 - I  ~ I o 

(--a21 --a22) Q ~ ' )(0,'~2a1# a220,1"-21all--a21) :WIIs 
= 0 --1 --al  "-21 --a1-21 al I =k 0"1# al#a'l (8.59) 

(6) Using another expression for the Weyl function, we shall obtain a new proof of formula (8.22) for 
M2(),). Let us put fx = G*(A)I = - Q * ( A ) 4  + P*(~)I2; la, 12 G 12, fx = {fx,)~fx}, and note that 

O 
]x = -Q*(,~)ll + 75"(,~)/a + {0,/1} E 9Ix(A0) C A* -i- 1~. (8.60) 

It follows from (8.52), (8.60), and (8.27) that 

Hence 

,,. (I'~(-Q*(~)h +75*(~)G)+h) [wh(X)+I 
r~A = \ r , ( -~*(~)h  +7~*(~)G)+t:_ = k ~h(a) 

,,^ / - r~ ( -d*(~)h  +~*(~)~ + t~'~ (-w~_~(~) 
I'2f~ = ~,I'2(-Q*(X)/1 +75*(X)G)-l~] kW~l(/~) - I  

('Ix'~, w~l(~) ) \4]  wh(X) + z 

)( ) -1 
M2 ()~) = ( Wll(~)* "~ I w21(~)* --I/312(~)* I - w22(A) ~ (8.61) 

\ wl~(x)* ~2(x)* + z ~01~(~). - z ~ ( ~ ) *  

Denoting by ZI(A) and Z2(A) -~ the first and the second factor in (8.61) respectively we obtain from(8.55) 
and (8.61) the following expression for W=-(~)*: 

(WT.  (A))* = I + 2iJ(M2(A)* i J)  "1 =! (M2(~) + i J ) (M2(A)  - i J )  -x 
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I 

+ ~JZ2(~)) (ZI(~)  - Z) I = 

(7) Now we arefioing to prove identity (8.23). t t  follows from (8.55) and the equality Wn~(A) = WT. (A) 
(recall that T* = (Ao)is) that 

WII~( A )JWIIe(fz)* - J 
2i(A - #) = (i J +  M2(A))-aT*(~)7(#)(-iJ + M2(#))-a" (8.62) 

Since ' '^ ~2 Z2(A ) h r=f  = ( 0  we have = r 

- ,  
(8 .63)  

Now using (8.63), (8.60), and (8.61) we obtain 

( i J  Jv m2(,'~))-lqt*(~) = vf2z2(,,~)(Z1 (,~) "+ i J Z 2 ( , ~ ) ) - I ( z 2 ( ~ ) * ) - I O ( , ~ )  

" 1  
= V~Z2(~)[2Z2(~)*(ZI(~) - 1)]-1~(~) = ~22~(~). (8.64) 

Relations (8.26), which are correct because W~(A)  is a characteristic function and A E p,(A; ~), are used 
in the proof of equality (8.64). We obtain identity (8.23), comparing (8.64) and (8.62). [] 

R e m a r k  8.6. (1) The equalities p(A;~) = p(T) and WT.(A) = WII~(I) are correct without the 
condition of ~ of the relation A*. It can be proved just as it was done in [79] for the case 
~(A) = O. 

(2) In the case ~(A) = 0, Krein and Saakyan (see [43]) have established a connection between an 
~-resolvent matrix W(A) of the operator A on the one hand, and the characteristic function of some 3;- 
colligation on the other hand. They have also obtained (see [42]) identity (8.23) for Wga(A), which is an 
abstract analog of the well-known Christoffel identities in the moment problem [4, 6]. 

It is worth mentioning that, as follows from the proof of Theorem 8.3, identity (8.23) is a corollary of 
the simple relation 

WT(,k)JWT(#)* = K*(B* - M(A))-lT*(~)7(#)(B - M(#))- IK.  
2i(A - /~)  

(8.65) 

Here WT(~)  i s  a characteristic operator-valued function of the extension T = -4B(E .As (A)). Formula 
(8.62) is a particular case of the previous one. 

7. Let A be a Hermitian operator in 0 such that the linear relation A* is C-regular. Let us denote 

by G(J2) the group of J2-unitary operators Z 2 '  ( O - I ~ ) ,  andby  = (Zjk)j,k=, in ~4, where J2 = Is O 

9~t(A0) the set of Weyl functions of the operator A0 = A ~ s :-- A • (s177 @ 0). The group G(J2) acts 
transitively and effectively on the set 9~(A0) as a group of fractional-linear mappings by the formula 

Z o M(A) := (ZllM(A) + Z,2)(Z21M(A) + Z22) -1 M(A) e 9Jr(A0). (8.66) 

The subset of Weyl functions M(A) E 9Y~(A0), which are the II~-preresolvent matrices of some operator A i 
such that A' r ~• = Ao, will be denoted by 9/(A0; ~). 

Two subgroups of the group G(J2) acting on the set 92(A0; ~) will be found in the two next propositions. 

X 2 j.unitary operatorins ( 0  --Is Proposition 8.8. Let X = ( jk )j ,k=l be g = s ~ .~, J -~- i I2~ 0 ' 

Z 2 Z = ( jk)j,k=l, where 

,)- (8.67) 
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Then the matrice~ Z form the nubgroup G,( J~) of the group G( J2). The element Z aetn on the net ~Jt( Ao) 
and it~ action i~ equivalent to the follo~oing replacement of the B VS II - {/2,F1,F2}: 

r r 

Proof .  Let ~us be a preresolvent matrix of the form in (8.13), corresponding to the BVS II = 
{s Fa, F~ }. Further, let 1-[1 {~, ' ' = r~,r,} be the BVS defined by equality (8:68), MI(A) and 7x(A) be 
the corresponding Weyl function arm 7-field respectively, A~ = ker(X~xF1 + X2~F2) -- kerFS. Putting 
92'(A) = Z o PAn~()0 we obtain from (8.66), (8.67) 

PA'(~,) = (zi~PA(~) + z~)CZ~PA(~,) + z ~ )  -~ 

( XllM(,k) + X12 Xll"/*(~) I ,~ ) 
--- P~7()O Ps - A) -1 [ ~ x 

x (  (X~'M(;~)+ X~) -~  -(X~]M()O + X~)-IX2]7(~)*Is ~ s  

_ [ ' (X~M-kX~2) (X2~M+X~2)  -1 [Xll-(X,~Mq-X~2)(X21M+X22)-~X2~]'y(A) * ~,~ "~j 
- k, P,~7()O(X21M + X22) -~ Pr - )0 -~ r/~ - P, cv()O(x2~ M + X22)- lX21"/(X) * I 

~[II1 s (8.~9) 
--~': ~a21(,'~ ) a22(~)/ "~- \P~vI(A) P~(A~2- A ) [ ~  / 

To prove equality (8.69) we have used the following formulas: 

ail( ,~ ) -~- (XllM(A) -]- X12)(X2xM(A) + X22) -~ = M~(A), 7~(A) = 7(A)(X2~M(A) + X22) -1 

(see Proposition 1.70, and the equality a~2(A ) = Ps - -  ~)-1  I '~, which easily follows from the resolvent 
formula (3.39) for A0 = A~ = kerry. The equality a~2(A ) = 7;(A) I s follows from the identity 

Xl~ - M~ ( ~ ) X ~  = X ~  - (X~IM(~) + X ~ 2 ) ( X ~ M ( ~ )  + X ~ )  -~ = (M(~)X;~ + X;~) -~. (8.70) 

To prove it we multiply the equality MI(A)(X21M(.~) "-[- X22)--~ XllM(A) + X12 from the left by X~l. 
Making use of the identities X~IXn  = X~IX~ ,  X~IX12 ~ X~1X22 - I [see (1.15)] we obtain the equality 
(X~I - X~lMl(A))(X21M(A) + X22) I, which is equivalent to (8.70). 

R e m a r k  8.6. Let the BVS H = {n,r~,r~} and a = {n, r l ,  r2} be connected by equality (8.68), and 
II1 = {~ @ s F~, F ~  and II1 = {~ @ s F~, F~} be the corresponding BVS of the form in (8.42). It is easy 
to see that H1 and H1 are connected by the relation 

\r~) \z21 z2~) \r~) \r~)' 

where Z = (Zij)2j=] is a ]2-unitary matrix in ~4 with elements of the form in (8.67). The following 
connection exists between the preresolvent matrices PAns and PAr]n(),), corresponding to the BVS II and 
fi: 

PAfI~(~) = g O PAyIs = (ZllPAII~(~) "~ Z12)(Z21PArIs --~ Z22) -1. (8.72) 

One can deduce (8.72) either from Propositions 1.7, 8.5, or from the equality Writ(A) = Wr~z(A)X, which 
connects the resolvent matrices Writ(A) and Wns corresponding to the BVS II and II respectively. It 
follows from (8.72) that 

Ps(A~ - A) -1 [ ~ = Pg.((A2 - A)- '  + 7(A)(X21M(A) + X22)'lX217(A) *) [ S, (8.73) 
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where A~ = ker F~_ = ker ( x 2 1 r ! §  A~ = ker F2, and consequently, owing to the fact that  ~(dim ~ = 
n+(A)) is arbitrary, formula (3.69)holds.  Therefore, the resolvent formula (3.69) is a simple corollary of 
Propositions 1.7 and 8.5. 

. The action of an element Z = Zx E G~(Jt)  on the set !a(A0;~) is equivalent to multiplication from 
the right of the II~-resolvent matrix: WII~(A) --* WII~(A)X. In the next proposition we describe matrices 
y 2 = (Yij)i,j=l such that  the property of Wile(A) to be an ~-resolvent matr ix  of some operator remains true 
under the transformation WII~(A) ---* YWils 

P r o p o s i t i o n  8.9. Let A be. a Hermifian operator in 0, ~ ( A )  -- 0, WII~(A) be a reaolvenf matrix, 
X 2 ~ -  (Xlj)i , j__i be a J-unitary operator in ~ @ ,!~. The matriz-function XWii~.(A) is an s matrix 
of some Hermitian operator A I if and only if X21 = 0, Xl l  = X22 = V = (V*) "1. 

P r o o f .  Necessity. It follows from (8.19) that  

+ (0 ~ 0) 

Putt ing I~V(A) = X*WIIe(A) and substituting it in (8.7) instead of Wile(A), we obtain the matrix ~(A). To 
prove the proposition, it is sufficient to find the conditions on X in order for ~[(A) to be an ~-preresolvent 
matrix. We obtain the following from (8.19) and (8.74): 

~ : ) + ( o  ~ 

o o ) ] 1  
: [ (0  X;1) ~II~(A) § Q00 XO1)] [Q00 X~2) ~II'fl(A)§ ( 0/ 0 X2"2 

( a l l ( A )  a12(A) ) (  I 0 ) - 1  
= ~Xlla21(A) X;1a22(A) + X;1 X;2a21(A) X;2a22(A) --]- X;2 

Q - a12(A)(X12a22(A) § X22) X12a12(A) a12(A)(X~2a22(A) § X~2)--1 ~ (8.75) a.(A) * �9 -1 �9 �9 - 

= x h  ~ 1  (A) - a ~ ( A )  a ~ ( A )  / ' 

where 
* * A * -1 a22(A) := (X;1a22(A) + X21)(X12a22 ( ) -Ji- X22 ) �9 (8.76) 

Since s - lim~_.r162 a22(A) = s - lim~-.oo 522(A) = O, we obtain from equality (8.76), rewri t ten  as 

~ * A * A * (8.77) 

that X~I = 0 and consequently X~lX22 = I. It follows from (8.77) and the equalities 

S-- lim Aa22(A)=s-  lim A f 2 2 ( A ) = - I  A= iy--.-.*oo A=iy--,,oo 

that X22 = Xll .  So the operators Xl l  = X22 =: V are unitary, V = (V*) -1, and 

x = ( V  X12) 
0 V " 

Su]ficiency. Let X21 0, Xll ~-- X22 -~- Y = (Y*) -1 X = 2 = , ( X i j ) i , j = l ,  a n d  ~r(A)  ~- X W ( A )  = 

(Wij(A))ij=I.  Then ~I~(A) = X~'lw12(A) and 0 E p(~12(A)). Consequently the following matrix-function 
[of (8.17)] is well defined: 

~(A) = (all(A) a12(A)) ( ~21(A)-1~22(  A ) ~2-11(A) ) (8.78) 
a21(A) a22(A) := ~k?.u11(A)w21(A)-lw22(A)-w12(A) w11(A)w~1(A) " 
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As follows from (8.19), the functions r and 92r~a(A) are connected by the equality 

