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THE EXTENSION THEORY OF HERMITIAN OPERATORS AND THE
MOMENT PROBLEM
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INTRODUCTION

This paper is dedicated to further development of the theory of generalized resolvents, preresolvent,
and resolvent matrices of a Hermitian operator A on a separable Hilbert space §). The role of the formula of
generalized resolvents in the extension theory was expounded (on the condition that the defect numbers are
equal to unity) by Naimark [55] and Krein [32], who showed that it contains as a corollary the well-known
Nevanlinna formula of the moment problem. Krein [32] introduced the notion of the resolvent matrix.
These notions and the results obtained at first for the case of a Hermitian operator with the defect numbers
(1,1) were generalized and developed afterward in the papers of these authors and their followers in the
case of more general classes of operators and spaces. Simultaneously, the range of problems solved within
the theory was extended.

In content, the given paper complements the papers of Krein et. al. [32-43, 58, 81-84] and continues
our previous investigations on the extension theory of a Hermitian operator A whose domain D(A) is
dense in §. ‘We consider extensions of a nondensely defined operator A, and this enables us to extend the
range of applicability of the operator approach to classical interpolation and boundary problems. We use
systematically an abstract version of the Green identity formalized in the concept of a boundary-value space
(in the case D(A) = b see [12, 13, 18, 6, 79].

The paper, with the exception of Sec. 7, is devoted to self-adjoint extensions of the operator A. Note,
however, that even the investigation of £-resolvent matrices of a Hermitian operator A with a dense domain
D(A) leads to the consideration of some nondensely defined Hermitian operator as well as non-self-adjoint
extensions of the latter and their characteristic functions.

In Sec. 1, which is preparatory, we present the necessary facts concerning linear relations, some classes
of R-functions, and some propositions on the extension theory of a nondensely defined Hermitian operator
in a Hilbert space fj. Here we recall the notion of a boundary-value space (BVS) Il = {H,T;,T2} of
a nondensely defined Hermitian operator A, the Weyl function M(A), ang, the forbidden manifold F
corresponding to the BVS II, and also give some statements of the extension theory from [53, 18, 79]. We
mention only some elementary ones, which we need to describe the main results of the paper:

(1) the mapping I' = {I'2,T'1} : A* — H @ H defines the bijective correspondence between the set of
proper extensions A (A C A C A*) of the operator A and the set of linear relations 6 in H:

A=Ay b8=TA={{T.fTif}: f={f.fleAcA) (0.1)
if @ = B is an operator, then relation (0.1) takes its usual form
Ag = Ag =ker (T - BT;); (0.2)

(2) the forbidden manifold Fu = I'{0,M}, where M = D(A)* corresponds in formula (0.1) to the
Hermitian extension of A

Ay =4+Tt (Tt ={0,M});

(3) an extension Ay is an operator if and only if Fy N § = {0}. Even the two last statements
demonstrate the utility of the forbidden manifold Fp, which plays an essential part in the extension theory.
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In Sec. 2 we investigate N-regular linear relations, that is, a closed linear relation T such that the linear
manifold T + N is closed. In the case of proper extensions T = A(D A) of the operator A and N = D(A)*+
this definition is equivalent to the definition of a regular extension of A [31, 64], whose role is well known
[60]. We find new criteria for an extension A to be M-regular, and here we mention the following one:
the linear manifold Pp®(A*) is closed in 9. The N-regularity criteria of an extension A in terms of the
forbidden manifold Fy; and the Weyl function M()) are obtained.

In Sec. 3 the generalized resolvents of a nondensely defined Hermitian operator A (D(A) = bo ch)
are studied. The operator-valued function Ry = P(A = A)~!]p i is a genera.hzed resolvent if A = A* is a
self-adjoint extension of the operator A, acting in a Hilbert space hDh, Pisthe orthogonal projection of
f) onto f. Here the following analog of the Krein formula for resolvents is obtained:

Ry = (42 = 27 = y(A)(r(A) + M(2)) 7" (X), (0.3)
and all the parameters from (0.3) are expressed in terms of BVS:
FO) = {7(A) (N} = @2190)7Y, M(A):=T13(1),  7(0) = ~TR3' +2), (0-4)>

where Az = kerT'y, M(}) is a Weyl functlon Ny is a defect subspace of the operator A. As follows from
(0.4) and (0.1), Rx = (A_;(ny — A)™", that is, for all & € §, Rah is a solution of some “boundary-value
problem” for A* with the spectral parameter 7(A) in the boundary condition, which coincides with (0.1) in
the case 7(\) = —6 = const.

Formula (0.3), as well as the Krein formula, establishes a bijective correspondence between the set
of generalized resolvents {R,} and the class Ry of Nevanlinna functions, completed by the families of
Nevanlinna linear relations. However, in contrast to the case of a densely defined Hermitian operator A4, a
self-adjoint relation A generating the generalized resolvent R may be either an operator or a linear relatmn
We find additional hypotheses about 7(A) (M-admissibility conditions) for the corresponding generalized
resolvent to be generated by an operator. They take the form

3 lim iy((r(iy) + M (i) h,h) = lim iy(M ™ (iy)h, k) Vh € Vir(0); (0.5)

s — lirori y~ 7 (iy) + M(iy))™ = 0. (0.6)

If A; is an operator (<= Fu(0) = {0}), the M-admissibility conditions may be reduced to the single
condition (0.6), which was obtained earlier in [51, 53]. Conversely, in the case A2 = A+ N (= Fu(0) = H)
conditions (0.5), (0.6) are equivalent to the following one:

s— R~ liTm y~1r(iy) = 0. (0.7)
yToo

The last condition coincides in the scalar case dim91 = dim H = 1 with the well-known Nevanlinna condition
of the moment problem.

The formulas for generalized resolvents of a bounded Hermitian operator and a Hermitian contraction
proved differently in [70] and [40] are obtained here as corollaries of relations (0.3)-(0.7).

We also thoroughly study the M-admissibility conditions. In particular, the criterion for an operator-
valued function 7()) with values in [H] to be M-admissible is given in terms of the limit operator 7(300).

In Sec. 4 the resolvent formula (0.3) is used to describe (in terms of abstract boundary conditions) the
extensions of the operator A with a gap (e, 3), which bring to the gap a finite number of discrete levels,
as well as the extensions preserving the gap. These results are analogous to those obtained in (20, 21,
79] for the case ZJ(A) = §. In particular, the extensions with a finite negative spectrum of a nonnegative
operator A > 0 are described. It should be emphasxzed that just the existence of two forms (0.1), (0.3) of
the description of self-adjoint extensions Ay = % makes it possible to apply formula (0.3) not only to the
classical problems (of the type of the moment problem), but also to boundary-value problems (see {20, 26,
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50-52, 79]). We also describe the generalized resolvents of the operator A with the gap (a, 8), which are
generated by self-adjoint extensions Ain f)(:) h) with the property stated above.

In Sec. 5 it is shown that each R-function Q(]) satisfying the unique condition 0 € p(Im Q(3)) is a Weyl .
function of a Hermitian operator A whose domain is, generally speaking, nondense in ). We propose three
distinct proofs of this fact, connected with the three known functional models [71, 72, 75, 81] of a Hermitian
operator A, which are constructed with the help of the function Q(X). Within each of these models we find
a BVS for the linear relation A* such that the corresponding Weyl function coincides with Q(A). The inner
description of Q,- and @ p-functions of Hermitian contractions [40] as well as of nonnegative operators [41]
and also the description of spectral complements (in the sense of [69]) of bounded Hermitian operators are
given here as corollaries of Theorem 5.1.

The presence of the condition 0 € p(Im Q(¢)) in Theorem 5.1 impelled us to consider in Sec. 6 generalized
BVS’s for nonclosed linear relations. Such a consideration allows us to omit the requirement 0 € p(Im Q(2))
in the assumptions of the preceding theorem on the realization of the R-function. The utility of generalized
BVS’s becomes clear below in studying the inverse problems for Q,- and Qa-functions, for characteristic
operator-valued functions (Sec. T), preresolvent and resolvent matrices (Secs. 8, 9). -

In Sec. 7, in view of the needs of Sec. 8, we slightly deviate from the main “self-adjoint” direction
of the article. Here we introduce the ‘class As of almost solvable linear relations, which contains linear
relations with two regular points A;, Az such that Im A; - Im Ay < 0, and linear relations with a real
regular point, in particular, bounded operators. We define the characteristic functions (CF) of a linear
relation T € As and show (Theorem 7.3) that they exhaust the class of J-contractive (holomorphic on C. )
operator-valued functions W()) acting in a finite-dimensional space and a wide class of such functions in
an infinite-dimensional one. In the latter case an additional hypothesis on W(}) is formulated in terms of
rigged Hilbert spaces.

Each linear relation T may be considered as a proper extension of its Hermitian part A. The linear
relation T of the class As(A) C As is characterized by the existence of a BVS Il = {H,I';,T'3} for A* such
that T is related to a bounded linear operator B € [H] via Eq. (0.2). Although the class As(A) does not
exhaust the class Ex 4 of all proper extensions of A, it turns out to be very natural. Thus, in Theorem 7.1
we obtain an explicit formula for the calculation of the CF Wr()) of the linear relation T = Ag(€ As(4))
in terms of the Weyl function M()\) and the boundary operator B(€ [H]):

Wr(A) = I +2%K*(B* — M(\)"KJ (Im B = KJK*). (0.8)

In the case ’5(:4—)— = b this formula was found by the authors in [18, 26] and for a bounded operator T it
coincides with the definition of a characteristic function due to Livsic (48, 8, 9] (M(A) = AT if A = {0}).

Precisely formula (0.8) enables us to prove for the operators (and linear relations) of the class As the
theorem on unitary equivalence, the multiplication theorem, and to solve the inverse problem of the theory
of CF in complete analogy with the corresponding results of [48, 8, 9]. This formula is implied by the
formula for resolvents (0.3) and then, in Sec. 8, is applied essentially to the proof of Theorem 8.3.

In Sec. 8, preresolvent and resolvent matrices of a Hermitian operator A are investigated. These
objects were introduced by Krein [32] in the case D(A) = b, n+(A) = 1, and naturally arise in the operator
approach to classical problems of analysis of the type of the moment problem. Indeed, the set of solutions
of a number of classical problems coincides with the set of £-resolvents of a Hermitian operator A, that is,
with the operator-valued functions of the form PgR[£, where R, is a generalized resolvent of the operator
A, £ is a subspace of § (dim £ = ny(A4)), called a module one. The description of all £-resolvents of the
operator A is given by the equality

PeRA S = fun(V)r(Y) + wi(A)][war (A)7(A) + wa(N)] 7, (0.9)

which easily follows from the formula of resolvents (0.3). The matrix-valued function

wit(A) wya(A
Wine(A) = (wngkg wﬁg/\g)
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is called a I1£-resolvent matrix of the operator A corresponding to the BVS II = {£,T4,T'2}. Wne(}) is
related via a simple equality to the other main object of the theory, the ILL-preresolvent matrix of the

operator A:
~ M(A *(A)L
100 = (st Pachs - diic) (0-10)

1t is useful to consider a nondensely defined Hermitian operator in studying the matrix-functions Ang(A)
and Wrg()), even in the case D(A4) = _
Ap = ALt (0.11)

If a linear relation A* is £-regular, then the operator Ag has a number of “good” properties: D(4y) = £1,
A=A+ £, the linear relation A*[£+ = (A + £)* is almost solvable, and, finally,

PeD(A) = L. (0.12)

Condition (0.12) is equivalent (see Sec. 2) to the £-regularity condition for A*. If this condition is fulfilled
(this is true, in particular, if n4(A4) = n_(A) < o), then a ILL-preresolvent matrix turns out to be a Weyl
function of the Hermitian operator A¢ corresponding to a some speciﬁc BVS for the linear relation Ag, and
Wize(A) proves to be a CF of the linear relation A*[€+ = (A + £)* € As(4o).

One can easily deduce the last statement from formula. (0.8) on account of the fact that Amge(A) is a
Weyl function of the operator Ag. We derive from the same formula (0.8) the following one

er A) TeP*(A
e~ (25 50)

for the calculation of Wrg(\) in terms of the operator-valued functions P(A) and @Q(X), which are abstract
analogs of polynomials of the first and second kind [here P(]) is a skew projection onto £ in the decom-
position h = (A — \)D(A)+ £, Q(A) = Pg(A - A)~ 1(1' P(A))]. In the case D(A) = h formula (0 13) was
proved by the authors in [20, 21 79]. Note also that in the proof of (0.13) we used the expression for the
Weyl function [see (8.16)] implied by the formula

A* = A+ P*(A)L+ QT (V)L (0.14)

which we can consider as an analog of the first Neumann formula.

Section 9 is dedicated to inverse problems for preresolvent and resolvent matrices of an operator A. The
necessary and sufficient conditions for a holomorphic operator-valued function F()) to be a preresolvent or
resolvent matrix of a Hérmitian operator are found.

Finally, in Sec. 10 we apply the results from Secs. 3 and 4 to the truncated Hamburger, Stieltjes, and
Hausdorff moment problems. The truncated Hamburger moment problem consists in the following [4, 6,
38]: given a sequence {s;}2™ of real numbers, find the necessary and sufficient conditions-on {s;}2® which
ensure the existence of a nonnegative measure do(t) such that the following representation holds

Sk = / tFdo(t) (0<k<2n-1), Sop = / tz"da(t) +m, (0.15)
R R

with some mm > 0, and describe the set V(s; R) of all solutions a(t).

The number m = 535, — [ t*"do (%) is called the mass at infinity [38]. In the framework of the operator
approach the description of the set V(s, R) is reduced to the description of the set of £-spectral (£ = {I})
functions o(t) = (Ea(t)II,1) of a nondensely defined operator A and is given by formula (0.9), which
coincides in this case with the Nevanlinna formula. The appearance of the number m in the truncated
moment problem is implied by the existence of the linear relations A = A*, which are extensions of the
nondensely defined Hermitian operator A and m = 0 if and only if o(t) is generated by an operator A In
other words, the function 7()) from equality (0.9) is M-admissible if and only if the corresponding measure
do(t) satlsﬁes the equality son = [ t*"da(2).
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Here we obtain the criterion for a solution of the problem {0.13), which has no mass on some intervals
(aj,B5), 1 £ j < m, and we give a description of these solutions.
The results of the paper were partially announced in [24, 27, 28].
1. PRELIMINARIES

1. Let 'H be a separa.ble Hilbert space. A linear relation T in H is a linear manifold T in H & H.
We denote by C(H) the set of closed linear relations in H (i.e., closed subspaces T C H @ H). For linear
relations T, S € C(H) we put (see [77-80]) :

DT)={feH:3f e, {f,f'} T}
RT)={f eH:3f e, {f.f'}€T}; LkeeT={feH:{f,0}eT)
TO)={f €eH:{0,f}eT}  T(0)={{0,f}:f € T(O)};
of = {{f,af }: {£,fYeTh T ={{f,f}:{f.f}eTk
T+S={{f.f +9'}: {£.fYeT,{f.g'} €Sk
ST = {{f,g}:3f € H{f,f'} € T,{f' .9} € S};

" ={{g.9'}: (fL9)=(f.g") V{f.f}eT}
For a linear relation T € C(H) we define the resolvent set p(T) by

p(T) ={A € C:ker (T - ) = {0}, R(T - \) = H},

the spectrum o(T") = C\ p(T'), and we give the classification of the spectrum in the following way:

oc(T) = {X € o(T) : ker (T ~ X) = {0}, R(T — ) = H} — the continuous spectrum;

op(T) = {X € o(T) : ker (T — X) # {0}} — the point spectrum;

or(T) = o(T) \ (6(T) U 0(T)) — the residual spectrum of T

The set w(T) = {(f',f) : {f,f'} € T} is the numerical range of the relation 7. A linear relation
T e C('H) is said to be Hermitian if w(T) C R (i.e., T C T*); nonnegative if w(T) C Ry; dissipative if
w(T) € Cy (Cq := {X : Im X > 0}). A Hermitian (dlSSlpathe) relation T is said to be self-adjoint (maximal
dissipative) if there does not exist an extension of T in the same class, or equlvalently if p(T) # @.

We denote the set of closed (bounded) linear operators from H; to Hz by C(Hi, H2)([H1, He]); in the
case Hy = Hz = H we put C(H) := C(H,H), [H] := [H,H]. We regard C(H) as a subset of C(H) identifying
an operator T € C(H) with its graph gr T = {{f,Tf} : f € D(T)} € C(H). Let Py be an orthogonal
projection onto subspace H' C H.

Proposition 1.1 ([57])). Let T € C(H) and w(T) C {A: Im (Xe'¥?) > 0} (po € [0,2n]). Then

T(0) L D(T) and the following decomposition holds: T = T' @ T(0), where T' € C(H'), H' = H © T(0).

In particular, if T is a self-adjoint (dissipative) linear relation, then its operator part 7' possesses the
same property and o(T") = o(T'). The spectral function of a self-adjoint linear relation 7T is defined by the
equality Ep(A) := Eq()\) Py

2. Definition 1.2 ([29]). A family of linear relations ()\) € C(H) is said to be holomorphic on X € C
if there exist a space H;, and operator-valued functions ®(A), U(A) with values in {H;, H] holomorphic on
A such that 7(\) admits the representation

T(A) = {{&(A)h, (AR} : h € Hy}. (1.1)
The kernel k(, 1), which is defined on G x G and takes values in [H], is said to have s negative squares
on G if k(X p) = k*(p, ) and for each n € Z4 and all choices of \j € G and hj € H, j = 1,2,...,n, the

Hermitian n x n-matrix ((k(Xi, Aj)hi, hj)i j=1 has at most » (and for at least one collectxon of n, A;, h;
(1 £ j € n) exactly ») negative eigenvalues.
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Definition 1.3 ({36, 81]). Denote by N,,('H) (> € Z3) the class offamzhe.s of linear relations (1)) €
C(H) of form (1.1) holomorphic on C\ R such that (A) = *(Q), p(t(X0)) # @ for at least one Ay € Cy
and the kernel k-(A, u) = L (,.)\p(,\}_: W2Q) pays 5 negative squares on C\ R.

Let Ry := No(H) be the class of families of linear relations 7(}) of form (1.1) for which the kernel

k-(A, ) is nonnegative on C\ R. We shall write 7(1) € Ry if 7()\) € Ry and for all A € Cy it takes values
in the set of maximal dissipative operators. The next proposition is well known.

Proposition 1.2. Let 7(\) € Ry and Aq € Cy. Then:

(1) a=a € p(r(A)) => a € p(r())) VAeC\R;

(2) a=a € ogp(t(X)) = a € gp(1())) VAeC\R;

(3) A(r(20)) £ 8 = p(r(\) £ 0 VA€ C\R;

4)T(A)eH]=1(N)e[H] VreC \ R;

(5) [r(20)l(0) # {0} => 7(3) = T(N) & [r(%a)](0),  T(}) € Raoir(aa)i(o)-

Theorem (R. Nevanlinna [4-6]). An operator-valued function Q()) with values in [H] belongs to the
class Ry if and only if it admits the following representation:

1 t

Q(\) = Co + BoA + /m (T—'X - 1_4}75) ds(t), (1.2)

with some self-adjoint operators Cq, Bg € [H], Bg > 0, and a nondecreasing function 3(t) = 3(¢ — 0) with
values in [H] such that /(1 +t3)" dX(t) € [H].

Definition 1.4 ([38]). Let —oo < a < f < oo and let E be one of the following sets: either [a, 8] or
R\ (e, B). We denote by SE(E) (SE(E)) the class of families of linear relations 7(A) € Ry (7(A) € Ry)
if 7(A) admits a holomorphic continuation to R\ E such that £7(z) > 0 Vr E R \ E.

Definition 1.5 ([19, 22]). Let E = R\ (a,8); s € Z4 and let w()\) = for —o < a<f<oo,
w(A) = A =B for a = ~o0, w(A) = (a — A)~! for f = +oo. A family of lznear relatzons 7(A) € Ry (R is
said to belong to the class SE*(E)(SE*(E)) sz(,\)*1 (A) € N..(H).

As was shown by Krein (see [38]) the classes S5 (E) coincide with the classes S3(E). The authors
in [22, 25, 79] characterized functions 7()\) € S,H”(E) in terms of their zeros and “poles,” the number of

which in £ does not exceed s.

3. Let A be a Hermitian operator acting in a Hilbert space §j, generally speaking, with nondense domain
D(A) in b, ho = D(A). We denote by A* the adjoint linear relation, 0t = h & by, N = {0,MN} = 4*(0);
T = ker (A* — X) are the defect subspaces of A (A € C\ R); ni(4) = dimNy; are the defect numbers of
A; p(A) is the set of the points of regular type.

We state some relevant definitions and propositions from [53, 79].

Definition 1.6. A triple Il = {H,T'1,T's} in which ‘H i3 a separable Hilbert space and T'; € [A*,H]
(7 =1,2), is o boundary-value space (BVS) for a linear relation A* if:

(1)

(f,9) = (f,¢') = @1fiTed)s — (C2F, Tad)n VFi={f,F'}, §=1{g.9'} € 4%, (1.3)

(2) the mapping I': f — {sz, T1f} from A* to H @ H is surjective.

For a BVS for A* to exist it is necessary and sufficient that the defect numbers of the operator A
coincide (n4(A4) = n_(4)).

Definition 1.7. A closed extension A of A is said to be proper if A C A C A*. We denote the set of
proper extensions of A by Exa. Two proper eztensions A', A" € Ex4 are called disjoint if ANA" = A
and transversal if, additionally, A' + A" = A*.

Naturally associated with each BVS are two transversal extensions A; = A} = ker['; € Ex 4 (j = 1,2).
The inverse assertion also holds.

Proposition 1.3 ([18, 53]). Suppose that two e:vten.szons Aj = A} € Ex 4 (j = 1,2) are transversal.
Then there erists a BVS {H,I'1,T'2} for A* such that A; = kerF (= "1 ,2).

Definition 1.8 ([51]). The manifold Fy = 't = {{I‘gn A} :A={0,n} € N} is a forbidden relation
corresponding to BVS Il = {H,T';,T2}. A linear relation 6 € C('H) will be called admissible if 6N Fp = {0}.
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Clearly, Fq is a Hermitian linear relation in H. '

Proposition 1.4 ([26, 53]). The mapping T : F = {L2f,T1f} from A* to H O H is sur]ectwe and
induces a topological isomorphism between A*[A and H @ H such that:

(1) there ezists a one-to-one correspondence between the set of extensions A € Ex 4 and the set of
relations 6 € C(H)

.&:A,,He:r,i:{{rzf,rlf“}:f"eﬁ.}, (1.4)

in this connection Ay — I'd; = {H,0}, A2 & I'ds = {0, H};.

(2) Aa and A, are disjoint iff N {0, H} = {0}(«+= 0 € C(H));

(3) Ap, and Ag, are transversal iff 61+ 62 = H @ H(6;,6: € C(H)), in particular, Ay and A, are
transversal iff 8 € [H];

(4) of 3X € p(4g) N p(Ag,), then the transversality of Ag, and Ay, is equivalent to the condition
0 € p((As, — )" = (Ag, = N)7);

(5) if there ezists { € p(61)Np(62), then the transversality of Ag, and Ag, is equwa.lent to the condition
0€p((br - —(6-O)7");

(6) if 6, € C(H), 82 € [H], then the following equivalences hold:

gl-i-eg =H®H<=>0€p(91—92),

61"{" bh=HoH<=0c¢c P(91 —;92) Udc(el - 92);

(7) an eztension Ag is Hermitian (self-adjoint, dissipative) iff the linear relation 8 € C(H) possesses
the same property; _

(8) Ag € C(h) (i.e., Ag is an operator) <= 6N F = {0};

(9) the eztension Az, is Hermitian and takes the form

Ar, = A+ N = {{f,Af +n}: f e D(4),n e N}. (1.5)

4. Let My = {{f, A} : fr €M} (X € p(4)), Ay = A+ My

Lemma 1.1 ([53]). Let A € p(A), A € Ex 4. Then the following equivalences hold:

1) re p(A) <> A and A,\ are transversal <=> A* = A+ Ty,

(2) A € 5p(A) <= A and Ay are disjoint.

The first assertion of Lemma 1.1 implies

Proposition 1.5 ([53, 79]). Suppose that IT = {M,T1,T2} is a BVS for the relation A*, %1y is the
orthogonal projection onto the first component in H@® H. The equalities

3(A) = (T2i9t0) 72, Y(A) = mA(A), () € p(42)) (1.6)

define the operator-valued functions 5(X), v(X) holomorphic on p(Az) with values in [H, 9] and [H, 9]
respectively. Furthermore, the following relations hold:

Y(A) = y(p) + (A = u)(Az = N) T (w), (A € p(42)); (1.7)

7*(A) =T1{(A2 = N) 7 T+ MA2 =)'} (X € p(42)- (1.8)

Corollary 1.1. F(0) =T'{0, 4,(0)} = v*(A)42{0) VX € p(A2).
Definition 1.9. The operator-valued function M()) defined for X € p(Az) by the equality

M2fa=Tifa,  (Fx={fx2fa} € Tx, ) € p(42)) (19
will be called ¢ Weyl function of the operator A, corresponding to the BVS {H,T1,T2}.

147



Since, by Proposition 1.5, M(A) = T'14(]A) is holomorphic on p(Az), takes values in [H], and satisfies

the equality
M) - M(p) = A - pr" (@A), (A p € p(42)), (1.10)

it follows from (1.10) that M()A) € Ry and is a Q-function of the operator A, corresponding to the extension
A, (18, 53, 79].

In accordance with Lemma 1.1 and Proposition 1.4 we obtain

Proposition 1.6 ([18, 30, 53]). Suppose that {H,T1,T2} is a BVS for A*, M()) is the corresponding
Weyl function, € C(H), and X € p(As). Then the following equivalences hold:

(1) A € p(Ag) <= 0 € p(0 — M(N));

(2) A€ 0i(Ag) <= 0 € 0:(6~ M(X)) (i =p,c,1).

Let X = (Xjx)iioy €EHOH], J = ( 0 —ZI) € [H & H]. We define the transformation X[6] in

Jd 0
C(H) by the relation
X[6] := {{Xo1f' + Xoof, Xua f' + X12f} : {f, f'} € 6}. (1.11)

The connection between various BVS’s is established by
Proposition 1.7 ([30, 26]). Suppose that Il = {H,T;,T}, I={HT

and M()) are the corresponding Weyl functions, A€Ex 4, 0=T4, 6=
(1) there ezists a J-unitary operator X € [H & H] such that

Gz) N (21 22) G::) 6=X[g,  MO)=X[MO) (1.12)

(2) the transformation X (6] can be defined as a linear-fractional transformation in the following cases:
(a) Zf fe C(H), then X[G] (Xllg -+ X12)(X219 + ng)—l;
(b) if 0 € p(X21), then X[0 | =(X3)" IXikl +(X35) 7 X210 + X22) 75
(3) if 6 € [H), then 0 € p(X210 + Xaz), in particular, 0 € p(Xa3 M(N) + Xa2) and

,I'1, T2} are BVS’s for A*, M(})
TA. Then:

M) = (XuM() + X12)(Xaa M(A) + X22)™' VA€ C\R. (1.13)

Proof. (1) It follows from identity (1.3) and Proposition 1.4 that there exists a J-unitary operator X
such that B 3
Iy =Xl + Xq2T, [z = Xo1T1 + XooTs. (1.14)

The equality § = X[f] easily follows from (1.4) and Proposition 1.4.

(2a) Let 8§ € C(H) and {h,h'} € (X118 + X12)(X210 + X22)~ 1. Then there exists f € H such that
h=(X210+ X22)f, M = (X110 + X12)f. In view of (1.11) this yields {h,h'} € X[]. The inverse inclusion
is obvious.

(2b) Rewrite the J-unitary conditions of X in the form

X;]XZ]. = X;lel, XfZXn = X;ZX]Q, X;1X22 - X;1X12 = I; (1.15)
X11X;2 = XIZX;D X21X;2 = X22X;1, X11X;2 - X12X;1 = 1. (116)
Let {h,h'} € X[6)], that is, the following equality holds:
{h, '} = {Xa1 f' + Xoof, Xuf' + X12f}  ({f,f'} €6). (1.17)
Then we obtain from (1.15) X7, h — X5,h' = f, ie.,
{h, X3 h'} € X7; — (X218 + X22) 7Y,
{h,h'} € (X3) 7' X3 — (X5) 7 (X218 + X22) ™"
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Analogously, one can check the inverse inclusion
(X31) 7 XT) = (X51)7H (X210 + X22) ™' € X[).

(3) Let 6 = X[6] € [H]. Assume that {f,f'} € § and h = Xo1f' + Xpof = 0. In view of (1.17)
and the condition 8 € [H], this implies that h' = X11f' + Xa1f = 0, f = X} ,h — X311’ = 0 and hence
ker (X210 + X22) = {0}. It follows from (1.17) and the relation D(f) = H that M(X216 + Xa2) = H, i.e.,
0 € p(X210 + X22).

In particular, for A = A we have § = M(X), 0 €. p(XglM(/\) 4+ X32) VA € C\ R, and the equality
M()\) = X[M()\)] takes the form (1.13).

Remark 1.1. (1) If 6(0) # {0}, then assertion 2a stops being true, for example, if § = {0,H}, then
I-6)(I+6H'=HoH.

" (2) The forbidden relations Fy1 and Fp correspondmg to BVS’s I and II are also connected by the
relation Frp = X [Fn).

5. We characterize the forbidden relation Fy in terms of the asymptotic behavior of the Weyl function.
Letting 91"(A2) = 9N © A2(0), we introduce the relation

Fi=TN"(A2) = {[2,T1}N"(4:),  (T1"(42) = {0,N"(42)}). (1.18)
As follows from the formulas
Fu =TSt = T{0, A2(0)}4 TN"(42) = {0, Fz(0)}+ Fit = Fu(0)+ Fit

Fi defines an operator in H. In the general case Ffj does not always coincide with the operator part Fy
of the relation Fy, but Ffj = Ffj = Fn if Fn(0) = {0}.

Theorem 1.1 ([53]). Suppose that Il = {H,T';,T} is a BVS for A*, H; =T;0 (j = 1,2), M(}) and
Fn are the corresponding Weyl function and forbidden relation. Then

(1) h € Hy = D(Fu1) <= limyreo y(Im M(iy)h, h) < 0o <= limyteo yIm (M(—1y)h, h) < oo;

(2) for each h € Ha there exist strong limits

M(oo)h := s — 11Tm M{iy)h =s — liTm M(—iy)h = Fiih; (1.19)
yjoo yToo

in this case M(o0) = Fn if Fu(0) = {0};
(3) for all h € H the following equalities hold:

Byh =5 - lim fyy)h T (NPayyyWh YA€ C\R; (1.20)
yToo

hence Byyh =0 Vh € HO Fu(0) and Bpyh # 0 VR € Fn(0) \ {0}.

Thus, By # 0 if and only if A3(0) # {0}; in other words the term B is lacking in the integral
representation (1.2) of the Weyl function M()) if and only if A; is an operator.

Corollary 1.2. Suppose that Il = {H,[,T;}, Il = {H,T2,-T1} are BVS’s for A*, M()) and
Mi(A) = ~M(XN)™! are the corresponding Weyl functions, A;(0) = A2(0) = {0} <= Bm, = B = 0.
Then ’

M;j(o0) = —M(o0)™ 2. (1.21)
Note that relation (1.21) does not hold if the representaﬁon (1.2) of at least one of two functions M(A) or
M;()) contains a linear term BA. For example, let H = C?, M()\) = (;\ _;‘z_l )A, ey = <(1)), e = ((1))
Then we have

M(oo) = {{Ce2,ale1}: (€ C};  Mi(o0) =

o = {{eon e} s e )
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Therefore M;(o0) # —M(oc0)™1.

6. Subspaces Ny =NxNho (A € C\R) are called semidefect subspaces, and the numbers n!,(A) =
dim9%; are semidefect numbers of the operator A. Clearly 91} are defect subspaces of the operator
P boA € C(bﬁ)

Proposition 1.8 ([28, 53]). n+(Fn) = nt(Ar;) = nlL.(4).

Proof. Choose a BVS for A* such that M(i) = i. Then Yf € M. (f = {f,if}), VI = {0,1} € N we
obtain from (1.3)

0= (1’f7 0) - (f: l) = (Flfa F2i)7'l - (sz, I‘li)ﬂ = —(FZfa P1i+ ir2i)'Hs (122)

that is, Tof € 9(Fn). Conversely, for all h € 9;(Fn) there exists f € t; such that T, f = h (since
T, = H). It follows from (1.22) that f € ho and hence f € .. Thus, the operator I'; establishes an
isomorphism between 9} and MN;i(Fn); therefore n!y(A) = nt(Fg). O

2. REGULAR OPERATORS AND REGULAR EXTENSIONS

1. Let M, N be closed subspaces in §. As usual, the symbols M + N and M+ N denote the sum and
the direct sum of subspaces M, N. Since the sum of linear relations is denoted by the same symbol (see
Sec. 1), in order to avoid ambxgulty we shall write additionally M, N € h? for the sum of subspaces M, N
and, respectively, M, N € €(h) for the sum M + N of linear relations.

Lemma 2.1. Suppose that X, Y are Banach spaces, P is a linear continuous surjective mapping from
Xt (PX=Y), N=kerP. Then the range PM of a closed subspace M is also closed if and only if
M + N s a closed subspace of X.

Proof. The necessity of this assertion follows from the equality

PYPM)=M+N (N =kerP)

and the continuity of P.

Sufficiency. If M + N is a closed subspace of a Banach space X, the factor space (M + N)/N is
also a Banach space. Since PX = Y, we have from the Banach theorem that P is an open mapping
and the mapping P := XX/N — Y(P(z + N) = Pz,z € X) is a topological isomorphism. Hence
PM = P(M+N) = P((M+ N)/N) = (M+ N)/N and, therefore, PM is a closed space since (M + N)/N
is a closed space.

We shall need the known result of T. Kato. As follows from the proof given below, this result is a
consequence of the Banach theorem.

Proposition 2.1 ([29 p. 279]) Suppose that M and N are closed subspaces of a Banach space X, M+
and N+ are their annihilators in X*. Then the linear manifold M + N is closed in X if and only if the
linear manifold M+ + N+ is closed in X*, and in this case the following equality holds:

Mt + Nt =(MnN)- (2.1)

Proof. Let 7; : X — X/N and mp : X* — X*/M* be factor-mappings. Let P, = m [M, P, = m2 [N+,
It follows from the equality (P1 f,g) = (f+N,9) = (f,9) = (f,g+M*) = (f, P2g) Vf € M, g € N+ and the
relations (X/N)* = N+, M* = X*/M*, that P, = P;. By virtue of the Banach theorem on an operator
with a closed range, the range of P; is closed if and only if the range of P, is closed. Further, in accordance
with Lemma 2.1 we obtain that the linear manifold M + N (M* + N+1) is closed if and only if the range
(M) =P M (72(N+) = P,N*) is closed.