* - - 1  * ) ~(a) = a l , ( ~ ) -  a l , (~)(Xha~d~)  + x / s )  xw,=l (~)  ",d~)CXt2"=(~) + x;=)-' 
(a,=(~)x12 + x2=)-1~1(:9 xh,~=(),)(xi=a=2(~) + x;=) -1 " (8.r9) 

By virtue of (8.20) ~(A) E R i $ 1  and 0 E p(Iman(),)). To complete the proof it is enough to use the 
obvious relations 

s - l im(a2a(ig)Xla + X==)- '  = X ~  1 > s - lira a= i ( iy )  = o; 
~Too ~Too 

�9 * ~ * - -1 
- + x ~ 2 )  x2~==~s l im( i~)a=2( i~)=-I ,  S hm(X12a22 ( y )  = - -  91oo y~'oo 

and to apply Theorem 9.1. 
However, we give a direct proof of the sufficiency by showing that  ~I(A) is an s matrix of 

the operator 
A' V, AV? + X S X ~ 2 P e  , (8.80) 

where V~(~ [0]) is a unitary continuation of the operator V* = X;2. Since the subspace ~(C 0) reduces 
V1, the operator X~2X2~Pt is self-adjoint and (A')* = V~A*V~ + X~2X22P~. This implies that the Green 
identity for (A')* 

( (A ' )* f ,  g) - ( f ,  (A')*g) --- (A*W 1 f, VI-1 g) - -  ( w l f ,  A ' W i g )  = (F~VI-~ f, I ' , . W l g )  - ( r 2 w l / ,  Pl Wlg) 

holds, and the triple II' = {e, ri,r~} with r} = FiV1 -~ (i = 1,2) forms a BVS for the relation (A')*. The 
V-field 7'(A) = (F~ [ 91~(A')) -1 corresponding to the BVS H' can be represented as 

7 '(k) = [I - ( X;2X22 Pa + V1A2 V~ - A ) - I  X~2XR= PalVY'/( A ). (8.81) 

It follows that the Weyl function corresponding to the BVS H ~ has the form 

M'(A) = r i~ ' (a )  = M(A) - F I V Z l ( X h X 2 2 P s  + V~A2V~ - A)-Ix ;2PIT(A)  = 

- 1  �9 p = M(A) - Fl(X22X~2P~ + A2 - ) , ) - iV 1 X12 ~7(A) 

= M(~)  - h ( A ~  - ~ ) , l [ X 2 2 X ; 2 P d &  - ~)-~ + z ] - l y - l x ~ 2 P a ~ ( ~ )  

~ 1 1 ( ~ ) -  * -  "* = X22) X,2a21(:~) v (~ ) (x1~=(~)% * -1 . 

= ~ . ( : 9  - ~ ( ~ ) ( x ; ~ ( : ~ )  + x;~)-~x;~a~(~) .  

The following identity can be proved analogously: 

Ps - A) -1 r s = Ps - ~ + A12A22 s [ '~ 

_ _  = * - - 1  -- VIPs(A2 - A)-l[Vl + X;2Ps(A2 - ~)-11 r ~  X;1a22(A)[X;2a22(A) + X22) , 

Pa3,'(A) = P I V I { I -  [X12P~V1 + (A2 - A)-1]-1X12P~V1}7(A) 

= P I V l { I  - [(A2 - A)- lX12PlV l  + I]-1(A2 - ~ ) - lX12PIV l }7 (A)  

= P i y l { P l ( &  ~ ) ' l x l ~ p ! y ~  § X l - b ( ~ )  = (a~2(~)xl~ + x2~) - la21(~ ) .  [] 

8. Let ~ be a subspace of 0. Recall that an operator-valued function Psl:tx [ ~ is said to be an 
/~-pseudoresolvent (~-resolvent) of an operator A if Rx E Pf lA  (P~ E flA). The set of ~-pseudoresolvents 
(~-resolvents) of A is denoted by Pf l~  (fl~A)' A nondecreasing operator-valued function E(t) := P i E ( t )  I 

= E ( t - 0 )  is called an C-spectral function of A if E(t)  is a generalized (extended to ~ D 0) spectral function 
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of the operator A. A function E(t)  is said to be orthogonal if E(t) is orthogonal .  ~-Pseudoresolvents and 
C-spectral functions are related as 

o o f _  A --Ps rJ~(RA:--P~(A-'A) -1 r[J--P~ .o7-  rb). 

If P1 is the orthogonal projection of ~ onto ~ e A(0), then 

E(co)  := s - lim E(t) = P~, E(oo) := s - l im E(t) = Pe.P~ r ~. 
tToo tToo 

In the case ~ 0 91 = {0} the following equivalence holds: 

r~(oo) = I~ < ',. R~  ~ f~A. 

A full description of the set P ~  of ~-pseudoresolvents and, therefore, a description of the set of 
C-spectral functions of the operator  A is given in 

P r o p o s i t i o n  8.10.  Suppose that II = {~ ,Fa , r2}  is a BVS for a linear relation A*, W n e ( A ) =  
(Wij( ~ ))i,j=l,2 i.~ the cowespond~ng II~-resolvent matriz  (8.17). Then the formula  

i? oo t m A  = Ps [ ~ --- [wn(A)v(A) + w12(A)][w2,(A)T(A) + w22(A)] -1 (8.82) 

establishes a one-to-one correspondence between 2~-pseudoresolvents Ps [ ~ e P~A and v(A) 6 Re. 
Further, the following equivalence holds: 

Ps I ~  e ~A ~ r(A) is M-admissible. (8.83) 

P r o o f .  a12(A) -1 E [~] for all A E p(A; ~) since Ps maps isomorphically 9~x onto  ~ for all A E p(A; .~). 
Therefore (3.69) and (8.13) yield 

Po~RA [ ,~ -~ Ps - A) -1 I ,~ = P~(A2 - ~ ) -1  I ,~ - Ps + M ( A ) ) , I T * ( ~ )  [ ,~ 

= a22(A) -- a21(A)[a12(A)-l(T(A) + a11(,~))] -1 

= {a22(A)[al-g(A)v(A) + a;g(A)a11 (A)] - a21(A)}[a~'21(A)T(A) + a;~(A)a11(A)] -1 

= [W11(,~)T(~) -[- W12(~)l[w21(~)T(~ ) -[- W22(~)] -1 .  []  

C o r o l l a r y  8.2.  Suppose that under the assumptions of Proposition 8.10 A2(:= ker r2)  = A -b ~ .  
Then the equivalence (8.83) takes the form 

P•RA [ J2 e n ~  4-...4- s - R - lim y--lT(iy) : O. (8.84) 
y'foo 

The proof follows from a comparison of Proposit ion 8.10 and Corollary 3.8. 

9. I N V E R S E  P R O B L E M S  F O R  P R E R E S O L V E N T  
A N D  A N D  R E S O L V E N T  M A T R I C E S  O F  A H E R M I T I A N  O P E R A T O R  

1. In this section, the inverse problem for a II~-preresolvent matr ix  is solved in the framework of each 
of the three models considered in Sec. 5. 

T h e o r e m  9.1.  Let TI, ~ be Hilbert spaces, dimT"/= d im~ .  For an operator-valued function ~(A) = 
(ajk 2 (A))j,k= 1 ( holomorphic on C+ UC-  with values in [7-/@~]) to be the II.~-preresolvent matriz corresponding 
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to some BVS o f  a linear relation A* such that 2` L A2(O), it is necessary and sufficient that the following 
conditions hold: 

(1) ~(~) e Rur  
(2) 0 e p(Iman(i)); 
(3) !im~f~iy(a22(iy)l,l)=-I[III 2 VIE 2 ;̀ 
(~), - lim~roo ~x2(iu) = 0. 
P r o o f .  Necessity of these conditions is implied by formula (8.13) for the H2`-preresolvent matrix 

~ ( ~ ) .  
Sufficiency. (1) Suppose that conditions (1)-(4) are fulfilled. Since P2(A) �9 R7t$~, it follows from (5.1) 

that 

= + c 1 f dE(O l + t ~ ) d r < t ) ,  �9 [U@2`] ,  (9.~) P2(A) 
- J ~ l + t  2 

where E(t) = (Ei~(t))],k= 1 = E(t -- 0) is a nondecreasing operator-valued function. As in Sec. 5, ~(P2) 
stands for the Hilbert space of vector-valued functions F(A) of the form in (5.22) 

f dE(t)f(t)  
F(~) = b + ] b E 7in = 9~(B~/2), f ( t )  E L2(d~, 7l @ 2,) ~ 9 ~ 2 ~ 

t - A  ' J~  

endowed with the inner product (5.23), A0 is a Hermitian operator of multiplication by ), in ~(9.1), 

A0. = {P(u) = {F(~), P(~)} e ~(~)2 : ~h~, h~ E 7~ @ 2`, P(U) - ~F(u)  = h~ - 9a(~)h~}. 

In accordance with Theorem 6,1, 92(A) is the Weyl function corresponding to the generalized BVS Ha = 
{~  @ s for the linear relation A0, ,  where x j F  = h I (j = 1,2). Because of condition (3), the 
measure dE22(t) is bounded: f~d(E22(t)l,l) < oo for all l E s Therefore, 

f d(r,12(t)h,l) 2 < f d(~!t)h,h) fa(r,=~(t)l,l). 
i---X - A  I t -aP  

This inequality and condition (4) imply that 

P2(A)l= f~t~Al(r ~ax2(A)l= f d~12(t)l ~--7 
f a22()~)l j ,  t -  ~ ] (9.3) 

and the integral in (9.3) converges in the strong sense. This enables us to embed the subspace 2` into ~(92) 
(in: l --* ~(#)l) .  In view of definition (5.23) the linear man~fold 

o - {loo(#) := ~(/.t)l : l e 2`} ,N,~  O O  - -  

is closed. It follows from condition (3) that  the mapping ia is isometric: 

(too(u), k = ( u ) ) ~ ( ~ )  = (t, k)L,(dr,ne~) = ~ d ( ~ ( t ) l ,  k) = (t, k)z.  

Setting for all h E 7-I @ 2` 

hx(iz) . -  P2(A) - 91(#) h = f~ dE(t) 
A - # (t - A ) ( t -  #) h + Bah E ~l*x(Ao), (9.4) 

we obtain from (9.4), (9.3), and (5.23) the main identity: 

f d(E(t)l, = h)nez  (l, h) 
( t ~ ( ~ ) ,  hJ,(i,))~(~,) = t - (2t (~) l  (9.5) 
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We denote by re ,  ~r~ the orthogonal projections from 7"/q} s onto s and 7/respectively and consider the 
linear relation 

A. := {F(0) �9 A0. :  r2x2F = 0}. (9.6) 

A. is a closed subspace. Indeed suppose that  F,,(A) ---, F(A) and F,,(A) ~ _~(A) in ~_(9./) as n ~ co. 
Then for all A �9 C+ U C_ the sequence F,,(A) stron[gly converges to F(A) = {F(A), F(A)}. It follows 
from (9.2) (for A = :i_i) that the sequence (Imfll(i))x2F,, is convergent. Now condition (2) yields that the 
sequences X2~",,, x1F,, are convergent. Setting h I := lim,,_.~o xjF, ,  ( j  = 1, 2) we obtain from (9.2) that 
F ( A ) -  $F(A) = hi - P2(A)h2, that  is, _~(A) e A..  

Define a BVS II = {7-(, F~, F~ } of the linear relation A. by the equality 

F jF  = rcnxjF VF �9 A. (j = 1, 2). (9.7) 

The Green identity for the BVS II is implied by the Green identity for the BVS II ~ of the linear relation 
A0.. The surjectivity of the mapping P = {F2, F~} is implied by the equality F292~(A) = {X2hx(O) = h : 
h �9 7-[} = 7 / a n d  the relation FIA2 = 7-/. To prove the last relation we first note that  

/ (0 )  = {f(0) ,  f (0)}  := { h-i(O) h-i( i )  
o - i  

oh - i (o )  i h - i ,  i, ~ - �9 A2 := ker Fg.. 
o - i  

Taking account of (9.4) we have 

f (o )  - o f (o )  = h_i(i) = Im PX(i)h ;" XI ]  = h- i ( i )  = ImN(i)h  :- F l f  = ~rl(ImgX(i))h = Iman( i )h .  
(9.8) 

The equality F]A2 = 7 / i s  a consequence of relation (9.8) and condition (2). Therefore, the triple II = 
{7-/, F],F2} forms a BVS for A.,  and al~(A) coincides with the corresponding Weyl function M(A). Note 
that by virtue of (9.7) the operator A and the linear relation A2 = kerF2 take the form 

A = {_~ �9 A0. :  x2F = ? r T - / X l F  = 0}, A2 = {-P �9 A0. : X2- ~ = 0} = kerx2, 

A* = A. and 9Ix(A) = {h~(0):  h �9 7-/}. 
It follows from (9.5) and the relation 

P~iz~(o) = r2{h~(0 ) , , \ h~ (o )}  = h Vh �9 7/, ,~ �9 p(A2) 

that 
7(A)h = h~,(O), Peo~7(A) = P~ooh~,(O) = rr~P2(A)h = a21(A)h. 