2. Let M and N be subspaces of Hilbert space . We define (after [29, p. 276]) the minimal opening
v(M, N) of subspaces M and N by the formula

(M N) _ inf ” PN““

———— N, M)(<L1 2.2
ueM u@N |]u - PM Nu” ( )( ) ( )
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" In the case M N N = {0} the opening v(M, N) coincides with the sine of the minimal angle between
M and N : v(M,N) = sin(M, N).

Proposition 2.2. Let M and N be subspaces of a Hilbert space. The followmg assertions are equiva-
lent:

(1) «(M,N)>0;

(2) linear manifold M + N is closed in b;

(3) linear manifold M+ + N+ is closed in b;

(4) linear manifold Py M is closed in N*;

(5) linear manifold Py M> is closed in N.

Proof. The equivalence (1) <=> (2) was proved in [29, Theorem IV.4.2] and the equivalence (2) <=
(3) is contained in Proposition 2.1. Equivalences (2) <= (4), (3) < (5) follow from Lemma 2.1, used for
operators Py, Py € [§]. O

3. Let A be a closed linear operator_ in b identified with its gra.ph gr A, fi)(A) =ho CHh, JM=
(A-X)D(4), Ny = My, N=5h60ho, T = {{AHA1}: fr € M}, A* be the adjoint linear relation,
and let 91 = {0,91} be its multwalued part. The following direct decomposition, which is an analog of the
Neumann formula ([74, 77, 80]; see also [31, 64]) holds:

A*=A+MHEN; (A e C\R). (2.3)
At the same time the decomposition
D(A") =D(A) + M + Ny (A€ C\R) (2.4)

is not a direct sum. The ambiguity in (2.4) is described by the following proposition.
Proposition 2.3 ([31]). Vectors fa € My .and —f3 € My are congruent modulo D(A) (that is,
dfa € D(A) s fa+ fr+ fi =0) of and only if there ezists a unique vector n € N such that

f¢\=P‘Jhn’1 fi=_P‘nxn (n’em)

In this case ||fall = | fzll and n = (A — X)(Afa + Afa + A f5).
It follows from Proposition 2.3 that an operator defined by the equality

VePn_in=Pyn  (VneMN) (2.5)
«Q

is an isometric operator acting from M3" = PmA‘JI onto = Py, N, named a forbidden operator. The
notion of a forbidden operator was introduced in [54], its role in the extension theory of operator A was
clarified in [31]. As shown in {31], manifolds 9} are closed (or nonclosed) only simultaneously for all
A € C\R. In the former case the operator A is called regular; in the latter case it is called singular [64].

Let A}, be the operator adjoint to the operator A € C(fo,b).

Lemma 2.2. Let M) = Ny 8N = Na N be a semidefect subspace of A. Then the following direct
decomposition (analogous to the Neumann formula) holds:

=—=(4) ;
)

D(A*) = D(4%,) = D(A)  + M+ N_+ N7, (2.6)

where D(A) i is the closure of D(A) in the graph-norm of the opcra.tor Ay

Proof. Making use of formula (2.4), we show that 5 ;CN'+D(A ) ") . By virtue of Propos1t10n 23
lineals N4; are linearly dependent modulo D(A) and

N, = N_; N (D(A)+ N) € D(A)+ N (2.7)
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If f_; € N”;, then according to (2.7) there exists f(") €N, (n e MN)such that f(") fg".) + f'.(") — f

(fa (") € D(A), f,-(") € ;) for n — oo. It follows from (2.5) that fg:) =V fi':) and, consequently, there
exxst the limits

for=lim f7 = lm VifD e, fa:= lim [ e DA,

n—00

Thus f—; = f4 + fi and the inclusion " ; ¢ D(A)+) +H” is proved. In view of formula (2.4) this implies
that
D(A*) € (D(A) P+ M nL,) + 5.

The inverse inclusion is evident since MY C N; C D(4*). O
Corollary 2.1. Let A be a regular Hermitian operator. Then

D(A*) = D(A)+ M+ N+ 9. (2.8)
Corollary 2.2. The following relations hold:
Pyly = Pyl = Py®(4*) = PaD(4%,) (VA€ C4UC-). (2.9)

Proposition 2.4. Let A be a Hermitian operator in h, A € C\ R. Then the following assertions are
equivalent: (1) v(M5, M) > 0; (2) W5 + N is closed; (3) v(Ma, ho) > 0; (4) Ma +bo = b; (5) N+ o =b;
(6) MY is closed; (7) PpIy = PuMy = Pu®D(A*) is closed.

The proof follows from Proposition 2.2 and Corollary 2.2.

Remark 2.1. One can easily deduce from item (7) of Proposition 2.4 and relatlons (2.9) that the
assertions (1)~(7) of Proposition 2.4 are fulfilled or are not fulfilled simultaneously for all A € C\R. In
particular, linear manifolds 91} are closed or are not closed 31multa.neously forall A e C\R.

4. Definition 2.1. Let N be a subspace in §j. A hinear relation T € C(b) will be called N-regular zf a
linear manifold T + 9 is closed in B2 =h D h (reca,ll that N = {0,MN} C - b2).

Proposition 2.5. Suppose that {H,T'1,T2} is a BVS for A*, 6 € C(H), A = Ay is a proper eztension
of an operator A, Fi is a forbidden relation, t = . Then the follo'wmg assertions are equivalent:

(1) A is ‘n-'r'egular extension of A;

(2) linear relation Py, A is closed;

(3) linear manifold Pn®(A*) is closed in M;

(4) linear manifold 8 + Fi1 1s closed in H @O H.

Proof. (1) <= (2). Since 1L+ = h@ by it follows from Proposition 2.2 that A is an 91-regular extension
of A if and only if the linear manifold A

PyoneA = {{f, Py, f'} : {f, f'} € 4} (2.10)

is closed. It remains to note that the manifold Pygp, A coincides with the product Py, A of the linear
relations Py, and A.

(1) <= (3). Let J be an isometry in ) @ h defined by the equality J{h1,h2} = {ha,—h1}. According
to Proposition 2.2 the linear manifolds A + 91, A+ + 9tt, A* + JAt = J(A+ + 9N+), and P A" are closed
only simultaneously. It remains to note that P,5A* = PpD(4*).

(1) <= (4). Since the mapping I induces a topological isomorphism between A*/A and H@® H, the
equivalence (1) <= (4) is a consequence of the equality I'(4s + ) = 6 + Fi1.

Corollary 2.3. Under the assumptions of Proposition 2.5 the following assertwns are equivalent: (1)
A is an N-regular opemtor, (2) Py, A is o closed operator; (3) PyD(A*) = N; (4) Fu 45 o closed Linear
relation in H; (5) = Py, N s closed in 9Ny (A € p(A4)).

Remark 2.2. As follows from the equivalences (1) <= (5) of Corollary 2.3 and (1) <= (2) of
Proposition 2.5, the notion of 9-regularity coincides with the notion of regularity both for a Hermitian
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operator A [31] and for its extension A € C(h) [64] if M = hL. Other regularity criteria for extensions
A € C(h) are given in [60].
Corollary 2.4. Under the assumptions of Proposition 2.5 the following holds:
(1) A; =kerT; is an N-regular eztension iff H; = TN is closed in H (i = 1,2);
(2) if Ag is an N-regular operator, then R(Fu — 0) is closed in H; ,
(3) if Ay is an N-regular operator and B € [H)], then N-regularity of an eztension Ap = ker (Ty — BI';)
i3 equivalent to the condition '

3> 0:||(Fu— B 2 ellh]l  VheHy =Tt (2.11).

Proof. (1) Consider the case : = 1. Since 6 :=T'4; = {H, 0}, the first assertion follows from item (4)
of Proposition 2.5 and the equality 8 + Fn=H @ R(Fn) = HO H;.. ~
- (2) Since 8 + Fq is a closed linear relation, its multivalued part (8 + F11)(0) is closed in H. Now the
assertion follows from the relation R(Fn — 6) = (Fu + 6)(0).
. (3) Condition (2.11) is equivalent to the fact that SR(Fqy — B) is closed in H. Now it remains to use
the relation . ’
gr Fu+ gr B = gr B+ {0,%(Fa — B)} (2.12)

and to note that the minimal opening between the subspaces in (2.12) is positive. O

Corollary 2.5. Suppose that A € Ex 4 is a Hermitian eztension of A such that codimD(A) < co and
A* is N-reqular. Then all proper eztensions A' € Ex iof fi are also N-regular.

Proof. By virtue of Proposition 2.5 Pmi)(fi) is closed in N. It follows from the relation codim—i:)_(,—‘l—)_ =
n < oo that dim(9M © Pu®D(A4)) < n. For all A’ € Ex ; the inclusions A C (A4')* € A* imply that the linear
manifold Pp®D((A')*) is closed and, therefore, A’ is an 91-regular extension of A. O

5. Proposition 2.6. Suppose that Il = {H,T'1,T'2} is @ BVS for A*, Fy is a forbidden relation, M())
is the corresponding Weyl function with integral representation (1.2). Then

R(B}S?) = Fu(0). (2.13)

Proof. Owing to Theorem 1.1 we have By = v*(i)Pa,(0)y(¢)- This implies that ||B11‘,{2h”2 =
|Pay0y7(#)R||* (Vh € H) and the operator U, defined by the equality U‘Bll\fh = P4,(0)Y(i)h (h € H), is an
isometry from m(B}f) onto A2(0) since A2(0)NM_; C NNM_; = {0} ([53]). Hence BMZ U* = ~(2)* Pa, (o)

and U* is an isometrical operator from A;(0) onto m In accordance with Corollary 1.1
Fuu(0) = v*(i)A2(0) = R(BU*) = R(B}?). O
Corollary 2.6. Under the assumptions of Proposition 2.6 the following equality holds:
Fu =R (BM)+ gr M(ico) = {0,% (BY)}+ gr M(ico). (2.14)

The proof follows from (2.13) and relations Fiy = F(0)4 F4, Fli = gr M(ico) (see Theorem 1.1).

Proposition 2.7. Under the assumptions of Proposition 2.6 the following assertions are equivalent:
(1) R (Bum) is closed in H; (2) Fu(0) is closed in H; (3) (A2(0), A1) > 0; (4) v(D(42),9) > 0; (5)
7(A42(0),9M5) >0 VAe C\R.

Proof. The equivalences (1) <=> (2) and (4)<=> (5) are consequences of relation (2.13) and Proposition
2.2. The equivalence (2) <= (3) follows from Lemma 2.1 and the equality F11(0) = I'1 A2(0). Now it remains
to show that (5) <= (2). If v(42(0),M_;) > 0, then according to Proposition 2.2 P4,(q)N; is closed. Since
A2(0) N 9M_; = {0} we have Pa,0)9 = A2(0) and hence P4, ) = A2(0). Making use of Lemma 2.1
and relations kery*(z) = M_;, v(A2(0),M_;) > 0 we conclude that Fr1(0) = v*(:)A2(0) = 7*(i)Pa, ()i
is closed in H.
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Conversely, if 7(A2(0),M_;) = 0, then according to Lemma 2.1 and Proposition 2.2 we have that the
linear manifolds A;(0)+ MM _; and F(0) = v*(0)A2(0) are nonclosed. O

Remark 2.3. One can easily deduce Proposition 2.7 from Proposition 2.2 and the next assertion: if
M, N are sub;spaces in b, then the following equivalence holds: M + N is closed <= the range of the
operator Py P+ [N is closed. In turn this assertion is a consequence of the equivalence

"PNPM || <1l ”PNPMIN” <1

held if M N N = {0}.

Now we shall characterize the regularity of an operator A in terms of the Weyl function.

Proposition 2.8. Suppo.se that I = {H,T'1,T2} is a BVS for A*, M()) is the corresponding Weyl
function, M = D(A)L = bt. Then the operator A is N-regular if and only if the linear manifolds R (Bum),
gr M(oo) are closed and form an acute angle (here By is a coefficient of A in the integral representatzon
(1.2) of M(})).

Proof. If A is a regular operator, then Fi1 = I')t and F1(0) are closed. Since Flf = I'{0,91 © 42(0)}
is the range of the subspace {0,91 © 42(0)} C A* and I" € [A*,H @ H] is a bounded operator, it follows
from the equality

Fu =9 = Fo(0)+ r{o N6 45(0)} = Fr(0)+ 7 (2.15)

and the known theorem from [45, p. 11] that FJj is closed. In accordance with (2.13) and Proposition 2.2
we obtain y(F n(O), Fi) > 0. To complete the proof of the direct assertion it remains to note that by virtue
of Theorem 1.1 and Proposition 2.6 Ff{ = gr M(co) and F1(0) =R (31/2).

The inverse assertion follows immediately from (2.15) and Corollary 2.3. O

Remark 2.4. (1) Suppose that M(oo) is a bounded operator. This is true, for example, if Hz is

closed. In this case F n(O) and Fji form an acute angle. If, ‘additionally, an extension A, is N-regular, then
the operator A is M-regular if and only if F11(0) is closed. In particular, A is 91-regular if A3(0) = {0}, or
more generally, if dim 42(0) < co. In the case dim91 = oo one can easily construct examples of 91-regular
extensions Ay € C(h) ©C(h) of operator the 4, that is, not N-regular. To this end we must choose the Weyl
function M(X) such that Ha = H2(M) is a closed subspace and R (B) is not.

(2) An operator A; is a nonregular extension of a regular operator 4 if and only if an operator M(oo) is
closed but unbounded. In the general case (A2(0) # {0})A is a nonregular extension of a regular operator
A if and only if gr M{(o0) and R (B) are closed, 7(9‘{/(-5),gr M(o0)) > 0 but the operator M(co) is
unbounded. o

In the next example we produce a Weyl function M(A) such that 4(Fu(0), Ff{) = 0 and M(oco) is an
unbounded operator.

Example 2.1. Let Ly = L§ € C(H,), L= (I(,) 1(;)0) € C(H), H=Ho & Ho. We put
0
M(\) = BA +/ (—1— - )(1 +t*)dE(t)
RM—XA 14122 ’

where E(t) is the spectral function of the operator L, and B = P; is the orthogonal projection onto
H! ;= {0} @ Ho. It is easy to see that Hy = D(Lo) @ {0} and :

M(\h = —Lh+ / —(1 +12)dE(t)h  Vh € Ha.

Therefore, M(c0) = —L{H; = ( LO ) : Ha — H! and the linear manifold gr M(oo) is closed. Since
0
R (B) =R (P1) = H! we have

Fu = {{0,h1} + {ho, M(c0)h2} : hy € H ', hy € Ha} = H, o H:
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and Fy1 is nonclosed. It follows from §5 that there exists an operator A and a BVS {H,I'1,I'2} such that
M()) coincides with the corresponding Weyl function.

Proposition 2.9. Suppose that J, X € [H ® H] are the same as in Proposition 1.7 M(\) € Ry,
0 € p(Im M( )) and M()) = X[M(X)] (see (1.12)). Then the linear manifold (BM)+ gr M(o0) and
R (B M)+ gr M (o0) are either closed or not simultaneously, that is, the property of linear manifold (2.14)
to be closed is invariant under the transformation group (2.12).

The proof follows from Theorem 5.1 and Propositions 2.8 and 1.7.

Corollary 2.7. If under the assumptions of Proposition 2.9 BM = By = 0, then gr M(oo) and
gr M (o) are either closed or not simultaneously. :

Remark 2.5. If M()) contains a linear term By, then the property of linear manifolds gr M(o0)
and R (B M) to be closed is not invariant under the transformation group (1.12). Thus, in example 2.1,
gr M(oo) is closed while gr M(oo) is not closed if

o p M) _
BM '— A=li1yn—1+oo —:\— -

We give one more N-regularity criterion for extensions A € Ex A
Proposition 2.10. Let A be a Hermitian operator in fj, ho = D(A), M =1hOho, A€ Ex 4. Then
N(A) == (A = X791 C My := NMA(A) and the following equivalence holds: A is an N-regular eztension
= NY(A) is a closed subspace
Proof. The inclusion (A) C Ny is a consequence of the condition A € Ex 4. Clearly, A + N =
A4+ N, where N =NO A(O) Assume that the linear manifold M (A) is closed, ny € N", {f, f1} € 4,
and the sequence { fx, f +ni} converges to f={f, g} as k — oo. This implies that St — Afi +ng converges
to g — Af, and by the equality (A — A)71(fi — Mfx) = fi there exists

Jim. (A=N""ng = (A= XN)"Yg~ 2f) = f e Mi(A). (2.16)

Since Y (A) is closed, we obtain from (2.16) that the sequence ny converges to some vector n € 9" and
the sequence f} converges to vector f' = g—n. Therefore g = f'+nand f = {f, f'+n} € A+ N = A+ N,
i.e., the linear manifold A + 91 is closed. _

Conversely, assume that the linear manifold A + 91 is closed, ny € N, and the sequence (A~ A)~inf
converges to h as k — co. Then it follows from the relation

{(A=N)n MA = N7} = {(A= )7, [T+ MA - V)7 ng} ~ {0, n"}e,&ir N

that the sequence n} € 9" also converges to some vector n € N". This implies that h = (4 —)\)"!n and
"(A) is closed. O

Remark 2.6. In the case A = A* we can choose a BVS II = {H,T4,T2} such that A =kerDy =: A,.
Now Proposition 2.9 is implied by Corollary 2.4 and the relation

T2{(A2 — A)7h, M A2 — \) 'R} = T2{0, ~h} = T29N(4) = Lot = H,

since the mapping I'2 [91a(A4) : Fa(A4) — H is a topological isomorphism and the linear manifolds 91, (4)
and Mx(A) are isomorphic.

3. FORMULA FOR GENERALIZED RESOLVENTS
OF A NONDENSELY DEFINED HERMITIAN OPERATOR

1. An operator-valued R-function Q(A) (€ R3) with values in [H] is characterized by the following
Nevanlinna integral representation (see [4-6])

Q(,\)=CQ+BQ,\+/R(£—A— i

t2) dz(t), (3.1)
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in which Cq = C3 € [H], Bq 20, Z(t) = Z(t - 0) is a nondecreasmg operator-valued function with values
in [H] such that

/ 1+ d5(2) € [H]. (32)
R
Denote by H2(Q) the linear manifold consisting of k € H, such that

(g [h] = lim y(lm QGy)h,h) <o (D)) = 2(Q)- 63
In view of the equality
y(Im Q(éy)h, h) = y*(Boh, k) + / d(Z(t)h )y (3.4)
fwhich is implied by (3.1)], the linear manifold H,(Q) may be characterized differently:
Ha(Q) = Ha(Q)Nker By, Tla={heH: /m d(S(t)h, h) < oo}. (3.5)

As a rule, the notations Cq, Bq, tg, H2(Q), and others will be used without the subscript @, which
will be written explicitly only to avoid ambiguity from time to time.

Proposition 3.1. Assume that Q()\) € Ry and takes values in [H]. Then:

(1) for all h € Hy = Hz(Q), A € C; UC_ the integrals

dX(t)h ~ dx(t)h

A)i= | ——=— = 3.6
= [T aw= [T (36)
converge in the strong sense and for every h € H, the vector-valued function Q(A)h admits the representation

dZ(t)h
QN = Zgh + [ O, (3.7)

RE—A

in which Zg is a Hermitian operator in H, D(Zq) = Hy;
(2) for every h € H, the relations
s— lim Qa(iy)h = s — lim Q2(iy)h =0, s — lim Q(iy)h = Zgh (3.8)
yToo yToo yToo

are true and if the linear manifold My is closed, the operator Zg is bounded;
(3) for every y € R and h € H, the integral

Guntinthi= [ HEOL  (0Gun(iy) =10) (3.9)

— P24y

converges in the strong sense and the operator QZR(iy) 18 closable;

(4) if Bg =0 and Zg — Cq <0, then the operator Zg is closable.

Proof. (1) Although the strong convergence of the integrals (3.6) can easily be proved with the help of
the Cauchy-Bunyakovsky inequality, for our purposes it is more convenient to use the generalized Naimark
lemma [5, 8]. According to this lemma we have

dX(t) = (1 +t*)K* dE(t)K, (3.10)

where E(t) = E(t — 0) is the orthogonal resolution of the identity for an operator L = L* acting in a
separable Hilbert space fj, K € [H,b]. Taking into account (3.10), we may rewrite the second condition in
(3.5) in the form

/ (1+¢3)d(E@t)Kh,Kh) < 00 <= Kh € D(L), (3.11)
R
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that is, D(LK) = 'D(K*LK) = ‘H,. The representation

t—A

dT(t)h 1+ o ’

Q2N = / 2 ) - K* / (F55 + ) dE@)KA + K / tdE(t)Kh (3.12)
shows that the strong convergence of the integral on the left-hand side of (3.12) is equivalent to the conver-
gence of the integral [jtdE(t)Kh in the strong sense, which holds true if condition (3.11) is satisfied [5].
Now for every h € H; the integral representation (3 1) of the vector-valued function Q(A\)h may be written
in the form in (3.7), where

o0 4 7 ] . 00 o
Zoh = Coh — / t‘ﬁ(gh = Coh—K* / tdE(t)Kh = (Cq — K*LK)h, (3.13)

that is, Zg = (Cq — K*LK)[H; is the restriction of the operator Cq — K*LK to Ha,.
(2) Since for all h € Hy Kh € D(L) = D((I + L?)'/?), we may put hy = (I + L?)/2Kh and rewrite
equality (3.12) in the form o

Q:(Mh = /m é%f% = K*(I + L**(L ~ \) h,. (3.14)

Relations (3.8) are implied by (3.14) and by the evident equality s — limytoo(I + L?)/2(L —iy)~1f =0
Vfeh.

If the linear manifold H; is closed, Zg is a bounded linear operator, since it is the strong limit of a
sequence of bounded operators [see (3.8)).

(3) The strong convergence of the integral (3.9) and, consequently, the correctness of the definition of
the operator Q,r(1y) are implied by statement (1).

Setting T' = |L|Y/2(L? + y*)~Y/2(I + L*)'/?K, we find that

T*T D K*|L|- (I + L)(L? + v*) 'K = Qzr(iy).

The latter immediately leads to the closability of the operator Q. r(2y)-
(4) Since Bg = 0, we have H} = H; and K*LK = Cg — Zg > 0. Let b, := K'Hy and Ly := Py, L[hy,
L; > 0. Introducing the hard (Friedrichs) extension L;r of the operator L; > 0, we obtain

K*LK = K*L,K C K*LirK C (L2 K)* (L2 K). (3.15)

Hence follows statement (4).
Corollary 3.1. Let IT = {H,[',,T2} be a BVS for a relation A* such that A;(0) = {0}, let M(X) be
the Weyl function corresponding to the BVS II, and Fp = ' be the forbidden operator. Then Fu = Zp.
The result can be proved by a comparison of relation (3.8) with assertion 1 of Theorem 1.1.
Remark 3.1. We give an example showing that if the condition Zg — Cq > 0 is not satisfied, the
operator Zg may be nonclosable.
Let operators Ly and K, act in § = Io(1, oo) with an orthogonal basis {e,}{° and let these operators

be defined by the formulas Loe, = n’en, Kjen = lei. Setting H=h@h, L= (I(a)o IE)O) € C(H),

1
K= (é Ig ) € [H]: and taking fn = ("Sn) € H, we have f, — 0 as n — oo, although K*LKf, =
0

2 ) # 0. We define a function Q()) by the formula
1

o= (15 - g s
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Then Hy =D(Lo) @ (H © 1) and the operator Zg = —~K*LK is nonclosable.

Proposition 3.2. Assume that Q(A) € Ry and takes values in [H]. Then the following statements
hold true (the notation in Proposition 3.1 and in what follows is the same):

(1) for every h € Ho := ker Zg(C Ha) there ezists a finite limit

to[h] := 31{2 wy(Q(—iy)h,h) < o0 Vh € Ho (3.16)

and the quadratic form to(D(tq) = Ho(Q)) is nonnegative and closed;

(2) the nonnegative self-adjoint operator Tg = T € C(Ho) associated with the form tq (in accordance
with the first representation theorem [29]) is bounded if and only if the linear manifold Hy is closed. In the
former case the following strong limit exists:

s — lim iyQo(—iy) = To(€ [Fo]), (3.17)

where Qo(=iy) = ProQ@(—iy)Ho;
(3) if Ha = 'H and 0 € p(Im Q(2)), then the linear manifold Hy is closed, Tg = By' and the equalities

3s—~R— liTm iyQo(—iy) = Tg = By}, (3.18)
yfoo

tlh] = lim iy(Q(~iw)h, b) = |TZ/*hI> = |BT*|*  Vhe Ho,
in which By := Bg,[R (B and Bg, is the coefficient at X in the integral representation (3.1) of the
1 @ 431

function Q1(2) = —Q (X)) hold true.
Proof. It follows from equality (3.7) that the limit

tolh} = lim (@), ) = [ d(Z(h,)  VheHy (3.19)

exists and the quadratic form t = tg is nonnegative. In order to establish that this form is closed, we first
show that the quadratic form ¢(3) := tg) of the form in (3.3) is closed. We remark that the graph of the
operator T3 := (I + Lz)l/ 2K M, is closed since it is the intersection of two closed subspaces

gr Ty = gr (I + L*)'2K) N (ker Bo @ b).

Formulas (3.3), (3.10) and the equality

(€2[h] = / ” d(S(t)h, ) = / (1 + ) d(E@)Kh, KB) = | Tohl? (3.20)

imply that the quadratic form (2) = t(qz) is closed. We show that the operator Tp := T2[H, is closed. If
hn € D(Ty), hn — h, and Toh, — g as n — oo, then h € D(Ty) = H, and T1h = g, owing to the fact that
T, is closed. Since D(Zg) = Ha C D(LK), according to (3.13) we have

ILK (hn — B)* = | Ta(hn — h)|I* = | K (ha — B)|[*.

From this we conclude that 0 = Zgh, — Zgh =0 as n — oo, that is, h € ker Zg = Ho. The latter proves
that T, is closed and consequently the quadratic form t is closed by virtue of the equality

{[h] := /_ ~ dS(t)h, h) = [Toh|]? Vh € . (3.21)
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(2) Equality (3.21) shows that the operator T = Tg = TgT, associated with the form ¢ is self-
adjoint. Since D(T/?) = D(t) = H,, the linear manifold H, is closed if and only if the operator T, 172 is
bounded (the Hellinger theorem), but the latter is equivalent to the boundedness of the operator Tg. %ince

+ f d(Z(t)h, k) < oo for all h € H; we have nonnegative operators defined correctly for every h € H,
by the formulas

*00 1 dN(¢)h

. < y2dZ(t)h .
Rl(—zy)h = P’Ho / y——(—)—' Rzi(—zy)h = Puo ‘/; —téTyT, Vh € Ho.

—eo YR

The boundedness of the operators R;(—iy) is evident. The operators R.f (—iy) are bounded in view of their
closability (Proposition 3.1) and the fact that linear manifold H, is closed. We can easily see that

lim (Ry(~iy)h, h) = / T S ) = (Thh), w- lim Ry(~iy) = 0. (3.22)

Since the weak convergence of Ri(—iy) to T is monotone and the operators Rzi(—iy) are nonnegative,
the convergence in the weak sense in (3.22) implies that these operators converge also in the strong sense.
Therefore, relation (3.17) is implied by the equality

wQo(—iy) = Ri(—iy) + iR (—iy) — iR; (—iy).

(3) If Ha = H, the representation (3.7) holds true for all h € H and Zé = Z{ € [H] (see Proposition
3.1). From this we obtain that Hy = ker Zg is closed. Let

Qoo(A) Q01()\)) (Zoo Z01> (0 0 )

A = Z = =

Q( ) (Qm(’\) Qll()\) 14Q Zyw Zn 0 Zn

be block-matrix representations of the operator-valued function @Q(\) and of the operator Zg corresponding
to decomposition H = Ho & H; (H; = Hy ). Then we have

Q:J()\) P’H Qt’,\) ;= Zij + P’H,-/ dE(t)

-0

[H, (1, =0,1), (3.23)

Qoo(A) = Qo(}A), and ker Z;; = {0}. It follows from the condition 0 € p(Im Q(3)) that 0 € p(Qoo(A)) for all
A € C;4 UC_ and by the Frobenius formula, we have

-1 -1 -
Q7'()) = (Qo +E2G ngfQ:Qon -Q GQOIIG 1) : (3.24)

where G(A) := Q11(}) — Q10(N)Q5 (A)Qo1(X); since Q1(X) := ‘—Q“l(/\) € Ry and takes values in [H], we

can conclude that

1
3-lm B 5 T 5o 50, B, e

ytoo Y yToo

By virtue of statement (2), the following limit exists in the strong sense: s — liTm iyQo(—iy) = Tq(€
ytoo

[Ho]) since the linear manifold Hy is closed. Using this result and applying statement (2) to the function
Q(A) — Zg, we can see that the following strong limits exist:

Coo = s = limyteo (1y) 7' Qp 1( —~iy) = Co1:=s— limytoo tyQo1(—1y), (3.25)
Cig:=5— hmyToo WQlo( zy) Cop Ciii=s— limyToo iy[Qu(-iy) - Z11]~ '
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We have from (3.25)

35 — lim iyQso(~i%)Q53 (~i%)Qo1 (=) = G5y CanCis (3.26)
and consequently
3s — lim Q10(=1y)Qoo(—1)Qo1(—iy) = 0. (3.27)

Since 0 € p(Im Q(3)), we have 0 € p(Im G(})), i.e., G()) is a Weyl function corresponding to some BVS
(see Theorem 5.1). Using (3.23), (3.25), and (3.27), we can see that Bg = 0 and

Zg := s — lim G(iy) = s — im Q11(?y) = Z1;.
yfoo yToo

Since ker Z;; = ker Zg = {0}, according to Theorem 1.1 we have

o W
Bg—l =s—lim M =0. (328)

yloo 1Y

We obtain from (3.25) and (3.28) that
s — lim Qo (i) + Qav (i) Qo1 (iy) G~ (iy) Q10 (i) Qgv (i)
ytoo —iy
=5- liTm(—iy)_lQ[,‘ol (iy) = Coo = T3 . (3:29)
ytoo

Consequently, (3.28) and (3.29) lead us to the relation
QM=) _ (Cun 0\ _ (T3 0
Boy=s—lm=——=1 79 o/= 0 o)

proving statement (3). O
Remark 3.2. (1) It is noteworthy that a finite limit exists in (3.16) not only for all h € Ho = ker Zg.
The following equivalence provides a sharper result:

Hrm liy(Q(—ty)h, k)| < 0o <= (Zqh,h) =0. (3.30)
ytoo
(2) Define an operator S by the relation

Sh= / dSo(t)h,  So(t) = Py, B()Tho (3.31)

on the set D(S) of the vectors for which the latter integral converges in the strong sense. If D(S) is dense
in Hp, then the operator Tg is the Friedrichs extension of the operator S and the relation

s — R— lim iyQo(—iy) = T
yToo

holds true.

3) It must be mentioned that the invertibility of the operator Q11(¢) in [H] [the fact has been used for
proving assertion (3)] holds true provided that 0 € p(Im Q()), but it may not be true when 0 € p(Q(>)).
The preresolvent matrix of a Hermitian operator A gives a proper example (see §8).

In what follows we shall need
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Lemma 3.1. Assume that Sp € [M], T, € C(H). If

ds — lim S, =5, ds~R- lim T, =T,

n—co n—00

and there ezist numbers® (, € Ap(Sn), (2 € A(Ty) such that {1 + (2 € Ap(Sn + T3) for alln € Zy, then
the following strong resolvent limit exists:

s—R—’}i_{réo(Sn+Tn)=S+T.

Proof. Since S = s— lim S, we have Se [M]. We derive from this and from the relation (; € A(S,)
n—oo : : ;

that .
35— lim (Sa—G) = (S - () 7 € [H]. (3.32)

Moreover, we have
s — lim (T, - G =(T-0)T GeA(T). (3.33)
Now the condition {1 + {2 € Ay(Sp + Th) and the equality
I=(Sa=Ca)(Sn+Tn =G =) = [T+ (Sn ~ ) (Tn — ()71 (3-34)

imply that X! is a uniformly bounded sequence if X, := I + (Sn— G )(Tn - éz)—l by definition. It follows
from this, (3.32), and (3.33) that the following two limits exist:

s—limpouoo Xn=IT+(5-¢ )(T—C )—1,
s=limane X1 =[I+(S - C:)(T - 422)-1]—1_ (3.35)

We obtain from (3.35) and (3.34) that

3s— lm (Sp+Tp ~ (1 - ()M =s— lim (Sa— )7 - XY

==(S =) THI+(E = G)T - &)™ - 1)
==(§-)TT-G)T-G+5-0)" =1N=(T+S-G-G¢)". O
Corollary 3.2. Assume that operators S, € [H] and linear relations T, € C(H) are m-accretive. If

the strong limit s — lim,_,oo Sp = S ezists, then the following two relations are equivalent:

ds—R-lim Th=T<=>3Is—R— lim(Sn+T0u)=S+7T.
n—ae0

n—o0

Corollary 3.3. Assume that a sequence T, = T € é(?{) converges in the strong resolvent sense:
T=s—R-limy .o T, and K = K* € [H]. Then the limit

s—R— Im(T,+K)=T+K

. extsts.
2. We recall that the operator-valued function Ry = P(fi — A)7! 1 holomorphic in C4 U C-. is called
the generalized pseudoresolvent of an operator A and the notation Ry € PQy4 is used if A(€ C(p)) is the
self-adjoint extension of A going out into a larger Hilbert space h D §, P = Py is the orthogonal projection

*) Following [29], we denote the domains of boundedness and of the strong convergence of the sequence
(Tn = ¢)™! by Ap(T,) and A4(T,) respectively.
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of f onto . The set of generalized resolvents Ry € PQ4 for which A € C(f) (that is, A is an operator) is
denoted by Q4.

The collection of extensions A = A* € C(p) generating the resolvent Ry € P4 contains minimal
extensions, i.e., such that

hoh=cls{I-P)YA-XN"'h:AeCsrUC_}. (3.36)

A minimal extension is not unique although two arbitrary minimal extensions A(') € C(b ) (i =1,2)
are unitary isomorphic. Moreover, there exists an isometric isomorphism U from b1 onto bz such that
Uf=fforall fehand UAD = A(2> where U{h,g} = {Uh,Ug} for all h,g € b.

In what follows we shall always assume that the resolvent Ry € P4 is generated by the minimal
extension A.

According to a well-known Naimark theorem [5, 54] (and the generalization of this theorem relating to
linear relations A [77]), the generalized resolvent can be characterized by the integral representation

Ry / dZ(t) / dE(t)b Py(A -2,

in which ¥(¢) = Z(¢—0) is a nondecreasing operator-valued function, E(t) is an orthogonal spectral function
¥(—o00) = E(—o0) — lim E(#) =0, E(o0):=s— t%l-’l:n E(t) is an orthogonal projection of h onto D(4),
E(c0) = PyE(co)lh := s — lim (~iy)R(iy).

The following equwalences are evidently true:

S(+00) = Iy <=> E(+00) = I; <= Ra € Q4 <= A € C(h). (3.37)

The following evident lemma will be useful for our further consideration.

Lemma 3.2. Assume that h, € H, 3 lim ho = h, X, € [H], and 3s — lim Xn = X. Then there
ezisis the limit lim Xp,h, = Xh.

N0

Lemma 3.3. Assume that II = {H,T1,T2} is a BVS for a relation A*, for which Al(O) = {0}, that
is Ay € C(h), M(X) is the corresponding Weyl function, Mi()\) = —M(A)™?, Fn is the forbidden linear
manifold. Then the limit '

t[h] .= tp, [h] = liTm iy(M ™ (iy)h, k) (3.38)
yico

ezists for all h € Fn(0).

Proof. The operator-valued function M;(\) = —M(A)~! is the Weyl function corresponding to the
BVSTL; = {H, I‘g, —T';}, the forbidden linear manifold Fi, is an operator (11, (0) = {0} <= 4:(0) = {0}),
and Fi, = —Fg'. In view of Corollary 3.1 we have Fi, = Mi(o0) and ker M;(c0) = ker i, Fu(0).
Applying relation (3.16) to the equality Q(A) = M;()), we obtain relation (3.38). O

Theorem 3.1. Assume that Il = {H,T;,T3} is a BVS for a relation A* for which Ay(0) = {0}, M(})
13 the corresponding Weyl function. Then:

(1) the equality

(Ao —2)7" = (A2 = M)+ ()8 — M(A) T (N) (3.39)

establishes a bijective correspondence between the resolvents Ry = (fie — A)"! of the proper extensions Ag
of an operator A and the closed linear relations 6 in H;
(2) the formula
Ry = P(A— )7 = (42 = 27 = v(A)(r(3) + M) " (N) (3.40)
establishes a bijective correspondence between Ry € Py and T(A) € Ry;
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(3) Ry = (/i._,.(;\) — A)7L, that is, for every g € h), Rag is the solution of the boundary-value problem
with the spectral parameter T(A) in the boundary condition:

{f.e}ed - A\ {f.Tify e —r(X), (3.41)

where f = {f,g + Af} € A%;
(4) Ry € Q4 in formula (3.40) if and only if 7()\) satisfies the following conditions:
(2) Flimy—ooiy((r(iy) + M(y)) 2 h,h) = tar,[h] VR € Fu(0); (3.42)
. N1
(b) s —limy_o, FEEMED" — o, (3.43)
where My()) = —~M (X)L
Proof. Assertions (1)—(3) have been proved in [53] (m the case D(A) = b they have been established
in [20, 79]). We shall prove assertion (4).

Necessity. (a) Let A = A* € C(h), that is, A is an operator. Putting A;(T)) = {{0,f} : f € Ax(0)},
by = A2(0)1, and § = bh; @ A3(0), we can easily see that

s — yhrrolo iy(Az - iy)"l = —PA;(O).L = _Pbl' (3.44)

If Ry € Q4, then it follows from (3.37) and (3.44) that

s — liTm iy[(A2 — iy) ™! — Riy] = I — P4, (0)" = P4, (0). (3.45)
yToo

Further, we use the equality (see Proposition 1.5)
TN =T{(A2 =N+ M4 =N} (fen). (3.46)
We obtain from (3.46) that
7*(A)f =T1{0,f} Vf e A3(0), YAeCiUC._. (3.47)

In particular, v*(A)A2(0) = Fp(0f:= I‘1A2(0) VieCiucC_.

It can also be seen from (3.47) that v*(1)f does not depend on A € C4 U C_ for every f € A(0).
Setting b = v*(i)f(= v*(A)f VA€ C4 UC.) for f € A3(0) and taking into account the resolvent formula
(3.40) and equality (3.45), we get the relation

JJm M)+ MO TR = lim () + M) (R ()

= lm (42 =07~ (Arn - NTULH =P Vhe Fu(0). (3.48)

z\—-ty——voo

In particular, relation (3.48) is true in the case 7(A) = 0 also (since A; € C(})), that is, for b = ¥*(A)f,
f € Az(0) we have
dh] = to, 4] = lim iy (M i), ) = 1. (3.49)

Relations (3.48), (3.49), and (3.37) imply that condition (3.42) is satisfied.

(b) Being self-adjoint, the linear relation A, admits the canonical decomposition A; = A} ® A/z(\()) in
which Aj is the operator part of the linear relation A and D(4;) = D(A}) L A5(0). Therefore, it follows
from (3.46) that Vf € D(A4})

hm Wy (—~iy)f = hm T1{iy(A2 —iy)~' f,iy(A4s ~ iy) 1AL f} = =T {f, 45 f}. (3.50)

163



Since G(A) := —(7(A)+M(X))~! € Ry and takes values in [H], the integral representation (3.1) implies
that the limit Bg = s — hm G(/\)//\ exists. If we observe that Pa,(q)f = 0 Vf € D(4}) C A2(0)1 we can

obtain from (3.45), (3. 50), the resolvent formula (3.40), and from Lemma 3.2 that

0= I1Pa 17 = Jim M)+ MO) 7 0f, ) = - Jim (SEr (), 3 (207)

= —||BY’T1{f, 44 F}7, (3.51)
where A = ty. Consequently, we have
BYTy(gr A}) = 0 = BoT(gr A}) = 0. (3.52)

On the other hand, (3.48) evidently implies that

(Bh,h) = lim (ggh h) =0  Vhe Fu(0). (3.53)

It follows from (3.52), (3.53), and the equality
H= P1A2 = I‘lgr A’2+ FlA;(\O) = I‘lgr A’2+ .7'-1'[(0)

that condition (3.43) is satisfled.
Sufficiency. Suppose that Ry € PQ4 and conditions (a) and (b) are satisfied. Then

s — lim iyRiy = s lim Py(A —iy)7'1h = —PyQ, (3.54)
y—oo y—00
where Q is the orthoprojection of § onto A(O)J‘ C b. Since A = A* is a minimal extension, we have

A(0) C b (see [80]). Now the resolvent formula (3.40) and condition (a) imply that Vf € A2(0) and for
=y*(1)f(=v*(A\)f) VreCiuUC.)

(PyQ — Ppyoye)f, f) = 31& (A2 —iy)™' = Ray)f, f) = 3;?0 iy((r(iy) + M(iy)) " h, h)

= lm (M7 (iy)h, h) = lim iy([(42 —iy) ™ = (41 — ) 7Nf, £) = (I = Pay21f, ) = IfII?

Thus we have
(PQSLH =P =T -Q)f =0 Vf € A0) (3.55)
Further, condition (c) means that B¢ = 0 (G(A) = —(7(A) + M(A))™'). Therefore, the resolvent
formula (3.40) and equality (3.51) lead to the relation

lim iy[(4; — i)' - Rylf =0 Vf e A(0)*,
yToo

which [if we take into account (3.54) and (3.44)] means that
(PyQFH - IfIP =0=>(Ig)f =0  Vfe A (0)" (3.56)

Since h = A2(0) @ A2(0)L, we derive from (3.55) and (3.56) that Qf = f Vf e}, that is, h C A(O)'L
A(0) L B. The latter, together with condition (3.36) (A is a minimal extension), mean that A(0) = {0},
that is, A is an operator. [J

Definition 3.1. A holomorphic family of relations T()) € Ry will be called M-admissible if the
generalized resolvent Ry € Q4 corresponding to it in formula (3.40) is generated by an operator A=A~
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Consequently, if Ay = A} € C(h), then the family 7()) is M-admissible if and only if conditions (3.42)
and (3.43) are satisfied.

Corollary 3.4. Assume that under the conditions of Theorem 3.1 we have A,(0) # {0}. Then the
condition of M-admissibility (3.43) stays true, but condition (3.42) takes the following form : Vh € Fp1(0)

3 lim (iy[r(—y) + M (=)™ b, h) = Lim iy((M (=iy) + K] 7'k, ), (3.42')

where K = K* is an operator (€ [H])) such that Ax(0) = {0} (that is, Ay is an operator).

Proof. It is not difficult to see that an operator K = K* € [H] such that gr K N F{0} exists
and therefore Ag(0) = {0}. Let II' = {H,I'{,T'2} be a BVS for which I'} = I'; — KT'3, M’()A) be the
corresponding Weyl function. Then F/(0) = Fu(0), M'(\) = M()\) — K, A} = kerT} = Ak, and
condition (3.41), which determines the generalized resolvent R, takes the form

{T2f,-Tif e =r(N)+ K (fea).

Thus relation (3.42') is implied by (3.42) and the relation Aj(0) = {0}. On account of the equality
By = By condition (3.43) remains true.

3. We should remark that the condition of M-admissibility for () reduces to condition (3.43) or
(3.42) if A5(0) = {0} or A, = Az, (:= A+ N) respectively. If A;(0) = {0}, then we derive from Theorem
3.1 and Corollary 3.2 that the following holds true. ' '

Corollary 3.5 ([53]). Let Il = {H,T'1,T'2} be a BVS for a relation A* for which Ay(0) = {0}, M(})
be the corresponding Weyl function. Then equality (3.40) establishes a bijective correspondence between
Ry € Q4 and 7(A) € Ry satisfying condition (3.43). It is a well-known fact that an indeterminate part
(T(M))(0) of a family T(X) does not depend on A € Cy and 7(X) = gr 71 (A) @ {0, [r(A)](0)} ([36, 77]), where
11(X) is the operator part of the relation T(A), T1(A) € C(HY), H} = H O (r(\))(0). If mi()) takes values in
[H'], we define a Hermitian relation 7(o0) by putting T(o0) = 11(c0) @ {0,(r(A))(0)}, where

m1(c0)h = s — liTm m1(iy)h Vh € Ha(71).
Yyloo

We characterize the condition of M-admissibility (3.43) in terms of the relation 7(o0).

Proposition 3.3. Let I = {H,L1,T2} be a BVS for a relation A* for which Az is an operator
(A2(0) = {0}), M()) and Fn are the corresponding Weyl function and the forbidden linear manifold
respectively, 7(A) € Ry. If the operator-valued function T1(\) takes values in [H!], then condition (3.43) of
M -admissibility of the family 7()\) and the admissibility condition of the relation —r(o0) @ {0,R (B,l-/z)}
are equivalent, that is, the following equivalence holds true:

s~ lim A7H(r(A) + M(X)™! =0 <= {~(c0) ® {0,% (B;/*)}} n Fur = {0}.

Proof. Consider (for simplicity) the case m(A) = 7(A) (that is, (r(A))(0) = {0}). Since 0 €
p(Im M(7)), we have 0 € p(Im (M(:) + 7(¢)) and according to Theorem 5.1 G(A) := M(A) + 7(A) is a
Weyl function corresponding to a BVS I’ = {H,T'},T'3}. Then we have —G(A\)™! = —(M(A)+7()))™! and
it is the Weyl function corresponding to the BVS II" = {H,I'}, —I'{ }; in view of Theorem 1.1 the condition

. G(iy)™!
s — lim ———

yToo Y
corresponds to the extension A} in formula (1.4), that is, A} = Ag, it follows from Proposition 1.4 that
A} (0) = {0} <= Oy N Frv = {0}, where the forbidden linear manifold Fr: of the BVS II, on account of
Proposition 2.8, is of the form Fm» = gr G(o0)+ {0, R (Bgz)}. Since A3(0) = {0}, it follows that By = O,
that is, B¢ = B, and gr M(oo0) = Fux (Theorem 1.1). Thus, the condition Oy N Fr» = {0} is equivalent to
the following one:

= 0 means that A} = kerT} is an operator. Since the zero operator § = Oy = {H,0}

[-7(c0) ® {0,% (BY*)}I n F = {0}. O
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Corollary 3.5. Under the conditions of Proposition 3.3 the implication

s — A_hén AT+ MAV) T =0= —7(00) N Fu = {0}
holds true. If, in addition, B, = O, then the implication must be replaced by the equivalence.
Corollary 3.6. Let the conditions of Proposition 3.3 be satisfied and the family T()) € Ry be M-
admaissible. Then for every Ao(€ C4 UC..) the relation —7 () is admissible, that is, (—1(Xo))NFir = {0}.
Proof. If (~7(Xo)) N Fu # {0} for some Ag € C, then 3(0 #)h € ker(7(Xo) + Fu). Consequently
= (7(Xo)h,h) = —(Fuh,h) is real and thus for every A € C; we have (1(A\)h,h) = k. It follows that
h E 'Hz(r) and

T(Ah =7(A)h VA€C) = 7(0)h = liTm r(iy)h = 7(Ao)h = ~Frh.
ytloo

In view of Corollary 3.5, the latter is in contradiction with the M-admissibility of the family 7(}). O

Corollary 3.7. All the families 7()\) € Ry are M-admissible if and only if D(A) = b.

Proof. In the case 42(0) = {0} the statement follows from Proposition 3.3 and an evident equivalence,
namely, D(4) = h < D(Fn) = {0}. O

4. Remark 3.4 Assume that the conditions of Theorem 3.1 are satisfied, H; = I‘I‘j'l ‘H, and
7(3) € [H]. Then, according to Proposition (3.2), the M-admissibility condition (3.42) can be made more
precise:

3 hrori wy([r(iy) + M(iy)) " h,h) = (B™'h,k)  Vh € Fu(0). _ (3.57)

We denote by B = By in (3.57) the coefficient of A in the integral representation (3.1) of the Weyl function
M(X). The equality (3.57) is true, in particular, provided that 4; = A+ 91, since

Ay = A+ N > Fp = {0, H} <= Fu(0) = H &> H; = H, ker Fj{ = H. (3.58)

In the latter case, condition (3.42) can be rewritten in a more simple form. ) )
Corollarx 3.8. Under the conditions of Theorem 3.1 assume that Az = Axy = A+ N. Then the
family 7(A) € Ry is M-admissible if and only if the limit

s—R—limM::O (3.59)
yloo Y

ezists. In the latter case, T(A) € Ry (that is, (r(A)(0) = {0} for all A € C4). In particular, if T(A) takes
values in [H], condition (3.59) takes the form

B = s — lim(iy) ' 7(iy) = 0 (3.59)
yToo

Proof. Since Ho(—M ™) = F1(0) = H [see (3.58)], the existence of the strong limit

s — Lm iyM~(iy) = B™'(= By ) € [H] (3.60)

can be established by applying Proposition 3.2 to the operator-valued function Q(A) = —M(A)~!. Suppose
that 7()) is M-admissible. Then for the operator-valued function G()) := —(7(A) + M(X))~! and for
arbitrary h € H = Fn(0) the weak limit in (3.42) exists and, on account of the equivalence (3.30), we see
that (Zgh,h) = 0 for all h € H. It follows from assertion (2) of Proposition 3.2 and relations (3.60) and
(3.42) that the strong limit exists and the equality

P . () + MEy)\ 3.61
s— 5112 1yGiy) = s — 51112 (—————iy ) =B (3.61)
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is true. From (3.60) and (3.61) we obtain the following relation:

Es—R—lmIMl=B=s-—h‘mM. (3.62)

yToo 1y yloo WY
Since operators (iy) ™! M(iy) and relations (iy) ~!7(iy) are m-accretive for y > 0, (3.59) follows from (3.62)
and Corollary 3.2.

Conversely, equality (3.59) and (once again) Corollary 3.2 imply relations (3.62). Since B™! € ['H] '
and 0 € p(r(iy) + M(3y)), we derive (3.61) and, consequently, (3.42) from (3.62). The latter proves the
M-admissibility of 7()). The inclusion 7(A) € Ry is a consequence of equality (3.59).

The converse of Corollary 3.8 holds.

~ Proposition 3.4. Assume that Il = {H,T'1,T'2} is a BVS for a relation A*, M()) is the corresponding
Weyl funciion, Fr is the forbidden Linear manifold. Then the condition of M-admissibility of the family
() is eguivalent to condition (3.59) if and only if F;1(0) = M. In this case the operator A and its extensions
Ay, Ay are N-regular, A2(0) =N, and nlL(A) =0. ’

Proof. According to Corollary 3.8, the equivalence (3.42) &= (3.59) is true if the condition Fi3(0) =
H(<=> A, = A+ N) is satisfied. Taking into account Corollaries 2.3 and 2.4, we derive from (3.58) that
the relations A, A;, and Ay are N-regular since the linear manifolds F = {0,H}, H, = 'Rt = H,
Hy = 391 = {0} are closed. Proposition 1.8 implies the equalities n!, (4) = ny(Fg) = 0.

Necessity. If the condition Fyp(0) = H is violated, then choose h ¢ F11(0) and a relation 8 = 6* € C(H)
with properties 8(0) = {ph : p € C} and 6 N Fp = {0}. Then the family 7(\) = —6 is M-admissible
although condition (3.59) is not satisfied:

T (,\)

s —R—lim since  (T(A)/A+1)"'h =0 YieC,. O
ytoo A

Remark 3.5. The formula of generalized resolvents (3.40) [but without formula (3.41) and the connec-
tion with a BVS] has been obtained in [82] and generalizes a well-known Krein formula [32, 33], which has
been established by Krein in the case D(A4) = § for operators with finite deficiency index ni(A4) =n < oo
and by Saakyan [58] in the case ni(A) = oo (see also [36, 37]). The following condition of M-admissibility
has also been obtained in [82]:

O
liTm vy 1 (Q-(iy)h,h) =0 VheEH, (3.63)
yToo

where Q-(A) := M(A) = [M(A) = M(A)][M(X) + r(A)] 7 {M(X) — M(Xo)]-

Condition (3.63) does not depend on whether A, is an operator or a relation. Note, in addition, that
formulas of generalized resolvents similar to (3.40) were obtained (in the case A;(0) = {0}) from the Shtraus
formula in {1, 2, 61]. The connection of the Shtraus formula with (3.40) was analyzed also in !53].

5. At this point we shall consider the case of a bounded Hermitian operator A with D(A) =bo G b.

Proposition 3.5. Assume that A is a bounded Hermitian operator in D(A) =ho, N = bebo = by,
and A = A* is an eztension of A of the form

A A A . .
4= <A§’f,’ Afi) (45 € [;,bi] (5,5 =0,1)),

Then: (1) the relation A* is of the form A* = {{f,Af +n}: f€ho,n € n};
(2) the collection

H=N, Ti{f,Af+n}=n, T2{f,Af+n}=Pnf (3.64)
forms the BVS for the relation A*;
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(3) the v-field v()) and the Weyl function M()) corresponding to the BVS (3.64) are of the form

’)’(/\) Iy —~ (Aoo - ) 1A01, M(/\) = Ay~ A1 + AIO(AOO —_ /\)-1A01. (365)

Proof. The first and the second assertion are evident. Further, according to the Frobenius formula
(3.24), we have

BlO Bll

~ - B - —-A)! - -
(A— A) 1 = ( 00 (AOO ) AOlBll) , B11 = _()\1"n —All +A10(A00 — A) 1A01) 1’ (3.66)

where the form of the submatrices Byo, By of the operator matrix (A A)~! is not important. It is not
difficult to see that 91y = (4 — A)7!91. Thus fA € My <> fr=(4 — A)"n (n €M) and

Tafa =Ta{fr, AMa} = T2{(4 = V)7, MA = )'n} = Pa(d - 3)'n. (3.67)

Putting h := Pn(4 — A)7'n = —[AIn — A11 + A10(Aoo — A)"'4p1]"'n = By1n, we obtain from (3.66) and
(3.67) that

YWk = m(T2190) 7 h = (A~ ))7'n ( (400 = %) lAmh)

Expression (3.65) for 7(/\) has been obtained. The formula M(A) =T14(2) = {7v(1), Ay(X)} enables us to
determine M(A). O
Corollary 3.9. Under the condition of Proposition 3.5 suppose that Ay; = O, that is, A = Aq =

(ﬁoo flm)' Then the Weyl function corresponding to the BVS Il = {H,T'1,T';} of the form in (3.64)
10 A

coincides with the spectral complement of the operator A (in the sense of [69]); M(A) = A + Ayo(Aoo —
A) "1 Ap.

Corollary 3.4 together with formulas (3.65) for ¥(A) and M()) enables us to obtain a description of
the class Q4 of generalized resolvents of a bounded Hermitian operator A. Such a description has been
obtained in a different way (and without the connection with a BVS and “boundary-value problems”) by
Shtraus [70].

Note, in addition, that the proper extension Ag = ker (T'y — BT,), (B € C(M)) of the operator A in
the BVS (3.64) is of the form

A AOO AOl 68
AB - (A]O A]] + B) 3 B E C(m)- (3' )

According to Proposition 1.6 we obtain (for A € p(Ago)) the equivalences
A€ p(Ap)<=0€p(B-M()\), Ieai(dp)<0€ai(B-M) (i=p,c,r)
The first of these equivalences was proved differently in the case A;; = O in [70].
6. Let A be a Hermitian contraction in h with D(A) =: hy. It is well known (see [5, 34]) that the
collection C4(0) of all the self-adjoint contractive extensions (sc-extensions) of the operator A forms an
operator segment:

Ay = Amin SA< Ay = Amax, A€ C4(0) C B (3.69)

If the operator A is considered in h = h @ h; the extremal extensions A, and A are of the form (see [40])

A#=(G‘)‘ —Im)’ AM..<® Im)' (3.70)
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Denote by Q4(R\[-1,1]) the collection of generalized resolvents Ry = Py(A — A)~1|, € Q4 which are
generated by sc-extensions A € [h] of the operator A. It follows from (3.69) and (3.70) that the inequalities

(A =N SRy =P(A-NTH< (4 - N (AeR\[-1,1)) (3.71)

are true.
Proposition 3.6. Assume that the extensions Ay and A, are disjoint, C = (Aym — A,)IMN, A
{f, Auf +CYV2h} - f € bo, h€N}). Then: (1) a collection TI* = {M, T4 T4}, in which

T4f:=C7 Y2 f —Amf) Thf=C7YXf' - Auf), (F={ff}eA), (3.72)

forms o generalized (in the sense of Definition 6.1) BVS of the rela,twn As; (2) the y-field and the Weyl
function corresponding to the BVS II* are of the form

7)) = —RF(NC?  ML(\)=I+C2RH(NCY?, (RP(A) = (Au = N)7Y); (3.73)
(3) if A, and Ay are transversal, then 0 € p(C), A. = A* and II* is the ordinary BVS for the relation
A*. .
Proof. (1) The relations I'; : A, — 91 (j = 1,2) are evidently surjective and closed. Further,
Vi={f,f'}, §=19,9'} € Ax we have

(T4 £, T8 3w — (T4 £, T4 w = (CTH2(f' — Am ), 72 (g' — Aug)) — (CTH2(F' — Auf), C72(g' — Amg))

= (CTV*(f' — Auf = C1f)CTH(g' —~ Aug))
—(CTYV2(f' ~ Auf), CTV (g — Aug ~ Co)) = (f' — Aufo9) — (g’ — Aug) = (f',9) — (£, )
(2) We can easily see that 91y = (4, — A)7IN, 9 = A. N9 = (A, — A\)"1CY?N and for all
A€ C\[-1,1], 73 = M. It follows that Vf,\ = {fa, Afa}, where fx = (A, — ,\)—101/2”, n € N, we have
TMfy = C 1 (Afx — Auf) = C™V2(\ = A,)(A, — \)~1CY2n = —n.

Consequently , 4(A)n = —fx, Y(M\)n = —fa = —(4, —'A)~1C/2n. The first of equalities (3.73) has just
been proved. The second equality is irffplied by the relations

M(N)n =T44(Nn = ~C72(X — Ax)RF(A)C*n = [T + C'*R*(N)C*/]n.

(3) The extensions A, and Ay are transversal if and only if 0 € p(C) (see Proposition 1.4). Thus,
(3.72) implies that the mapping I' : A* — 9N @ N is transversal.

Remark 3.6. Since I'; A. = 91 and kerT; = Ay, the collection IIM = {M,TM TH} = (N, T, -T%}
forms a generalized BVS such that the corresponding Weyl function Ms(A) is of the form

Mpy(X) = =M, (\)™' = I+ CY2(Ap — N)1CH2. (3.74)

The functions M () and Mps(A) coincide with the functions @4(A) and @ ar(A) from [40].
Proposition 3.7. Assume that A is ¢ Hermitian contraction, II* = {9, T}, T4} is a BVS of the form
in (3.72) corresponding to the relation A*. Then the equality

Ry = R*(\) — R* (W)CY2(M,(A) + (M) "1CHY2R*(N) (3.75)

establishes a bijective correspondence between genemlzzed sc- resolvents Ry € Qa(R\ [-1,1]) and 7(X) €

Sul~1,1].
Pro of. Necessity. Formula (3.75) is implied by Theorem 3.1 and Proposition 3.6. The opera.tor-valued
functions Ry, R*()), and M,()) are holomorphic in R\ [~1,1].
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Consequently, (3.75) shows that the family 7(A)+M,()) and, therefore, 7()) is holomorphic in R\[-1, 1]
since M, () is boundedly holomorphic in R \ [-1, 1].

Since Apy and A, and defined in the BVS (3.72) by the equations Ay = kerI'; (<= 7()) = 0) and
Ay = kerTy(<=> 7(A) = {0,1}), applying the extremal property (3.71) to RM()\) = (Ap — A)™! and to
the generalized resolvent Ry = (A_,(x) — A)~!, we obtain that for all A € R\ [-1, 1]

RA(N) = RM(A) =y M A" () >0 (r(0) + Mu(\)™! >0,

YN = (r(0) + M) () = (g = N = (A =) >0 (3.76)
It follows that

MuA)™L > (7(A) + Mu(A) 7 > 0 == 7(A) + Mu(A) = M,(A) = 7(A\) >0 (VA e R\ [-1,1]).

Consequently, 7(A) € Sx[-1,1].

Since Ry = P(A — A)~11h is a generalized sc-resolvent, A is a contraction, A(0) = {0}, and 7(}) is
M-admissible. Note that we can easily verify that the M-admissibility condition, which, in view of the
equality A(0) = A,(0) = {0}, is of the form in (3.43), is satisfied. By virtue of (3.74) we have M,(}) > 0
VA € R\ [-1,1]. Thus, for A > 1, Vr(\) € Sx[—1, 1] the following implication is true:

AT(A) + AML(A) = AML(A) > 0= A7Hr(A) + Mu(A) ™ < /\_IM““I()\).

Consequently, s — AlTi-?l AN + M(A) =5 - ’\lTiin ATIM1(A) =0, and (3.43) is proved.

Sufficiency. Let r()\) '€ Sn[—1,1]. Since M,(A)- My(A) = —=I VYA € C\ [-1,1] and M,(z) > 0,
7(z) > 0 Vz € R\ [~1,1], we have 0 € p(7(z) + Myu(z)) V2 € R\ [-1,1]. In view of Proposition 1.6,
z€ p(/i_,,(,)) Vz € R\ [-1,1] and , consequently, (/1__,.(,\) —A)~1 = R, is regular in C\ [~1,1]. Thus, the
resolvent (A — A)~! is regular in C\ [~1,1] and A is a contraction.

Remark 3.7. Another proof of the implication ||Af] < 1 <= 7()) € Sy can be derived from the
resolvent formula (3.75) and the following properties of the functions M, (), Mpr(A):

M,(+1):=s5— 11?51 M,(z) =0, Mpy(-1)=s5— 1%211 Mu(z) = 0. (3.77)

Remark 3.8. The formula
Ry = RM()\) = RY(N)CY2(Mpu(N) +7(A)TICY2RM(N) (X € p(4)) (3.78)

is similar to (3.75) and establishes a bijective correspondence between generalized sc-resolvents Ry and
() € Sy[—1,1], where Mys(]) is of the form in (3.74). Formula (3.78) can be obtained by application of
Theorem 3.1 to the BVS IIM = {N, M, TM} = {9, T}, -T4}.

Definition 3.2 [40]. An operator-valued function k(A) with values in [91] is related to the class
Ky [_la 1] Zf

(1) k() € Ry;

(2) k() is holomorphic in R\ [-1,1] and 0 < k(X)) < 1.

Lemma 3.4 [40). [f O < K < I, then 0 € p(I — K + M,()K) VA€ R\ [-1,1].

Proof. Let Ap € R\ [~1,1]. Then 3¢ > 0 : M,(\o) > eIn. Therefore, we have the implications
In— K+ KYV2M,(A0)K'? > Iy — (1 — e)K = 0 € p(In — K + K2 M, (Xo0)K'/?) => 0 € p(In — K +
M,(M)K). O )

The transformation 7(A) = k(A) = (I+7(A)) ™! establishes a bijective mapping from the class S»[~1,1]
onto the class Km[—1,1]. Consequently, by putting k(A) = (I + 7()A))™! in (3.75) and taking into consider-
ation Lemma 3.4, we get the main result of [40] (see also [82]).
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Theorem [40]. The equality
= R*(\) — RF(N)CY2E(O)I + (M, (M) — DE(A)]1CY2RA(N) (3.79)

establishes a bijective correspondence between the class of operator-valued functions Km[—1,1] and the col-
lection {R°(\)} of all generalized sc-resolvents of operator A.

Moreover, there is a one-to-one correspondence between canonical sc-resolvents and constants k(A\) =
K € [0, Iy in (3.79).

4. EXTENSIONS OF A HERMITIAN OPERATOR WITH A GAP

1. Let A be a nonnegative Hermitian operator in h: (Af, f) > 0 Vf € D(A). As is known [5, 34], in
the class Ex 4(—00,0) (D(A) = h) of nonnegative self-adjoint extensions of densely defined operator 4

there exists the greatest (the hard or Friedrichs) extension Ar and the least (the soft or Krein) extension
Ag, such that for all A € Ex 4(—o0,0), D[Ar] C D[A] C D[Ak], and

Ax(f) < A[fl < Arlf] Vf € D[AF]. (4.1)

In the case of a nondensely defined operator A the class Ex 4(—00,0) is also nonempty, but sometimes
it does not contain any operator. We define (after [73]) the extensions Ar and Ak as the strong resolvent
limits of the linear relations Az = A+ N, :

Ap=s—R— lim A, AK=3—R—11¥01,§,. (4.2)

rzl—o0
In this case the extremal property (4.1) remains true and takes the following equivalent form:
(AF =N <(A-NT'<(Ak - N1 Vre(-,0), A€ Ex a(—o0,0). (4.3)

An extension A is always a linear relation Ar(0) = M = b, while Ax may be an operator. Moreover, an
extension Ak is an operator if and only if the class Ex 4(—o00,0) contains an operator. A criterion for this
to be true was obtained in [73].

It is noteworthy that (A,)r = Ar + a if @ > 0 and hence the first inequality in (4.3) remains true if
A < —a and 4 € Ex 4(—o0,—a).

Let T = T* > B be a self-adjoint seflibounded below operator in §), D(T) = ho. As usual, D[T] stands
for the closure of D(T') endowed with the norm ||f||3 = (1 = B)|flI® + (Tf,f), f € D(T). A closure of
the form (T'f, f) is denoted by either tr[f] or T[f] = T{f, f]. Clearly D[T] = D(T — B)*/?). We put
D[6] = D[T] for a linear relation § = §* > B with the operator part T = T* > 3.

Definition 4.1. Let t be a closed semibounded below quadratic form with a nondense (generally
speaking) domain D(t) in h(@(t) = bo C B). A semibounded below linear relation 8 = 0* is said to be
associated with the form t and is written t = tg if 6(0) = N = hi- and the operator part T = T* of the linear
relation 6 is associated (in accordance with the first representation theorem [29]) with the form t considered
mn bo.

Clearly, @(tg) = 9[9] = 'D[T]

Proposition 4.1. Let {t,}{° be o nondecreasing sequence of closed linear forms in §) semibounded
below by v,

T<H <. <t <.,

and let 8, = 0% € C(h) be a linear relation associated with t,. Then:

(1) the sequence .8, converges in the strong resolvent sense to a linear relation § = 6* > v (6 :=
s — R —limp_.00,);

(2) if t = tg is a form associated with 8, then

() = l6] = {f € (] D(ta): Jim talf] < o0}. (4.4

n>1
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The first statement is a simple generalization to the case of linear relations of the well-known result
of Kato [29]; the second one was proved by the authors in the case D(t,) = h [20, 79] and furnished the
answer to the problem posed in [29, p. 570]. In the general case these statements can be proved in the
same way.

Proposition 4.2. Suppose that Il = {H,T1,T2} is a BVS for a linear relation A* such that Ay > 0,
M(}) is the corresponding Weyl function, a > 0. Then

(1) there ezists a strong resolvent limit

M(0) := S—R—E%M(z) (M(—o00) :=s—R—zlli£n°°M(m))

which is a semibounded below (above) self-adjoint linear relation in H;
(2) the linear relation M(0) = M(0)* (M(—o0) = M(—00)*) is associated with the closed quadratic
form

Glf] = LM@Y, ) (twlf] = lim (M), ) (43)
with the domain

D(to) = {f : Iim(M(z)f, f) < 0o} = D((M(0) - M(—a))'/?), (4.6)

Dltw) = {f : lim (M(2)], ) > ~o0} = D((M(~a) ~ M(—00))!/*); (46

(3) in this connection A; and Ak are disjoint eztensions if and only if M(0) is an operator (M(0) €
C(H)), Az and Ak are transversal eztensions if and only if M(0) € [H];
(4) one can determine Ap and Ax by the boundary conditions

Ak ={f=1{f.f'} € A* : {T2f, 1 f} € M(0)} =T M(0),

Ar={f={f,/'} € A" : {T2f,T1f} € M(~00)} =T 7" M(~o00),
which in the case M(0) € C(H), M(—o0) € C(H) can be rewritten in the form

Ag = ker (T'; — M(0)I'2), Ap = ker (I'y — M(—o00)l'2). (4.7)

Proof. (1) By virtue of the condition A; > 0, M()) is holomorphic on (—o0,0) and hence it is
monotonically increasing there. Therefore, for some a > 0 the operator-valued function (M(z) + a)™!
is nonnegative and monotonically decreasing on (—1,0). This implies that there exists a strong limit
T := s —lim,1o(M(z) + a)~!. Now it remains to put M(0) =T~ — a.

(2) The second statement is a consequence of Proposition 4.1, while relation (4.6) is implied by (4.4).

(3) Statement 3 is implied by Proposition 1.4 and the next statement (4).