Putt ing for some A �9 p(A2) F = {r(o),-i~(0)} = {/a(O), Mx(O) + loo(O)} (where loo(O) = P2(o)l, I �9 !2) 
we find that 

F(0)  - 0F(#)  = loo(A) = 9a(A)/~ X~P = 0, 

that is, ~" �9 A2. This implies {/a(O),/oo(O)} �9 A2 - A; hence (A2 - A)- l l  = la(o). We derive from (9.5) 
the following equality: 

which yields Pa(A2 - , ~ ) - 1  I ,~O = a22(/~ ) for all A �9 p(A2). 
To complete the proof it remains to note that the condition ~oo _l_ A2(0) is a consequence of condition 

(3). 
(2) Starting from the integral representation (9.1) of the operator-valued function N(A) we consider 

the Hilbert space 0 = ~~B �9 L2(d~],~'/) and the linear relation A0. in it [cf. (5.16)]: 

Ao. = { / =  (b O f ( t ) ,b  @ / ( t ) }  e I~2: 3h e 7/ @ s - ]( t)  = h , b =  Ph i .  (9.9) 
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In this case 9.{(A) is the Weyl function (see Remark 6.2) of the operator 

A0 = {{0 (9 f(t),b~tf(t)} 6 A0. :  J dE(t)f(t)-Fb = 0}, 

corresponding to a generalized BVS IIz = {7-/@ ~, X~, X2 } of the form in (5.17 i with 

(9.10) 

t](O + y(t) Xzf =h. (9.11) 

Define the operator A by the equality 

A =  { / e  A0 . :  7rn [b + fdE(t)f(t)]=wHb+ f(d~ll(t)fl(~)'~-d~12(t)f2(t))--0}, 
in which:f(t)  = f~(t) @ f~(t); f~(t) 6 "H, s  E s Vt 6 R. It easy to see that  A = kerxZ n ker(r~X~),  
Further, the triple II~ --: {7-/, F~, F9 } in which F / =  r ~ X i  (j 1,2), forms a generalized BVS of the linear 
relation 

A. = { / 6  A0. :  ~ rcx2 /=  0}. (9.12) 

Indeed, the Green formula for A. is implied from the definition of the BVS II~ and the Green formula for 
A0.. It follows from the equality 

ker r2  = kerx2 =: A2 = {]  = {0 $ / ( t ) , b  $ tf(t)} e 0 2} (9.13) 

that the linear relation A2 := ker F2 is self-adjoint. The closability of the mappings F1, F2 is a consequence 
of (9.11). Making use of relation (5.15) and the definition of the operator A, we find an explicit form of the 
linear manifold UI~,(A): 

h 
92~,(A) := Ulx(A) fq A. = {hx = {Bh ~ t---S-~} : h E 7-(}. (9.14) 

We derive from (9.14) and the equalities X2hx = h, 7hXlhx = 7r192(A)X2hx (h 6 7-[) that an(A) 
coincides with the Weyl function M(A) corresponding to the BVS II~ : all(A) = M(A). By Proposition 6.2, 
the generalized BVS II~ is an ordinary one, that is, A. = A*, 91~(A) = Ulx(A), and the mapping F: A. --~ 
7-( @ ~ is surjective. 

Define now the embedding of the space o into I L identifying the vector I 6 ~ with the constant 
vector-valued function t(t) --- 1 6 b- It follows from condition (3) that  this embedding is isometric: 

(11,12)~ := f d(~(t)Ix,12)s = f d(~22(t)ll,12)s = (4,/2)s 

Conditions (3) and (4) also yield that ~ C ker B and the representation (9.3) for the vector-valued functions 
a12( )l, a2 ( )z (t e z)  hold. Making use of (9.13) and the formula for the 7-field, 7( )h = (r2 I 
92x(A))-lh = Izx = {hx, Ahx} implied by (9.11), (9.14), we find that for all l,k E ~, h 6 TI, 

f d( 12(t)t, h) 

[ k) 

Thus, the coincidence of P2(A) with the II~-preresolvent matrix 92n~.(),) is proved. 
(3) We give one more sketch of the proof of Theorem 9.1 in the framework of the Krein-Langer 

model [81]. To this end we introduce, as in See. 5, the linear manifold G = �9 | (7-I @ o),  which is the 
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algebraic tensor product  of the space 7-/(9 ~ by the linear space r of functions on C+ with finite support.  
Further we associate with the operator-valued function ~(A) a Hilbert space ~(~) ,  which is obtained in a 
canonical way from the linear manifold G metrized by means of the kernel (A - fi)-I(P3(A) - ~*(/~)) [see 

Consider the linear relation 

A 

in .~(P2) and the generalized BVS II~ = {7t (9 ~, Xl,X2} for A0. with 

A A 

Define a linear relation A* as a closure of the linear manifold A.  = {fi E A0. : ~rex~.[ ---- 0}. As in 
Proposit ion 5.1 (see also [269, one can check that  the mappings  F i := ~'nXi: A* ---* 7-/ (j  = 1,2) axe 
continuous and the triple II~ = {7/, F~, F2 } forms (an ordinary) BVS for A*. Define the embedding of 
into ~(~)  by the equality 

B l ---* l~o := l im( - i y ) ( l  | 5i~) E .q(9.t). (0.15) 
yToo 

The existence of a limit in (9.15) is implied by condition (3). Further,  it follows from conditions (3) and 
(4) and equality (9.3) that  the following equalities hold: 

(loo, koo)~(~)=u~,to~ y(Im ~(iy)l,  k)~ = lim~Too y(Im a22(iy)l, k)~ = (I, k)~; 

" /~'(~)-~(i~) = ( l ,Ps  (Ioo, 5~ | h)~(~t)=lim,too:y~ i~-,X l 'h)  n ~  
(9.16) 

the former one of which means that  the embedding (9.15) is isometric. 
For all l E o,  A E p(A2) we have (A2 - ~)-11 = 5;~ | l, where A2 := kerF2 -- kerx2.  Indeed, passing 

to the limit as n --~ oo in the relation 

#.  = {8~ | l - 6~. | l, ~5;~ | l - )~.6~. | l} E A2 (A. = in) 

and making use of the equality Ila~ | lilt(m) = y-1(Imp2(iy) l, I)7.l@s we obtain {6~x (9 l, loo} E A2 - A, that  
is, (A2 - A)-lloo = 6x | l. Now the last equality in (9.16) yields a2~(A) = Ps - A) -1 I 12. Further,  
it follows from (9.16) and the equality F~{6x | h, Ah~, | h} = h tha t  7(A)h = ~ | h for all h E 7 / a n d  

= [] 

2. Let A be a Hermit ian operator with gap (a,/3) and Aa, A~ be its extremal extensions defined 
by equalities (4.20). We characterize the II~-preresolvent matrices which correspond to the BVS's II = 
( n , q , r , }  with A2 E Ex A(a,fl) .  

L e m m a  9.1.  Let -oo  <_ a < ~ < 0% A be a simple Hermitian operator with gap (a,/3), E = R\(a , /~) ,  
II = {7-/, F1, F2} be a B V S  for A*. Then the .following equivalences hold: 

(1) M(A) E S ~ ( E )  ~ ;. A1,A2 E Ex A(a,/~) and (A1 - x )  -1 _< (A~ - x )  -1 Vx E (a,fl); 
(2) M(A) E S ~ ( E )  -: :. Ax, A: E Ex A(O4 fl) and (A1 - x )  - 1  ___ (A2 - x) -1 Vx E (a, fl). 
P r o o f .  Suppose that  M(A) E Su(E) .  Then (a,/~) C p(A2) since M(A) is holomorphic on (a,/3). 

Owing to the fact that  M(A) is nonnegative in the gap (a,  fl) we obtain 0 E p(M(A)) for all A E (a,/~) 
and in view of Proposi t ion 1.6 we have (a, fl) C p(A1). The  inequality (A~ - x) -~ < (A2 - x) -1 for all 
x E (a,/~) and, therefore, the implication ==~ in s ta tement  (1) are implied by formula (3.39). The  inverse 
implication follows also from formula (3.39). [] 

C o r o l l a r y  9.1.  Assume that A is a Hermitian operator with gap (a, fl), E = R \ (a, fl), II = 
{~,rl,r2} is a BVS /or A*, M(~) is the co,responding Weyl /unction. Then we have A2 E Ex A(Ot,~) 
and the extension A2 is transversal to Aa (A~) ff and only ff there exists an operator K = K* E [7/] such 
that M(A) - K 6 S+(E)  ( S - ( E ) ) .  
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P r o o f l  Assume that A2 E Ex A(Ot,/~) and the extensions A2, A~ are transversal. Then there exists a 
BVS IIl = {7-/, r~,  F~ } such that  A~, = ker r~,  A2 = ker r~. It follows from Lemma 9.1 and the extremal 
property (4.21) of the extension A,~ that the Weyl function M~ ()') corresponding to the BVS 171 satisfies 
the relation MI() ')  e S+(E).  In view of the equalities ker r2  = ker r~  = A2 we obtain from Lemma 5.2 
that M()')  = MI()') -b g for some g = K* e [7/]. 

Conversely, assume that MI() ')  ;= M(A) - g E S n ( E )  for some g = K* C [7-/]. Then MI()') is the 
Weyl function corresponding to the BVS II2 = t17"l, r"a, rg},  where r~  = r l  - KFz,  and Lemma 9.1 yields 
that A~' := ker ( r l  - g r 2 )  c Ex a(a,/~) and A2, A~' are transversal extensions of A. In accordance with 
Proposition 1.4 we have 0 e p[(A2 - ),)-1 _ (A~' - ),)-1] for all ), E (a,  fl). In view of (4.21) (A~' - ),)-1 > 
(A~ - ),)-1 for all )' e (a,  fl). Therefore, 0 e p[(A2 - ),)-1 _ (A,, ),)-1], i.e., A2 and A,, are transversal 
extensions. ["]  

Def in i t i on  9.1 [38]. An operator-valued function F(),) (e  RT~) is said to be from the class RT~[a, b] if 
F(),) is holomorphic and nonnegative on ( -oo ,  a) and F() ')  is holomorphic and nonpositive on (b, -bc~). 

It is easy to see that RT~[a,b] = S+[a, -boo) N S ~ ( - o o ,  b]. 

T h e o r e m  9.2. For the operator-valued function ~(),) = [" a11()') {/'12()') ~ tO be the 17C-prere,$oIvent 
" ~ a9_1()') a22()`) } 

matri: of a Hermitianoperator A with gap (a ,#) ,  cor§ to the BVS 17 = {7~,rl,r2} ,uch that 
A2 e Ex a(o, ~), A~(0) • ~, it is nece,sary and ,u~cie~t that conditions (1)-(4) fro~ rheore~ 9.1 hold 
and a11()') be holo~orphic on (o. ~). 

In this case the following equivalences hold: 
(1) the equality A2 = A~ (A2 = A~) is equivalent to the first (second)condition from (4.27) for 

M(),) :----- al l() ' ) ;  
(2) in the case of a simple semibounded below operator A >_ a the following equivalences hold: 

9.1(),) e Snes  -bc~) ~ all() ' )  C Sn(a,  -boo) r A1 > A2 >__ a; (9.17) 

(3) in the case of a simple semibounded above operator A < b the following equivalences hold: 

Pd()') C S ~ e e ( - o o ,  b ) < ;. ail() ' )  C S ~ ( - ~ , b )  d '~ A1 < A2 < b; (9.1s) 

(4) if A is a bounded operator (a <_ A < b) the following equivalences hold: 

9.1(),) C Rnee[a,b] ~ axl()') C Rrt[a,b] 4 :. AI = A -b ~ , a  < A2 < b. (9.19) 

P r o o f .  The first part of the theorem is a consequence of Theorem 9.1, Statement (1) is implied by 
Theorem 9.1 and Corollary 4.5. Implication P.I(),) E Sn$z(a,-boo) ==~ a11()') e ST~(a, -boo) in statement 
(2) is evident. Conversely, if all()') e S~(a, +oo), then by Lemma 9.1 we have (-oo,  a) C p(A1) n p(A~). 
Now it remains to note that according to (3.39) we have for all )' < a 

a22()') - a21()')a'~)()')a12()') = Pe[(A2 - ),)-I _ V(),)M(),)-lT,(~)] r ~ = Pz(A1 - ),)-1 [ Z > 0. 