(4) Let A, = A+ ;. Then A, = ker (T1 — M(z)T'2). By setting § = TAx = {T2,T1}Ax we apply
the resolvent formula (3.39) to the extensions A, and Ax. We have

(de + D)7 = (Ak + D71 = 2(-DI(M(2) ~ M(-1))7" ~ (8 = M(=1)) " ]r*(-1). (4.8)
Passing to the limit in (4.8) as z — 0 and taking into account (4.2) and Corollary 3.3, we obtain § =

s — R — limz1o M(z) =: M(0).
Corollary 4.1. Under the assumptions of Proposition 4.2 the following equivalences hold:

A; = AF & zlliinoo(M(:c)h, h)=—-0c  VheH\ {0}, (4.9)
Ay = Ag < lzi%l(M(z)h, h)=+400 VheH\{0}. (4.10)
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Proof. If A; = Ak is the Krein extension of the operator A, then M(0) = "'Ag = {0,H} is a linear
relation with zero operator part. Then the implication = in (4.10) is implied by relations (4.5) and (4.6).
Conversely, it follows from (4.10) that D(to) = {0}, where to is defined by (4.5), (4.6). Therefore, the
linear relation M(0) associated with ty takes the form M(0) = {0,H}, whence Ax = Aps(0) = A2 and the
equivalence (4.10) is proved. In complete analogy with this result we may prove the equivalence (4.9). O

Corollary 4.2. Suppose that M()) is the Weyl function corresponding to e BVS Il = {H,T1,T,} such
that A; = Ap. Then:

(1) there ezists a unique nonnegative self-adjoint extension of A > 0 if and only if

hrn(M(a:)h h) = +o0 Vh € H\ {0}; (4.11)

(2) there exists a nonnegative extension A = A* € C(b) if and only if M(0)NFi = {0} (if, additionally,
n!y(A) = 0, then the latter condition may be replaced by the following one: M(0) € C(H)).

Proof. The first statement is implied by (4.9) and (4.10), and the second one follows from Proposition
1.4 and the extremal property (4.2). Now it remains to note that under the assumption n/,(4) = 0 the
equivalence M(0) N Frp = {0} <= M(0) € C(H) is a consequence of the relation Ar(0) =N = b7

Remark 4.1. (1) If, ur.der the assumptions of Corollary 4.2, A3 = Ak, then relation (4.11) must be
replaced by the following one:

z&i{noo(M(:z:)h, h)=-0c  VheH\ {0}, (4.11")

and the conditions M(0)NFn = {0} and M(0) € C('H) must be replaced by the conditions M(~o0)NFp =
{0} and M(—o0) € C(H), respectively. _

__(2) Proposition 4.2 and Corollaries 4.1, 4.2 in the case D(A) = h were proved by the authors [20, 79].
If D(A) = ho # § and A is a bounded operator, then Propositions 4.2 and 4.3 yield the result of Shtraus
[69]. In this case n!,(A) = 0 and it follows from (3.65), (4.5) that

tolh] = lim((2Ty + Aso(Aoo — 2) LAg1)h, B) = [ 450 * Aorh|? VR € D(to)

and the following equivalences hold:

(a) Ag € C(h) <> M(0) € C(H); o

(b) Ak € [b] <= M(0) € [H].

(3) The other criterion for a nonnegative operator A to have a nonnegative self-adjoint extension
A = A* € Ex 4(—o0,0) (positive closability of an operator A) was obtained in [73].

Proposition 4.3. Suppose that Ar and Ax are disjoint extensions of operator A > 0, C := 2[(I +
A) ' —(I+Ar) Mo, C=CaC, A, := Ar + CY2R_,. Then:

(1) the triple IF = {MN_,TF,TF} with

D= —v2CTPf — (T4 Ak)7F 4+ 1), (4.12)
DI f=V2CT 2 f =T+ Ar) M (f' + )l f={ff}eA

is a generalized BVS (see §6) for the relation A., kerT¥ = Ap, ker T = Ag;
(2) the v-field and the Weyl function corresponding to the BVS IIF take the form

vr(X) = (V2) I + (1 + A)(4F - M) 7HCY2, (4.13)
Mp(\) = —I+ 3(1 FACY2[L 4 (14 N(Ar - NC2; (4.14)

(3) if the eztensions Ap and Ag are transversal ones, then 0 € p(C), A. = A* = Ap+ ‘ﬁ_l, and IF
s a BVS for the relation A*.
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Proof. (1) Let g € N_; and fr = {fr,fr} € AF. Settingn = g/Vv?2, f = fr+CYn, f' = fl.—C'/?p

we obtain
%Fz{f, fY=C P f—(I+Ar) 7 (f' + )l = C7V2[fp + CYPn — (I + AF) " (fr + fi)] = n.

Therefore the mapping I'J : A, — 9_; is surjective. Further, for all f = {fifh,a=1{9,9'} € As we
have

(T1£,T28) = (T2f,T15)
=2CT2f ~ (T + AF) U + LCTVlg - (I + Ak) 7N + 9)))
~ACTf = (T+ AK) N + LCT g~ T+ Ar) (o +9)))
= (€T 2f +[C=2AT+ A)7N(f + NHCTg ~ (T 4+ 4x) (o' +9))
~(C7f — (T + Ak) T + L CTHV2 {29 +[C ~ 2(1 + Ak) (g + 9))
» =(f”g)_(fag’)‘
(2) Let 77(A) = {yr(X), \yr(A)}. Then it follows from (4.12), (4.13) that
T3 9p(Mh=C I+ (A+1)(Ar — M) = (A +1)(Ar — N YCYV2h=h  Vhe N,
and the 7-field of the extension Ar takes the form in (4.13). Further, we have

Mp(A) =TT Ar(A) = —CTYH{I + (1 + A)(AF = N7 = (L+ AT + Ag) T+ (1 + A)(AF — A)"1}CH/2
=-CT'PI-(1+ A)(% +(I+ AF)—I)(I + (14 A)(Ar — N = (1+ A)(Ar — N 112

=-I+ %(1 +NCI+ (1 + A)(Ar — N)7YCV2

Therefore, the Weyl function Mg(A) takes the form in (4.14).

(3) In accordance with Proposition 1.4 the transversality of Ap and Ak is equivalent to the condition
0 € p(C). Corollary 6.1 implies that II¥ is a BVS for the linear relation A* = A, = Ap+ M_;. Besides,
setting

F=vV2I+ Ar)1C (o1 + @2) + %01/2902, f' =V2C7 (g1 + @2) — V2f

for all p1, @2 € MN_; we obtain the equalities I;f = ¢; (3 = 1,2), which prove the surjectivity of the
mapping I'. O

Remark 4.2. (1) Note that 4, = D[Ax] N A* D(A) = §. This relation is implied by the following
formula given in [52): D[Ak] = D[AF] + 7(—6)9’1_5 and the equality y(—1) = C/2.

(2) The mapping I’y : A. — M_; is surjective and kerI; = Ag. Therefore, in accordance with
Proposition 6.2, the function Mg ()) := - M p()\) ~1 is the Weyl function corresponding to the generalized
BVS II¥ = {‘II_I,I‘1 ,TXY} = {9_,,TF, -I'F} and takes the form

Mg(A) = —Mp(A)™' =I+27Y 1+ NCY2 I+ (1 + N (Ax — N) 7Y CV/2. (4.15)

2. Let I = {H,T'1,T2} be a BVS such that Ay = Ap. Then the resolvent formula (3.39) and
the extremal property (4.3) of the Friedrichs extension Ap yield the following implication: Ag = 7 is
semibounded below = 8(€ C(H)) is semibounded below. Simple examples (see [20, 79]) show that the
inverse implication does not hold in the general case. In order to formulate the corresponding criterion we
introduce
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Definition 4.2. An operator-valued function M()) € Ry holomorphic on (—o0,0) is said to be
uniformly convergent to —co as x — —oo if for all N >0 there ezists zy < 0 such that M(zn) < —NIy.
It is clear that this condition is equivalent to the following one:

zlli_r_noo I(M(z) - M(zo)™Y|=0 (2o <0). (4.16)

In the case dimH < oo this condition is equivalent to condition (4.9), which characterizes the Weyl function
of the Friedrichs extension Ar; in the general case (4.16) is stronger than (4.9).

Proposition 4.4. Suppose that A > 0, {H,I'1,I'2} is a BVS for A* such that A; = Ap, M()\) s
the corresponding Weyl function. The following conditions are equivalent if and only if M(A) uniformly
converges to —o0 48 T —» —0Q!

(a) the linear relation § = 6* € C(’H) 13 semibounded below;

(b) the estension Ay € Ex 4 is semibounded below.

Corollary 4.3. Suppose that under the assumptions of Proposition 4.4 the extension Afp has the
discrete spectrum, that is, (Af + I)™! € €. Then the equivalence (a) <=> (b) holds.

Proposition 4.4 and Corollary 4.3 were proved in [20, 79] for the case D(A) = ho. The proof in the
general case is analogous. Corollary 4.3 in the case D(A) = §) was obtained earlier in [12].

Corollary 4.4. S'u.ppose that under the assumptions of Proposition 4.4 the multivalued part Fu(0) of
the forbidden manifold Fi1 is closed and n! (A) = n' (A) < co. Then the equivalence (a) <= (b) holds.

The proof is implied by the integral representation of M()) and the equality SR (BMZ) = Fu(0). O

In particular, the equivalence (a) <= (b) holds if A is an 9-regular operator and n/,(4) = 0 (<=
Ap = A+ ).

3. Definition 4.3. A Hermitian operator A is said to have a gap (o, f) if

a+ﬁ

Ha-2E8g 55 —Ifll  VfeD(4). (4.17)

Inequality (4.17) is equivalent to the following one:

JASI? = (a+ BYAS, f) +eBf]* 20 VfeD(A) (4.18)

and in the case @ = —oo it turns into the imequality (Af, f) > B]|f||?, which means that the operator A is
semibounded below. ;
Ex a(a, B) stands for the set of proper self-adjoint extensions A of A with the gap (e, 3)

a+ﬂ

AeEx gla,B) = A=A" DA |f - Al > 8 °‘||f|| v{f f'} € A. (4.19)

As in the case of nonnegative operators, there exist exﬁremal extensions As, Ag € Ex 4(a, B) defined by
the equalities B ; } _
Ay =5~ R—-limA,, Ag:=s—R-limA, z€(a/f), (4.20)
zle z18 .

where 4, = A+ ;. L ;
Proposition 4.5. The eztensions Ay, Ag possess the following eztremal property in the class A €
Ex a(a, B): 3 ) 5
(Aa—2) ' <(A-2)' < (4p~2)! z€(a,B) (4.21)

The proof is analogous to the one contained in [20, 79] for the case D(A) = §. Inequalities (4.21) for
z = (a + B)/2 are implied by (3.69) and relations

~ _ﬁ—a»-__l a+p
Aa—— 2 C 2 3
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in which €, and Cp are the minimum and maximum contractive extensions of Hermitian contraction
C:=£52(A-2t2)-1 Letnowz # 248 Since 6,(z) = (z—r)(1—r2)~1 € Rforr = (2z—(a+8))/(B—a)
the transformation 6,(T) = (T —r)(I — rT)~! maps the operator segment —I < T < I onto itself and keeps
the order relation true. Therefore (3.69) yields

(6(C))u = 6:(Cu) < 6:(C) < 6:(Cma) = (6:(C)1-

By virtue of the equality 6,(C) = 27}(8 — a)(1 —r?)(A —z)~! —r we obtain (4.21) for z # (e + £)/2. O
Proposition 4.6. Suppose that II = {H,T'1,T'2} is ¢ BVS for A*, such that Ay € Ex 4(a,B) and
M(X) s the corresponding Weyl function. Then:
(1) there ezists a strong resolvent limit

M(a) = M(a)* =s—-R- llfl;‘lM(z) (MB)=M(B)* =s—R- I;%M(z)), (4.22)

(2) the linear relation M(a) = M(a)* (M(B) = M(B)*) is associated with the semibounded above
(below) form ‘

U] =Em(M()S, ) (t517) = Em(M(@)5, ) (429
with the domain (for zq € (a, B))

D(ta) = { : Bm [(M(2)f, f)] < oo} = D(M(z0) — M(e))/?), (42¢)

D(te) = {f : lim|(M(=)f, f)| < 00} = D((M(B) ~ M(=0))"/?),

i.e., ta = iM(a); fﬂ = tM(ﬂ);

(3) the disjointness of the extensions Ay and Ay (Ay and Ag) is equivalent to the condition M(a) €
C(H) (M(B) € C(H), their transversality is equivalent to the inclusion M(a) € [H] (M(B) € [H]);

(4) the extensions Ag, fiﬂ are defined by the boundary conditions

A:CY = {fi = {f:f,} €A*: {PZJi; Plf:} € M(a)} = I‘_IM(a); (425)
Ap={f={ff'} e A*:{T2f,T1f} € M(B)} =T~ M(B);

ie, Ag = AM(Q), /15 = AM(ﬂ). Under the assumption M(a) € C(H) conditions (4.25) take the form

Ay =ker([y — M()T2),  Ap =ker(I'; — M(B)I2). (4.26)

We omit the proof of Proposition 4.6, which is analogous to the proof of Proposition 4.2.
Corollary 4.5. Under the assumptions of Proposition 4.6, the following relations hold:

Ay = Ay = lilrn(M(z)h, h) = —co VheH\ {0},

Ay = x‘ip > lzl%lﬁl(M(a:)h, h) = +00 Vhe H\ {0} (4.27)

Corollary 4.6. Suppose that A is a Hermitian operator with gap (o, B), II = {H,I'1,T2} is a BVS
for A* such that Ay = A, M(])) is the corresponding Weyl function. Then the operator A has the unigue
eztension A = A* € Ex a(a,B) (that i3, Aq = Ap) if and only if

E%(M(z)h, h)y=+4c0  VheH\ {0} _ (4.28)

4. Let s_(t) be the number of negative squares of the form t, i.e., the maximum dimension of negative
linear manifolds contained in the cone K_(t) := {f € D(t) \ {0} : ¢{f] < 0} U {0}. We determine »_(T)
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for the operator T = T* by the equality »_(T) = dim Ep(—o00,0). If T is an operator associated with the
closed form ¢, then in view of the mini-max principle »_(t) = s_(T). - We shall need the following two
elementary lemmas. ‘

Lemma 4.1. Let t, be a monotonically decreasing sequence of symmetric semibounded above forms,
which converges to the form {:

Jim t(f]=tf] VieD()=[)Dt)

n>1

Then s_(t) = »_(t) for n large enough. If the forms t, are closed and T, = T,; are operators associated
with the forms t,, then »_(t) = »#_(T,) for n large enough.

T
T,

1ts extension which has the block-matriz representation

Lemma 4.2. Suppose that )y Ch, Tp = € [b1,h] is & nonnegative operator, T = T*(€ [h]) is

T | T : - . *
T = (T;i T:Z) ’ (TzJ S [b]’bt] (7:,_] = 1,2), T12 = T21) (4.29)

which corresponds to the orthogonal decomposition §) = B @ b2. If there exists a nonnegative extension
T =T* € [b] of the form in (4.29), then _ :

(1) R (T111/2) DR (T3,) and the operator S := T_'1/2T21 is well defined and bounded;

(2) the operator T = Tmin with Thy = S*S is the least one in the class Ex 1,(—o0,0) of nonnegative
extensions of the operator Ty;

(3) #—(T) = »_(Toa — 5*S), if T = T*(€ [h]) is an extension of the form in (4.29).

The proof of the first two statements can be found in [61], the third statement is proved in [53].

Theorem 4.1. Suppose that Il = {H,T1,T'2} is a BVS for A* such that A; € Ex 4(e,B) and A,,
Ap are disjoint, M()) is the corresponding Weyl function, 8 = 6*(€ C(H)) is a semibounded below linear
relation, D(tg) C D(tpr(gy). Then

(1) dim E4, (o, B) < (s — tm(p));

(2) if A2 = Aq, then the following equivalence holds:

dimE; (o,8) = n <= x_(ts — tpmp)) = n; (4.30)

(3) #f, additionally, the form tg —tar(p) 18 closable and Tp = Tjisa linear relation associated with this
form, then there exzists

s—R-— Ii%%(a - M(z)) =Ts (4.31)
and the following equivalence holds:
dim E; (a,8) = n <= »_(Tp) = n, (4.32)

in which Ty = § — M(B) if D(6) C D(M(B)).
Proof. Let g = (Ag — A)f. Then for all A € p(45) N (e, B) we have

(Ao — a)(As ~ 1) 9,9) = | Ao fI* ~ (@ + A)(Asf, ) + aX||f|*.
Hence for all n € Z; we obtain the equivalence
dmE; (o,8) =n<=> x_((dg—a)(As - N =n VA€ (6,B); (4.33)

where f, is close enough to 8 and such that (8, 8) C p(Aa) In particular, in the case n.= 0 the equivalence
(4.33) takes the form

A =Ex (0, 8) <= (Ao —a)(Ap =020 VA€ (b, B).
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By virtue of the extremal property (4 "2-1) of the extension A, the operator T, = (fi,, —a)(Aa - N)!
is minimum in the class Ex 7,(—~00,0) of nonnegative extensions T = T* of the operator T = (4 —
a)(A - A)™1 € [y, h). Therefore, the operators Tp, T = (Ag — a)Ao — A)7, and Tyin have the following
block-matrix representations with "respe'ct to the decomposition § = 9y @ MN;:

To=(£:1)« r=(m ) - (3 &) (39
where § = Tj;'/*T3,. If Ay = A} is an extension of A such that dim Ez, (e, 8) = n, then it follows from
(4.33), (4.34), and Lemma 4.2 that for all A € (B, B)

n = dim g, (@, 8) = #— (s — a)(As — )™
= %-((Ao — a)(ds — 2)7 — (4da - a)(4a - X);‘) = x-(@e =7 = (A =N (4.35)

According to Proposition 4.6 and (4.25), (4.26) we have Ao = Apy(q)- Since M(a)—M(X) < 0VA € (o, B),
equality (4.35) and the resolvent formula (3.39) yield the estimate

n=5_[(6— M(X)™! = (M(a) = M(X)™'] < (8 = M(X))™") YA€ (6o, B)- (4.36)
The inclusion D(tg) C D(tar(g)) and Lemma 4.1 imply the equivalence
%_(9 - M(/\)) =n V)E (,Bo,ﬁ) — }f_(fa — fM(ﬂ)) =n, (4.37)
which, on account of (4.35), proves the first statement.
If A = A,, then M(a) = T'A, = {0,H}, whence (M(a) — M(A))™! = O and inequality (4.36) turns
into the equality. In this case relations (4.36) and (4.37) prove the implication
dimE; (a,8) = n => »_(ts — tm(g)) = n-
These arguments carried out in reverse order yield the equivalence in the last implication.
If the form tg — tar(g) is closable and Ty = T} is a linear relation associated with its closure, then the
convergence theorem for sectorial forms [29, p. 563] implies that there exists a strong resolvent limit in
(4.31), and (4.31) holds. Now the equivalence (4.32) is a consequence of (4.30).

Corollary 4.7. Suppose that under the assumptions of Theorem 4.1 Ay and A,g are transversal exten-
sions (<= M(B) € [H]). Then dimEj (e, ) < »-(0 — M(B)). If, additionally, A2 = Aq, then

dim B4, (o, 8) = (6 — M(B)).

Corollary 4.8. Suppose that under the assumptions of Theorem 4.1 A; = Ao. Then
dimEj; (a,z0) = #-(0 — M(z0))  Vzo € (, B). (4.38)

In the case A; # A, we have dim E; ,(@,20) < 3-8 — M(z0)).
A Corollary 4.9. Suppose that a,ll conditions of Theorem 4.1, ezcept for the last one, are fulfilled and
A = Ax(= AM(Q)) Then
/19 € Ex a(a,8) <= D(ts) C @(tM(ﬁ)), tg —tar(p) 2 0. (4.39)
In the case M(B) € [H)] (4:39) takes the form Ag € Ex 4(a,B) <> 0 > M(B).
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Proof. It follows from Corollary 4.8 that the next implication holds: A4 € Ex ala,B) = 0-M(z) >
0Vz € (a, B), whence (M(a:)f, i< < tg[f] for all f € D(ts). Now it remains to apply Lemma 4.1 and (4.23),
(424). O

Corollary 4.10. Let, under the assumptions of Theorem 4.1, (@, ) = (—00,0) and let A, = Ap be
the Friedrichs extension of the operator A > 0. Then the equivalences (4.30), (4.32), (4.38), and (4.39) take
the form

n=dim E; (~00,0) <= »_(ts — tar(o)) = n; (4.30")

dimE 4, (~00,0) = n <= »_(Ty) = n; A (4.32")
dimE5,(—00,20) = n <= »_(0 — M(z)) =n (zo € (—00,0)); (4.38")
Ag >0 <= D(t)) C D(tarco), o — taroy > 0. | (4.39)

Remark 4.3. (1) Generally speaking, it is impossible to characterize the spectrum of an extension
Ag in the gap (@, B) in terms of the linear relation T in the case of a nonclosable form ty — tps(g), as was
done in Corollaries 4.7 and 4.9. In (20, 79 examples were constructed in which x_(T,g) =0(<= T3> 0)
but dlmEA (o, 8) > 0.

(2) As follows from the examples given in [79], the condition D(ts) C D(ta(g)) in Theorem 4.1 is
essential. It is fulfilled automatically if the family 6 — M(z) is uniformly semibounded below, i.e.,

Jc€R: 8- M(z)>cIny Yz € (a,B). (4.40)

Indeed this implies
lim(M(z)f, f) < t{f] - clflI* Vf € D(ts),

and in view of Proposition 4.6 [see (4.24)] f € D(tp(g)). Note also that the inclusion D(ts) C D(trr(g))
does not imply (4.40).

(3) Let D(A) = b. In this case another proof of Theorem 4.1 was given in [20, 79]. A more simple
proof, similar to the one stated above, was obtained in [52]. If A is a positively defined operator (i.e.,
(—o00,€) C p(AF) for some € > 0), D(A) = b, and Il = {H,T"1,2} is a BVS such that A; = Af, A; = Ak,
then M(0) =0, th(o) = 0, and the equivalences (4.30’), (4.32'), (4.38') coincide with the results of Birman
[7] (see also [34] in the case n4(A4) < ).

5. Denote by PQ*(a, ) (2*(a, 8)) the set of generahzed pseudoresolvents (resolvents) Ry = P(A—
A)711h of an operator A4, generated by extensions A acting in § C §, such that dim E 4 (o, 8) = » and
(3.36) holds.

Theorem 4.2. Suppose that A is @ Hermitian operator with gap (a,8), I = {H,T1,T2} is ¢ BVS
for A* such that Ay = Ay and A; := ker D'y is an operator, M(X) s the corresponding Weyl function and
M(B) € [H] (i.e., Aq and Ag are transversal ectensions). Then the formula

Ry = (Ao = N7 = 9(N)(r(0) + M) - M BN (R - (44

establishes a one-to-one correspondence between Ry € PQ*(a, B) and (7()) € 5’;{“(&, B). Moreover, Ry €
Q*(a, B) if and only if the function 7(A) — M(B) is M-admissible. -

Corollary 4.11. Suppose that A is a nonnegative Hermitian operator, n',(A) =0, Il = {H,T'1, T2} is
a BVS for A* such that A = Ap, M(0) € [H] (i.e., Ar and Ag are transversal). Then formula (4.41) in
which Ay = Ap, M(B) = M(0), establishes a one- to one correspondence between Ry € PQ*(—o0,0) and
7(A) € §-%(0,00). Moreover, Ry € 2*(—00,0) if and only if

s—R—limy 'r(iy) =
yloo
Proof. A;(= kerI') is an operator since 45(0) = 9 = h-. Moreover, it follows from the condition
nly(A) = 0 that A, = Ap = A+ N (=: Ary). Therefore, the desired statement is implied by Theorem 4.2
and Corollary 3.8. O
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Remark 4.4. In the case D(A) = §) Theorem'4.2 was proved in [20, 79] by virtue of the theorem about
zeros and “poles” of an operator-valued function from the class S=*(R \ (a, 8)) (see [22, 25, 79]). A more
simple proof which is not based on the above-mentioned theorem was obtained in [17] Note that a similar
result was obtained earlier in [82] for the case n1(4) < oo, (a, ) = (—00,0). If, in addition, 4, = Ak,
then the generalized resolvents corresponding to the nonnegative extensions of A (class Qo(—oo 0)) with
an admissibility condition of the form in (3 63) were described in [83].

We omit the proof of Theorem 4.2 since in the case D(A) = by # § one can deduce it from Theorem
3.1 in the same way as was done for the case D(4) = h in [20, 79, 17]. We also omit descriptions of various
classes of non-self-adjoint extensions. These problems will be considered in another paper (see [52] in the

case ’D(A) h).

5. FUNCTIONAL MODELS AND THE REALIZATION
OF AN R-FUNCTION AS A WEYL FUNCTION

It was shown in [81, 83] that any R-function

aw =m0+ [ (F5- ), [E e, (51)
satisfying the condition
0 € p(Im Q(2))(<== 0 € p(Im Q(A)) VAeCLUC.), (5.2)

is a Q-function of some Hermitian operator. To this end a special functional model was used, constructed
by the R-function @()\). In the definite case these results can be derived also from other functional models
(see, for example [71]). In this section for some functional models constructed by the R-function Q(A) we
determine BVS’s such that the corresponding Weyl functions coincide with Q(A).

1. Consider, following Krein and Langer [81, 83], the linear space £ of functions defined on C4 U C_
with finite support and values in H written in the form

F=Y_68f (freM, AeCiuC),
A

where 6y is a formal symbol (the delta-function) and only a finite number of fy € H is distinct from zero. 'L'he
space £ is endowed with the possibly degenerate nonnegative inner product (f = Y. ® fx, 9 =Y.6,.®4,)

QM) - Q*(n)
(f) g)s = Az,_; (———,\_:ﬁ_—li'fka g“)'H' (53)

The quotient space £/J (J = £N £1) can be canonically extended to the Hilbert space £(Q) (see [81]).
Consider the linear manifold

¢={f={Then Y rmon}ccor] (54)

in £ @ £ and the corresponding subspace G C 8 @ R.

Proposition 5.1. Let Q()) be an operator-valued function of the form in (5.1) satisfying condition
(5.2), and let G be a linear relation in & defined by (5.4). Then

(1) mappings x;: G - H (j =1,2)

x1()=D QA xx(H=)_H (F=D_600H) (5.5)
A A A

can be eztended to the continuous mappings I'1,T2 € [G,H] and the collection II' = {H,T'1,T'2} forms a
BVS for the relation G;
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(2) A:= G* is a simple Hermitian operator coinciding with the clo.surc of the operator A,

A ={f= {25A€fo,2)\5,\€9fx}€2692 Xl(f) Xz(f) 0} (5.6)

(3) the v-field of the linear relation Ay := kerI'y takes the form 'y()\)h = 6) @ h(h € H), and the
corresponding Weyl function M(A) = I'14()) coincides with Q(A).
Proof. (1) We show that the mappings x; : : G — H(j = 1,2) can be correctly extended to the quotient

space G/GN (3@ 3J). Indeed, if f = {f, f'} = {Z&,\®f,\, z,\a)@fx} €J®J, thenVpeCy,heH
A A

(f6u®h)e =) (-Q—('\-),\——_—%*—("—)fx, h)u, , (5.7)
A .
(8o me =Y (LT Wap 1) (58)
A .
It follows from (5.7), (5.8) that
(f - pfr6u@h)s =) (1Q) = Q" (WIfr, h)u =0. (5.9)
) A

By virtue of (5.9) and an analogous equality for & we have

> Q) - Q*(mlfr, Byn = 2i(Im Q(u)x2f, R)n =0 VheH. (5.10)
A

Since 0 € p(Im Q(u)), we obtain the equality xof = 3 fa =0Vf € GN (I ®3J). It also follows from (5.9)
that x1 f = YW fa=0V feén(3 ®3J). Thus the mappings x;(j = 1,2) induce the quotient mappings
X;t GIGn(3 e J) — H, which we denote by the same symbols. ‘ v
Now we show that the mappings x; (j = 1,2) can be extended by coatinuity to G. The continuity of
x1 follows from the estimate (f = {3262 ® fr, S A6r ® fa})
Q

1fi0n =3 ([B+ | mooemy 0] i fe),,

Ap R

_g{(Bf,\,f“)H'i'/m[(t_/\)(t_—ﬂ) +1] ]_+At2 H}

> (BralPxea(Ph+ [+ 87 Dl xal N

= (Im Q(@)x2(f) x2a(Nm 2 cslda(DI3 (e > 0).

In order to prove the estimate ||f l2gs = callxa( I3, it is sufficient to use the relation

s = - 30 +30)( D=L B, quas),,
An .

and the integral representation of the function —Q~1()) (cf. [26]).
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Let f = {f,f'} = {Zax ® far D Abx @m}, g=1{g,d'} = {Ds,, O by @gu}. 1t follows
A A B B
from (5.3), (5.5) that the Green formula holds:

(9 - (1oNe = 3 (BB, )

A
-3 (Mﬁ\,ugu) P 2COLERD
Ap
=) (£, Q)gu)n = Ga(Fx2(@)n — (x2(£), x1(8)n- (5.11)
A

Making use of the continuity of the mappings xj: G = M (j = 1,2) we extend equality (5.11) to G
(f,g € G). To prove the surjectivity of thé mapping I' = {I‘;,I‘l} G - H®H weput for all hy,hs € H
f=6Q® fi—6_;® f-i, where

fi = 5(m QU™ (s = Q=idha),  foi = 5-(1m Q)™ (b1 = Qi)

Then we have x1(f) = k1, x2(f) =
(2) Let A := G*. It follows from the Green formula (1.3) that the operator A coincides with the closure
of an operator Ay.

(3) Letting in (5.11) g = 6x ® h, f € Ao we have

((A - X)f, 5)\ ® h)ﬁ = (Flfv h)'H - (F2f, Q(A)h)'ﬂ = 0,

that is, {{p ® h} : h € H} C 9 (X € C\ R). In view of the equality I';(6x ® h) = h we obtain that the
following equality holds:
: Mr={0r®h:heH}

and the operator-valued function y(A) : y(A)h = 61 @ h isa v-field of the extension A;. Moreover, the Weyl
function M()), corresponding to the BVS II!, coincides with Q(\):
MM =T1y(MNh=x1{6xQ@ h, A3 @R} =Q(XN)h. O

2. In this section, we consider another realization of an R-function as a Weyl function, based on the
representation of a self-adjoint operator as an operator of multiplication in La(dZ, H).

Let Q(\) (€ Ry) have an integral representation (5.1) with an operator measured Z(t), and let
Lo(dX, H) be the space of vector-valued functions f(¢) on R with values in H such that

NfllLaqaz, 2y = /m(JE(t)f(t),f(t))u < 0o.

We define the space §(Q) = Hp ® Lo(dX, H), where Hp = R (B*/?) is a Hilbert space endowed with
the scalar product

(h1yho)mg = (B™Y?hy, B™2 b))y, (5.12)
and consider the self-adjoint relation 4 in h:
A={{0@ f(t),b®tf(1)} : f(t),/(t) € Lo(d, H),b € Hap}. (5.13)

Let A be the Hermitian operatbr defined by the relation
A={{00 f(t),botf(t)} € A: / dS()f(t) +b = 0}. (5.14)
R
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It is easy to see that the operator A is closed.
Proposition 5.2. Let Q()) (€ Ru) be an operator-valued function of the form in (5.1) satisfying

condition (5.2), and let A be an operator of the form in (5.14). Then '
(1) the defect subspace DNy of the operator A takes the form

Ny = {Bh& T_h—x :heH); (5.15)

(2) the adjoint linear relation A* coincides with the relation A, of the form
A= {{bo f(t),B® ()} e @b : 3h e W F(t) - tf(¢) = —h,b= Bh); (5.16).
(3) the triple 1" = {H, 1, T2}, where Ty, T'; are defined by the equalities

f=h (f=1{boft),ba f(t)} € A),

is @ BVS for A* and Ay :=kerD'; = A;
(4) an operator-valued function y()), defined by the equality

h

is a v-field of the extension A, and Q(X) coincides with the Weyl function M()) corresponding to the BVS

.
Proof. (1) It follows from (5.14) that Bh&® 25 € Ma Vh € H. By virtue of the relation 0 € p(Im Q(3))

and identity
nlE = (B8 ) = (b, + [ AR (5.19)

we obtain relation (5.15) and the surjectivity of the mapping v(}) € [H, 9]
(2) Making use of (5.15) and the equality A* = A+ R, we represent the vector f = {b@®f(t),b®f(t)} €
A* in the form ©

F=1baf(t),b® f(t)} = fo+ hi = {BR® f(t), (Bh + bo) @ (tf(t) — h)}, (5.20)

where b = b—iBh, fo := {0® fo(t),bo @ tfo(t)} € 4, hi := {Bh @ ;,iBh ® &} € .
Thus A* C A.. In order to prove the inverse inclusion given F={pof),be fit)} € A we put
fo(t) = f(#) — h(t — )™, by = b— iBh. By virtue of (5.16) we have

tfo(t) = f(t) — ih(t — i)' € Ly(dZ, H), bo € Ha,

and hence {OAGB fo(t), by @ tfo(t)} €. Thi§ imp}'ies that f = fo + h; € A*.
) (3) Let f; = {fj, fi} = {Bh; ® £;(t),b; ® ()} € 4%, f;(t) — tf;j(t) = —h;j € H (j = 1,2). Then we
ave ‘

(T f1,Tafo)n — (szl,rlfz)'}'(é (b1, ha)n — (b1, h2)m

+ [ (Eeh0+ hentho - h0), - [ (Z9 (¢, - 7)) 40 + o0,

1+41¢2 1412

= (by, k) + (b1, ha)m + /m(dz(t)fl(t)afz(t))ﬂ - /m(dz(t)ﬁ(t_),fz(t))u = (f1, f2)s = (f1, fo)p-

183



This proves the Green formula.
To prove the surjectivity of the mapping T : f o {T £,y f} we note that A = A2 := ker '3 and

={00(1+t>)"'h,Bhot(1 +t3)"1h} € Ay Vhe ’H * After the application of the mapping I'1 to f we
obtam the equality

I.f=Bh+ /m (1+ tz)‘ldz(t)h = [Im Q(i)lA,

which, on account of the condition 0 € p(Im Q(3)), implies that I'y A, = H. Now (5.15) and (5. 17) yield
that T291; = H. The surjectivity of I is a simple consequence of the relation A* = A+ N;.
(4) It follows from the definition of y(}) that

ABhea—’\—'i-}=—(ﬁ—~i);h.

Tof(A)h = I‘g{BhGB — S P

Therefore 4(\) = (T'2[913)~? and () is a v-field of an extensxon Ay = ker I'y. Further, in accordance with
(1.9), we obtain the equality

M()h =T14(Mh=T:{Bhe® = h <, \Bh ?I'X} (rB+C+ /m ————((tlf/\’\)?ldf(t?))h,

which shows that M(\) coincides with Q(A). O
Corollary 5.1. If, under assumptions of Proposition 5.2, Q()) satisfies the condition 1iTm(Q(iy)/y) =
yToo

0 (i.e., B=0), then ) = Lo(dZ, H), A = Aj is an operator of multiplication in Ly(dZ,H), and the operator
A is defined by the usual condition:

A=A la,D(4) = {F €2(A): [ a0 = 0} (5.21)

3. Consider, after [75, 71], the Hilbert space B(Q) of vector-valued functions F(A) on C4 U C_ with
values in H of the form

FO) = b+ / dz t)f ©) (b e Hp = R (B2), f(t) € Lo(dT, H)) (5.22)

endowed with the scalar product

(F1, F2)s(q) = (b1, 02)mn + (f1, f2)roazy  (Fj €B(Q)5 =1,2). (5.23)

The mapping U : b@ f(t) — F()) establishes an isometrical isomorphism from §(Q) onto B(Q) and with
this isomorphism the operator A in h(Q) is isomorphic to the operator of multiplication in B(Q), which we
denote by the same symbol

A= {{F()), \F(\)} : F(\), AF(}) € B(Q)}. (5.24)

Proposition 5.3. Suppose that Q(A)(€ Ry) is an operator-valued function of the form in (5.1),
satisfying condition (5.2), and A is an operator of the form in (5.24). Then
(1) the defect subspace Ny of the operator A takes the form

Ny = {ha 5%}» hen); (5.25)

(2) the adjoint relation A* coincides with the relation
Av={{FQ), FO)} € B(Q) : 3h1, he € H, F(N) = AF(A) = b = QV)ha}; (5.26)
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(3) the triple I"" = {H,T'1,T2}, where 'y, Ty are deﬁned by the equalities T'; F(/\) G =
1,2; F()) € A*) is a BVS for A*; B

(4) the v-field of the relation Ay = kerT'; takes the form v(A)h = Q(E_Hk‘lh, and the corresponding
Weyl function M()) = T19()) coincides with Q(X).

Proof. (1) After the application of the mapping U we obtain from (5.18)

U{Bh o } Bh +/m 7 _‘f):g)_ 5= Q(Pz = f\)(,\) hegm.

(2, 3) Analogously, it follows from (5.16) that Vf = {b & f(t), ba f(t)} € 4*
Uf =U{bo f(t),b® f(t)} = {F(A), F(\)} = F(»),

F(\) =b4+ /m DA Foy =i+ miz%@. (5.27)

where

Taking into account the relations f(t) — tf(t) = —h, b = Bh we have
F(A\)=AF(\)=b— ABh + /m %‘\:_(—t/\)( (&) = A7)
- 1 t
=b+Ch+ /];dil(t)( (8- 1 +t2) ~ [BA+C+ /de(t)(t—:—/\ - TJr—t-z-)]h = hy — Q(A\)ha,

where

tf(t) + £(2)

T =D £, hy=TLf. (5.28)

hy —b+C’h+/d2(t)
This proves the inclusion A* C A,. Conversely, let F' = {F()), F(A\)} € A.. Then there exist hs,
hs € H such that F(A) = AF()) — hy + Q(M)h2. By virtue of (5.27) we obtain the equality

_dEmfe)  _, () (Ef () — k)
/m(t ~A(t—p) b= Bha+ R (E—N(Et—p) (5.29)

which, on account of the uniqueness of the representation (5.22), gives b = Bha, f(@) ~ tf(t) = —hg. This
implies that {b @ f(t),5® f(t)} € U"'A*U and A. = A*. Note that simultaneously it was shown that the
triple I"" = {H,T'1,T2} is a BVS for A*.

(4) 1t follows from the equality

Py = {Q(/\; S(#)h /\Q(/\i ZQ(P) } _ {Q(,\; = f(u)h’”Q(,\; - S(#)h +QOh - Q(ﬂ)h}

that T2hx = h, T1hy = Q(A)h. Therefore v(\)h = SA=p and Q(A) coincides with the Weyl function
M()) corresponding to the BVS II'"'. O :

4. In this section we shall distinguish all objects connected with the BVS (5.4) by one prime and the
others connected with the BVS (5.16) by two primes. In the proof of Proposition 5.3 an isomorphism of
BVS’s II"” and II" was established. In the next proposition the same is proved for BVS’s I’ and II".

Proposition 5.4. Under the assumptions of Propositions 5.1 and 5.2 BVS’s II' = {H,I'},T'4} and

" = {H,T{,T3} are isomorphic, i.e., there ezists an isometrical isomorphism U from £(Q) onto h(Q)
such that UA' = A"U, T, =TVU, T =T4U, where U = U @ U.
Proof. We define an operator U on the span of subspaces Mx (A € C; UC.) by the equality

Uo7 (\h = Up(6x ® h) _ {Bh o ?-}f_)\ } = 1"(\k (h € H). (5.30)
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It follows from (5.3), (5.19) that U, is"an isometrical operator and can be extended to the isomorphism U
from R(Q) into h(Q). For f= Z.{ﬁ,\ ®.hx, Aéx ® ha} we have

Uf =Sa{Bm@ (=0 hy,  MBha®(t =2 ha)} = £, 4(Wha,
MU =23 Q@Nha =T1f, T3Uf =3k =T3].

It follows from (5.31) that UA' = A"U. O

Each of the Propositions 5.1-5.3 contains, in particular, the following

Theorem 5.1. An operator-valued function M()) holomorphic on C, U C_. with values in [H] is a
Weyl function of some simple Hermitian operator corresponding to some BVSII = {H,T'1,T'2} if and only
if: '

(5.31)

(1) M(X\) € Ry; (2) 0 € p(Im M(N)) VIeCirucC._.

As was shown in [51, 53] (in the case D(A) = b see [20, 79]) the Weyl function M(]A), corresponding
to a BVS II = {H,I',T2}, is a Q-function of a Hermitian operator A, corresponding to the extension
Az = kerT';. The inverse assertion also holds: each @-function of an operator A is its Weyl function (see
§1). Therefore, Theorem 5.1 is a consequence of the results obtained in [81, 83] on the inverse problem for
a @Q-function. However, we stated Propositions 5.1-5.3 since the constructions of the model operators will
be used in what follows (see Secs. 7-9)..

Note also that the first model was used in [81, 83] and the third one (1n the case ny(A) = n_(4) < o)
in [71, 72], where an isomorphism of the model operators was also established.

Remark 5.1. As follows from the proof of Prop051t10ns 5.1-5.3, under the assumptions of Theorem
5.1, A, is an operator if and only if

s— liTm y ' M(iy) =0, (5.32)
yfoo ,

and A is a densely defined operator if, additionally,

IiTm yIm (M(sy)h,h) = +00 Vh € H. (5.33)
yToo

Note also that if M(A) is a rational matrix-valued function (dim H < oo) of the form

M) = BA+C+Z

ji=1

tj— A’

then dim h(M) < oo, and the following equality holds:

k
dim h(M) = rank B + ) _ rank 4;. (5.34)

i=1

5. The next lemma is a generalization of Lemma 1.1 from [40].
Lemma 5.1. Let Q(z) (a < z < b) be a nonnegative operator-valued function with values in C(H)
such that:

(1) Q(z) is a monotonically increasing function on (a,d), i.e., t; := to(z)(tos)[fl = Q)2 f||?) is a
monotonically increasing [on (a,bd)] family of forms;

(2) 0€p(Q(z) Vo € (a)

(@) lmt[f]=+oo  VfEH' := (\D(t), fAO, Hi=H

z<b
Then there ezists s — liIT];l Q(z)™! = Q. Conversely, conditions (1), (2), and the last equality imply that

liTm t:[f] =

186



Proof. Let g € H! \ {0}. According to condition (3) we have
VM >0 3a0 € (a,): [Q(=)"?gl* 2 Mlg|® Vz € [z0,b).

Letting f := Q(z0)'/%g we obtain M[|Q(ze) /2f[* < |If||*. Making use of condition (2) and the well-
known (see {29]) implication

toz) 2 iQ(,z) >0= Q(:cl)—l < Q(zz)—l (z1 > z3),

we obtain the inequality M||@Q(z)~ Y2 f)|> < || fl|? Vz € [zo, b).
This 1mphes that 11m 1Q(z)~2/2f|| = 0 Vf € H and hence s — hm Q(z)~1/? = 0. Now, by virtue of the

uniform boundedness pnnc1p1e, we have s — 11m Qz)'=0. O

Lemma 5.2. Let Il = {(H,T1,T.}, T = {’H 1,12} be BVS’s for A*, and let M(/\), M()) be the
corresponding Weyl functzons If ker 'y = kerI'y, then there eist operators K K*e[H; X, X1 e[H)]

such that
Fg X- 11"2, Fl X*(Fl +KF2),

M()) = X*MO\)X + X*KX.

If, additionally, kerT'y = ker Ty, then K 4+ 0 and M()) = X*M(\)X.

One can easily deduce Lemma 5.2 from formulas (1.12), (1.13) and the evident implication kerI'; =
ker Pz = X21 = 0.

In what follows we repeatedly apply Corollary 4.1. In view of its importance we give a simple proof
which doesnot use the formula of resolvents.

Proposition 5.5. Suppose that A >0, I = {H,T1,T'2} is a BVS for A* such that Ay > 0, M()) s
the corresponding Weyl function. Then the equality Ay = Ar (A = Agk) holds if and only of

(5.35)

lim (M(z)h,h) = —co  (Lm(M(a)h,h) =+o) ~ VheH\{0}. (5.36)
Proof. Necessity. Let Ay = Ap. Then D(A;) = ho := D(4), 42(0) = N := § O ho (see [78]). By
virtue of (1.7) and (1.10) we obtain the equality
M) = C+ (A + 7" (=D + (A + Az = N7 Poy(=1) + M (~)Pir(=1),  (537)
¢ _ :
where Py := Py,, Py =1—~ P, C = M(-1)+ 73‘(—1)P17(~—1). It follows from (5.37) that

(M) = (Ch, W)+ (3 +1) [ ) ”—i’iduEth‘(—l)huz + MPA(=DAIP, (5.37"

where E; is the resolution of identity of the operator A} € C(fy). The operator part A} of the linear relation
A, is a Friedrichs extension of the operator A' = PyA € C(fjo). In accordance with the extremal property
of the Friedrichs extension [34] we have

/ TH(ES,f) =t VeI, = Na(d). (5.38)
0

Now relation (5.36) follows from (5.37') and (5.38).

Sufficiency. Suppose that Il = {H,T'1,T'2} is a BVS for A*, such that Ay > 0 and the corresponding
Weyl function M()) satisfies condition (5.36). Consider side by side with II the other BVS Il = {#, ', T;}
such that kerI'y = Ap. As shown above, its corresponding Weyl function M ()) satisfies condition (5.36)
and is connected with M(A) by equality (1.13). Rewriting (1.13) in the form

M) (X2 M) ™ 4+ Xu) = Xoaa MW + Xy
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we pass to the limit as A — —o0. In accordance with Lemma 5.1 there exists -

‘o . ~ -1 — __' . ) -1 —
s AlfinooM()‘) s All1_x_n°°M(/\) 0

and hence Xgl = 0. This implies that EXz';l = X} € [’H], I = X21F1 + X559 = X,y and, therefore,
kerI's = kerI’; = Ap. O h

We shall call (after [39]) the Q,- and Qp-functions of a nonnegative operator A the operator-valued
functions X*@),(A)X and X*Q)(A)X with X, X! € [H] and Q),(}), Q}s()) defined by equalities (4.14),
(4.15). In Sec. 4 we have determined BVS’s such that their corresponding Weyl functions coincide with
Q. (A) and @', (). By virtue of (4.14), (4.15), and Proposition 5.5 any Q,(Qum )-function is a Weyl function,
corresponding to some BVS, such that A2 = Ap, A; = Ax (A1 = AF, A2 = Ak). ‘

Proposition 5.6. Let Q()\) € Ry be an operator-valued function with values in [H] satisfying condition

(5.2). Then for Q(\) to be a Q,-function of a nonnegative operator it is necessary and sufficient that the
following conditions hold: '

(1) Q(A) is holomorphic on C\ Ry;

(2) limg | —0o(@(z)h,h) = —c0 VR e H\ {0};

(3) s - lim Q(z) = 0.

Proof. Owing to Theorem 5.1 Q()) is a Weyl function of some Hermitian operator A corresponding
to the BVS IT = {H,T';,T';}. By virtue of condition (1) the operator A is nonnegative. It follows from
Proposition 5.5 and condition (2) that A, := kerI'; = Ap. Analogously, making use of Lemma 5.1 and
condition (3) we have A; := kerT'; = Ax. Now we obtain by Lemma 5.2 the equality Q(A) = X*Mp(A)X
(X e H, M-, X 1e My, H]). O

Corollary 5.2. (1) A Q,-function belongs to the class Sy; (that is, Q(z) < 0 Vz € R_);

(2) the following equivalence holds:

DA)=h =>s— liTm ¥y~ 1Qiy) = 0. (5.39)
ytoo

Proof. (1) The inequality Q(z) < 0 (z € R_) follows from the monotonicity of @(z) on R_ and the
condition Q(0) = s — li%l Q(z) = 0. (2) The equivalence (5.39) is a consequence of Remark 5.1 and the
relation Ap(0) = 9 = by

Analogously one can prove

Proposition 5.6'. Let Q()\) be an Ry-function with values in [H] satisfying condition (5.2). Then
Q(X) is a Qp-function of a nonnegative operator if and only if the following conditions hold:

(1) Q(A) s holomorphic on C\ Ry, '

(2) li?&(Q(m)h, h) = 400 Vh € H\ {0};

(3) s— llim Q(z) =0.

Ti—0o0
Corollary 5.2'. Let Q()\) be a Qpr-function of a nonnegative operator. Then:

(1) Q) € % = Sn(R+,0) (that 15, Q(z) 2 0 Yz € R);
(2) the following equivalence holds:

D(A)=h <= zlliinoo z(Q(z)h,h) = —0 Vh e H\ {0}.

Remark 5.2. In the case D(A) = h, Propositions 5.6 and 5.6’ were presented in [39].

6. In Sec. 3 BVS's II* = {H,I'¥ T4} and M = {H,TM,T'M} were constructed, such that the
corresponding Weyl functions take the form in (3.73), (8.74) and coincide with Q,- and @pm-functions ofa
Hermitian contraction from [40]. The full inner characterization of Q,- and Qa-functions of a Hermitian
contraction was obtained in [40]. We now give another proof of this fact, based on Propositions 5.1 and 5.5.

Proposition 5.7 ([40]). Let M()\) be an Ry-function with values in [H] satisfying condition (5.2).
Then M(X) is a Q,-function of a simple Hermitian contraction if and only if:
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(1) M()) is holomorphic on C\ [~1,1];
(2) imag-1(M(A)h, h) oo Vh e ’H\ {0},
(3) s— 1,\1?11 M) =

(4) s— lim M(/\) =
Proof. Necesszty Suppose that A is a Hermitian contraction, II* = {H,I'{,I'4} is a BVS for A*

of the form in (3.72), and M(}) = Q,(}). The operator A_, defined [cf. (4.2)] by the equality A-; =
s—R-— l%m1 A,(A, := A+ N,) is the least one in the class Ex 4(—o00,—1) of all extensions A = A* such -

that A > —I. In particular, A_; € C4(0) is a minimal element in the class of sc-extensions of the operator
A. Therefore, A.; = A, = kerT's. Owing to Proposition 5.5, condition (2) is fulfilled. Analogously, an
extension A4 = s—R—li{rll A, is a maximal element in the classes Ex 4(1,+00) and C4(0)(C Ex 4(1, +oo)).

This implies that A4; = Ay = ker'; and according to Proposition 5.5 we have lim(M ~1(z)h,h) =

Condition (3) now follows from the monotonicity of M(z) on (1,00) and Lemma 5. 1 Clearly, condition (4)
for M(X) of the form in (3.73) is fulfilled.

Sufficiency. It follows from Theorem 5.1 that the function M(X) is a Weyl functlon of some simple
Hermitian operator A' corresponding to some BVS IT' = {9M,T,T}} (without loss of generality we assume
that H = 91 = hg). By virtue of condition (1) the extension

Ao A7 ..
t=tety= (42 40) (gelind  Gi=12)

is a contraction. It follows from conditions (2), (3), Proposition 5.5, and Lemma 5.1 that A}, = A,, A} =
Ap. Thus we may apply Lemma 5.2 to conclude that the Weyl functions M()) and Q,(\) corresponding
to BVS’s II' = {M,T},T%} and I1* = {MN, T}, T4} of the form in (3.72) are connected with the equality

M) = X*Q,(\)X = X*(I + CY*(A, — \)1CVHX, (5.40)

where X, X' € N], C = (Am — Au) - It follows from (5.40) and condition (4) that X*X =1, ie., X is
a unitary operator in 91.

We consider an isometric operator U = Iy, @ X € [h] and put I'] =T U (G=12,0=UaU. We
show that the Weyl function of the operator A" = UA’ correspondmg to the BVS II" = {N,T},T5} for
(A")* = U*A*U is a Q,-function of the Hermitian contraction A". Indeed, A} and C" take the forms

AZ:U*A“U:(Xé.?IO Xéiffx). C" = (4 — 4))Iq = X"CX.

It follows now from relations (5.40), (3.73) that M()) coincide with the Weyl function M"()) of A"
corresponding to the BVS II":

M"(N) =1+ X*CPX(U*(4, — \)U)X*C2X = I+ (C")M(AY — N)7HC")? = M(N).

Ago
Aro
(i = 0,1)), b1 = hg. In Proposition 3.5 a BVS for A* was constructed, such that the corresponding Weyl
function coincides with the spectral complement of the operator A [69) .

T. Let A= < > be a bounded Hermitian operator in §§ with a nondense domain 8o (Aio € [ho, bi]

M(X) = M + A1o(4oo — A) ™ Aor. (5.41)

The next proposition contains a full inner description of the operator-functions of the form in (5.41)
(i-e., spectral complements).
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Proposition 5.8. Let M(A) be an Ry-function satisfying condition (5.2). Then for M()\) to be a
spectral complement of some bounded Hermitian operator it is necessary and sufficient that the following
conditions hold:

(1) M(X) is holomorphic ezterior to some segment [a, b];

(2) s - hm D — = = Iy;
(3) s— hm (M()\) Ag) =
Proof. Accordmg to Theorem 5.1 there exist a Hermitian operator A'(D(A4’) = bo) and a BVS
' = {N,I,T5} for (A’')* such that the corresponding Weyl function coincides with M()). Making use of
P g Y g

Theorem 1. 1 and condition (2), we conclude that A} = kerT"} is a linear relation and A5(0) = 9 = bh. It
follows from conditions (1), (2), and Proposition 1.6 that A} = kerI'} is a bounded operator. In particular,
Aoo
(4
Let Il = {H,I1,T'2} be a BVS of the form in (3.64). Since kerI"y = kerI'; = A+ 91 we obtain from
Lemma 5.2 the equality

the opera.tof A = (Aoe € [bo], A10 € [Bo,T]) is a bounded operator too.

M(’\) = X*[’\I‘JT + AIO(AOO - /\)—IA()]]X +Y,

where Y = Y*, X, X~! € N]. It now follows from conditions (2), (3) that X*X = I and Y = 0 and,
therefore,
M(/\) = /\Im + X*Alo(Aoo - /\)—1A01X.

Aoo
X*Aro
by virtue of Proposition 3.5 we have that the corresponding Weyl function coincides with M(A). O

8. We give one simple application of Theorem 5.1.

Let A be a Hermitian matrix in §o = C". Consider a bordered matrix 4; = A} = (; Z) (a =

d,g € C*) as an extension of the operator 4 = (;) € [C*,C™*!] and a BVS Il = {H,I'1,T'2} of the

form (3.64) for the linear relation A3 = {{f,A1f + ¢} : f € C*t! ¢ € C}. It follows from (5.41) that the
Weyl function M(A) corresponding to the BVS II takes the form

Consider the operator A = ( ) and the BVS of the form in (3.64) for the linear relation A*. Then

det(A1 - A)

M()) =/\—a+g*(A—/\)_1_q=— det(A =N

€R. (5.42)

This implies the alternation of the eigenvalues {A\¢}? and {Ax}}! of matrices A and A;, which is usually
derived from the Courant-Fisher principle [47].

Making use of Proposition 5.8, one can easily deduce the inverse assertion, which is also well known
(see, for example, [47]).

Proposition 5.9. Suppose that {\¢}? and {AL}7TT? are two alternating collections of numbers

RO PIEPIESNE LIS NP LI (5.43)

A = diag {A1,A2,...,An} i3 a diagonal matriz. Then there ezists a bordering A; = (;i z) of the matriz

A such that o(4;) = { ML}
' Proof. Suppose that we have strict inequalities in (5.43) (one can easily deduce the general case to
this one) and define a function M()) and a number a = @ by formulas

n+1 n+1
M()\) = H(A ,\1)/[1(,\ ), a= i,\l Z,\ (5.44)
j+l Jj=1 i+1
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Clearly, M()\) + a satisfies the conditions of Proposition 5.8 and, therefore, M()) is the Weyl function
corresponding to some BVS of the form in (3.64) for A* and taking the form in (5.42). It follows from

(5.34), (5.44) that dimbo = n, dimh =n+1, and 4 = ( ;{ :) € [C*,C"H1] A € [C"]. Note finally

that the zeros of M()) coincide with the eigenvalues of the matrix 4; = (; Z) and the poles of M())

coincide with the eigenvalues of the linear relation Ay := kerI'; and, therefore, with the eigenvalues of the
matrix A. O

6. GENERALIZED SPACES OF BOUNDARY VALUES

1. In this section we generalize the notion of a BVS to nonclosed linear relations, which enables us to
realize an arbitrary Ry-function [without condition (5.2)] as a Weyl function. Let A be a closed operator
in h, A* be an adjoint linear relation, and A.(C A) be a linear relation dense in A*.

Definition 6.1. A triple {H,T'1,T'2}, in which H is o Hilbert space and T'; (j = 1,2) are closable
mappings from A. to H, will be called a genemhzed BYVS for a linear relation A, zf

(1) Ty is a surjective mapping;

(2) Az :=kerT'; is a self-adjoint relation;

(3) for all § = {f, '}, § = {g,9'} € A. the Green formula holds:

(f',9) = (f,9'") = (T1f,T28)n — (T2 f, T1d)n. | (6.1)

One can easily deduce

Proposition 6.1. Let A;, Ay be disjoint self-adjoint eztensions of an operator A. Then there ezists
a generalized BVS {H,T'1,T2} for the linear relation A, := Ay + Ay such that A; =kerT; (j = 1,2).

Lemma 6.1. Let Il = {H,I'1,T'3} be a generalized resolvent of a nonclosed linear relation A.. Then
the following assertions hold:

(1) A. = Ao+ N* (X € p(A2)), where My = AL NNy is dense in Ny,

(B kerT = A, R(T)=HoH (T = {T3,T1}).

Proof. (1) Since A, = A3, the following decomposition holds:

A* = A+ ()€ p(4r)). (6.2)

It follows from the inclusion 4, D Aj that A, = 42+ ‘JIA, where 9} = 9\ N A.. Since the angle between
A; and ‘II,\ is acute, the equivalence A, = A* <= 9% =M, holds.

(2) Assume that there exists A € H such that A L T'; As. It follows from condition (1) of Definition 6.1
that for some f = {f, f'} € 4. we have T2 f = h. Making use of the Green formula (6.1) we obtain for all
§=1{g,9'} € A2 the equality

(f',9) = (f,¢') = =(T2f,T1§)% = —~(h,T1§)n = 0.

The condition A; = A% implies that f = {f, f'} € Az and hy =T, f = 0.

(3) Let f = {f, '} € kerT. Then it follows from formula (6.1) that (', g) = (f,g') for all d=1{9,9'} €
A, and hence {f, f'} € (A.)* = A. Therefore, kerI' C A. Conversely, if f € AC Ay = kerDy, then
(T'1F,T2§)x = 0 for all g € A,. With regard to condition (1) this implies that f € ker VS

Finally, we show that R (P) H @ H. For some {hy,h;} € H GB H we choose fj € ‘ﬂ* such tha,t

Ty f x = ha. In accordance with»assertlon (2) there exists a sequence f2 ™) € Aj such that hm 1"1 f

hl - Fl fA. Then it follows from the equalities
T {‘ + ,( ) =h : lim T A) + ’( ) =h
2( A i 2. ) 2, nl ot l(f 2 ) 1
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that {h;,he} € R(T). O
Let m; be an orthogonal projection onto the first component in 91y = {{fx; Afa} s fr €M}
- Lemma 6.2. The equalities 4(A) = (T2 [913)™, v(X) = m%()) define holomorphic on p(Az) operator-
valued functions with values in [H,N] and [H,Na], respectively. The function v(}) is a y-field of eztension
A, t.e., the following relation holds:

YA = 7(C) + (A= (42 = N)7(C) VA € p(dn). (6.3) _’

The proof follows immediately from (6.2) and Definition 6.1. In the same way as in [79, 53] one can obtain
the relation

Y*(Ah =T1{(42 = A\) " h,h + A(As — A) 'R} (h € H,) € p(A3)). (6.4)
Definition 6.2. The operator-valued function M()), defined for all A € p(A2) by the equality

MTofa=T1fa Ve, : - (63)

will be called o« Weyl function of the operator A corre.spondiﬁg to the generalized BVS Il = {H,T";,T2} for
the linear relation A..
It is easy to see that the equality (6.5) is equivalent to the following one:

M(A) = T14(2). (6.:6)

Since the operator I'y is closable, the function M(A) = I'14()) is a well-defined, holomorphic on p(4,),
operator-valued function with values in [H]. It follows from (6.3), (6.4) that

M) = M*(p) = (A = 27" (e)v(A) (YA, 1 € p(A42)) (6.7)

Proposition 6.2. Suppose that Il = {H, 1,2} is a generalized BVS for the linear relation A., M())
18 the corresponding Weyl function. Then

VDoep(ImM@E) e=RT)=HeH (&= A, = 4%);

(2) 0 € p(M(2)) <> R (I1) = H. If, edditionally, Ay = A}, then the operator-valued function
—M(A)? is the Weyl function corresponding to the generalized BVS Iy = {H,—T2,T1}.

Proof. (1) Let 0 € p(Im M(z)). Then it follows from (6.7) that the mapping y(A) € [H,IM,] is
surjective, and hence 9t = 9, R (v*(1)) = H. By virtue of (6.4) we have the equality I'; A2 = H, which,
with regard to the relation [T = H, leads to the equality R M=HoH.

Conversely, if R (') = H @ H, then for all A € H there exists f € A. such that I.f =0, Iif =h
Thus f € Az and I’y Ay = H. It follows from (6.4) that the mapping v*()) as well as y(]) is surjective and,
owing to (6.7), we have 0 € p(Im M(X)) for all X € C,.

(2) The implication 0 € p(M(z)) => R (I'1) = H is evident. Assume that R (I'y) = H. Then it follows
from the decomposition A« = 4; + ‘flf\ (7 = 1,2) that the mappings I'; : ‘5’I§ — M are isomorphic and,
therefore, 0 € p(M(X)) VA e C\R. O

Corollary 6.1. If extensions A, and A, are transversal, then the BVS I = {H,T'1,I'2} is an ordinary
one (<= R(T)=HOH).

Indeed, if A, = A*, then 915 = 91, and the mapping 7(A) € [H,M.] is an isomorphism. It follows from
(6.7) that 0 € p(Im M(7)) and by virtue of Proposition 6.2 R (I') = H @ H.

In the case 0 € p(M(2)) the following propesition holds.

Proposition 6.3. Suppose that Il = {H,T'1,T2} is a generalized BVS and M()) is the corresponding
Weyl function. Then there ezists a rigging Hy C H C H_ of the Hilbert space H ([6]) such that

(1) T2 may be eztended by continuity to the continuous mapping I's € [A*, H_];

(2) 7()) admits a continuation to v(A) € [H—,M,] such that v*(A) € [P, Hy] (A€ C\R);

(3) Im M()) € [H-,H+], (Im M(X))™! € [Hy,H_] for all X € C\R.

Proof. Let H_ be a completion of the space H, endowed with the metric

I&]l- = (Im M)A, R)?  (h€H), (6.8)
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and Hy = R ((Im M(3))'/?) be a Hilbert space with the norm

£ = (Tm M) ™2 £ (= [(lm M) FI2 VS € R (Im (M(3)). (6.9)

Then the triple of Hilbert spaces H4 C H C H_ is a rigging of H (see [6]), and the operator Im M(3) is an
isometry from H_ onto H4 by virtue of (6.9).

It follows from (6.7), (6.8) that |v(i)|[> = [[A|2 for all h € H. This implies that the operator
7(i) may be continued to the isometrical operator y(i) € [H-,2]. By virtue of equality (6.3) we have
Y(A) € [H-,M\] for all A € C\R. ) )

Owing to the fact that the angle between A, and M, is acute, we obtain 'y [Ny = 4(A)~! € [Tr, H-]
and, therefore, the operator I'; may be extended to the continuous mapping I'; € [A*, H_]. O

Remark 6.1. T'; is a continuous mapping from A* into Hy if M(:) € [H-,H4]. Indeed, making
use of the decomposition A, = Az+ N3 and the equalities 'y f = v *(f' - Af), Tifa = M)y 1 (\)f
(f = {f, f'} € Az, f» € 1), we obtain that the restrictions of I'y onto A, and ‘ﬁ,\ are continuous mappmgs
from A* into H4. The desued statement now follows from the fact that the angle between A, and M,y is
acute.

Theorem 6.1. For a holomorphic on C4+ U C_ operator-valued fu.nctzon Q()) with values in [H] to
be a Weyl function of a simple Hermitian operator corresponding to a generalized BVS it is necessary and
sufficient that Q(A\) € Ry.

Proof. Consider a space B(Q) and a Hermitian operator A of the form (5.24). Let A, be a linear
relation defined by equalities (5.26) and I'y, I'; be the mappings from A, to H defined by the formulas

IP=f (=12 F={FRFled, Fu)-pFE)=h-Quf

The mapping T is closed. Indeed, assume that F, = {F(), Fa(u)} converges to F = {F(u), F(1)}
in the space B(Q)? as n — oo and I'F, = {fz("),fl(")} converges to {f2, fi} in H @ H. Then the pointwise
convergence also takes place, and it follows from the equalities F‘n(u) pFa(p) = f") - Q(p) fz(") that

F(p) — pF(p) = fi — Q(1)f2. Therefore F = {F,F} € A* and TF = {f,, f1}.
The sur_1ect1v1ty of the mapping I follows from the relation
Q(f\) A,

To{ha(u), Ma(u)} =k, ha(p) = heH. ~ (6.10)

- p
In order to prove the Green formula we put fgr F={FF}ecA,G={GG}eA,

O(p) = F(p) = AF(n) € B(Q),  ¥(p) = G(u) — AG(u) € B(Q), (6.11)
With regard to (6.11) we obtain the evident equality
(F,®)s(q) ~ (F,Q)n(q) = (2,G)s(q) — (F, ¥)w(q)- (6.12)
Let f; = I;F, g; = T;G (§ = 1,2). Then it follows from (6.11) and the relations
Fp)=pF(p) = i~ QW)fa,  G(u)— pG(p) = g1 ~ Q(n)g2 (6.13)

that the vector-functions F((u) and G() can be represented in the form

F(,u)=q’(l2 i’(f\) Q(ug ?(/\) . G(p)=‘1’(#::i\1’(/\) Q(M}()4 ?(/\)

Taking into account the equalities

(@( ), ,‘I_’ﬁ‘_)___f_(i\l)%(q) = (CI)(”: : f(/\)"p(”))%(q);
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(2(p), (2 = M) "HQ(1) = Q(A))g2)m() = (B(X), 92)2;

(& = N7HQL) — Q) f2, ¥(1))s(@) = (2, T(W))n,
we obtain after the substitution F((x) and G(u) in (6.12):

(F,@)s@) — (F,C)n(@) = (2(A), 92)n — (2, ¥(N)n- (6.14)
Equality (6.1) is a consequénce of (6.14), relations
TF=30)+QNf2, TiG=YN)+QN)g2, T2F=fh, T2G=g,

and equality Q(A) = @Q*()).
Since M} = {9—('\—23(-‘Qh, he 'H}, we have

{90, 9N _guy,  recr (615)

This implies that the Weyl function M(A) corresponding to the generalized BVS IT = {H,I';,T'2} coincides
with @(A). O

Remark 6.2. As in 5.2, a function M()) € Ry can be realized as a Weyl function of an operator 4
in the space H(M) = Hp @ L2(dX, H) with B and dZ defined by (5.1). In this case the operator A and the
linear relation A, can be defined by equalities (5.14), (5.16), but unlike in Proposition 5.2 4, # A*. The
generalized BVS for A, should be defined by (5.17).

7. CHARACTERISTIC FUNCTIONS OF LINEAR RELATIONS

1. Definition 7.1. A closed linear relation T € C(§) is said to be almost solvable if there ezists a
Hermitian relation A and its self-adjoint eztension A such that T € Ex 4 and A+ T = A*. We denote by
As the set of almost solvable linear relations, and write As (A) := As NEx 4 for the set of almost solvable
eztensions of A.

Proposition 7.1. A proper extension T of A belongs to the class As (A) if and only if there ezist o
BVS Il = {H,I'1,T2} and an operator B € [H] such that T = Ap = ker (I'y — BI'2).

Proof. Assume that T' € As (A), A=A*€Ex 4,and A+T = A*. We choose a BVSII = {H,I'1,T2}
such that ker I'; = A. By virtue of Proposition 1.4 the transversallty of A and T is equivalent to the condition
B:=TTe[H]. O

To prove the next proposition we need

Lemma 7.1 (cf. [26]). Suppose that H is a Krein _space and My are mazimal 'u.nzformly positive and
uniformly negative subspaces in H, 6 is a subspace in H such that

O+ My =0+ M_=H. (7.1)

Then there ezists a hypermazimal neutral subspace My transversal to 6.