The proof of statement (3) is analogous. 
(4) Let II = {~,  Fa, r2} be a BVS whose preresolvent matrix coincides with P2(),) and let U() ' )  = all()`) 

be the corresponding Weyl function. Combining statements (2) and (3) we obtain the equivalence 

P~()`) E RT~[a, b] -',;- all() ' )  e Rn[a, b] 

and the inequalities 

allfll 2 ~ tA2[f] <__ tAl[f] < tA2[:] < bllfll = Vf  C ~(tA1)  c ~(tA2).  (9.20) 
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By virtue of the relation an(A) = M(A) �9 Ru[a,b] we have Az �9 [7/], a < A2 _< b, a < A i _< b, where A i 
is an operator part of the linear relation At.  Inequalities (9.181 yield 

(A~f , f )  = (A~_f,f) V f  �9 ~ (AI )  = ~(AI) .  

Hence, taking into account the equality Ax(0) = ~(A1)  • we obtain that for all f �9 ~(A1)  there exists 
h �9 ~(A1)•  such that 

A2f  = A ~ f  + h  '~{f, A2f}  � 9  '.. f � 9  A I = A + ~ .  D 

R e m a r k  9.1. It is worth mentioning that inequalities (9.17), (9.18 / [in the sense of (9.20)] are fulfilled 
if and only if Al(0) ~ {0}, i.e., A1 is a linear relation, and they turn into the evident equalities provided 
that A1, A2 �9 C(b). 

A H2,-preresolvent matrix PAns corresponding to the BVS II = {7/, 1'1,1'2} will be called (after [41]) 
an M2,-preresolvent matrix if ker1"l = AF, ker1'2 = AK. 

Corollary 9.2. For an operator-valued function PA(A) = (a/k(X))~,k= 1 (holomorphic on C \ R+ with 
values in [7t @ 2,]) to be an M~-preresolvent matrix of a nonnegative operator A >_ 0 such that 2. • AK(O), 
it is necessary and sufficient that 

(1) PA(A) �9 R7-l~s 
(2) - lim  _oo x a = ( x )  = 
(3) s - l i m ,  l_~a21(x)=O; 
(4) 0 �9 p(Im ll(i)); 
(5) s - l im=t_~ all(X) = 0; 
(6) lim~ro(all(X)h, h) = + ~  Vh �9 7 / \  {0}. 
P r o o f .  According to Theorem 9.2, PA(A) is a H2,-preresolvent matrix of an operator A > 0. Making 

use of Proposition 5.6' and hypotheses (4)-(6) we conclude that a l l (~)  is a QM-function of an operator 
A > 0. To complete the proof it remains to apply the implication 

al l ( - -cx))  = ,s -- lira a l l ( Z )  ---- 0 =::::ff a l l ( Z  ) _> 0 VX <~ 0 ".' .~" a l l ( A  ) �9 S(O, C~). []  

Def in i t i on  9.2. Let A be a Hermitian contraction in b, ~ (A)  = b0, 2, be a subspace of [J. A H2,- 
preresolvent matrix PAge(A) corresponding to a BVS H = {7-(, Fx, 1'2} will be called a H+12,-preresolvent 
matrix of the contraction A if ker 1'1 = A -i- ~ ,  ker 1'2 = A+I. 

Recall that A+I = AM and A- I  = A t, are extreme extensions (in the sense of Krein [34, 5]) of the 
operator A. The general form of BVS's with ker1'l = A 5r ~ ,  ker1'2 = A• is given by the formula 
n•  = {n,x*rf,x-lr }, where 

r~l / = Pglf,  F~2 / = - n  V~ = { f ,A-4-1 f -q- . }  �9 A* = A4-1 -3 t- (9.21) 

and X*, X -1 �9 [fit, 7"/]. The Weyl functions corresponding to the BVS (9.21) take the form 

M+(A) = X*[MM(A) q- I]X, M_(A) = X * [ M , ( A ) -  I]X, (9.22) 

where MM()O and/FI~(A) are QM- and Qt,-functions of the forms in (3.73), (3.74). 
C o r o l l a r y  9.3. For the operator-valued function PA(A) = (a/k(A))2,k=l to be a l ' I_12,  (1-~q_12,)-preres0l- 

vent matrix of a Hermitian contraction, it is necessary and sufficient that conditiona (1)-(4) of Corollary 9.2 
as well as the following conditions hold: 

(5) an(A) e RT<[-1, 1]; 
(6 / limz$-l(all(X)h, h) = +c~(limxt+l(an(x)h, h I = -oo) Vh �9 7"[ \ {0}. 
P r o o f .  Necessity. Conditions (5) and (6) are implied by equalities (9.22) and Corollary 4.5. 
Sufficiency. By Theorem 9.2, PA(A) is a H2,-preresolvent matrix of a Hermitian contraction A. It follows 

from Corollary 4.5 and hypothesis (6) that ker F2 = A-1 = Ate. Owing to hypotheses (4) and (5) there 
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exists s - limx-.or Aall(A) = B~ and 0 e p(B1). Therefore B -~ , 1 = s -  limx-.~oa~'/CA)/A e [7-/1 and in 
accordance with Theorem 1.1 we have kerF1 = A d- ~ .  [] 

R e m a r k  9.2. A statement close to Theorem 9.1 was obtained in [63]. A somewhat weaker version of 
Corollary 9.2 in the case ~ (A)  = ~ was obtained in [41] (with the substitution of the condition an(A) E 
Sn(O, oo) by a stronger one: P2(A) e Sn(Bs oo)). 

Note also that in [41] hypothesis (3) is omitted. 
3. Here we give an inner description of the set of Hs matrices of1-Iermitian operators. 

Everywhere in this section ~Hs = ka21( ~)(all()O a22(~)am2(~)) and WIIs = kw21(~)(wll('~) W12(~))W22()0 stand for 
IIs and ae-resolvent  matrices of the form in  (8.13 / and (8.17). 

Let ( = )  1 I 1 O I (9.23) K = ~  c = v 2  i o 
P r o p o s i t i o n  9.1. Suppose that : A is a Hermitian operator in [}, s is a subspace of I)such that 

p(A;s # O, and the linear relation A* is s H = a BVS /or A*, i ,  a 
I,is matrix, 

VIIs  = (?3jk(~) j2k=l  = ( I  -- Wli, l~()t))(I  -~ WyIs -1Y. (9.24) 

Then (1) the operator-valued function 

1 (v/2V22(,,~) I-- V21()t) 
9"11(A) = (a[Xka~21 a22 a~2 = K V r I s  ~2Vl1(A) ,] (9.25) 

is the Weft function of the operator Ao = A I s177 corresponding to the BVS I-'I a '  = {s �9 s  

( f  = { f , f '  + l}, { f , f ' }  e A*,l e ~2) 

1 { ' - 2 r2{ f ,  f ' } )  ^ 1 ( F l { f , f ' } + P e . f )  (9.26) 
~ , f  = ~ - v f 2 r 2 { f , f  '} - v/~l 

(2) the operator-valued function ~I(A) is the H'I axs matrix of the operator 

S = {{f , f ' }  E A2 = kerF2 : F l{f ,  ff} + P s  = 0} = ke r f s  n ke r r lF~  ~, 

corresponding to the BVS H a` = {s r ~  t , F2 ~t } of the linear relation 

(9.27) 

S* = { / =  { : , / ' }  + {O,l} : { f , / ' }  e A*,l e s  + l=O} ,  (9.28) 

where 
1 

+ P /l. (9.29) 

P r o o f .  (1) Owing to the fact that the linear relation A* is s we have, by Theorem 8.2, 

0 e p(J - W~.(A)JWne(A) n p(J - Wne(A)JW~z(A)) 

and hence - 1  E p(Wns VA e p(A; s (Proposition 7.5). Therefore an operator-valued function 
V(A) is well defined by (9.24) and because of Theorem 8.2 V(A) is the Weyl function of the operator 
A0, corresponding to the BVS l~I v = { e @ s  } = { s 1 6 3  Since the BVS's l=I v and l~I a '  are 
re,a e  s 

the corresponding Weyl functions are connected by equality (9.25). 
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(2) Since 0 E p(ImV(i)) ,  a defect subspace ~x(A0)  of the operator Ao = A [ s takes the form [cf. 
(8.4~)1 

9lx(Ao) = 9lx(A) 4- (A2 - , ~ ) - 1 3  = 7()~),~ 4 (A2 - ~ ) - 1 , , ~ .  (9.31) 

Setting here 

A '~" 'T(~)/1 "4- (A2 - A)-x/2(E 91x(Ao)), 

we obtain 

/~A,(A) = {(A2 - A) -x , I  + A(A2 - A ) - I } ,  

.~ := {f~, Aft} = "~(A)/x + RA~(A)/2 - {0, 12} E ~x(Ao).  

Making use of (9.26), (9.32) we have 

P e f x  , ] =  ( P z 7 ( A ) h + P z ( A 2 - A ) - ~ 1 2 ) =  ( 1221 122~) ( 1 2 ) ;  

v~r~'/x = (Ih(#(A)/x + RA, (A)12)+ Ps -t-(A2 - A)-l/2) 
--V/'2(/1 -- /2)" ,/ 

[1211  "l- 1221 1212 ~ a22 )(I:). 
This implies that ~1 (A) takes the form 

(41 42~ (-v~z 
~I(A) \ =~ 4= ] = \ 12=I(~) 

_2H_~(~) 
= ~ j ~ ( a 2 1  -]- a 2 2 ) H - 1 ( ) Q  

0 '~ f1211()~)-'~-1221()~) a 1 2 ( , ~ ) d l - a 2 2 ( , , \ ) ' ~  

V/2~-JcI-1(/\)(1212 q- 1222) 
12== - (a22 + =2~)H-l(~)(=x2 + a2=) J ' 

--1 

(9.32) 

(9.33) 

(9.34) 

where H(A) = an(A) + a21(A) + 1212(~) -~- a22(,,~). 
Further, the fo110wing formula for the defect subspace 92;~(S) of the operator S holds: 

92x(S) = {fx = V(A)/+ (A2 - ~)--1/ : I E ,~}. (9.35) 

Indeed, in view of (9.31), (9.32), (9.28), we have the equivalence 

fx E S* -,' ,'- F2('~(A)/a + RA=(~) /2 )  -- 12 = 0 -', ,'- 11 = 12 =: I. 

Now for all fx = {f~, Aft} 6 ~ ( S )  we find 

F~I/A =-V~l, V~F~I/A =(all +1212"4-1221 + 1222)l = H(A)/. (9.36) 

This implies that the Weyl function Mr(A) and the V-field 71(A) corresponding to the BVS i-i al take the 
form 

J~[l()t) = --23-I--1( , ,~) ,  "/t (~) = V~[7(A) + (A= - A)- I ]H-I (A) .  (9.37) 

It is easy to check that 

& := kerry'  = kerr2 =: A2, S2:=kerr~'={]={y,f'+t}:r2{f,f'}+l=rl{f,f'}+P~f=O}. 
(9.38) 

Taking account of (9.37), (9.38) and the resolvent formula (3.39), we transform the element a~2(A ) of the 
matrix (9.34): 

! 
1222 := a22 - (1222 + a21)H-1(1212 + 1222) + P~[(A2 - A) -1 + 71(A)M~-l(A)7~(A)] [ 
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= P s  ~)=! + "rl(A)M~-I(A)7~.(A)] I O = Ps ~)--1 [ O. (9.39) 

Combining (9.34), (9.37), and (9.39) we obtain the desired coincidence of the matrix 921 (A) with the prere- 
solvent matrix corresponding to the BVS II ~ 

Corol la ry  9.4. Under the assumptions of Proposition 9.1 the operator-valued function V(A) defined 
by equality (9.23) takes the "form 

: 2Ps -.,~/) -1 I O .[ -- -vf2.Ps (,~) ~ V(A)= 
: ~ I - -V/~f l (X)  rO MI(~) , ] ' 

(0.40) 

where & = ke r ry '  [see (9.38)1, MI(A) and ~tl(~ ) are the Weyl function and the "),-fiord of the operator S 
corresponding to the BVS (9.29). 

R e m a r k  9.3. One can deduce formula (9.34) for 92~(A) from (9.25) and the following equality implied 
by (8.58): 

V(A) -- -(X2a~(A) + X22)(XnPA(A)+ X12) -1, (9.41) 

where the matrices Xij are defined by (8.57). 
T h e o r e m  9.3. Let A be a Hermitian operator in [} and let O be a subspace of O such that O 9192 = {0} 

(92 = ~(A)Z),  p(A; o) r o, the linear relation A* is O-regular and &(O) • O, where S2 is an operator 
of the form in ( 9 . 3 8 ) .  Further, let II = {o, r l , r ~ }  bea B v s  for A* and W,~(~)  be the corresponding 
IIO-resolvent matrix. Then 

( I )  0 e p(w21(A)) V,~ e p(A; O); 
(2) -1  E p(WH~(A)) VA E p(A;O); 
(3) the operator-valued function 

v(~)  = (v,,(~))~,~=~ = i(z w(a))(I + w(~)) -~ s (9.42) 

is the Weyl function of the operator Ao A r O• corresponding to the B VS I-I v {12 @ s p" v',x [see 
(8.52)] and satisfies the following hypotheses: 

(a) v(:~) : v ' G )  E R ~ ;  
(b) 0 E p(Xm V(i)); 
(c) s - limytoo iy vn(iy)  = - 2 I ;  
(d) s - lim~too v21 (iy) = I. 
Conversely, if the operator-valued function W( )t) = (Wjk()O)2k=X with values in [O~)O] is holomorphic 

on the domain Gw, 0 E p(w21(A)) for all A E a w ,  -1  E p(W(A)) for all A E a w  \ R, and the operator- 
valued function V(A) defined by (9.42) satisfies hypotheses (a)-(d), then W(A) coincides on a w  with a 
IIO-resolvent matrix of an O-regular Hermitian operator A corresponding to the BVS II = {O, F1, F2} such 
that O 3_ $2(0) and the linear relation A* is O-regular. in this case p(A; O) D Gw. 

Proof .  Necessity. Condition (1) is a consequence of the definition (8.17). Condition (2) follows from 
the O-regularity of A* and was mentioned in the proof of Proposition 9.1. In view of (8.53) and (9.42), 
V(A) is connected with the Weyl function M2(A) corresponding to the BVS (8.52) by the obvious equality 

V(A) ---- -M2(A) -1 , (9.43) 

which proves (3). Relations (a)-(d) follow from (9.40) and the assumption $2(0) 3- O. 
Sufficiency. Suppose that V(A) satisfies hypotheses (a)-(d). Then the matrix 9/I(A) = KV(A)K* + C 

of the form in (9.25) satisfies the conditions of Theorem 9.1 and, therefore, it is a IIO-preresolvent matrix 
of a Hermitian operator S E C(b) corresponding to the BVS II~ 1 = {o,r~,,r~,} such that S2(0) • 0 
(S, :=  k e r r ~ l , i  = 1,2): 

921(A)---- ( M I ( A )  "r~(X) [ O / (9.44) 
kVs Ps -- ,~)--1 I O " 
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Here MI(A) and 71(A) are the Weyl function and the -r-field corresponding to the BVS H~ t . It follows from 
(9.44), (9.23), and (9.25) that  

V(A) = K-X[9.11(A) - C](K*) -x = Iz - V~71 (A) [ ~ MI(A) ] "  (9.45) 

Now we define a matrix 92(A) setting [see (9.41)] 

~ ( ~ )  = (ajk(.~))$2.,/=l = . ( X ; 2  V(,~) -~- X ; 2 ) ( X ~ l V ( ~ )  + X ~ l )  -1 .  (9.46) 

Here the matrices X/y are the same as in (8.57). Making use of (9.46) and (8.57) we have 

1 ( -vn+(I+  v i 2 ) v ~ 2 1 ( I +  v21) vu+(I+v~2)vGl(I-v2~) ) (9.47) 

Hence, taking into account formula (9.45) for V(A) and ~he resolvent formula (3.39), we obtain 

a22(A) = 1P.~[2($2 - -  A )  - 1  - -  271(A)M11(A)7;(~)] [ ,t~ :-- P z ( S 1  - A) -x [ s (9.48) 
z 

- 1 p ~ [ 2 ( S 2 - A ) - 1 + V ~ 7 1 ( A ) M l X ( A ) ( 2 - x / 2 7 ; ( X ) ) ]  I s = - P s  -1 I ~-v /2P~71(A)Ml(A)- l ;  a21(~) 
(9.49) 

a11(~) = 212Ps - ~ ) -1  _ ( 2 .  I s  - v/2PeT~(A))MIl(A)(2 �9 I~ - v/27;(A))] I 

= P z ( S 1  - A) -1 I ~ + vf2Ps (fl) + vf2M11 (A)7;(~) - 2 M l l ( A )  �9 (9.50) 

We define a linear relation A* [cf. (9.28)] by the equality 

A * =  {{f,f'}=]-{O,l}: ] E S*, {0, l} ~ = 0 } .  (9.51) 

It easy to check that the triple H = {~, I'1,1"2} with 

F1 {f, f '}  = ] - P e r ,  r2{f ,  f '}  = - - - ~ 2 F ~ ]  (9.52) 

forms a BVS for A*. 
We show that  the rIs matrix corresponding to the BVS II coincides with the matrix 92(A) of 

the form in (9.47). A defect subspace 9~x(A0) of the operator 

A0 := A fl ~•  = S N ~ •  = S n {0, ~x} (9.53) 

takes the form [cf. (9.31)] 

92~(A0) = fftx(S) 5r ($2 - A)-~s = 7,(A)~ -i- ($2 - A ) - ' s  (9.54) 

that is, consists of the vectors fx = 71 (A)/1 + ($2 - A) -112. Put  

fx = {fA, Afx} = ~,(A)/, +/~s,(A)/2 - {0,/2} =: f -  {0,/2} E ~Ytx(A0). 

By the definition (9.51) ix E A* if and only if 

F ~ j ~  - V~12 = FI~'(~I(A)/~ + hs,(A)/~) - v~12 = M~(A)/~ + 7*(A)/~ - v/212 = 0 .  
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The last equality is equivalent to the following one: ll = M1 (~)-I  (V/2- V*(~))/2" Thus- 

f~ e 9Ix(A) ~.-> I x ' =  ($2 " ,~ ) -1 /_{_  Vl(~)M11(~)(~v/~_ V~,(~)) l _-- (81 -- ,'~)-~l/Jl- V~VI(A)Mfl(,~), (9.55) 

where S~ = kerF~ ~ and the defect subspace of the operator A = kerFt  s kerF2 takes the form 

9Ix(A) = {f~ = [(S~ - A) -1 + vf2vI(~)M1 (~)'~1]/: l ~ ,~}. (9.56) 

We are now in a position to find the V-field V(A) and the  Weyl function M(A) corresponding to the BVS H: 

I ~ ^ r=A = - ~ r l  {n~,(a)t + V~.-~I(~)MI(~)-ll} - - - I .  (9.57) 

Therefore 
v(,x)t = - [ ( s ,  - ~,)- '  + v S v , ( ) , ) u , ( ~ ) - ' ] t .  (9.58) 

And finally we have 

M(~)t = r l  q(~)t = -V~F~ '  [Rs, (~)t + v~;rl (X)Mx (~)-I t] - V~(Sl - ~)-~l + v~P~vI (~)MI (~)-I t = 

= [v~MI(A)-IV~(~) - 2MI(A) -1 -I- Ps -- A) -1 n u v/2Ps (9.59) 

We mention also that according to (9.52) 

A2 := ker F2 = ker F~' =:  S1. (9.60) 

A comp~son of relations (9.47)-(9.5O) and (9.58)-(9.6O) leads to the equality 

pj(A) = (' M(A) V*(~) r ~ ) (9.61) 
\P~7(A)  Pe.(A2 - ~) -1  r ,s , 

which means that  PJ(A) is a II~-preresolvent matrix corresponding to the BVS II ~ = {~, Pl,  F2} of the form 
in (9.52): ~(~)  = 9an~(~). 

We now show that W(~) coincides with the II~-resolvent matrix of the operator A corresponding to 
the BVS II ~ = II = {o, r l ,  F2}. Rewriting equalities (9.46) and (9.42) in the form 

k X~l X~l 
we calculate the composition of the linear-fractional transformations which, on account of the assumption 
0 E p(w21(~)) for all ~ E Gw, takes the form 

~(/~) : ( -X1.2 --X2"2)(J~" I )  X; 1 X~ 1 O W (,,~) 

( , (~)  ( (~ __./)--1 ( ,t/,)2qlw2 2 to2ql ) (9.63) 
= Wll W12 W21 W22 - ~ "  W11W211W22 - -  W12 WllW2? " 

Since P.l(,~) = PAN~(A) we have by virtue of (8.17) W(A) = Writ(),), that is, W(s coincides with the IIs 
resolvent matrix corresponding to the BVS H ~ = {~, F1, F2 } of the form in (9.52). It remains to note that 
s _L 82(0), and in view of (9.51), (9.52) we have 

& := kerry' = { ]  = { I , I '  + t}: r2{Y,Y') + t = r l { L  1'} + P d  = 0}. (9.64) 
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This proves the theorem. [] 
4. T h e o r e m  9.4. Let A be a Hermitiar~ operator in O, s be a subspace of O, p(A; s # O, II = 

{s P~, P2} be a BVS for A* such that A2(O) _L s and wnz(A) be the corresponding Hs matriz. 
Then we have: 

(1) 0 e p(w~(A)) /or all A e p(A;s 
(2) the operator-valued function 

[ w~(~)-~w~(~) w~(~)-~ '~ 9/(I) 
k W22(~)W12("~)--lWll('~) -- W21()t) W22('~)W12 ( '~) - 1  ] (9.65) 

may be holomorphically continued on C+ ~ C_ to an Rz$e-function with values in [s ~ s which satisfies 
hypotheses (1)-(4) of Theorem 9.1. 

Conversely, ~f an operator-valued f?znction W(~)  = (Wjk (,,~))2'k__ 1 wi th  v a l u e s  in  [,~ t~) ,,~] i8 holomorphic 
on a domain Gw, 0 e p(w~a(A)) for all A e Gw, and.gX(A) satisfies hypotheses (1)-(4) of Theorem 9.1, 
then W(A) is a Hs matrix of an s Hermitian operator A, corresponding to the BVS 
n = {c ,  r~, r~}  such that Z • A2(O). 

The proof follows from Theorem 9.1 and Proposition 8.2. 
R e m a r k  9.4. A result close to Theorem 9.4 is contained in [63]. Note also that the inverse problem 

for s matrices of isometrical operators was considered in [3]. 
R e m a r k  9.5. We omit the sharp statement of a version of Theorem 9.2 in terms of the resolvent 

matrix Wns Note also that one can formulate the condition PArt~(A) E S(]R \ (a, fl)) with the help of 
Wr~a(A) in the following way: 

I/Vns 4 > 0( ,4-'~, Vr~s ) - 4 > 0), VA E (a, fl), (9.66) 

/ r T \ 
where J p =  ( 7 _q~)" The property of Wn~(A)of being holomorphic on (a, fl), as well as the inequality 

k / 
(9.66), are implied by the elementary identity 

wna(~)J~W~a(~)  - 4 = Y~-l(~)[~na(A) + 9ah~(~)]Y~-l(~) *, (9.67) 

where the operator-valued function Y2(A) is the same as in (8.20). In the case (a, fl) = ( -0% O) it follows 
from (9.67) that the following equivalences hold: 

~ , e ( ~ )  e s(a, ~ )  -: :. w H ~ ( ~ ) J , w ~ : ( ~ )  - 4 > o w e c ,  
~n~(~)  e s - ( - ~ ,  b) .: ,. w n d ~ ) 4 w r ~ ( ~ )  - 4 < 0 w e c ,  

Re A < a; (9.68) 
ReA > b; 

10. T R U N C A T E D  M O M E N T  P R O B L E M  

Application of Theorem 4.2 and Proposition 8.10 to the truncated Hamburger, Stieltjes, and Hausdorff 
moment problems enables one to  describe all of its solutions as well as solutions whose supports in some 
intervals are finite or empty. 