Proof. Let H = M, [+]EDT[,'_L] be a canonical decomposition of the Krein space H, and let || - ||; be the
corresponding Hilbert norm in H. It follows from Proposition 1.4 that the angular operators B and K of
the subspaces 8 and _ with respect to the decomposition H = 9, [+]EUI5'_L ],

8=grB={{p,Bp}:p €D(B)CDB)=MH}, M_=gr K ={{p,Kp}:peMmP},

satisfy the conditions B € C(ﬂﬁm m,), K € [DJT[J‘] M]. Moreover, we have |K|s <1—-¢ (¢ > 0)

since MM is a uniformly negative subspace. In accordance with Proposition 1.4 the condition 6+ MM_ = H
ensures the invertibility of the operator B — K. Therefore, the operator U in the polar decomposition of

B — K is an isometric operator from sm[ L onto M4+,and R>0. Since U*B+I =R+ I+ U*K, we have
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Re(U*B) > el and 0 € p(U*B + I). Thus (U + B)™! € [H] and by virtue of Proposition 1.4 the subspace
0 is transversal to the hypermaximal neutral subspace

My = (I - U)QJI[,‘_L] =gr(-U)={{p,~Up}:p€ 931!;”}.[1

Proposﬂ:lon 7.2. Let IT = {H,T),T2} be a BVS for A*, 8 € C(H). Then each of the following
conditions is sufficient for Ag to belong to the class As (A):

(1) 3, A2 € p(Aa) U a'c(Aa), Im A -Im Ay <0

(2) 31,72 € p(0) U ae(6), Im Ay - A2 <0

(3) 8 € C(H), D(8) =D(6*), Im 6 = [H].

Proof. (1) Suppose that the first condition is fulfilled. Then it follows from Proposition 1.6 that

0 € p(6 — M(X;))Uo(8 — M(X;)) ( = 1,2). In accordance with Proposition 1.4 the last conditions
are equivalent to relations (7.1), where MM; = gr M();) = {{h,M();)h} : h € H}. By the condition
M()\) € Ry, we obtain that 91 is uniformly positive if Im A; > 0 and 9, is uniformly negative if
Im A2 < 0. Now it remains to apply Lemma 7.1.

(2) The second assertion can be proved in the same way if we put I; = gr (A\jIx) = {{h,Ajh} : h € H}
( = 1,2) and notice that 9; (j = 1,2) and 6 satisfy the conditions of Lemma. 7.1, provided that Im X, > 0,
Im A\ < 0.

(3) The third assertion follows from item (2). O

2. Suppose that T € As (4), I = {H,T1,T2} is 2 BVS for A* such that T = ker (T'y — BT;), B € [H];
Rr(A) = (T — A)™! is the resolvent of T. We define the operator-valued functions Rr(}) € [h, A*] and
T2(X) € [N, H] by the equalities

Rr(N)f = {{Rr(\)f, f + ARr(\)f}: f €}, A€ p(T); (7.2)

To(Nfa = Tofa =Ta{fi A} (fr € T, A € p(42)). (7.3)

Definition 7.2. Let ¢ = (B,H;K,J,E) be a colligation (see [8]) (i.e., E is a Hilbert space and
K € [E,H], J € [E] are linear operators such that J = J* = J~!, Im B = KJK*. An operator-valued
function defined by the equality

Wr(A) = I+ 2K*ToR-(AT3(MNKJ (A€ p(T*)) (1.4)

will be called o characteristic function (CF) of T, and Wr(A) will be said to belong to the class Ay. We
shall write Wr(\) € AY if additionally ker K = {0}

Theorem 7.1. Suppose that 11 = {H, I‘l,I‘z} is @ BVS for the linear relation A*, M(A) is the
corresponding Weyl function, B € [H], ¢ = (B, H; K, J, E) is a colligation. Then the corre.spondmg CF of
the relation T := Ap takes the form

Wr()) = I+ 2K*(B* — M(\))"'K J. (7.5)

Proof. Making use of the relations I‘zRAz()\) = 0, T2%(X) = In, v*(A)T2()) = In, we obtain from
(3.39), (7.4) for A € p(T™)

Ty Rr-(A) = T2{Ra,(N) + ¥(A)N(B* ~ M) " (A} = (B* = M(N) v (W), (7.6)
Wr(A) = I + 2K *ToRr- (M3 (MNKJ = I+ 2K *To{Ra,(\) + 7(A)(B* — M(N)) y*(A)ITs (MK T
=TI+ 2K*(B* - M(\)"'KJ. O (7.7)

Corollary 7.1 In the case D(A) = b formula (7.5) was obtained by the authors in [18, 26]. In this
case definition (7.4) of the CF Wr()) takes the form - ,

Wr(X) = I+ 2K*To(T* - A" T3(X)KJ, (7.8)
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where 1 = {H,T,,T2} is a BVS for A*, T2 € [@(A‘.),ﬂ],Tg()\) = '3 M.

Remark 7.2. If boundary spaces £, £’ and boundary operators I, I for T and —T* (in the sense of
[67]) are defined by the equalities £ = £ = K*H, T = K*[';|T, I = K*I';|T*, then one can easily show
(see [18]) that Wir(A) coincides with the characteristic function of Shtraus [67] in the case D(A) = h and
with its generalization [10] to a linear relation in the case D(A) # b.

Remark 7.3. Suppose that T € [f], 4 = (j‘;g ) is its Hermitian part (i.e., A = T|D(A), where
D(A) = ho = kerTy), I = {9,T4,T2} is a BVS for the linear relation A* defined by equalities (3.64),
N = b © ho, T11 = PuT[9. Then the operator T admits the representation T' = joo ;1.,10) and can be

10 Iu
defined in the BVS (3.64) by the equality gr T = ker (I'; — BT;) with B = Tj; — A;; € [9]. In accordance
with Theorem 7.1 a CF of the operator T takes the form in (7.5), where M(}) is defined by formula (3.65).
Recall that M()) coincides with the spectral complement of the operator A if 4;; = 0. ,

If we consider an operator T as an extension of the operator A = {0} (ho = D(4) = {0}), then T = B,
M(X) = My (for Ay = 0). In this case formula (7.5) for the calculation of a CF takes the form

WA + 2iK*(T* — \)"1KJ (7.9)

and coincides with the definition of Liviic [48, 8, 9].
The utility of a colligation ¢ = (B, H; K, J, E) with ker K # {0} can be illustrated, in particular, by
the following example. ‘ B
Example. Suppose that II = {H,T'1,I';} is a BVS for A*, B = B* € [H], T = T* = Ap, ¢ =

(B,H;K,J,E)isa colligation with E=H@H, J = ({g —(I)H>’ K = (Ix, I). Then according to (7.5)
we have I I
Wr(X) = Ingn + 2i(B* — M(2))™? (I: :Iz) (7.10)

3. Proposition 7.3. Let T € Ex 4 be the mazimal dissipative eztension of A, C = (T —i)(T +1)7%,
C=(A=1)(A+1)"1. Then the CF Wr()) coincides with the CF of Nagy and Foias (see [59]).
Proof. (1) The defect operator D¢ = (I — C*C)*/? of the contraction C admits the representation

D% = 2iRp(—i) — 2iRp(—1) — AR (—1)Rr(—1). (7.11)

After the substitution f = {f, f'} = Rr(—i)h, § = {g,9'} = Rr(—i)k'(h, k' € ) we obtain from (7.2) and
the Green identity (1.3)

2(BT2 Rr(—i)h, TaRe(—=i)h' Y = i{(f,9') — (f',9)}
= i{(Rr(=i)h, k' — iRp(—i)k') — (h — iRr(~i)h, Rp(—i)k')} = 271 (DLh,b").

This implies that the mapping V : Dch — 23}/ 2I‘2RT(—i)h is isometric. In the same way one can show
that the mapping V. : De+h — ZB}/ ZI‘ZRTo(—z;)h is an isometry.
(2) Consider an operator-valued function W(A) = Vi8c(¢)V ~1 with 8¢({) defined by the equality

8c(¢)Dc = Dc-(I-¢C*)71((-C) (¢ e p(C)).
Then we have
W(ANVDc = Vubc(¢)Dc = VuDe-(I = (C*)7X(¢ = C) = 2B} * T2 Ry (i)~ I + (A + i) Rr(—i)].

Making use of (7.6) and the relation g5 := 2(T'z Ry (/\))*B}/ 20 € My, ¢ € H, we obtain from the Green
identity applied to the vectors f = Rr(—i)h, §x = {95, Ags} € Nx

—(W(AVDch,)n = ([I = (A +i)Rr(=4)]h, g5)p = (I — iR7(—i))h, g3)y — (R(—i)h, Agx)s
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= (P1f,Tagx)n — (Caf, Tad)n = (B = M(A))T2f, T2d5)n
= 2(B} T2 Rr- (T3 A)(B ~ MONT2Rr(=i)h, @)
- =2BY*(B* - M(X))™ (B ~ M(A)D2Rr(—i)h, 0)u
= 2((I + 2By/*(B* — M(\)) ™ BY/*)B}/* Rr(~i)h, ¢} = (Wr(\)V Dch, ).

This implies that WT(/\) W) = -Vabc(()VL.
‘4. Let W()X) € A be a CF of a linear relation T = Ap € As (A). Put

bw = span {y(A)(B" — M(X)) " Kh,v(A(B — M(A) T Kh': X € p(T"); b, h' € H}.

Notice that hw is a reducing subspace for the. relation T and on ho bw T mduces a self-ad_]omt linear
relation.

Theorem 7.2. Suppose that Aj are Hermitian operators in by, J = J* = J~! € [H], W;()) € A are
CF’s of relations Tj = AB, € As (A ) (7 =1,2). If on some neighborhood of the point Xg € p(Ty) N p(T3)
Wi(A) = Wa(X) a.nd bw, = bw,, then the linear relations Ty and T, are unitarily equivalent.

We omit the proof, which is straightforward (see [8, 67]). The following corollary results from (7.9),
(7.10), and Theorem 7.2. ,

Corollary 7.1. A Weyl function M()) corresponding to a BVS I ={H,T,T;} deﬁnes the szmple
part of a Hermitian operator up to unitary equivalence.

Since M(A) is a @-function of a Hermitian operator corresponding to an extension A2 (see [79, 53]), by
virtue of Corollary 7.1 a Q-function is a unitary invariant of a simple Hermitian operator A (see [81, 83]).
Further, from Corollary 7.1 and formulas (3.65), (3.73) follow these well-known assertions: a bounded simple
Hermitian operator (as well as a BVS IT = {H,T';,T';}) is defined uniquely (up to unitary equivalence) either
by a spectral complement of a Hermitian operator A [69] or by its Q,-function Q,()) [40]. .

5. Let W(X) € A;. Define an operator-valued function V(A) holomorphic on C4 U C_. by the equality

V(A)=K*Br-MM\)'K  (X€p(4dpy)) (7.12)
Lemma 7.2. For all A € p(A%) N (Cy UC..) there ezists (I + W(\)™! € [E] and
V) =TI -WAYT + W) (7.13)
Proof (cf. [26]). It follows from the relation o
(B~ M(\)™' = (Br— M()))™" =i(B* — M(3)) ' KJK*(Br — M(\))™
multiplied from the left by 2i K* and from the right by KJ that
W(A) = I -2V (A)J =i(W(A) - V().
This implies that (W(A) + I)(I —iV(A)J) = 2I. Equality (7.13) is a consequence of the last relation and
the next one, (I — itV (A)J)(W(A) + I) = 2I, which can be established in the same way.
We mention the following properties of W(A) € Ay and V().
Lemma 7.3. (a) V() € Rg; (b) Im MJ —~ W*(A\)JW(A)) > 0,
Im MJ = W) JW*(N) >0 VA€ p(T*); (7.14)

() J=WMNIW*(A) =J —W*A)JW(A)=0VAe p(T*) N p(T); (d) for all X € p(T) N p(T™*) there exists
W=(X), and the following equalities hold:

Wr(AY ™ = Wre(3) = JWa(2)J. (71.15)
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Proof. Making use of (7.12) and the condition Im A - Im M()A) > 0 we obtain the inequality
Im V(A) = K*(Br — M(\))"Tm M(A)(Br = M*(\))" K >0 (A€ Cy). (7.16)
Assertions (b) and (c) follow frorg the identity
V) = V(1) = 25(I + W) (T = W)W ()T + W ()™ (7.17)
Equalities (7.15) are the consequences of (79) and the identity
(B* — M(A\))™ (B~ M()\))™! = 2i(B* — M(\))'KJK*(B — M(\))~'. O
Proposition 7.4. Let W(A) € AY. The triple II' = {H, T, T4}, where

e . .. B+ B*
I\f=KTof Tpf =K7'(Bal2=T1)f (f€ A, Ba=—5—),

13 a generalized BVS for the relation A, = {f € A*: (Brl', - Ty )f € R (K)}. The Weyl function of the
operator A corresponding to the BVS II' coincides with V()). If, additionally, 0 € p(Im V (7)), then the
triple II' is @ BVS of the relation A, = A*.

Proof. Indeed, it follows from the condition I'y A; = H that I';(A« N A2) = H. The relation kerI'; =
Ap, = (AB,)* and the Green formula (6.1) are evident. We prove that the mapping I is closable. Suppose
that f, converges to 0 in A* and I, f, = K~1(I'; — Bgrl';)fn converges to h in H as n — oco. Letting
hn = (1 — BrI2)fn we have h, — 0, K~'h, — h as n — co. This implies A = 0.

It follows from Definition 1.6 and the relations

I fa=K*Tafa, T fx=K ' (Br— M(\))2f», fr={furfi} €

that the Weyl function M, ()) corresponding to the BVS II' takes the form M;()\) = K*(Br — M(A))7'K
and coincides with V(). _

According to Propositions 6.3 and 7.4, given an operator-valued function W(A) € AY, we can define
the rigging E}YY C E C EW of the Hilbert space E (see [6]) with the help of formulas (6.14), (6.15), letting
here M(X) = V(A). Then by virtue of (7.12)

EY =R (Im V(@)?) =R (K*), ||Al = I(Im V@) T/2R)7 = I(K*) 7 A|1%, (7.18)
and the spacé EY is a completion of E endowed with the norm
[ = (Im V(i)h, k) = |[K*R|* (k€ E). (7.19)

Notice also that Im V(3) is an isometry from E¥ onto EY and K* € [E,EY], K € [EY, E] are isomor-
phisms.

Lemma 7.4. Let W()\) € AY. Then we have

(a) V()) € [EW,EV], V-1(\) € [EV,EY] VA e C\R;

(b) (I —iJV(N)] € [EY] VA€ p(A5) \ R.

Proof. Assertion (a) is a consequence of (7.12). As follows from Lemma 7.2, for all A € p(43) \ R
. there exists (I —iV(A)J)™! € [E]. Note that I —iJV(A) € [E-] and (I —iJV(A))E- C E_ since for all
g € E_ the equation (I — iJV(A))h = g has the solution h = g + (I — :JV(A))JV(A)g € E_. Assertion
(b) is now a consequence of the Banach theorem. 0O ’

We give a criterion for a holomorphic operator-valued function W(A) to belong to the class AY.

Theorem 7.3. Let W()) be an operator-valued function with values in [E] holomorphic on a domain
GC Cy, J=J*=J1¢|E]. Then for the condition W(X) € AY to hold it is necessary and sufficient
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that —1 € p(W(A)) for all X € G and the operator-valued function V()) with values in [E] and defined by
equality (7.13) has the holomorphic continuation on Cy such that:

(1) Im V(X) > 0, ker(Im V(X)) = {0} VA€ Cy;

(2) V(\) € [EY,EY] (<= (W(N) - I)J € [E¥,EY¥]) VA e C,.

Proof. The necessity of the conditions of Theorem 7.3 follows from Lemmas 7.2-7.4.

Sufficiency. Let K(€ [EY,E]) be a closure of an operator (Im V(i))!/?; K* € [E,EY], My()\) =
(K*)"'V(M)K. 1t follows from conditions (1) and (2) that Mo(A) € Rg and takes values in [E]. Moreover,
0 € p(Im My())) for all Ae C\R since Im M(i) = I. This implies that the operator-valued function
M) = =My(M\)™ = -K V(A)™K* € RE also satisfies the conditions of Proposition 5.1 and therefore
there exists a Hermitian operator A and a BVS Il = {#,T'1,I';} for A* such that M(}) is the Weyl function
of the operator A corresponding to the BVS II. _

Setting B = tKJK* we define an extension T' = Ap € As (A) by the condition Ap = ker (T'y — BI'y).
By conditions ’

(I-iJVv(A) ' e[E¥] VXeg,
(B* = MO\) ' =(K)TWVAI -iJVOA) 'K € [E] YAeG
we obtain from (7.9), (7.13) that
Wr()) = I+ 2iK*(B* = M(A\)'KJ = I + 2%V NI = iJV(A) T =

= J(I+JVO)T —iJVA)) T =W(). O

Remark 7.4. The description of CF’s of operators with densely defined Hermitian parts was obtained
in {18, 26]. Under the assumptions of Theorem 7.3 an operator-valued function W(A) is a CF of some
almost solvable extension of a densely defined Hermitian operator if in addition to conditions (1) and (2)
of Theorem 7.3 the following relations hold:

(3) ilTI‘ono Vi) =0, (4) ilTrori y(Im V(iy)h,h) =00  Vhe EY\ {0}.

Proposition 7.5. Let W()) be an operator-valued function with values in [E], holomorphic on the
domain G(C C), J = J* = J™! € [E]. For the condition W()\) € A% to hold it is necessary that the
following conditions hold:

Q) IT=W*AN)JWA)>0, JgWANJW*(A)>0 VAeCiNnG,
and it is sufficient that the first of condition (1) and the following conditions (2) hold:

(2) 0 € p(J = W*(NJW(A)), 0€p(J-WQAJW*(X) VieCinG.

Proof. The necessity of conditions (1) in the case W(A) € A% was proved in Lemma 7.3.
Sufficiency. Let us prove the implications

0€p(J ~W*ANIW) = -1€ gW(N),  0€ p(J — WNITW*(N)) = —1 € FW*(\)).

If -1 ¢ p(W(X)), then there exists a sequence {fn} (|| fall = 1) such that W(A)fn = —fa + hn, hn — 0. In
view of the relation

(me fn) - (JW(’\)fn’W(’\)fn) = —2Re(']fm hn) - (Jhm hn) - 07

this contradicts (2). Therefore, —1 € 5(W())) and the operator-function V(A) = i(I — W(A))(I + W(A))™?
is well defined. Further, each of the hypotheses (1) on W()) is equivalent to condition (1) of Theorem 7.3
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on V(A). By virtue of (7.17) the hypothesis (2) is equivalent to the condition 0 € p(Im V(3)). This implies
EY = EY [see (7.18), (7.19)], and condition (2) of Theorem 7.3 is fulfilled. O

Corollary 7.2. Assume that J = J* = J™! € [E], diimE = n < oo, and W() is an opera.tor-valued
function with values in [E] holomorphic on some domain Gy C Cy.. For W(X) to be a CF of the class AY
;fssg';"nel dlinear relation T € As it is necessary and sufficient that the first of conditions (1) from Proposition

5. holds.

Proof. Since dimE = n < oo, we have 0 € p(J — W*(A\)JW())) and consequently 0 € p(J -
W(A)JW*(X)). Corollary 7.2 now follows from Proposition 7.5. [

6. Definition 7.3. Let h = by ® by and let P; be an orthogonal projection from § onto b; (=1, 2)
A linear relation T € C(b) is the coupling of the linear reiatzons T; € C(h;) (j = 1,2) and is wmtten
T= T] VT2 Zf

T =Tn(eh), T={PAPf}:{Hf1eT). (1:20)

Proposition 7.6. Let T € C(h) and T = Ty VTy. Then:
(VT =TvTy; 2) T =T VT 3) if Ty (j = 1,2) end T = ThVT: are operators in b;
=1 2) and ), then the subspace b; is m'ua.rza.nt for T, and

Tf=Tf VfeDT)nhy, TPf=PTf VfedT).

Proof. (1) Assume that {g,¢'} € T * N(h2 ® h2). Then for all {f, f'} € T we have {P,f, P.f'} € T»,

(9, P2f") = (9, f) = (¢’ /) = (¢, Paf),

and hence {g,¢'} € T7. Analogously, if {g,g'} € T*, then (Pig, ) = (g, f) = (Prg', f) Y{f, f'} €1 CT,
and therefore {P,g, P,g’} € T;. Statement (2) is evident.

(3) Assume that T, Ty, Ty are operators and f € D(T) N h;. Then by virtue of (7.20) we have
{P2f, PTf} = {0, P,Tf} € gr T; and, consequently, P,Tf = 0, that is, Tf € ;. The first relation in
(7.20) yields {f,Tf} € gr Ty and hence T, f = Tf for all f € D(T)Nh;. O

Remark 7.6. One can conclude from the following example that all the conditions Tj € C(h;) (j = 1,2)
in statement (3) from Proposition 7.6 are essential. Let h = lo(—00,00), b1 = l5[1,00), h2 = H © b1, and let
U be a bilateral shift in l;(—oc0,00); Ty = Ulb1, To = (U*162)*. Then the equality U = T1 VT3 holds and
by virtue of item (2) of Proposition 7.6 we have U~™! = Ty 'VT,; . Here U~1, T;' are operators in §, b1;
T,7! is a linear relation in b2 and b, is not invariant subspace for U -1

Recall (see [8]) that a colligation ¢ = (B, H;K,J,E) is a product @ = @p1p2 of the colhga.tlon pj =
(B_hHJvI( J E) (] =1 2) if

H=H1 @Hg, B =31PH1 +BzP’;{2 +22K1JK;P'H2, K=K1 +K2 (721)

Theorem 7.4. Suppose that A; are Hermitian operators in b, {'HJ,I‘{,I"} are BVS’s for A}; B_,
[H}; ¢; = (Bj,H;;K;,J,E) are colligations; W;(\) are the corresponding CF of the eztenszons AB,.
(7 =1,2). Definea BVS for the relation A* = A7 ® A3 by the equalities Ty = I‘(l) QBI‘(z) (k =1,2) and put
v = p1p2. Then AB = Ap,VAp,, p(Ap,) N p(AB,) C p(AB), and the co'r'respondz'ng Weyl function W(A)
of the eztension Ap takes the form

W) =Wi(A) - Wa(X) VA€ p(4B,) N p(45,). (7.22)

.. Proof (cf [8]) Let f = {f, f’} € ApN (5, @Y). Then I, f = BT, f and it follows from (7.21) that
Ly'f= Blr f and hence f € Ap,. Making use of the relation f={f,f'} € Ap we obtain from (7.21)
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that IO {P,f, Pf'} = BoTSO{Pyf, P,f'}, that is, {Pof, Paf'} € Ap,. Thus Ap = Ap,VAp,. By virtue
of Proposxtlon 1.6 (B; — M;(\))™! € [H;] forall A € p(Ag,) N p(AB,), and the following equality holds:

(B*—=M(N)™! = (B =M1 (X)) ™' Py, +(B; — Ma()) ™" P, +2i(B; — Ma()) ™' K2 J K7 (B} — My (X)) ™ Py,
: (7.23)
Theorem 7.1 and (7.23) yield equality (7.22). [

Remark 7.7. Theorems 7.2-7.4 are generalizations of the corresponding statements of Brodskii-Livsic
[8, 9, 48], and coincide with them in the case ho = {0} (= A = {0}, M(A) = A). Definition 7.2 of the cla.ss
As (A) enables us to prove Theorems 7.2-7.4 in the same way as was done in [8, 9] (in the case D(A4) =
see also 18, 26]).

The CF of various classes of unbounded operators have been investigated from different points of view
by many authors (see [46, 60, 67] and the bibliography in [60]). The inverse problem for the CF defined
by means of biextension theory was considered in [60], and the multiplication theorem was obtained in [46,
66). |

In the framework of Shtraus’ approach, the multiplication theorem was obtained for the case 5(_A)- =
(for D(A) # b, see [10]) provided that the coupling is regular. This assumption corresponds to the relations
ker K1 = {0}, ;® (K7) = R (K73) in our approach.

8. PRERESOLVENT AND RESOLVENT MATRICES OF A HERMITIAN OPERATOR

1. Let £ be a subspace of h. A point A € C is said to be L-regular for a Hermitian operator A [42] if
A€ p(A) and
F=T + L (M = (4 - A)D(A)). (81)

Let p(4, £) be the set of L-regular points of A, ps(4; L) := p(A; £) N p(4; L). We define (after [42]) two
holomorphic on p(4; £) operator-valued functions P(A) and Q()): P()) is a skew projection onto £ parallel
to My, Q(A) = Pe(4A - A)"HI = P(A)).

Operator-valued functions P(A), Q(A) € [h, £] and ’P*(/\) Q*(A) with values in [£, h] have the following
properties:

PNAf = P(\)f  Vfewb; (8.2)

QNASf =XQNf +Pef  Vfeb; (83)

PO = {P*A)LAP*(\)} € A*  Vie g (8.4)
Q*(W:= {Q*WLAQ* NI +1} e A VIeL; (8.5)
PAI=1,  PgP*()) - I,  P*(\)Pg=P*(\); (8.6)
QNI=0, PeQ'(N)=0, Q(NP:=Q'(N). (87)

It is easy to see that P*()) isomorphically maps £ ontoA‘J'I;\ and Pg [ 915 = (P*(\))~! € 95, L)
The next proposition is an analog of the first Neumann formula.
Proposition 8.1. Let £ be a subspace in h, X € ps(A;L). Then the following direct decomposition
holds: o
A* = A+ P(NL + ' (N)E, (8.8)

while the decomposition D(A*) = D(A) + P*(A)L + Q*(A)L is not direct if and only if SJ(A) # b. The
equality

fa+P Nk +Q (NI = (fa € D(4); Lke L)
18 fulfilled if and only if there ezists n € N := ho such that

I=PMNn, k=-QN)n, fa=(A=-X)"T-PM))n. (8.9)
Conversely, if X € p(A4; L) and formula (8.8) holds, then A € p,(4; £).
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Proof. The inclusion A+ 73*(/\)24-' O*(M\)L C A* is obvious. Let {f, f'} € A*, X € ps(4;£). Then
there exist [ € £, fa € D(A) such that

=AM =(A=-Xfa+l : (8.10)

It follows from (8.5), (8.10) that {f — fa — @*(A)I,0} € A* — X, that is, f — fa — @*(A)l € N5. By virtue
of the equality P*(A)€ = 95 there exists k € £ such that f — f4 — @*(A)l = P*(A)k and hence

f=Ffa+P Nk + Q*(ML. (8.11)

Relations (8.10), (8.11) imply : _ _
F = Afa+ XP Nk + XQ ()] + 1. (8.11)

Therefore, {f, f'} € A + .15*()\)2 + Q*(\)&; moreover the decomposition (8.8) is a direct sum since [, k,
fa are defined uniquely by (8.10), (8.11):

1=PR)f'=Xf),  fa=(A-NTT-PONS'-Xf), k= Ps(f—fA) = P f=QA)(f'—Af)- (8.12)

If {0, f'} € A%, then n := f' € 91 and formulas (8.12) take the form (8.9).

Conversely, vectors [, k, f4 defined by (8.9) are connected by relation (8.11), in whlch f =0.

Assume now that A € p(A £) and relation (8.8) is fulfilled. Then for all g € b there exists {f, f'} € A*
such that f' — Mf = g since R(A* — A) = h. Formula (8. 8) implies that f' — Af = (A — A)fa + [ for
some fa € D(A), | € £ and therefore h = M5 + £. It is easy to see that M3 N L = {0}. Indeed,
if (A= X)fa+1=0, then fa + Q*(A)l € My and by virtue of the relation P*(A)€ = 5 there exists
k € £ such that f4 + @Q*(\) + P*(\)k = 0. Making use of the equality (A — A)fa + ! = 0 we obtain
Fa+P*(\k+O*(A\) =0 and hence fa=I=k=0. Soh=(4—X)D(A) + £and A € p(4;£). O

2. Suppose that IT = {H,I'1,T2} is a BVS for A*, M(]) is the corresponding Weyl function, v(A) is
a v-field of the extension A; € Ex 4. A block operator—valued function Apg(A) of the form

ann(A) anz(A M(A *A) 1L
Hns(A) = (azlgz\; azzgz\g) = (Ps:‘g()?) Pg(zz (—)/\)_1 [2) (A € p(42)) (8.13)

is the preresolvent matrix of the operator A, corresponding to the BVS I = {#, Ty, I}

The next proposition is well known.

Proposition 8.2. Suppose that Il = {H,T'1,T2} is a BVS for A*, £ is a subspace of . Then the
following hold: (1) Ane(A) € Rugs ; (2) a12(Xo)™ € [H, L] <= X € p(4; £

Proof. (1) It follows from (8.14), (1.7), (1.10) that

A —2() 1 (M(A) M) M=y Ot )

) s (o o) e P (a2 1

T O PONA2 =N e |
(Ps(Az—'\) 1700 Pe(dz =N da =N ] )"T(A)T(A)’ (8.14)

where T(\) = {7()),(42 = A)~' | £} € [H® £,h]. This implies (ImA(A)h,A) = ImAT(MR|Z > 0
VieCy & 2((/\) € Rugs. : B B

(2) If X € p(4; £), then the operator Pg | M5 € [IM;, £] is invertible and, therefore, az; () = Pgy(}) is
an isomorphism from H onto £.

Conversely, assume that the operator a;2(A) is invertible. Then Pg91x = £ and by virtue of Proposition
2.2 the following direct decomposition holds: § = £ + My ie., A € p(4;€). O

Remark 8.1. The inclusion 2g()) € Ruge is a consequence of the Silvester identity, the relation
M()) € Ry, and the following equalities:

Im Qg — (a2] - a;z)(Im 011)—1(012 - a;I) = Pg(Az - X)—ngmx(Az had /\)-1 [£, (815)
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(Pg(Az — )~ Pop; (Az — A) 7', 1) = || Pang (A2 — A) 7| > 0. . (8.16)
3. If p(4; £) # 2, then the matrix

ooy (PR ORI )

is defined and holomorphic on the set p(4; £). It is said to be the II{-resolvent matrix of the operator 4, -
correspondmg to the BVS Il = {H,I'1,T2}.

- Proposition 8.3. Let Wige()\) be a ILC-resolvent matriz of A, corresponding to the BVS Il =
{H,T'1,T2}. Then

WrMNIW(A) —J W) IW*(\) —J (0 i
iG-x 20 D (iI 0 ) (8.18)

Proof. The following identities hold:

v-[(3 9)+13 &)en][( )+ (4 o]

= (% 8) e O (8 )G
Straightforward calculations give the equalities
T =W )IWO) = (1 O) (@) ~ANE ), 5

J = WA)JW*(A) = i(Y2(3)7H (A () — 4NN,

in which

- [(5 Dsn+(3 D) (4 ).
B = (af) et o)
wor=[(5 8) =8 2)]= (% ).
Y,(A)~ = (azz(f\)dﬁl(z\) -1 ) .

ap; () O

The invertibility of the operators Y;(A) and Y(A) for all A € p(A;L) is a consequence of the evident
equivalences: _
0€p(Yi()) (i=1,2) < 0€p(an(A)) <= A€ p(4%).

Relations (8.18) are implied by (8.20) and Proposition 8.2. [J
Theorem 8.1. Suppose that A is a Hermitian ope'mtar fD(A) bo C b, £ is a subspace of b,
p(A; L) #@, I ={H,T,I';} s a BVS for A*

GO = (‘PQ((A’;)) ch Lo, T= Gi) J=i(? 61). (8.21)

Then the operator-valued function

Was() = (rer oy = (288) 53;’;8%) E M=o WAW) 62
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satisfies the identity
Wie(\)JIWae(n) = J +i(A — BGAG* () (M p € p(4; £). - (8.23)

1f, additionally, p,(A; £) # @, then the matriz an(/\) = (FG*(A)) coincides with the ILC-resolvent matriz
Whg(X):
an()g) =Wne()) for all X € p(4;L).

Proof. (1) Let I = {l,l2}, k= {ki,k2} € £®EL, f={f,f'} = C*(u)l, § = {9.9'} = G*(\). Then
it follows from (8.4)-(8.7) that

(f',9)=(£,9") = (Bf —h,9)~ (£, Ag— k1) = (B= )£, 9) +(f, k1) = (h,9) = (B~ A)(f, 9) = (In, k2) + (I2, k1)

= i(J1, k) + (B~ N(G* (W), G* (k). (8.24)
On the other hand, the Green identity (1.2) and (8.22) yield

(f,9)—(f,9) = (Flf,Tzé)-(sz,Fiﬁ) = i(JTF,T9) = i(JWite(1)l, Wiie (V). (8.25)

After the comparison of (8. 24) and (8.25) we obtain (8.23).
(2) Let po(4; ) # @ and A € po(4, £). Show that 0 € p(Wie())). Indeed if I € ker Wirg()), then we

have

—Q*(\)l +P*(\)ly € kerTy Nker Ty = A.

Taking account of (8.8) we obtain Q*(/\)ll = P*(\)l; = 0 and, by virtue of (8.5), (8. 6), i =& =0.
Moreover, it follows from (8.8) that %(WHS(/\)) =TA* = £@ £ and, therefore, 0 € p(Ws(1)) <=0 €
p(Wie())). Now (8.23) implies (for u = \)

Wie(W)IWie(X) =J,  Wie(AIWie(A) = J. (8:26)

The latter equality is a consequence of the former and the condition 0 € p(Wag(A))-
(3) Setting for all A € p(4; L)

wii(3) = ~T2Q"()), wi(3) =T2P*(), - (8.27)
wih(A) = -T1Q*(N), wh(A) =T1P*(A)
we obtain explicit formulas for the components of the matrix 2ngg(A) by means of wi;(A):
a11(A) = M(A) = wi(Ayw, (X) 77, (8.28)
since 0 € p(wa1(A)) for all A € p(4; £). Further, it follows from (8.6) and (8.27) that for alll € £
Per(Nuwiy (Ml = Pey(NT3B* ()l = PeP* () = 1
= an(A) = Pey(N) = w5 ()7, a2(d) = a3, (A) = wa(N) 7 - (8:29)
To find the expression of azy(A) = Pg(Az — A)~! [ £ we consider the problem
(g, €(A" =), T2g=Tz{g,l+Ag}=0 (§={g,1+2g}). (8.30)

It follows from (8.8) that this problem has a solution of the form g = Q*(A\)k; — P*(A)kz with k1, k2 € £.
Taking account of (8.27), (8.4), and (8.5) we obtain

2§ = [20*(V)k; — DyP*(MNky = —wl (V)ky — wh (\kz = 0,
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and hence k; = (w3;(3)) " w}; (A)k1. Making use of the relation {g, k; } = Q*(A\ky —P*(A)k; € A*— X and

setting k; = I we have

g = [Q*(X) + P (Rywi (X) why (] = (42 — 271, (8.31)
ax(}) = Ps[Q*(3) + P* (w5 (0) M wh (V)] = w3 () wi ). (8.32)
Thus, the preresolvent matrix has the form (for A € p,(4; £))
_ wp() w3 (:\2‘le1(/\2”1 ‘
Aue()) = <“’512€’\)_1 ’f’%l()")_lwﬂ('\) ) (8:33)

(4) Now it follows from (8.26) and (8.29)-(8.32) that for all A € p,(4; £)

an(Naz (V)™ = wg M) 2wl Mwar (V) = wn(A),  a(A)™! = war (W),

az(N)arz(A) a1 (A) — a2 (A) = win(Nwi,(VNwi (V) | (8.34)
—w3 ()7 = wia(Wwh (RNwh(R) ™ = wiz(M), (835)
a12(A) "t a11(N) = war(Nws(Nw3, (A) ™! = war(N). (8.36)

These equalities yield that Wige()) = Wire()) for all A € po(4; £). O :

Remark 8.2. Identity (8.23) means that the operator-valued function Wizg()) given by (8.22) is an
£-resolvent matrix of the operator A in the sense of [42, 43]. Hence Theorem 8.1, which was proved by the
authors in [21, 79)] for the case D(A) = b, shows how to calculate the IIC-resolvent matrix of A on the one
hand, and establishes the equivalence of the definitions in [42] and (8.17) on the other hand.

Remark 8.3. Every £-resolvent matrix W(A) of A in the sense of [42] (i.e., which satisfies (8.23)) can
be expressed in the form (8.22) for a suitable choice of the BVS. Indeed W()\) may be connected with some
IT, £-resolvent matrix W1()) corresponding to the BVS II; = {£,T'},T'1} by the formula W()) = Wi(A)U,
where U is a J-unitary operator in £ @ £. Setting {I'2,T1} = U*{I'3,T'}} we obtain from (8.22) for the
BVSII = {£,T,T2}

w Wie(W) =TG*(A) = UT'G*(3) = U*Wii, ¢ (V)

and, therefore, W]‘[g(/\) = Wnlg(/\)U = W(/\)

4. Now we obtain the explicit form of the BVS II for the latter equality to hold.

Proposition 8.4. Suppose that A is a Hermitian operator in h, £ i3 a subspace of h such that
ps(A; £) # B, wk is an orthogonal projection onto the kth component of L& £ (k = 1,2). If W(A)
is an operator-valued function with values in [£ @ L] such that (8.23) holds and 0 € p(W(u)) for some
p € ps(4; L), then the triple IT = {€,T1,T2} of thé’form

. R Flf': W2Wi(”)l’ P2f= WIW*(#)L
Vi=fa+G*(p)l, fa€Ad I=col(l,h)eLdl

is'a BVS for A* and(Wné(z\) =W(X) for all A € py(A; £). Equalities (8.23), (8.37) take the following more
simple forms if p=p = a and W(a) = I:

(8.37)

W(A) =TI +i() - a)G(N)G*(a)J, (8:38)

Iof = -Pa)(f —af), Tif=Pef - Qa)f' —of), F={fifYea . (839

Proof. Let f= fa+G*(u)l, § =da+G*(u)k € A*, ja={ga,Aga}, k=col (k1,k2) € L®L, and
A=y € ps(A; £). Then (8.23) implies

(f,9) = (f,9") = iTLE) + (B — )G (w)], G (w)k) = i([J +i(p — BYG(w)G"(W)]1, k) = (W (p)TW* (), k)
= (W ()L, W (k) = (maW* (), ;W (m)k)g — (mW*(u)l, ;W (1)k)g = (T1 £, T2§)e — (T2f, T1d)e,
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which proves the Green formula (1.3). . Making use of (8.8) and the condition 0 € p(W*(u)) we conclude
that the mapping I' = {I'3,T1}: A* — £ @ £ is surjective since TA* = TG*(u)(£ @ £) = W*(u)(£ & £).
Thus the triple IT = {&,T1,T2} is'a BVS for A*. The equality Wig(u) = W(p) is implied by (8.22). Taking
account of Remark 8.3 we obtain the equality Wie(A) = W(A) for all A € p,(4; £).

In the case p = @ and W(a) = I one can easily deduce from (8.37), (8.3) the equalities

= W@l =} ) =1 = Pof - Qe ~ o),

sz = 7er(a)l =ml=104 = -—'P(a)(f’ —af) Vf = {f’fl} € A%

which coincide with (8.39). O

The next corollary is an analog of the second Neumann formula.

Corollary 8.1. Suppose that p € ps(A; L) 4o, 1= {H,T1,T2} is a BVS for A*, and Wrg(A) is
the corresponding ILL-resolvent matriz of the form in (8 22). Then every eztension A = A* € Ex 4 takes
the form

A= 4+ G W ()"0 =: 4+ G (w)2(9), (8.40)

where 8 =6 e(( “) and £(0) := W*(,u)“lﬂ ={lelpL: W*(p)l € 0}. Relation (8.40) takes the more
simple form A = A+ G*(a)f if p=a=a € p,(4; L) and W(a) =
Proof. By virtue of (1.4) the mapping I' = {I';,I'; } defines a bijective correspondence (cf. [53]):

= (A)* €Ex 4 < 6:=T4A € C(H), (8.41)

On the other hand, in view of formula (8.8), for all f € A* there exists [ € £& £ such that f = Fa+G*(u)l.
In accordance with Theorem 8.1, T'f = W*(u)! and the equivalence (8.41) taking the form

Fefa+G ulecdesTf=W(ulecbleW ("

proves relation (8.40). O
Remark 8.4. (a) The triple (8.37) is a generalized BVS of the linear relation

A, = A+ P*(N)E + O*(N)L(C 4%)

if, under the assumptions of Proposition 8.4, 0 € o.(W(XA)).

(b) Corollary 8.1 holds true also for max1ma11y dissipative extensions A€ Ex 4.

5. In the next theorem we show that a preresolvent matrix 2ng(A) of an operator A with finite defect
numbers is a Weyl function of the operator A [ £1 and find the criterion for this to be true in the case
dim £ = ny(A4) =

Theorem 8. 2 Suppose that A is aHermztza.n operator in l), ho = E)(A), L is a subspace of b
such that £N 9 = {0}, I = {H,[1,T2} is a BVS for A*, Ane()) and Wne(A) are the corresponding
preresolvent and resolvent matrices. Then the following assertions are equivalent: (1) PeD(A) = £;
(2) the linear relation A* is L-regular; (3) the domain of the operator Ag = A [ &L =AN(Lt DY) is dense
in(MN+ )L and A2 = A+ &= {{f,f +1}: {f,f'} € A*,l1 € £}; (4) the operator A is L-regular, and
linear relations T: A + £ and T* = A* | £1 = A* N (&+ 1Y) are transversal;

(5) 0 € p(Q)Q*(N) YA€ p(4; 2);

(6) 0 € p(J — Wi o(\IWine(A)) VA€ p(4; L);

(7) 0 € p(ImApe(r)) VA€ p(4;L).

In this case the triple II; = {H & £,I'},I'3}, in which

Iy f = {Ta{f, '}, Pefh, f ={0AfFL-1) (F={ff+T}eq), (8.42)

is @ BVS for the linear relation A}, and the ILL-preresolvent matriz Ane(A) coincides with the Weyl function
of the operator Aoy, corresponding to the BVSII,.
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Proof. (1) <= (2). The relation £ N9 = {0} implies that PeD(A) = £. Therefore the equivalence
of statement (1) and (2) follows from Proposition 2.5.

(2) <= (3). By virtue of the relation A% = [AN(£L @ h)]* = A* + &, the linear manifold 4* + & is
closed if and only if A3 = A* + £. In this case £ + 91 = (A* + £)(0) is a closed subspace and; therefore,
D(Ao)t = £+ M, ie., D(Ao) = (£ + NM)L.

(1) < (4). Let Pg®(A) = £. Then P¢D(A*) = £ and, owing to Proposition 2.5, the operator A is
£-regular. Hence the linear manifold A + £ is closed and the following equalities hold:

T = (A48 =j(A+ ) =j(4* nEYy = A" n (et o) = 4° 1 £,

where j{hi, h2} = {ha, —h1}. The disjointness of the extensions T, T* € Ex 4, is implied by the condition
NN L ={0}. Indeed, let f = {f,f'+1}€eT=A+ &+({f,f'} € AleL)and f € T* = 4* | £L. Then
{0,1} € A* and hence ! € N. Therefore [ = 0 since £NN = {0} and

f={fflea st =fest=fedlgt =4

Now it remains to prove the inclusion T4+ T™* D A§. Let {f, f'+1} € A* + L= A%, where f = {f,f'} €
A*, l € £. In view of the relation PgD(A) = £ there exists § = {g,9'} € 4 such that Pgf = Pgg. Then
we have

{(Ff+0={g,d+}+{f-9,f-gYeT+T

since {g,9' +1} €T:=A+&, {f-g,f —g}ecAn(ctah) =T"
(4) <= (1). Assume that A is an £-regular operator and T, T* are transversal extensions of 49. Then

we have o ‘
A =T"+T=(A"n(g'ah)) +(4 + &) (8.43)

and, therefore, D(4*) = (D(A*) N £1) + D(A). This implies the equality PeD(A*) = PeD(A) = £ and
according to Proposition 2.5 the linear relation A* is £-regular.
(1) < (5). It follows from the definition of Q()) that
R(Q(N)) = Pe(A ~A)7H(I = P(A))h = Pe(A-»)"'Dx = PeD(A). (8.44)

This yields that statement (1) is equivalent to the condition R(Q(X)) = £ [for all X € p(4; £)] which, in
turn, is equivalent to statement (5).

(1) <= (6). The stated equivalence is a consequence of identity (8.21) and the equivalence (1) <>
(5) '

(1) <= (7). This equivalence is implied by the equivalence (1) <= (6) and identity (8.19).
We show now that the triple II; = {H ©.£,T},T5} with I}, I') defined by (8.42) forms a BVS of the
linear relation A*. Indeed, with regard to (8.43), the mapping IV = {T'}, I } is surjective since

r'asngtop))=MHeo {0 o (He {0}), r’(A +8)=olee)a ({0} ® L)

The proof of the Green identity (1.3) is straightforward. Let f = {fL,f+1, §={9.9+k} €
AF({f, '}, {9,d'} € A*; 1,k € £). Then we have : :

(f +L,9) - (fid +k)=(f,9) = (f,9") + (f,—k) ~ (-1, 9)
= (Pl{f’ f,}1F2{gv gl})'H - (P2{f’ f,}arl{ga g,})'H + (P2f1 _k-).‘.‘, - ("l: P29)£

= (04 f, Thi)nes — (T fy T §)Hos.

Consider the linear manifold
Mi(4o) :=IM(4) + (42 = A)71E C I (4o). (8.45)
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By virtue of the condition £ N9 = {0} this is a direct sum and I} M4 (4o) = TM(Ap). Tt follows from (1.6),
(1.8), (1.9) that for all

B AR = F - eTi(4o) - (A =1Vh+ (A = N7 =M+

we have R _ . : ‘
Do fa = {T2{v(Mh + (A2 = )T L2y (Wh + 14+ M4z = 271} = (b1, (8.46)
T3 fa = {TA(h + Ta{(42 = )71+ M Az = )7}, Pey(Mh + Peldz - A7}
= {M(A)h +~*(A), Pgy(A)h + Pg(As — A) 1} = Ape (WL (8.47)
By virtue of (8.46) T491% = H @ £ and the inclusion in (8.45) may be replaced by the equality 9}(4o) =

Na(Ap). Now it follows from (8.47) that M(A) = ™Ang(r). O

Here we provide another proof of the latter statement.

Proposition 8.5. Let, under the assumptions of Theorem 8.2, one of the equivalent conditions (1)-(7)
be fulfilled. Then the Weyl function M()) corresponding to a BVS 11, of the form in (8 42) coincides with
the ILC-preresolvent matrizc Ane(N).

The proof is based on the analog of the Neumann formula (8.8) and, therefore, may be applied only if
ps(A; £) # @. Setting fr = G*(A\)I, I =col (I1,l2) € £ £ and making use of the relation

Ao={fAfi} =G )+ {0,h} € Ma(4o) € 45 = 4% + &, (8.48)

we obtain from (8.48), (8.42), and (8.27):

£ = (PCOPREP@R) _ (v wr ) (1),

A 0 I
P o (rz(-g*(x)_zf 73*(7\)lz)> = (M O ().

By virtue of the equality w3,(A)wi; (X)) 1wl (A) — wi(A) = wa1(A)™! we obtain the following expression

for the Weyl function:
<) w (7\))( o -1 )
M/\=wl2( 22 = . Tt e gt
() ( ) I w31 (A) ! w3 (A) 1“’11(’\)

- (w22(’\)w21(’\) - “’21(’\) -1 >
wy; (M) wi ()" wh (3)

After the comparison of (8.49) and (8.33) we obtain the desired equality M()X) = Ane(A). O
In the next proposition we give a direct proof of the £-regularity criterion of the linear relation A*.
Proposition 8.6. Under the assumptions of Theorem 8.2 the following assertions are egquivalent:
(1) the linear relation A* is L-regular;
(2) 0€ p(Im2Ane(A));
(3) there ezists € > 0 such that for all h € H, | € £, the following inequality of the acute angle holds:

(8.49)

(M)A + (A2 = N) 71 = (I + 1) (8.50)
(4) M(Ao) = M(A4) + (42 —A)1L.
Proof.
(2) <= (3). This equivalence follows from (8.14) and (8.16).
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(3) <= (4). By virtue of (8.50) the linear manifold (4 — A)~1£ is closed. Since 0 € p(7y*(A)y())) and
[Tm ]« 1)} = (A2 — A)~ti]| we obtain from (8.50) that the angle between 915(A) and (A2 — A)~1L is acute.

Conversely, in accordance with Theorem 2.4 of [45] it follows from decomposition (4) that the linear
manifold (43 — A)~1£ is closed and, therefore, inequality (8.50) holds.

(3) = (1). Let us show using inequality (8.50) that the linear manifold A* 4 £ is closed. Let the
sequence {7(A)f + (42 — X) " hn, hn + In}(€ (4" ~ X) + £) converge to {f, f'} asn — 00 (fa € b,In € £).
Then Pohy = Po(hn + In) = Pof' =: h" as n — oo and, therefore,

lim (A2 = A) ' Poh, = (A2 - AR, ,,l.i.,r%oh(’\)f“ + (42 = X)"'Pghy,) = f — (A2 = M) IRy,
where Py = Py,. It follows from inequality (8.50) that lim, o0 fa = g and lima—co Pghn = h'. Therefore

n—oo

3lim hp =K +h" =h, Fliml=f—h=1€L=> lim (4~ N hn=(4—))h,

Jim v(Vfw= 7NF = U F} = (00 + (A = N7 bk 1} € (4 -0 4 £,

So, the linear manifold (A* — A) + £ is closed and, therefore, the same is true for the linear manifold
A+ &

Proposition 8.7. Let the conditions of Theorem 8.2 be satisfied and 0 € o(Im UAng(z)). Then

(1) dimker (ImAne(:)) = dim Lo, where £9 = LNN and

ker (Im 2z s(A)) = {{T2{0, ~1},1} : 1 € Lo};  (8.51)

(2) if 0 € o(ImAng(i)), then the triple Iy = {H ® £,T'},T'3} forms a generalized BVS for the linear
relation Ag. = A* ¥ 5:‘,; '

(3) i O ¢ op(ImAng(i)), then the triple II} = {H @ £,T,~I'1} forms a generalized BVS for the
relation Aox(<> 0 € p(~Ang(2)) if and only if A] = ker T} is £-regular.

In this case the Weyl function corresponding to the BVS 11} coincides with the function ~Ane(X)™?

Proof. (1) It follows from (8.13), (8.15), (8.16), and the condition 0 € p(Im M(z)) that

0 € 0p(ImAp (i) <= ker P, (A2 — A) 7' [ £ # {0}

Equality (4> — M€ N 9y = (4 — ALy implies relation (8.51).  Therefore dim£Ly =
dimker (Im ™Ane(A)). o

(2) It is easy to verify that the mapping I'y: A — H & £ is surjective, the mapping
[ ={I'y,I'1}: Ao. — (H @ L£)? is closed, and A2(= kerI';) = A}. The Green identity is verified above [see
(8.44)].

(3) The extension A} = 4; N (L1 @ §) + £ = ker I} is self-adjoint in essence. Indeed

(A1) = {4 N (et @b) + ) = j(4F @ (S@ ()N (h o £Y) = (U + B n(c* @h) = 4.

It follows that (4})* = A} iff A; is £-regular. Further, if ker (Im2ne(i)) = {0}, then £N 9 = {0} and the
linear manifold Pg®D(A; ) is dense in £. Since I'1A* = H, the equivalence R(T}) = H® £ <= PeD(4) = £
holds. By Proposition 2.5 the relation Pe®D(4;) = £ means that the extension A; = A is L-regular. It
remains to note that by Proposition 6.2 the mapping I'j: A* — H is surjective iff 0 € p(Ane(i)). In this
case the function —2ng(A)~! is the Weyl function corresponding to the generalized BVS IT. O

Remark 8.5. Assertion (3) can be proved in another way. Indeed, as follows from the Frobenius
formula (3.66) and the condition 0 € p(M(})) VA € Cs., the matrix ye(A) is invertible iff 0 € p(az2 —
aziag; aiz). But by the resolvent formula (3.39)

az — apagarz = Pe[(A2 — A)71 =y (MM (A [ £=Pe(A = A7 T L
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Therefore, 0 € p(Ane(N)) <= 0 € p(Pg(4; — ‘A)~! 1 £). It remains to note that by Proposition 2.9
0€ p(Pg(Al — A)71] £if and only if the extension A; = kerI; O Ay is L-regular (£ C D(4p)t). -

6. In this sect1on we shall show that the ILC-resolvent matrix Wy £(X) coincides with the characteristic
operator-valued function of some almost solvable linear relation. We shall also obtain from this fact a new
proof of formula (8.22).

" Theorem 8.3. Let A be a Hermitian operator in f), ho = ’i)(A), £ be a subspace of b such that
dim £ = n3(A) and £NN = {0}. Let also I = {€,T;,T2} be a BVS for A*, Wrg()) be the correspondmg
Weyl function, Ao = A | £l := An(LL @®h). If the linear relation A* is £- regular then: (1) PeD(A) =
(2) Ay = A*+ £,(3) the triple Tl = {£ @ £,T},TY}, where

rf= %{Fz{f, FYALTALSY  Paf), T = %{—rl{f, FY+Pof Ta{fF} =1L (852)

forms @ BVS for A} (here {f,f'} € A*, 1€ &, f= {f, F'+1}); (4) the linear felation T:= A+ £ is closed,
almost solvable (T € As (Ao)), and p(T) = p(A; £). The extensions T and T* = A* | £+ := A*N(L+ @ h)
of a Hermitian operator A are transversal and can be defined by the equalities

T =ker(T) +iJTY),  T" =ker (I} —iJT}),

that is, T = (Ag)—iy, T* = (Ao)is, where J = z(l(.)s .—012); (5) the IIL-resolvent matriz Wrg())

coincides with the characteristic operator-function Wr+()) of the linear relation T* = (Ao )is(€ As (4o))
corresponding to the colligation ¢ = (iJ,&; 1,7, £) and has the form

Wie(A) = J(My(A) = iT)(Ma(N) +37) 7T = Wr-(A) (A € p(T)), (8.53)

where M>(A) is the Weyl function of the operator Ag corresponding to the BVS Il,; (6) formula (8.22) for
Wr-(A) = Wie(A) holds.

Proof. We present the proof under several headings. Assertions (1) and (2) have been proved earlier
(see the proof of Theorem 8.2).

(3) The Green identity is simply verified. Let us show that the mapping I = {T'§,T'{ } maps A} onto
L4 Putl=(l; - 14)/2 and choose fi = {f,f'} € A* such that T, fi = (I, — 13)/2, Tafy = (i + 11)/2.
Since Pe¢D(A) = £ we can choose f4 € D(A) such that Pgfa = (I2 +13)/2 — k, where k = Pgf. Putting
f=f+ {fA,AfA} + {0,1} we obtain the required equalities: T{f = {l;, 12}, T4 f = {Is, 14}

(4) When f = {f, f' +1} € A* + £, the inclusion f € T = A + & is characterized by the equalities

M= Lcol (1,Pef}, TUf = —=col {Pef,~I},

V2 V2
that is, f € T <= f € ker(I¥ +4JT%). In other words —iJ = I'"T and iJ = I"'T*, that is, T = (Ao)_is,

T = (Ao),J Since 0 € p(J) and J = Im (iJ), it follows from Proposition 1.4 that the extensions T and T™*
are transversal. Since T — A = {{f,(A — A)f + 1} : f € D(A4),l € £}, we have

RT -N)=(A-ND(A4) + L=D, + &, ker(T-AN)={feD(A):(A-A)f eL} (8.54)
Hence the equivalence A € p(T) <= A € p(4; £).
(5) Let M,()) be a Weyl function of an operator Ay, corresponding to the BVS II; of the form in (8.52).
Let us include the operator B = iJ in the colligation ¢ = (B, £, K; J, £), where K = |Bf|}/? = |J| = I,
J = sgn By. In view of Theorem 7.1, the characteristic operator-function has the form

Wr-(X) = I+ 2i((iJ)* — Ma(A)) 1T = J(My(A) — iJ)(Mz(X) +iJ) 2. (8.55)
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By Theorem 8.2 the IIL-preresolvent matrix 2ns()) coincides with the Weyl function M, () of the operator
Ay corresponding to the BVS Il = {£ @ £,T,T3} of the form in (8.42).
But the BVS II; and II; of the form in (8.42) and (8.52) are related as

M _ (Xu X\ (M _ T
(Fg’)_(le X2 ) \I% =X )’ -~ (8:56)

where. I=1I,,

o 0\ I -I -I I 0 0 |
X11=(I I)a X12=(’0 0); :X21= 0 O)s X22=(I I)a (8'57)
and the operator X = (-;((11 §12) is Jp-unitary in £ @ £ (that is, X* X = XLX* = L),
21 X22
Jy =1 ( I.?s —Iéez: ) . Therefore, it follows from (8.56), (8.57), and Proposition 1.7 that
2]

My(A) = (X121 2%4(2) + Xa2)(X2:1A()) + Xa2)™?

- 8.58
— I -1 a1 — a1 G2 — 412 ! ( )
a1 + a2 a1z +az I I )

Let us denote by Y;()) and Yz(/\)‘i the first and the second factor on the right-hand side of equality (8.58).
It follows from (8.55) and (8.58) that

Wr-(\) = I Y, i)Y, +4J)7 N = (JY; —iYa)(JY; +4Y3) ™
-1
=9; [ TG —aG22 _}_ —ai1 —ai12
0O I j2i\ I (0]

_ { —az1 —ax (0] I _ (aznal} axaiyan —axn\ _
(5 ) (e et ) = (T ) = Wy (8:59)
(6) Using another expression for the Weyl function, we shall obtain a new proof of formula (8.22) for
Mz(X). Let us put fa = G*(A\) = —Q*(A); + ’P*(:\)lz; Ii,lo € £, fa={fr,Afo}, and note that
(]

A==0" ML +P Nl +{0,1,} € M(Ao) c 4* + &. (8.60)

It follows from (8.52), (8.60), and (8.27) that

= (6o i) ~ (U 520 6)
= (o emam 1) = (s "58°) ()

Hence

C(on() T wn() [ —wp() T—wn())
Mz(A) - ( 'wlg(/_\)* w;_)z(:\)* +I) (wu(xz)* -I 'UJ21(X)* ) (861)

Denoting by Z;()) and Z,(A)~! the first and the second factor in (8.61) respectively we obtain from (8.55)
and (8.61) the following expression for W« (A)*:

(Wi (A))* = I+ 28T (Ma(A)* — i)™ = (Ma(R) +iT)(Ma(R) — iJ)™
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= (Z:(0) + I 22NN () = i Zo(R)) " = 223 () - 1)%1 = (Wins(M))".

(7) Now we are going to prove identity (8.23). It follows from (8.55) and the equality Wie(A) = Wr=())
(recall that T* = (Ag)is) that

Wae(\)JI Wag(s)* — J
2i(A — p)

Since I fy = 2 Z2()(1) we have 3(X) = (I  9t)"*:

= T+ M) O (—id + Ma(w)) . (862)

JO) = V2 N2z (8.63)
Now using (8.63), (8.60), and (8.61) we obtain

(@] + M(N)) T 4*(R) = V2Z2(A)(Z1 () + 8T Z2(X)) T (Z2(A)") T G(N)

= V2Za(N2Z2(0)* (Z2(N) - D] 6(0) = —=

o V2

Relations (8.26), which are correct because Wiig(A) is a characteristic function and X € p,(4; £), are used
in the proof of equality (8.64). We obtain identity (8.23), comparing (8.64) and (8.62). O

Remark 8.6. (1) The equalities p(A4;£) = p(T) and Wr.()) = Wrg(A) are correct without the
condition of £-regularity of the relation A*. It can be proved just as it was done in [79] for the case
D(A) =4 ‘ :

(2) In the case D(A) = b, Krein and Saakyan (see [43]) have established a connection between an
L-resolvent matrix W(X) of the operator A on the one hand, and the characteristic function of some Y-
colligation on the other hand. They have also obtained (see [42]) identity (8.23) for Wrig()), which is an
abstract analog of the well-known Christoffel identities in the moment problem [4, 6].

It is worth mentioning that, as follows from the proof of Theorem 8.3, identity (8.23) is a corollary of
the simple relation

G(X). (8.64)

Wr(A)JWr(i)*
2i(A — )

= K*(B* — M()™"7* (\y(u)(B — M(u)) K. (8.65)

Here Wr(}) is a characteristic operator-valued function of the extension T = Ap(€ As (A)). Formula
(8.62) is a particular case of the previous one. v
7. Let A be a Hermitian operator in § such that the linear relation A* is £-regular. Let us denote

, in £, where J = (Igs -Iée‘g), and by

M(Ao) the set of Weyl functions of the operator Ag = A | £+ := AN (L @ ). The group G(J2) acts
transitively and effectively on the set 91(Ao) as a group of fractional-linear mappings by the formula

by G(Jz) the group of Jo-unitary operators Z = (Z;x)3,

Zo M(/\) = (leM(/\) + Zlg)(ZglM()\) + Zzg)_l. M(/\) € Qn(Ao) (866)

The subset of Weyl functions M(A) € MM(Ao), which are the ILC-preresolvent matrices of some operator A’
such that 4’ [ £1 = Ay, will be denoted by A(4; £).
Two subgroups of the group G(J;) acting on the set A(Ao; £) will be found in the two next propositions.

' ) (O -I
Proposition 8.8. Let X = (Xjk)?,k=l be o J-unitary operator in £2 =L@ L, J=1 ( 0‘2>,

I
Z = (Z;x)} y=1, where

X O
le = <%1 ?) ) Z]2 = (Xéo g)s Z2l = (‘%1 8) 3 Z22 = ( 62 I) . (8‘67)
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Then the matrices Z form the subgroup G.(J2) of the group G(J2). The element Z acts on the set M(Ao)
and its action is equivalent to the following replacement of the BVS Il = {£,T,T;}:

I Xn X | Y
i (11 _ (X1 Xi2
f= () = (3 %) () @59

Proof. Let 2Ang()) be a preresolvent matrix of the form in (8.13), corresponding to the BVS II =
{£,T1,T2}. Further, let II; = {£,T],T}} be the BVS defined by equality (8.68), M1(A) and v1(A) be
the corresponding Weyl function and +y-field respectively, A, = ker(X21T'y + X221';) = ker[. Putting
A'(X) = Z o Ang(A) we obtain from (8.66), (8.67)

Ql'(k) = (Zan(A) + Z]_z)(Zan(/\) + Zzz)-l
_ (XHM(A) +X12 Xur(A) [ £ ) "
Por(N)  Peldz—3) (e

» ((XglM()\) + Xo2)™t ~(Xaa M(X) + X22) 1 Xaay(A)* ] 2)
0 I

_ ((XIIM + X12) (X1 M + X30)? (X1 — (XuM + X)) (XM + Xzz)flleh(/—\)*_ re )
Pg’y()\)(leM + Xzz)_l Pg(Az —_ A)—l r £—- Pg‘y()\)(Xz]M + ng)-lX21’y(A)* r £

_. (au(d) a,(M)) _ [ Mi(A (A>T e B
o (a'Zi(’\) a’zz(/\)> - (Pg’;q(/z) PSZA('Z 2_ ,\) rg) = ml’hQO‘)- (8.69)

To prove equality (8.69) we have used the following formulas:
aj;(A) = (Xu M) + X2 )(Xn M) + Xn2) 7 = Mi(A),  71(d) = 7(A)(X2a M(A) + Xo2) ™

(see Proposition 1.7), and the equality aj,(A) = Pg(A; — A)™* | £, which easily follows from the resolvent
formula (3.39) for Ag = A} = kerI'}. The equality a},(A) = 77()) [ £ follows from the identity

X1 — M, (/\)le = X1 — (X]]M(/\) + Xlz)(leM(/\) + Xzz)—l = (M(A)X;l + X;z)—l. (8.70)

To prove it we multiply the equality M;(A)( X1 M(A) + X22) = X11M()) + X12 from the left by X3.
Making use of the identities X3, X11 = X711 X021, X3, X12 = X7, X22 — I [see (1.15)] we obtain the equality
(X1, — X3 My(N))(X21M(A) + Xag) = I, which is equivalent to (8.70).

Remark 8.6. Let the BVS Il = {£,T,T;} and 1T = {£,T;,T2} be connected by equality (8.68), and
I ={€oL |, Ih}andl; = {£BDE, I}, T4} be the corresponding BVS of the form in (8.42). It is easy
to see that II; and II; are connected by the relation

T Zy Zn) <F’1) (Fll)
-] = =:Z ) 8.71
(F;) (Z‘Zl 292 ) \I%} T (8.71)
where Z = (Zi;); ;=; is a Jz-unitary matrix in £! with elements of the form in (8.67). The following
connection exists between the preresolvent matrices 2rg()) and 254()), corresponding to the BVS II and

11
mﬁz()\) =Zo Q[r[,g(}\) = (anng(/\) + Z]z)(Zglmng(/\) + Zzz)—l. (872)

One can deduce (8.72) either from Propositions 1.7, 8.5, or from the equality Wie(A) = Wne(A)X, which
connects the resolvent matrices Wy o(A) and Wre()) corresponding to the BVS II and II respectively. It
follows from (8.72) that

Pe(A, = X711 8= Pe((Az — A) 71+ v( A X2a M(A) + X22) 1 Xy (A)*) 1 &, (8.73)
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where A} = ker ') = ker (ngI“lx‘-i-X;éI‘g),_ Az = ker '3, and consequeritly, owing to the fact that £(dim £ =
n+(A)) is arbitrary, formula {3.69) holds. Therefore, the resolvent formula (3.69) is a simple corollary of
Propositions 1.7 and 8.5.

. .The action of an element Z = Zx € G,(J2) on the set A(A : £) is equivalent to multiplication from
the right of the IL€-resolvent matrix: Wig(A) — Wne(A)X. In the next proposition we describe matrices

= (Y;)? j=1 such that the property of Wn ,:(A) to be an L-resolvent matrix of some operator remains true
under the transformation Wizg(A) — ¥ Wi (A).

:Proposition 8.9. Let A be a Hermitian operator in b, D(A) = b, an()\) be a resolvent matriz,

= (Xij)? j=1 be a J-unitary operator in £® £. The matriz-function XWne(A) is an £-resolvent matriz
of some Hermitian operator A' if and only if Xo1 =0, X113 = Xao =V = (V*)7L.

Proof. Necessity. It follows from (8.19) that

I 0 0 0Y 0 -I
e =|(q 0)+ (7 0)m=0] (5 7)
00 o
+ (0 I) Wn',g(/\)} .
Putting W(A\) = X *an()\) and substituting it in (8.7) instead of Wrig()), we obtain the matrix 2(2). To

prove the proposition, it is sufficient to find the conditions on X in order for 2l(A) to be an L-preresolvent
matrix. We obtain the following from (8.19) and (8.74):

=[5 £)+ (2 e
[ )+ ]
(6 A (8 S & )mwes (¢ )

_{ an()) a12(N) )( I 0 )“1
Xthan(A) Xfan(A)+ X35 ) \Xhaa(d) Xia(d) + X3

(8.74)

_ () = s Xia0) + X2 s raNKinenld) + X3 ™) 15
X{1a21(A) — G22(A ) dz2(A) ’
where
a22(X) = (X7 a22(A) + X5, ) (X pa22(A) + X35) 7. ' (8.76)
Since s — limy—o0 @22(A) = s — lima_.c0 @22(A) = 0, we obtain from equality (8.76), rewritten as
a22(N)[X12a22(X) + X35] = X{1a22(A) + X3, (8.77)

that X3, = 0 and consequently X7, X2z = I. It follows from (8.77) and the equalities

A=iy—oo

s— lim Jap(d)=s- ljm Adga(A) =1
=iy—oo

that Xo = Xi1. So the operators X;; = X2 =: V are unitary, V = (V*)_l,
_{V Xi
x=(7 ). |
Sujﬁciency. Let le = 0, X11 = X22 =V = (V*)_l, X = (Xij)?,j=1a and W(/\) = XW(/\) =

(W'U(/\)), =1 . Then @;2(A) = X wi2()) and 0 € p(i12(A)). Consequently the following matrix-function
[cf (8.17)] is well defined:

sy _ @11(X)  a2(A) Y _ W1 (A) Mba2(A) W3, () .
AN = (amu) azz(x)> = (wumwzl(x) L () — B1a(N) wn('\)ﬁ’z—f(/\)) (8.78)
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As follows from (8.19), the functions 2()) and Apg()) are connected by the equality

5oy — [ 611(A) = a12(A)( X ra22(A) +X22) 1Xhan(d)  ap(A)(Xfhe2(X) + X3p)™? ‘
A= ( (a22(A)X12 + X32)"taa1(N) X1a22(A) (X ha2()) + X;Z)ﬂ) . (8.79)

By virtue of (8.20) %(\) € Repg and 0 € p(Iméai(A)). To complete the proof it is enough to use the
obvious relations

s — lim(a22(iy) X12 + X22) ™' = X3! = s — lim @1 (iy) = 0;
yToo yT?O ‘
s hm(Xlza22(1'y) +X5) 7 =Xy = s - ’}irxg(iy)&gz(iy) = —1I,

and to apply Theorem 9.1. _
However, we give a direct proof of the sufficiency by showing that 2()) is an £-preresolvent matrix of

the operator
A =AW + XX Py, (8.80)

where Vi(€ [h]) is a unitary continuation of the operator V* = X35. Since the subspace £(C §) reduces
Vi, the operator X7, Xa2 Ps is self-adjoint and (4')* = V1A*V}* + X, X522 Pg. This implies that the Green
identity for (A’)*

((A,)*fag)_(fa(A')*g)=(A* lfivﬁlg)—'(v_lfrA* g)‘—(rl lf,F2 g)_(F2V f7F1 )

holds, and the triple Il' = {€,T},T}} with I'; = T;¥;™" (i = 1,2) forms a BVS for the relation (A')*. The
v-field 4'/(A) = (T4 [ Ma(A"))™? corresponding to the BVS II' can be represented as

YA = [ - (X5, XaPe + Vida Vi — )7 X3 Xaa PelViy(A). (8.81)
It follows that the Weyl function corresponding to the BVS II' has the form
M'(A) =T17'(A) = M(A) = TV Y (X[p X2 Pe + ViA2 Vi — M) 71X, Pey(X) =
= .Af()\) — Fl(Xzz_X;ng + Ay — A)_IV—IX;2P£7()\)
- M(}‘) FI(AZ - ’\) [X22X12P£(A2 - ’\)_ + I 1V_1X12P£7(’\)
= an(A) - 7 (’\)(X12a22(’\) % Xzz)_lean('\)
= a11(A) — a1 (A)(Xaa22(A) + X55) 7 X1pa21 ().
The following identity can be proved analogously:
P,g(Alz - A)_l [ £= Pg(VlAQVI* -+ X;2X22Pg)_1 [ L
= ViPg(Az = )7 Vi + X1, Pe(A2 — A) 7' T € = X022 (V) [Xpa22(A) + X52) 7,
Pey'(A) = PeVi{I = [X12PeVi + (A2 — A) 7" X102 Pe Vi }r(N)
= PeVi{l — [(A2 = A) ' X12PeVi + 117 (A2 — M) "1 X33 P Vi }y(N)
= PSVI{PI.‘.(AZ =~ N7 X1 PeVi + 17 (A) = (a22(M) X1z + X22) an(A). O

8. Let £ be a subspace of . Recall that an operator-valued function P¢Rjy | £ is said to be an
L-pseudoresolvent (£-resolvent) of an operator A if Ry € P4 (Ra € Q4). The set of £-pseudoresolvents
(&-resolvents) of A is denoted by PQE (925). A nondecreasing operator-valued function L(t) := PeE(t) |
£ = ¥(¢-0) is called an £-spectral function of A if E(¢) is a generalized (extended to § D b) spectral function
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of the operator A. A function £(t) is said to be orthogonal if E(t) is orthogonal. £-Pseudoresolvents and
L-spectral functions are related as

© dE(t) -

T I'h).