1. Let {sk}0 ~'* be a strictly positive sequence, so = 1, O = Cn[t] be a Euclidean space of polynomials of 
degree < n endowed with the inner product 

n n n 

(f'g)~ = Z sj+kajflk ( f  = E aktk' g = Z flktk E Chill). (10.1) 
j,k=O k=o k=0 

Let A be the operator of multiplication by t in O and {Pk(t)}~' be the staadard basis of orthogonal 
polynomials of the first kind. Then the following equalities hold: 

Aek := APk(t) = tPk(t) = bk-lPk-l( t)  + akPk(t) + bkPk+l(t) (0 < k <_ n - 1), (10.2) 
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in which b-1 = 0, bk > 0, ak = gk (0 < k < n - 1), ~ (A)  = I1o = f} @ {P,(t)}. 
Clearly, nm(A) = 1. Consider some self-adjoint extension A0 = A~ of A, whose matrix with respect to 

the basis {Pk(t)}~' is tile Jacobi matrix 

/r a0 b0 0 .. .  0 0 ) 
b0 ax bl . . .  0 O 

. , .  

Ao .;. .;. .;. :]] an--1 b:._~ 1 
\ 0 0 0 . . .  bn-1 an 

(a0 00 0 
b0 al bl . . .  0 

. . . . . . .  (10.3) A "0 "0" 0 ::: 
0 0 0 . . .  b,,-1 

The orthogonal polynomials Pk(A) and Qk(A) of the first and the second kinds can be expressed in terms 
of the Jacobi matrix by the formulas 

Pk(A) -- de t (A-  A~ k)) Qk(A) = de t (A-  .~k)) (1 < k  < n + I), (10.4) 
bob1 . . . .  bk-j ' bob1 . . .  bk-i 

in which the matrix A~/') can be obtained by removing from the Jacobi matrix its last n + 1 - k rows and 
columns, and ~(k) can be obtained by removing from A(0 k) its first row and column. 

P r o p o s i t i o n  I0.I. Let A be a Hermitian operator of th e.form (10.2) in b = C,[t], s = {e0}. Then 
(1) the triple H = {C, F1, P2}, in which 

rx]=c, r,]=(f,P.(t))~, ]= {I, AoI+Ce.} E A*, (10.5) 

forms a BVS for the linear relation A* and A1 := ke r r l  = Ao; 
(2) the corresponding Weyl function M( A ), IIO-preresolvent and IIO-resolvent matrices 9~n~(~ ) and 

Wns take the f o rm  
M(A) = b . P . + x ( A ) / P . ( A ) ,  (10.6) 

9.1ns = l (b .Pn+l (A)  1 ) 
P.(A) 1 -Qn(A)  ' 

Wn~(A) = : ( -q" (~ )  ~b~Q~l ~ 
P.(~) b.P.+,(A) )" \ 

(10.7) 

Proof .  (1) The first assertion is obvious. 
2) It is easy to see that the defect subspace 91~ is generated by the polynomial kernel h(A, t) at the 

point A, i.e., by the vector 

n n 

A := h(~,t) ~ ]  P~(A)Pk(t) = ~ P,(A)e~(e m~). 
k = 0  k = 0  

(10.8) 

rl A = r l  {f~, Afx } = r l  {f~, A l f~  + b,,P,,+x (A)e,, } = b. P,,+I (A). 

Therefore 
r2:~ = (A ,  e.)~ = (h(~, 0, P-(0)~ = P-(A)- 

This implies that equality (10.6) for M(A) holds. Equality (10,10) yields 

(10.9) 

(10.10) 

fA 1 " 
S(;9~ = P.(A) ~ ~,(;91 = p.(;~----~ ~ P,~(A)ek 

k=O 

,...y,(~)/= ?-(~)I k~.,opk(~)(/,~k) " =  
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Consequently, 

a2,($) = PgT(~) = Po(A)/P,~() 0 = p , ($ ) -1 ,  a12(A) = 7*(X)e0 = P . (~) -~ .  (10.11) 

Next we find an expression for a22(A) ((A2 - -  ~)--1~,~). (A2 - -  ~ ) - - l [  = n--1 = Y:n,=o ckek since A2 = A4  ~ .  
rE: "tn--1 Therefore, the vector ~'= 1. t~I0 satisfies the equation 

(A~ ") - ~)~= ~'= col {1 ,0 , . . . , 0 }  e c". 

Taking account of the expressions (10.4 / for Pn(A / and Q,,('~) we obtain 

co = ((A2 - $)-1e0, e0) = -Qn(X)/Pn(X). (10.12/ 

It is easy to see that  ck = Q k ( A ) -  c0Pk(A) (1 < k < n - 1). Combining (10.6), (10.11), and (10.12) we 
obtain the expression (10.7) for 9an~(~). 

Further, the matrices P.lrIs and Writ(A) are connected by equality (8.17), Making use of the 
Liouville-Ostrogradski~ formula [4, 6] 

b,[P,(~)Q,+~(~) - Q,(~)P,+~(,~)] = 1, 

we obtain from (8.17) equality (10.71 for WNs 
R e m a r k  10.1. Formula (10.7) for Wns is also implied by formula (8.22). Indeed, the subspace 

ff~0 = (A - ~0)~(A) consists of the polynomials f(t) with f(~0) = 0. Therefore, for all f = )-~-o a~P~(t) 
we have 

"P(~)f = f()O = akP~(~), Q(~)f  = Ps - )0 -1( I  - 79(~))f = E akQk()Q (10.13) 
0 0 

and hence 

7~*(~) = 7~*(~)~ = ~ Pk(~)ek = h(L t) = fx(t), 
0 

n n 

Q*(~) = Q*(A)~ = E Qk(A)ek = E Qk(~)Pk(t). 
1 1 

Taking account of equalities (10.5), (10.8)-(10.10), we obtain from (10.14), (10.15 / 

r275*(.k) = (h(X,t)e.)b = P.(X), F175*(.X) = rl{h(~,t),~h()~,t)} = b.Pn+l(X), 

r2Q ( ) Ok(~)ek, e,  
b 

Q,,(~), FIQ*(,~) * - * = = F I { Q  (,~),,~Q ( ) Q + e 0 }  

(10.14) 

(10.15) 
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= F1 {Q*(&), A1Q*(~) + bnQn+l(~)en} = bnQn+l(~). (10.16) 

Formula (10.7) for Wn~(&) is implied now by (8.22) and (10.16). 
2. Consider the truncated Hamburger moment problem 

/_" // sk  = t k d q ( t )  (0  < k < 2/2 - 1 ) ,  S2n ___~ ~2ndo-(-t) .  ( 1 0 . 1 7 )  
oo oo 

We denote by V(s; R / the set of all solutions o'(t) of problem (10.17) and by V(s; JR) the subclass of such 
cr(t / E V(s; IR) for which the inequality in (10.17 / is replaced by the equality 

/? 82n = t2n  do-(l~). ( 1 0 . 1 8 )  
o~ 



The next theorem was proved by Nevanlinna [38] (see also [4, 6]). 
T h e o r e m  10.1. Let {sk}0 2n be a strictly positive sequence, {Pt(A)}~ +1, {Qk(A)}~ +1 be orthogonal 

polynomials of the first and the second kind. Then the formula 

V da(t) b,Q,,+l(A) + r(A)Q,(A) 
(10.19) 

00 7-- A = b .P .+I(A)  + r(A)P.(A) 

establishes a bijective correspondence between a(t) e P'(s; R) and r ( A ) e  R. In thin case a(t) e V(s, R) if 
and only if limyToo y- l r ( iy )  = O. 

P r o o f .  Let A be an operator of the form in (10.2) in a Euclidean space 0 -- C.[t] with inner product 
(10.1). ~ = {I}, n = { c ,  r l ,  r~ } be a BVS for the linear relation A* of the form in (10.5). We show ~rst 
that the set of solutions of the moment problem (10.17) coincides with the set of/~-spectral functions of 
the operator A, 

a(t) e V(s;R)  -~ ~- a(t)  = (EA(t)U,I), (10.20) 

and a(t) E_ V(s_, R) [i.e., equality (10.18) holds] if and only if -~(0) = {0} (-'.' y .~i is an operator). 
Let A = A* be a minimal extension of the operator A acting in a space _~ ___ D and A ~ be its operator 

part in the case A(0) r {0}. It is clear that dimA(0) = dimA*(0) = 1 since A is a minimal extension. Let 
loo �9 .~(0), Ill.oH = 1. Then the following equalities hold: 

(A')k][ = Ak]I(O < k < n - -  1), A ~  = ( A ' ) ~  + coloo, Co �9 C. (10.21) 

Indeed, assume that equalities (10.21) are proved for all k _< p < n - 2 and show that (A')P+ll[ -- AP+~I. 
Since Ak][ 3_ A*(0) = {P~(t)} for all k < n - 1 and A(0) C A*(0) @ (~ @ 0), we have AkI _l_ .4(0) for all 
k <_ n - 1. Therefore the inclusions 

{APl, Ap+I~} �9 gr A C A', {(A')P~, (A')P+I~) �9 A' 

yield AP+~]I = (A')p+IL The last equality in (10.21) is implied by the relations 

{A"-II ,  A"I[} �9 g r A  C A', {(A')"-II ,(A')"I} �9 A'. 

Now we obtain from (10.1) and (10.21) for k + j _< 2n - 2 the equality 

= (t k, tJ)~ = (A~I , AJll) = ((A')*][, ( A ' ) J I )  = f~ *k+id(E(t)[, ][), (10.22) 8k-}-j 

in which E(t)  = E A ,  (t)P~(A,) is a spectral function of the linear relation .4. Analogously, taking account 
of (10.1), (10.21), we find 

= (A~lI, d~-al[) = ((A')"~[ + coloo, d~-aI) - ((A')"]I,A"-I]) ._= f~ t2~-ad(E(t)['][)' S2n--I 

= (A'~,A"]) = ]](A')"I + c01ooll 2 = [I(A')"II[~,(d.) + ICo] = = f~ t2"d(E(t)I,I) S2n 

+lcol 2 _> fmt2nd(E(t)I, I). (10.23) 

It follows from (10.23), in particular, that 

s2n - f ]  t2ndo'(t), o'(t) .~- (E~(t)U,~). (10.2~) 
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Relations (10.22), (10.23) show that each ~-spectral function (E(t)],I) of the operator A is a solution of 
problem (10.17). 

Conversely, assume that a(t)  is the solution of the moment problem (10.17) and A' = (A')* is multi- 
plication by t in L2(d~r). Consider the self-adjoint linear relation 

2 =  {{f @ {0},A'f $ c } :  f '  E D(A'),c E C} (10.95) 

in a Hilbert space ~ = L2(da) @ C with the operator part A'. We define the embedding i of the space 
1} = C. [t] into t}, setting 

i(tk) =tk e {0} ( 0 < k < . - z ) ,  i(t")=t"eco, (lO.26) 

where co = (s2, - f~t2"dcr(t)) 11~. By virtue of relations (10.22) and (10.23) the embedding i :  I~ ~ ~ is 
isometric, which enables us to consider A as an extension of the operator A with exit in Ij. a(t) is an ~- 
spectral function of A since a(t) = (Ea,(tfl, I) and Ea(t) = EA,(t)P, where P is the orthogonal projection 
in ~ onto L2(dcr): 

a(t) = (Ea(t)~,~) = (EA,(t)]I,i), Z +  {~}. 

The implications 

follow from (10.21), (10.23). 
AklI = (A')k~ (0 < k < n). 
minimal. 

2(0)  = {0} ~.. ~o = 0 :. ~(t) e v(.~; R) 

Conversely if a(t) E V(s; R), then co = 0 and relations (10.21) take the form 
Hence, fit (A') D [J '.. A(0) _L I~ ==~ -4(0) = {0} since the extension 2 is 

Thus, in order to describe all solutions of problem (10.17) it is necessary and sufficient to describe the 
~-spectral functions cr(t) of the operator A. On account of the relation A2 := ker F2 = A Jr ~ we derive the 
desired assertion from Proposition 10.1 and Corollary 8.2. 

R e m a r k  10.2. As shown in Remark 10.1, formula (10.7) for Wne(~) is implied by (8.22). In view of 
(10.13)--(10.15), identity (8.23) takes the form 

b, (Q, (A)Q,+I (#)  - Q,+I(A)Q,(#) Qn+l()OPn(#) -- Q n ( ~ ) P n + l ( t  z) 
\ P.+I(A)Q.(#) P.(A)Q,,+I(/z) Pn(A)P,,+I(#) P.+I(A)Pn(#) ,} 

:(:, 0 

Jr- (~ -- A) [ ~k=Xn Qk( A)Qk(/~) - Ek=l, Qk(A)Pk(#)) (10.27) 
~--~'-~k=iPk()Qk(#) Ek=0Pk(A)Pk(/z) 

and coincides with the well-known Cristoffel identity [4, 6]. Note also that the general identity (8.23), as 
well as the Cristoffel identity (10.27), are consequences of the Green formula. 

3. Consider a truncated Stieltjes moment problem: 

fo fo sk = tkd~(t) (0 < k < 2 n -  1), s2, >_ t.2nda(t). (lO.28) 

As is known [36, 38], problem (10.28) is indeterminate if and only if the sequence {sk}0 ~n is strictly positive 
on (0 ,~) ,  i.e., the sequences {sk}02n, {sk+l}0 ~"-2 are strictly positive. Following [38] we introduce the 
Stieltjes polynomials 

P?.(t) 
Pn(O)' . Pn+l(O) Pn(O) 

and their conjugated polynomials Q~+.(t), Q,+.+I(O. Here P~+.(*), Q~+.+,(*) are normed by the conditions 
PL(O) = QL+~(0) = 1. 
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P r o p o s i t i o n  10.2. Let the sequence {s~}~" be strictly positive on [0, e~) and A be a Hermitian operator 
in b = C,[t] of the form in (lO.e). Then 

(I) A is a positive operator; 
(2) the triple IX 1 { C ,  t t = F1, F 2 } with 

1 rl]= P.(0)(f'P")~' r l /= b, Pn+l(O)(f, Pn)-  cPn(0) (10.30) 

forms a BVS for the linear relation A* = {] = {f, Aof  +cPn} : f E b,c e C} such that A~2 := kerF~ = AK, 
A~ := ker F~ = AF; 

(3) the corresponding Weyl function MI(A) and IIls matrix Wri,s take the form 

P+.(A) 
M I ( A ) -  p++a(A),  

( '  
Wn,~(A) = =  ~ _p++x(A ) P+,(A) ] "  (lO.31) 

P r o o f .  (1) The positiveness of the sequence {sk }o 2" enables us to consider C,[t] as a Euclidean space 
endowed with the scalar product (10.1). The positiveness of the operator A is a consequence of the property 
of the sequence {Sk+l }2n-2 to be strictly positive. 

(2) Clearly, the triple HI is a BVS for the linear relation A* and the relation kerF~ = A$ {0, e.} = AF 
holds. Further it is easy to see that 

,P~+I(O) ( A~ ") , )  A=:=kerF2={f, Jof+(f,e.) p--~ }=gr 0 . . . 0 b . _ ~  5 .  ' (lO.32) 

where A~ ~) is a submatr ixA0 of the f o r m i n  (10.3), which c a n b e  obtained by removing from the matrix 
A0 its last row and column, 

an =an.JcbnPn+l(O)/Pn(O) = -bn-lPn-l(O)/Pn(O). (lO.33) 

In view of (10'4) Pn-x(O)lPn(O) = -b~- i  det A~"-I)/det A~"); hence 

det A2 = a,, det A~ n) - b2 , -x  det A ('~-a) = 0. (10.34) 

Equality (10.34) yields A2 = AK. 
(3) Let i x  = {h(A,t),Ah(A,t)}. Then we have 

I ^ r ~ f  x = P,,(O) -1 (h(A, t), P.( t ) )~ = P.(A)P.(O) -a = P+.(A), 

I ^ 
r 2 f ) ~  : bnPn+l(O)Pn()O - bnPn+l(A)Pn(O) ~-- -P2n.{_l(A). '{-  ( 1 0 , 3 5 )  

Hence we obtain relation (10.31) for M1 (A); moreover, the above-mentioned coincidence A2 = AK is implied 
by the equality P+~+a(0) -- 0. 

Further, as in (10.16) we find 

n 

1 

= P . ( O ) - a Q . ( A )  = Q+,,(A), 

ri~*(~) = -bn[Q2n+l(~)Pn(O) + Pn+I(O)Qu(~)] -- -Q2+n+I(A) �9 

Formula (10.31) for Wn~(A) is implied by Theorem 8.1. 

(lO.36) 
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In the following theorem 17"(s;R+) stands for the set of all solutions of problem (10.28) and V(s; R+) 
stands for the subclass of a(t) E V(s; R+) for which the inequality in (10.28) is replaced by the equality 
s~. = f o  t~"d~(t) �9 

T h e o r e m  10.2 [36]. Suppose that the sequence {st,}o 2" is strictly positive on (O, co); P+,(A) and 
P+,+ I ( A ) are Stieltjes polynomials, Q+, ( A ) and Q+,+I(A) are conjugated polynomials. Then the formula 

~ oo da(t) Q+2n()~) - r()t)Q+2n+l(~) 

t -  a = p+(,~)-  ~-(;9p+,+~(;9 
(10.37) 

e~tabIishes a bijective co.espondence between ~(t) e f~(~;R+) and ~(~) e ~ = ~(0, oo). 
~(t) e V(s; R+) if an,/only if 

lim jr( iv)  = co. 
~,oo 

In this case 

(10.38) 

P r o o f .  Let A be multiplication by t in I) = C,[t], II~ = {c,r~,r~} be a BVS of the form in (10.30). 
Application of Propositions 10.2 and 8.10 enable us to prove Theorem 10.2 in the same way as Theorem 
10.1. We clarify only the origin of condition (10.38). Owing to the fact that  A2 = AK is an operator and 
limv?oo iyM(iy) = C < co [see (10.31)], the M-admissibility condition for the function r(A) takes the form 

lim y-l(T(iy)  + M(iy))  -1 = 0 ~ lim iy(r(iy) + M(iy)) = co -: ~- lim yr(iy) = co. 
vToo uToo yToo 

R e m a r k  10.3. A description of all solutions of the Stieltjes moment problem was obtained by Krein 
[36, 38] (canonical solutions were described earlier by W. Stieltjes). 

4. In this section, we describe solutions of problem (10.17) that  have no mass in given intervals. 
Let a sequence {Sk} 2" be strictly positive on ]R\((x, fl). It is well known that  this condition is equivalent 

to the strict positiveness of the sequences {sk}02'~ and {s~}02"-2 with 

,S; : Sk+  2 - -  (O( -~- ~ ) S k +  1 "q- O/3S k. (10.39) 

The positiveness of the sequence (10.39) implies that an operator A of the form in (10.2) acting in b = C,[t] 
has a Spectral gap (5, Z) (see [79]). 

Let f(z)  be a function holomorphic on a domain G, containing the segment [(x,3]. Denote by 
nullI(~) ((x, fl) the number of its zeros on the interval (5, fl). The notion of nullf(z)[ex, fl] has the same 
meaning with respect to the segment [(x, 3]. 

L e m m a  10.1 [79]. Suppose that A is a Hermitian operator, n+(A) = 1, and one of its Weyl functions 
M(~) is meromorphic with noncancelable representatior~ M(~) = s  Then the operator A has a 
gap (5, Z) ff and only ff 

(a) 6 :=  f ~ ( Z ) f ~ ( ~ )  - ya (~ ) f~ (Z)  _> 0; (10.40) 
b) either null/2(~)(~,fl ) = 0 or nully2(x)[a,~ ] = 1. 
The set Ex A(Ot,/~) is infinite if and only if inequality (10.40) is strict. 
P r o o f .  In accordance with the Calkin theorem [34], the property of an operator A to have a spectral 

gap ((x, fl) is equivalent to the existence of a self-adjoint extension A = 2~ E Ex a with the gap (5, fl)(r 
Ex A(eX,/5) # ~).  The last condition yields that some Weyl function M'I (A) of the operator A is holomorphic 
on ((x,3). In view of the connection M(A) = (XlaMl(,~) + X12)(X21M1(A) + X22) -1 between M(A) and 
MI(A), this condition is equivalent to conditions (a) and (b) for M(A). [] 

C o r o l l a r y  10.1.  Let a sequence {sk}02n be strictly positive, and A be multiplication by t in I} = Chit]. 
If some of its Weyl functions M(,X ) are meromorphic on [5, ~] with a noncancelabte representation M( A ) = 
fl (A)/f2(A), then the positiveness of the sequence {s~}02"-2 of the form in (10.32) is equivalent to conditions 
(a), (b) of Lemma 10.1, and its strict positiveness is equivalent to conditions (b) and 6 > O. 

12"-2 is strictly positive, then via (10.6) and Corollary 10.1 we have If the sequence {s~,j0 

A := p,,+~(~)P.(,~) - P.+~(~)P,,(~) > O. (10.41) 
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This enables us to define quasiorthogonal polynomials 

1 P,+l(A) P.(A)[ I P.+I(A) P,(A)[ (10.42) 
P = ( A ) = -  E P-+ ' (a )  P-(~)I '  P, (A)=bn  P n + , ( f l ) P . ( f l )  

and their conjugated polynomials Q,~(,~) and  Q~(,~). Note that,polynomials P,~(A) and P~(A) are char- 
acterized by the conditions Pa(a) = P~(fl) = 0 , - ,Pa (8 )  = Q~(fl) = 1 in the set of quasiorthogonal 
polynomials. 

Proposition 10.3. The following assertions are equivalent: 
(~) a sequence { ~ } p  is strictly positive on R \  (,~,8); 
(b) thersequenees {Sk}2on, tsklOr , '~2n--2  are strictly positive; 
(c) P . (~)  < o w ~ (~, 8]; 
(d) P~(x) < 0 Vz e [a, 8). 
In this case the following statements hold: 
(1) the triple II2 = {C, F~', F~} in which for all ] = {f, f iof  + cP.} 

Fly {P,+~(a)(I,P,,) cP,,(a)}, " ^ =  = - r 2 f  cP,(~) b ,P.+l(8)( f ,P, ) ,  (10.43) 

is a BVS for the relation A*, A'~' := ker ri' = A,;  A'2 ~ := ker F~' = A~; 
(2) the corresponding Weyl function M(A) and H2.~-resolvent (~ = {CPn}) matrix Wn,s take the 

form 
P~(A) Wn,s = ( -Q~(A)  -Q/~(A) ) (10.44) M2(A)-  p- - -~ ,  p~(A) p~(),) �9 

Proof .  In order to prove statement (1) it is sufficient to check the relations ker F]' = An, kerFg = A~. 
In the case Pn(a)P,,(fl) # 0 we obtain from (10.5), (10.6), and (10.43) 

ker r~' = ker ( r l  - M(a) r2 ) ,  ker r~' = ker ( r l  - M(Z)F2). (10.45) 

The desired assertion follows from Proposition 4.6 [see (4.26)]. In the case P~(a)Pn(fl) = 0 one should to 
apply relations (4.25). Note, however, that the equality ker F~' = A~ is implied by the relation 

det(A~ - f l ) = ( h ~ - 8 ) d e t ( A ~ n ) - f l ) - b  2,~_1 det(A~'~-l) - fl) = 0  

( a .  = a .  + b . P . + , ( 8 ) P . ( ~ ) - ' ) ,  

which can be proved in the same way as (10.34). 
Further, relations (10.9), (10.10), and (10.43) yield 

r ,  f~ = ri '~,*(a) = {b.P~+i(~)P~(a) - b.P~+,(~)P~(~,)} = P~(a), I I  ^ r 2 f x  = P~(~). 

Therefore, the Weyl function M2(A) takes the form in (10.44). Analogously, (10.16) and (10.43) imply 

1 
I I  ^ *  - -  a. F 1Q (~) = -~[Qn()OPnTl(Ot ) - Qn+a(A)Pn(A)] = Qa(A), 

I I  ^ *  - -  r~Q (~) O.(~).  

In accordance with Theorem 8.1, we obtain formula (10.44) for WH~s 
The equivalence of conditions (a)-(d) is implied by formula (10.44) for M2 (A), the equalities P~(a) = 

P~(8) = 0, and Corollary 10.1. l'q 
We denote by fr(s; Era, x) the set of all solutions a(t) of the moment problem (10.17) having, in given 

intervals (a/,  fli), exactly x 1 points of increase. Here 

s =  {~,}~",  x = { x j } T  e z~ ' ,  

m 

j=l 
E.,  = R \ G,. .  
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In particular, V(s; Era) := ]~'(s; Era; 0) consists of measures da(t) that  have no mass in intervals (a j ,  flj) 
( l < j  <r,). 

Let Y(s; E,~; x)  be the subclass of solutions a(t)  E V(s; Era; x)  for which equality (10.18) holds. 
T h e o r e m  10.3. Suppose that {Sk}o 2n is a sequence strictly positive on R \ (a, fl); Pa(A), P~(A) are 

polynomials oI the form in (10.42); Q,(~) ,  Q~(~) are thei~ conjugated polynomials; E1 = a \  ("1, A) .  Then 
the formula r162 da(t) Q,~(A)r(A) + Q~(A) 

f_~ ~--i  P.(~)T(~) + p~(~) (10.46) 

establishes a bijective correspondence between a( t ) ~ V(s ;E! ;  ~1) and r(A) e .~"t(a,/~). In particular, the 
following equivalence holds: 

d~(t) ~ V(s; El)-: :-r(,~) e ,~(,~,f~). (10.47) 
In this case we have: (1) if P,,(fl) 7s O, then 

da(t) 6 V(s;Ex; x l )  -: :- r ( ~ )  + b,z~P~(~) 7s 0; (10.48) 

(2) if Pn(fl) = 0 (---~. Pn(a) 7 ~ 0), then 

da(t) 6 V(s ;E l ,x l ) - ' ,  ~- lim y-Xr(iy) = 0. (10.49) 
~ti"oo 

One can easily derive the proof from Theorems 4.2, 10.1, and Proposition 10.3. 
In order to formulate the next theorem, we introduce the required notation, setting for all j E Z+, 

j < n ,  

Pn+l(~) I p(j) f)~-bn[Pn()~)Pn+l(~)] (10.50) 

and, further, for j = ( j l , j 2 , . . . , j r )  = ( j ' , j r )  e Z~_, with m _> j l  > j2 > ..- > j r  >_ 1 

bn 
p(2')(~) (s') P'~+I(A) 
p,(J')[n. ~ p(J') (n. 

n kb'lr I n'+l \ i ' l r  ) 

p,(j) I 
+a(~) - ~ - ai, 

(j') P(/')(A) P~+I(A) 
PCJ') r P2')(~J.) .+1, ~,) 

(lo.51) 

T h e o r e m  10.4. Suppose that the moment problem (10.17) is solvable and indeterminate on each of 
the sets R \  (a j , f l j ) ,  1 < j < rn. Then it is solvable on E,,, = R \ U'~=l(aj,flj ) (i.e., l ) (s ;Zm) # ~)  if and 
only if 

p(Y) (n. ~ > 0 Vj = (j l  j2, .  , j r )  E Z~_, m > j l  > > j r  > 1, r > 2. 
n + l k t " 3 r  I - -  ' " " - -  " " " - -  - -  

(10.52) 

Further, problem (10.17) on Era is indeterminate if and only if all the inequalities in (10.52) are strict and 
determinate (i.e., there exists a unique ~olu~ion ~(~) ~ 9 ( s ; S ~ ) )  otherwise. 

In the former case, all solutions a(t) 6 V(s; Era, x) are described by formula (10.19), in which r(A) E f( 
and 

rj(~) = P"(~&(~) + b,P~+l(~j) 
P,,(Zj)7"(A) + bnPn+l(flj) e ~ ' i  (%, flj). 

In particular 
a(t) 6 V(s;Em) 4---4- ~-j(,~) 6 S(a j , f l j )  

In this case the following equivalence holds: 

Vj<m. 

&r(t) 6 V(s; E,~) .: '.. lim y - l r ( i y )  = O. 
yT~ 

236 



The proof of the theorem as well as a general description of the case 17"AZ(E,~; x) of s of an 
operator A with gaps (~xj,/bj) (1 < j < rn) will be given in another paper. Note only that the second part 
of this theorem (the description of all solutions a(t) fi V(s; Era, x) can easily be derived from Theorem 10.1. 

R e m a r k  10.4. One can formulate a solvability criterion and indeterminacy conditions of problem 
(10.17) on each of the sets R \ (cU,~j) (1 < j < m) in terms of the orthogonal polynomials, making use 
of the Weyl function M()  0 = bnP,,+l(~)P,~()O -1 [cf. (10.6)]. By virtue of Corollary 10.1 these conditions 
take the form (for each j < rn): 

(a) P(,~l(flJ.) > 0 .: 't Pn+x(flj)P,(aj) - P,~+l(aj)Pn(15j) > 0, (10.53) 
(b) rmllp,,(x)(aj,13j)= 0 or nullp.(x)(cxj,13i)= nullp,,O,)[o~j,13j] = I. (10.54) 

Thus, the solvability criterion for problem (10.17) on Era = R \ O~a(otj,/gj) can be expressed by inequalities 
(10.52), (10.53), and conditions (10.54). 

For the full (non-truncated) moment problem, Theorems 10.3, 10.4 and the corresponding abstract 
results on a densely defined Hermitian Operator A with gaps ((xi, f/j) were proved by the authors in [20, 
21, 79]. Note, finally, that the problem of describing all solutions of a one-dimensional, as well as a 
multidimensional, moment problem, subject to prescribed localization conditions, was posed by Vladimirov 
(see, for example, [11]). 

5. Consider the Hausdorff moment problem 

= (0 < k < 2 . ) ,  (10.55) 
~ Q  

and denote by V(s; [a, b]) the set of its solutions. 
Suppose that the sequence {sk}20 '* is strictly positive on [a,b], that is, the two sequences {sk}02", 

t 1 2 n - - 2  sk~ o are strictly positive, where 

8tk = ( a  + b ) S k + l  - -  S k + 2  - -  a . b s k .  (10.56) 

In this case zeros of the orthogonal polynomials Pk(A) are simple and are contained in [a, b]. Following [36, 
38] we define the polynomials 

P(~)=(-1)" P"+~(a) P"(a) l PCa)= I P"+x(a) P"(a) l (10.57) 
P,,+~(a) P n ( a )  ' P,~+x(b) Pn(b )  ' 

and their conjugated polynomials _Q(A), Q(A). Since P(a) = P(b) = 0 the quasiorthogonal polynomials 
P(A), P(A), Q Q_(A), and Q(A) have simple zeros which belong to the segment [a, b]. Therefore, the following 
inequalities hold: 

P,i(b) >_ O, (-1)"P,,(a) > 0, (10.58) 

P(b) = (-1)"[P,+l(b)P,(a)  -P , (b)P ,+l (a)]  = (-1)"+XP(a) > 0. (10.59) 

Note also that for a sequence {sk}02" nonnegative on [a, b] the equality _P(b) = P(a)  = 0 is equivalent to the 
property of f ~ ~2,,-2 ~skl o to be singular positive, 

P ropos i t ion  10.4. Let a sequence {Sk} 2n be positive on [a, b], A be a Hermitian operator of the'form 
in (10.2) on l} = Cn[t], • = {CP0}. Then we have: 

(1) a S  A <_b; 
(2) ~he .et  r I .  = {c , r~ , r~"} ,  ~n .h ich  for aU ] = {f,  Ao f  + cP,} �9 A* 

r ~ f  = k[Pn(b)b=lc - P,~+a(b)(f, Pn)], F ~ / =  (-1)nk[Pn(a)b=I c - P,~+l(a)(f,P,~)], 

forms a BVS for the linear relation A*, kerF~ = Ab, kerF~ = A~; 
(10.60) 
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(3) the corresponding Weyl lcandion, H~ P.-preresolvent, and H~ l~-resolven~ matrices take Zhe form.~ 

M.(~) = P(~) 
s 

~ .~(~)  = (~(~)_P(~)-~ (k_P(~)-~ ) 
\ (kP(~))-~ -QC~)P(;9 -~ , 

\ P_(~) e(~) ] 

(10.61) 

P r o o f .  (1) The inequalities a _ < A _ < b are implied by the property of the sequence lSklo r ' ,2n-2 of the 
form in (10.56) to be positive. 

(2) Since P(b) > 0 the constant k -X/-  b,,P(b) - 1 _  and, therefore, the mappings F"s, i (j  -- 1, 2) in (10.60) 
are well defined. The straightforward calculations yield that  the triple H ~' = {C, F1, F~} is a BVS for A*. 
On account of (10.5) and (10.6) the mappings I'~', r; may be rewritten (provided that  P=(a)P~(b) ~ 0) in 
the form 

r f = b ~ k P , ( b ) [ r l - M ( b ) r ~ ] ,  r~  = ( - 1 ) "  k~-~a) It1 - M(a)r , . ] .  (10.62) 

Hence, owing to Proposition 4.6, we obtain that ker F[  = Ab, ker r~  = A, .  In the case P,(a)P,(b) = 0 the 
last equalities follow from Corollary 4.5. 

(3) Relations (10.9), (10.10), and (10.60) yield 

r ~ / a  = Fx~75*(A) = k[P,(b)P,+~(A) P,+I(b)P,(A)] = kP(A), (10.63) 
F2uj~ - r~7~*(~) = (-1)nk[P,(a)Pn+l(A) - Pn+x(a)P,(A)] = kP__(A). 

Equalities (10.63) imply that  formula (10.61) for the Weyl function Mt,(A ) holds. In the same way we 
obtain from (10.15) and (10.60) 

rfQ*(i) = k~(a), r ~ * ( i )  = kQ(a). (lO.64) 

Formula (10.61) for WII,s is implied now by (10.62), (10.63), and (8.22). Equality (10.61) for 92he(A) is 
obvious. 

R e m a r k  10.5. A similar statement for the BVS H M {C, F M, P M} {C, ~' " = = - r 2 ,  F 1 } also holds. In 
this case we have MM(A) = -P__(A)/P(A), 

~n.~(~) = ( -P (~ )~ (~ ) -~  (kQ(~))-I -Q(~) Q(~) 
(kQ(~))_~ _~(~)~(~)_,  ) ,  wn.~(~) = ( ~ ( ~ ) . p ( ~ ) ) .  (10.65) 

Note also that the Weyl function M~(,~) = P(A)/P(,~) (MM(A) = -P(,~)/T(,X)) coincides in the case 
[a, b] = [-1,  1] up to the multiplier (-1)nP,,(b)/Pn(a) ((-1)"+lp,(a)/Pn(b)) with the Q,-function (QM- 
function) of a Hermitian contraction A [cf. (3.73), (3.74)]. 

R e m a r k  10.6.  Relations (10.61) and (10.65) yield, in particular, 

((A~ - x) - !eo ,  eo) = - Q ( z ) P ( x )  -1, ((Ab - x)-leo, eo) = -Q(x)P(x)  -1. (10.66) 

Therefore, from the extremal properties (3.69) of the extensions A~ and Ab ( A - I  ---- A~, A+I ---- AM in the 
case [a, b] -- [ -1 ,  1]) follows the well-known inequalities of Markov [38]: 

P(~) = J. �9 - t < J. �9 - t < w ~ R \ [a, ~], (10.67) 
- - j .  x - t P ( z )  

which hold for all a(t)  E V([a,b];s), where s = {sk}02n, E(t) = (EA.(t)I,I), ~(t) = (EA,(t)~,I) are the 
lower and the upper main distribution of mass. 
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Inequalities (3.69) applied to the vectors fk = t k yield more general inequalities (z �9 R \ [a, b], 0 < k < 
n): 

~ b t2kda(t) fb t~'da(O ]) t"~(O 7---7 - < j ~  ;----~ - < ~ - ~  W e R \ [ ~ , b ] .  (10.68) 

On the other hand, they follow from (10.67) and the obvious equalities 

~ - ~  + p(~) = j .  7 - 7  + ~ _P(~) = ~ P ~ k - J - "  
j----I 

R e m a r k  10.7. It is easy to see that the resolvent matrix Wn,~(A) of the form in (10.59) is symplectic. 
Therefore, 

_ 1 E ( b )  ( - 1 ) ,  
P(~)Q()~) - -  P(~)Q(~) = k ---~ -~- bn - bn [Pn-{'l(b)Pn(a) - -  Pn(b)Pn-['l(a)]" (10.69) 

One can show that identity (10.69) is equivalent to identity (2.11) from [38]. Note also that the equality 
det Wnz(A) = 1 for the symplectic matrix Wn~(A) of the form in (10.7) yields the Liouville--Ostrogradskii 
formula. 

Making use of Propositions 3.7 and 10.4, we obtain the following result of Krein [36] (see also [38]). 
Proposition 10.5 [36]. Let a sequence {sk}o 2" be strictly positive on [a, b]. Then the formula 

f b ~ _ y(~) + r(~)p(~) (10.70) 
t - ~, Q(~) + r 

establishes a one-to-one corespondent�9 bU~en ~(~)�9 V(s; [a, b]) and r ( ~ ) � 9  S[a, b]. 
A criterion of existence and a description of solutions of the Hausdorff moment problem with gaps 

(ai,/~i): (1 < j < m) will be given in another paper (cf. [24]). 
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