[ dx : 7
[ B - pima e = (A2 15 =, [

-0

If P is the orthoéonal pfojection of h onto h & A(O), then
E(o0) i= s — mE(t)=P,  X(c0)i=s- lim £(t) = PePy | £
In the case £N 9 = {0} ghe folldw;ving equivalence holds:
(00) = I <=5 Ry € Q4.

A full description of the set PQ% of £-pseudoresolvents and, therefore, a description of the set of
L-spectral functions of the operator A is given in

Proposition 8.10. Suppose that Il = {L,T,T2} is a BVS for a linear relation A*, Wng()) =
(wij(A))i,j=1,2 s the corresponding N1.C-resolvent matriz (8.17). Then the formula

[-oo ii—(t/\l = PeR | £ = [wi1(A)7(A) + wi2(A)][war (A)T(A) + waz(A)] ! (8.82)

establishes a ome-to-ome correspondence between £-pseudoresolvents PgRy | £ € PQY and 7(\) € Rsq.
Further, the following equivalence holds:

PeRy [ £€ Q5 < 7()) is M-admissible. (8.83)

Proof. a;2(A)~! € [£] for all A € p(4; L) since Pg maps isomorphically 9tx onto £ for all A € p(4; £).
Therefore (3.69) and (8.13) yield

PeRy [ £=Pe(A— )71 [ €= Po(4s = A)71 [ £ = Pey(A)(r(A) + M(N) " (R) T £

= () — an(Wa() () + an ()]
= {an(M)lag (V)r(N) + ai Van (V)] = an(WHag2 Wr(Y) + et e (V)]
= [ (V)r(A) + wi2(Mwar(W)r(A) + wae (W], O

Corollary 8.2. Suppose that under the assumptions of Proposition 8.10 Az(:= kerD;) = A + An.
Then the equivalence (8.83) takes the form

PRy [ L€ & s—R- liTm y~lr(dy) = 0. (8.84)
yioo

The proof follows from a comparison of Proposition 8.10 and Corollary 3.8.

9. INVERSE PROBLEMS FOR PRERESOLVENT
AND AND RESOLVENT MATRICES OF A HERMITIAN OPERATOR
1. In this section, the inverse problem for a I1£-preresolvent matrix is solved in the framework of each
of the three models considered in Sec. 5.
Theorem 9.1. Let H, £ be Hilbert spaces, dimH = dim £. For an operator-valued function A(A) =
(ajk(/\))'ikzl (holomorphic on C1UC_ with values in [H®L]) to be the IIL-preresolvent matriz corresponding
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to. some BVS of a linear relation A* such that £ L A3(0), it is necessary and sufficient that the following
conditions hold:
(1) A()) € Rugs;
(2) 0 € p(Im a1 (3));
(3) limyieo ty(a22(iy)l,1) = —||l|]2 Vie &;
(4) s ~ limypo0 a12(3y) = 0.
- Proof. Necessity of these conditions is implied by formula (8.13) for the ILE-preresolvent matrix

Ame(A).
Sufficiency. (1) Suppose that conditions (1)-(4) are fulfilled. Since A()\) € Rygs, it follows from (5.1)
that ' :
_ 1 dz(t)
Ql(’\)‘B’\+C+/m(t—,\ 1+t2)d ®), m1+t2€[H€B£]’ (0-1)

where %(t) = (Z;k(t))} y=; = Z(t — 0) is a nondecreasing operator-valued function. As in Sec. 5, B(2)
stands for the Hilbert space of vector-valued functions F()A) of the form in (5.22)

FA)=b+ /m %@{(ﬁ, beHp ¥§w(31/2), £(t) € Ly(dS, H @ £) (9.2)

endowed with the inner product (5.23), Ag is a Hermitian operator of multiplication by A in B(2l),
Agu = {F(p) = {F(u), F()} € B : Ty, b € HS L, F(p) — pF () = hy — Ap)ha}.
In accordance with Theorem 6.1, ()) is the Weyl function corresponding to the generalized BVS II; =

{H® £,x1,x2} for the linear relatlon ‘Aga, where x;F = h; (j = 1,2). Because of condition (3), the
measure d22(t) is bounded: [pd(T;2(t)l,1) < oo forallle 2. Therefore,

/m t—A = /]; md(zzz(t)l, 0.

[t — AP
This inequality and condition {4) imply that

A = fm ‘t"'—z_(—?z(@am(x)u /m )y e = /m i?_z—gf—)z) (9.3)

and the integral in (9.3) converges in the strong sense. This enables us to embed the subspace £ into (%)
(2a: 1 = A(p)l). In view of definition (5.23) the linear manffold

Loo = {loo(n) :=A(u)l : 1 € £}

is closed. It follows from condition (3) that the mapping iy is isometric:
(l°°(iu>l kw(#))%(ﬁ) = (:7 k)Lz(dE,'i{@ﬁ) = [Rd(z(t)lv k) = (11 k)g
Setting forall he H® £

ha) o= 2 i‘(")h [ _df)’g)_ ht Bah € M5 (40, (9.4)

we obtain from (9.4), (9.3), and (5.23) the main identity:

(o), r(mcey = [ FELE = @ R = (1,230 (93)
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We denote by m¢, my the orthogonal projections from H @ £ onto £ and H respectively and consider the

linear relation . .
Ay = {F(p) € Aou : max2F = 0}. (9.6)

Ay is a closed subspace. Indeed suppose that Fo(A) — F()) and F,(A) — F()\) in B(2) as n — oo.
Then for all A € C; U C_ the sequence F,(A) strongly converges to FQ) = {F(\),F(\)}. Tt follows
from (9.2) (for A = i) that the sequence (Im2(:))x2F» is convergent. Now condition (2) yields that the
sequences X2Fn, x1Fn are convergent. Setting hj := limp_.co XjFn (7 = 1,2) we obtain from (9.2) that
F(X) = AF(X) = hy — A(A)ha, that is, F()) € A,.

- Define a BVS I = {H,T'1,I'2} of the linear relation A, by the equality

T;F=mux; B VEeA, (j=1,2) (9.7)

The Green identity for the BVS II is implied by the Green identity for the BVS II' of the linga.r’relation
Aox. The surjectivity of the mapping I' = {T'3,T';} is implied by the equality T29\(4) = {x2ha(s) = h :
h € H} = H and the relation I'; 43 = H. To prove the last relation we first note that

) = (70, £y o= (==, =2y ¢ e,

Taking account of (9.4) we have

Fu) = pf(u) = hei(i) = ImA()h = x1 f = h_i(i) = ImA(i)h = T1 f = m; (ImA(3))h = Im ay; (4)h.
(9.8)
The equality I'1A; = H is a consequence of relation (9.8) and condition (2). Therefore, the triple II =
{H,T1,T2} forms a BVS for A,, and a;1()) coincides with the corresponding Weyl function M()). Note
that by virtue of (9.7) the operator A and the linear relation A, = kerI'; take the form

A= {F € Agx : Xgﬁ = Wﬂxlﬁ = 0}, Ay = {ﬁ' € Agy : sz = 0} = kerxz,

A* = A, and Mr(A) = {ha(p) : h € H}.
It follows from (9.5) and the relation

Toha(p) = Ta{ha(u),Aha(w)} =h  VhEH, )€ p(ds)

that
YMh=ha(p),  Peov(A) = Pe ha(p) = meU(A)h = az(A)h.

Putting for some A € p(4s2) F = {F(u), F(n)} = {Ia(n), Ma(n) + loo(ts)} (where loo(s) - A(p)l, 1€ L)
we find that
F(p) = pF(p) = loo(X) = (M) = x2 ' = 0,

that is, F' € A;. This implies {Ix(1), loo(pt)} € Az — X; hence (A2 — A)~Y = Ix(u). We derive from (9.5)
the following equality:

(Pe(A2 = )7L K)sgy = (1), koo )y = (az2 (A, k)e,
which yields Pe(A42 — A)™! [ £ = ag2(A) for all A € p(42). .
To complete the proof it remains to note that the condition £, L A2(0) is a consequence of condition
(3). : .
(2) Starting from the integral representation (9.1) of the operator-valued function 2(\) we consider
the Hilbert space § = Hp @ Ly(dX, H) and the linear relation Ao, in it [cf. (5.16)]:
o= (F = (b® (1,5 F(1)} € 5 : 3h € H® £, ¢5(2) — F(2) = h,b = Bh}. (9.9)

218



In this case 2(A) is the Weyl function (see Remark 6.2) of the operator

Ao = [{0@ £(2), B @ F(t)} € Ao, : / dE()f(t) + b = 0},  (0.10)
R
corresponding to a generalized BVS II, = {H ® £, x1, x2} of the form in (5.17) with
TR tf(e) + f(¢ ;
xaf=brons (a0, ypop (9.12)
R 1+¢

Define the operator A by the equality
A={F € Ao mn [5 + dez(t) f(t)] — xHb+ /m (@B () f1 (1) + @) fa(t)) = 0},

in which f(t) = fi(t) ® f2(t); fi(t) € H, f2(t) € £, Vt € R. It easy to see that A = ker x2 Nker (m2x1).
Further, the triple IT = {H, Ty, T2} in which Tj = mxx; (j = 1,2), forms a generalized BVS of the linear
relation '

Av={f € Aou 1 mexaf =0}. (9.12)

Indeed, the Green formula for A, is implied from the definition of the BVS II), and the Green formula for
Ags. It follows from the equality

kerT; = kerxz =: Ay = {f = {0 @ f(2),b ®tf (1)} € H?} (9.13)

that the linear relation A := kerI'y is self-adjoint. The closability of the mappings I'1, I'; is a consequence
of (9.11). Making use of relation (5.15) and the definition of the operator A, we find an explicit form of the
linear manifold 913(A4):

NL(A) == MA(A) N A, = {hr = {Bh & ;f—A} . h € H}. (9.14)

We derive from (9.14) and the equalities xgiz,\ = h, wlxlizA = 7r1§2l(/\)x271.v>‘ (h € 'H) that a51(})
coincides with the Weyl function M()) corresponding to the BVS IIj : a;31(A) = M(A). By Proposition 6.2,
the generalized BVS II) is an ordinary one, that is, 4, = A*, 95(A4) = Mr(A), and the mapping I': 4. —
‘H @ H is surjective.

Define now the embedding of the space £ into b, identifying the vector | € £ with the constant
vector-valued function I(t) =1 € §. It follows from condition (3) that this embedding is isometric:

(11712)h = /];d(x(t)ll,lz)g = /l:\d(zgz(t)ll,lg)g = (11,12)_2.

Conditions (3) and (4) also yield that £ C ker B and the representation (9.3) for the vector-valued functions
a12(M)l, asz(MA)! (I € £) hold. Making use of (9.13) and the formula for the y-field, y(A\)h = (T2 [
Na(4)) " h = hy = {hx, Ah,} implied by (9.11), (9.14), we find that for all Lk € £, h€H,

(LR = (aOOR)s = (1), = [ AEE — (et

(Pe(A2 = 27, k) = (Pzt-_l—/\,k)b - /m 1@%@,\-”—@ = (azs(V, B

Thus, the coincidence of A(\) with the IIC-preresolvent matrix Ane(A) is proved.
(3) We give one more sketch of the proof of Theorem 9.1 in the framework of the Krein-Langer
model [81]. To this end we introduce, as in Sec. 5, the linear manifold G = ® ® (H ® £), which is the
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algebraic tensor product of the space H @ £ by the linear space ® of functions on C; with finite support.
Further we associate with the operator-valued function 2()) a Hilbert space £(2), which is obtained in a
canonical way from the linear manifold G metrized by means of the kernel (A — z)™1(2(X) — A*(p)) [see

(5.3)l.

Consider the linear relation

Ao. = {f' = { Y AR AL® 5;} € (ﬁ(i’i)’}
A
in A(2A) and the generalized BVS IT; = {H & £, x1, X2} for Ag. with

af = 9Nh  xef=Yfn
A A

Define a linear relation A* as a closure of the linear manifold A, = { f € Ao : mox2 f = 0}. Asin
Proposition 5.1 (see also [26]), one can check that the mappings ['; := wxx;: A* = H (j = 1,2) are
continuous and the triple I} = {H, 1,2} forms (an ordinary) BVS for A*. Define the embedding of £
into A(2A) by the equality
L£o31l-ly:= liTm(—-iy)(l ® biy) € R(). (9.15)
yioo

The existence of a limit in (9.15) is implied by condition (3). Further, it follows from conditions (3) and
(4) and equality (9.3) that the following equalities hold:

(oo, koo )m(2)=lim, 00 Y(Im A(iy)], k) = limyteo y(Im a2(iy)l, k)s = (I, k)e;

(Toos 61 ® B)op@mtim, 100 (FERELL ) = (1 PAN):,

(9.16)

the former one of which means that the embedding (9.15) is isometric.
Foralll € £, )€ p(Az) we have (A3 — A)™!l = 6\ ® [, where A; := ker'; = ker x2. Indeed, passing
to the limit as n — oo in the relation

Gn={6AQ1=56, ®LANA®I—~Apby, ®I} €A, (Mn =in)

and making use of the equality [|6iy ® l”?i(ﬂ) =y Y (Im A(iy)l, )ngse, we obtain {6x @ I,le} € A2 — A, that
is, (A2 — A) 7w = 65 ® I. Now the last equality in (9.16) yields az2(A) = Pg(A2 — A)~1 I £ Further,
it follows from (9.16) and the equality T'{6x ® h,A6x ® h} = k that v(A\)h = 8§y ® h for all h € H and
0.12()\) = ’7*(/\) a

2. Let A be a Hermitian operator with gap (a,8) and A,, Ag be its extremal extensions defined
by equalities (4.20). We characterize the IIC-preresolvent matrices which correspond to the BVS’s II =
{H,Fl,r‘g} with A, € Ex A(a,,B).

Lemma 9.1. Let —oo < a < 8 < 00, A be a simple Hermitian operator with gap (a, 8), E = R\(e, ),
I ={H,T1,2} be a BVS for A*. Then the following equivalences hold:

(1) M()) € Sy(E) <= A1, 42 € Ex a(a,B) and (4; —z)7! < (42 —z)™! Vz € (o, B);

(2) M()) € S7;(E) <= A1, A2 € Ex 4(a,B) and (A —z)™' > (42 —z)~! Vz € (a,f).

Proof. Suppose that M()\) € Sx(E). Then (a,8) C p(A2) since M(X) is holomorphic on (o, B).
Owing to the fact that M()) is nonnegative in the gap (a, ) we obtain 0 € p(M(X)) for all X € (a, )
and in view of Proposition 1.6 we have (a,8) C p(A:1). The inequality (4; — z)™ < (A2 —z)~" for all
z € (a, ) and, therefore, the implication = in statement (1) are implied by formula (3.39). The inverse
implication follows also from formula (3.39). O _

Corollary 9.1. Assume that A is o Hermitian operator with gap (a,f8), E = R\ (e,f), II =
{H,T1,T3} is a BVS for A*, M()) is the corresponding Weyl function. Then we have Ay € Ex ala, B)
and the extension As is transversal to Ay (Ap) if and only if there ezists an operator K = K* € [H] such
that M(X) — K € ST(E) (S™(E)). ‘
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Proof. Assume that A; € Ex s(a, ) and the extensions Ay, A, are transversal. Then there exists a
BVS I; = {H,T%,T%} such that A, = kerI"}, Ay =kerD}. It follows from Lemma 9.1 and the extremal
property (4.21) of the extension A, that the Weyl function M;()) corresponding to the BVS II; satisfies
the relation M;()) € S,'S(E) In view of the equalities kerI'; = kerI', = A; we obtain from Lemma 5.2
that M(A) = M;()) + K for some K = K* € [H].

Conversely, assume that M; () := M(X) — K € Sy(F) for some K = K* C [H]. Then M;(}) is the
Weyl function corresponding to the BVS II, = {H, T, T}, where I'4 =T'; — KT, and Lemma 9.1 yields
that A} := ker(I'; — KT';) € Ex 4(a,8) and A3, Af are transversal extensions of A. In accordance with
Propos1t1on 1.4 we have 0 € p[(A2 — A)™! — (AY —A) Y forall A € (a,B). In view of (4.21) (AY =M1 >
(Ag — A)™! for all A € (@, B). Therefore, 0 € p[(A2 — A)™! — (Aa — A)7Y], ie., A and A, are transversal
extensions. O -

.- Definition 9.1 [38]. An operator-valued function F(X) (e Ry) is said to be from the class Ry[a, b] if
F(}) is holomorphic and nonnegative on (—~o0,a) and F(}) is holomorphic and nonpositive on (b, +00).

- It is easy to see that Ru[a,b] = Sila,+oo) N S5 (—o0, b]. - .

Theorem 9.2. For the operator-va,lued function A(X) = (au()\) a12(/\)) to be the ILL-preresolvent

1121(/\) agz(/\)

matriz of a Hermitian operator A with gap (a,f8), corresponding to the BVS Il = {H,I1,T2} such that
A; € Ex 4(a,8), A2(0) L L, it is necessary and sufficient that conditions (1)~(4) from Theorem 9.1 hold
and ay1(A) be holomorphic on (o, B).

In this case the following equivalences hold:

(1) the equality A2 = A, (A2 = Ap) is equivalent to the first (second) condition from (4.27) for
M) == an(X);

(2) in the case of a simple semibounded below operator A > a the following equivalences hold:

A(A) € Snoc(a, +oo) &> a11(A) € Su(a, +oo) <= 41 2 A2 2 q; (9.17)
(8) in the case of a simple semibounded above operator A < b the following equivalences hold:
AA) € Sype(—00,0) <> a11(}) € Sy(—00,b) <= A1 < 4y < b; (9.18)
(4) if A 1s a bounded operator (a < A < b) the following equivalences hold:
A(A) € Rugela, b] <= a11()\) € Ryfa,b] <= A; = A+ MN,a < 4, < b. (9.19)
Proof. The first part of the theorem is a consequence of Theorem 9.1. Statement (1) is implied by
Theorem 9.1 and Corollary 4.5. Implication A()) € Sugs(a, +00) = a11(A) € Sn(a,+o0) in statement

(2) is evident. Conversely, if a11(\) € Sx(a, +00), then by Lemma 9.1 we have (—oc0,a) C p(41) N p(A42).
Now it remains to note that according to (3.39) we have for all A < a

az2(}) = an(Nagy (Na1z(A) = Pel(A2 = N)7 =AMy (M) 1 €= Pe(A41 = A7 [ £20.
The proof of statement (3) is analogous.
(4) Let T = {H,T'1,T2} be a BVS whose preresolvent matrix coincides with 2(A) and let M()) = a11(})
be the corresponding Weyl function. Combining statements (2) and (3) we obtain the equivalence
A(A) € Ryfa,b) <> a11(A) € Ryula,b]

and the inequalities

allfII? < ta,[f] S ta[fl S ta A SBIfIIR VF € D(ta,) C D(ta,). (9.20)
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By virtue of the relation a;1(\) = M()) € Ry[a,b] we have 4; € [H], a < 43 < b, a < A} < b, where A}
is an operator part of the linear relation A;. Inequalities (9.18) yield

(A1, f) =(42f,f)  VfeD(4)=D(4).

Hence, taking into account the equality A;(0) = D(A4;)L, we obtain that for all f € D(A4;) there exists
h € D(A1)* such that

Af =A\f+h=>{fArf} € ANA =A=> fe D) =>4, =A+F. O

Remark 9.1. It is worth mentioning that inequalities (9.17), (9.18) [in the sense of (9.20)] are fulfilled
if and only if A4,(0) # {0}, i.e., A, is a linear relation, and they turn into the evident equalities provided
that A4y, A2 € C(h). ‘

A TIL-preresolvent matrix Agg(A) corresponding to the BVS IT = {H,I';, T2} will be called (after [41})
an M L-preresolvent matrix if kerT'; = Ap, kerI'; = Ag.

Corollary 9.2. For an operator-valued function A(A) = (a,k()\))] r=1 (holomorphic on C\ Ry with
values in [H @ £]) to be an M L-preresolvent mairiz of a nonnegative operator A > 0 such that £ L Ax(0),
it 13 necessary and sufficient that

(1) A(A) € Rugge;

(2) s—limg|—oo zaz(z) = —Ig;

(3) s —limg|—oo az1(z) =0;

(4) 0 € p(Imayi(2));

() s—limgj_o0 ar1(z) =0;

(6) limz1o(a11(z)h, h) = +o0 VR € H\ {0}.

Proof. According to Theorem 9.2, 2()) is a II€-preresolvent matrix of an operator A > 0. Making
use of Proposition 5.6 and hypotheses (4)—(6) we conclude that a;1(}) is a Qar-function of an operator
A > 0. To complete the proof it remains to apply the implication

a1 (—o0)=s— llim a11(z) =0 = a;;(z) 20 Vz <0< an(X)e€ 5(0,00). O

Definition 9.2. Let A be a Hermitian contraction in §, D(A) = ho, £ be a subspace of h. A ILEL-
preresolvent matrix Ame(A) correspondmg toa BVS IT = {H,T'|,[2} will be called a II4; £-preresolvent
matrix of the contraction A if ker['; = A + ‘n kerT’y = Ay,

Recall that Ay; = Ay and A, = A, are extreme extensions (in the sense of Krein {34, 5]) of the
operator A. The general form of BVS’s with kerI'; = A + 9, kerTy = Ay is given by the formula
Oy = {H, X*TE, X1TE), where

Iff=Pnf, Tif=-n Vi={fAuf+n}€4"=4u+MN (9:21)
and X*, X1 € [91, H]. The Weyl functions corresponding to the BVS (9.21) take the form
Mi()) = X[ Mu(X) + 11X, M_(A) = X*[M,(\) - I|X, (9-22)

where Mpr()) and M, () are Q- and Q,-functions of the forms in (3.73), (3.74).

Corollary 9.3. For the operator-valued function A(A) = (a,k()\))J e=y o be ¢ TI_; £ (1141 £)-preresol-
vent matriz of a Hermitian contraction, it is necessary and sufficient that conditions (1)-(4) of Corollary 9.2
as well as the following conditions hold:

(5) all(A) € RH[—la 1]:'

(6) lisz_l(au(.’L‘)h, h) = +oo(lim; | +1(a11(z)h, h) = —OO) Vh e H\ {0}.

Proof. Necessity. Conditions (5) and (6) are implied by equalities (9.22) and Corollary 4.5.

Sufficiency. By Theorem 9.2, 2()) is a II€-preresolvent matrix of a Hermitian contraction 4. It follows
from Corollary 4.5 and hypothesis (6) that kerI'; = A_; = A,. Owing to hypotheses (4) and (5) there
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exists s — lima—oo Ag11(A) = By and 0 € p(B;). Therefore B! = s — limy~co a7 (A)/X € [H] and in
accordance with Theorem 1.1 we have kerI'; = A + 91. O

- Remark 9.2. A statement close to Theorem 9.1 was obtained in [63]. A somewhat weaker version of
Corollary 9.2 in the case D(A) = § was obtained in [41] (with the substitution of the condition au()\) €
53(0,00) by a stronger one: %(A) € Suge(0,00)).

Note also that in [41] hypothesis (3) is omitted.

3. Here we give an inner description of the set of IL-resolvent matrices of Hermitian operators.

Everywhere in this section pg(d) = (Z;E:\\; 228%) and Wne()) = (5;83 1:7:;83) stand for

TIE-preresolvent and TL€-resolvent matrices of the form in (8.13) and (8.17).
Let .
1 (0 VoI 1 (0 I :
559 o35
Proposition 9.1. Suppose that A is a Hermitian operator in §j, £ is a subspace of § such that

p(A; L) # @, and the linear relation A* is 2 'regula.'r, I = {£,T:,T2} is a BVS for A*, Wng()) is a

IL-resolvent matriz,

Virs () = @in(Mms = (= WineW))(I + Wne(N) ™. (9:24)
Then (1) the operator-valued function

VEVn(X) I- V21(A)>

wv= (3 &) =+ 55 (R0 B

(9.25)

is the Weyl function of the operator Ao = A [ £ corresponding to the BVS ™ = {£ @ &;T™ T3}
(f={ff+1}{f,f'}edleX) '

T 1A__:l_ —2F2{f,f’} T 1A__]_'__ r {faf’}+Pf
L ‘ﬁ( VaPef ) ra'f “ﬁ(—firz{f,f'}—s\/iz) (9:26)

(2) the operator-valued function ™A1()) is the 1™ L-preresolvent matriz of the operator
S={{f,fleAr=%kerly:T1{f,f'} +Pef =0} =kerI; ﬂkerﬂ'lf‘%‘, (9.27)

corresponding to the BVS ™ = {&, F?‘,I‘?‘} of the linear relation

S*={f={f1+{0,1}: {f, f'}e A" 1€ &2 {f, f} +1=0}, (9.28)

where

IMf=mihf=—V20a{f.f}, TIhf= {f, f'} + Pef). (9.29)

v
Proof. (1) Owing to the fact that the linear relation A* is £-regular, we have, by Theorem 8.2,
0 € p(J ~ Wite(A)IWiig(A) N (T — Wiie(A)TWiie(A))

and hence ~1 € p(Wne())) VA € p(A;L) (Proposition 7.5). Therefore an operator-valued function
V(A) is well defined by (9.24) and because of Theorem 8.2 V() is the Weyl function of the operator
Ay, corresponding to the BVS IV = {£@ £, 1"{[’,1""} ={Lo® L,-T5,T}. Since the BVS’s MY and II*t are

related as (iil) (g c('g;)_ )(?:) (9.30)

the corresponding Weyl functions are connected by equality (9.25).
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(2) Since 0 € p(Im V(1)), a defect subspace M\(Ao) of the operator Ag = A | £ takes the form |cf.
(8.45)]
TMa(4o) = TM(A4) + (A2 = A) 1€ =y(N)L + (42 — V)L (9.31)

Setting here
fr=a(Wh + (42 = )T (€ M(40)),  Ray(A) = {(42 = N7 I+ M4z - N7},

we obtain

Fr= {0 A0) = 300 + Ray (M2 — {0,12) € Ta(4o). (9.32)
Making use of (9.26), (9.32) we have

a7 _ [ —V2R ALY _ -v2h, ) _(—V2I; © ) 0.
fii= ( Pgfx ) - <P£‘7(’\)11 +Pg(A2 =N ) T ( a1 a2 (l;) ’

sxan 2 [ T1(B(W)l 4+ Ra, (V) + Pe(v(A)l + (A2 — X)L,
g« (O RO Bl 0370

_[ai1+an a2+ a L
- ( —V2I¢ V2Ig ) (12) ) (9:33)
This implies that 2;()) takes the form

A () = (a:“ a,”) = ((1_2:/5\1) ag;o(’/\)) (all(’i)ji;;l(/\) 012(/\\)/%'1-222()\))_1

ay ap
= —2H71(3) VZH ' (A)(a12 + az2)
= (\/5(021 + a22)H1()) a2z — (az2 + an )H"ll(/\)(alg + azz)) ) (9.34)

where H(A) = a11(A) + a21(A) + a12(A) + az2(A).
Further, the following formula for the defect subspace 9A(S) of the operator S holds:

NMA(S) = {fa =7\ + (A2 —N)U:le £} (9.35)
Indeed, in view of (9.31), (9.32), (9.28), we have the equivalence
| Fr€ 5% <= To(A(h + Ba,(\)la) — Iy = 0 <=p [y = lp =: I,
Now for all fy = {fa, Afa} € TA(S) we find
TMfv=—v2l, VTP fy =(a11 + a2 + az1 + aze)l = HA)L. (9.36)

This implies that the Weyl function M;()) and the y-field 4;()) corresponding to the BVS II*: take the

form

My(X)=-2H7'()),  m(A\)=v2lr(d)+ (42 = )TNETI(N). (9.37)
It is easy to check that '

Si:=kerI}' =kerTy =: Ay,  Sp:=kerT = {f={f,f +1} : To{f, f'} + 1 =T1{F, f'} + Pef (= 0}.)
9.38

Taking account of (9.37), (9.38) and the resolvent formula (3.39), we transform the element a},(A) of the
matrix (9.34):

A3y = a2 — (az2 + az1)H ™ (a12 + az2) + Pe[(A2 — )7 + (MM 5 (A)] T £
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=P = AT + M M) 1 €= Pe(S: - AT L o (9:39)

Combining (9.34), (9.37), and (9.39) we obtain the desired coincidence of the matrix ;()) with the prere-
solvent matrix corresponding to the BVS IT%t

- Corollary 9.4. Under the assumptions of Proposition 9.1 the operator-valued function V(X) defined
by equality (9.23) takes the form ‘ ‘

9Py(S2 ~A)1 1 £ I—v2Psem(V))
VW= ( 1’:_(\/'2‘7;(3‘\),; o )), (9.40)

where Sy = kerTa* [see (9.38)], Mi()) and 41()) are the Weyl function and the y-field of the operator S
corresponding to the BVS (9.29).
- Remark 9.3. One can deduce formula (9.34) for 2;(A) from (9.25) and the following equality implied
by (8.58):

V(A) = ~(X2a12%(}) + Xo2)(X12 () + X12)7Y, (9.41)

where the matrices X;; are defined by (8.57).

Theorem 9.3. Let A be a Hermitian operator in §) and let £ be a subspace of b such that LNN = {0}
(9 = D(A)Y), p(4; L) # @, the linear relation A* is L-regular and S2(0) L £, where S is an operator
of the form in (9.38). Further, let Il = {£,I'1,T2} be'a BVS for A* and Wng()) be the corresponding
IIL-resolvent matriz. Then

(1) 0€ p(wai(R)) VA€ p(4; L);

(2) —1€p(Wne(A)) VA€ p(4;L);

(3) the operator-valued function

V() = (W)= = i = WO)T +W (W)™ (9-42)

is the Weyl function of the operator Ao = A [ £+ corresponding to the BVS [TV = {L @ &, ~T%,T%} [see
(8.52)] and satisfies the following hypotheses:

(a) V(A) =V*(A) € Regpes

(b) 0 € p(Im V(i));

(c) s —limytoo 1y v11(3y) = —2I;

(d) s = limypoo v21(3y) = I.

Conversely, if the operator-valued function W(A) = (w;x(A))3 y; with values in [L@ £] is holomorphic
on the domain Gw, 0 € p(wai(N)) for all XA € Gw, —1 € p(W(A)) for all A € Gw \ R, and the operator-
valued function V() defined by (9.42) satisfies hypotheses (a)~(d), then W(X) coincides on Gw with a
I1C-resolvent matriz of an L-regular Hermitian operator A corresponding to the BVS I = {£,T1,T2} such
that £ L S5(0) and the linear relation A* is L-regular. In this case p(A; £) D Gw.

Proof. Necessity. Condition (1) is a consequence of the definition (8.17). Condition (2) follows from
the C-regularity of A* and was mentioned in the proof of Proposition 9.1. In view of (8.53) and (9.42),
V() is connected with the Weyl function M2(A) corresponding to the BVS (8.52) by the obvious equality

V(A) = ~M(\)7?, (9.43)

which proves (3). Relations (a)-(d) follow from (9.40) and the assumption S2(0) L £.

Sufficiency. Suppose that V() satisfies hypotheses (a)-(d). Then the matrix 2;(A) = KV(A)K* +C
of the form in (9.25) satisfies the conditions of Theorem 9.1 and, therefore, it is a ILC-preresolvent matrix
of a Hermitian operator § € C(h) corresponding to the BVS M = {€,I'? T'3'} such that S5(0) L £

(Si:= kerf?‘,i =1,2):
M (A AT L
%)= (Pm((x)) =T . (5:44)

225



Here M;()\) and 41 (A) are the Weyl function and the v-field corresponding to the BVS II3*. It follows from
(9.44), (9.23), and (9.25) that

Vo) = k) - ol = (G TS B Y) e

Now we define a matrix () setting [see (9.41)]
AN) = (ae(M)} =1 = —(X V() + X)X V(D) + X5,)7 (9.46)
Here the matrices X;; are the same as in (8.57). Making use of (9.46) and (8.57) we have

2A(N) = 1 (-vn +(I+ v12)v2 2 (I +v21) v+ (T +vi2)vgy (I — va1) ) (9.47)
vii + (I —viz)vgy (T +va1)  —vn + (I —vaa)vgy (I —v21) ) )

Hence, taking into account formula (9.45) for V() and the resolvent formula (3.39), we obtain

an(}) = 5 Pel2(S = N7 = 2nOOMT Oy (O] 1 £ = Pa(Si = )7 1 8 (9.48)
an(}) = ~ 3 Pel2(S3=N) " HVER(OMT )@-VER (0 T £ = ~Pe($1-3) 7 1 £-V2Pen()M(N)™;
(9.49)

a1n(A) = %[21"2(52 =N = (2 Ie = V2Pemi (N)MTI(A)(2 - Is — \/_57;(/_\))] re

= Pg(81 = N7 [ £+ V2Pemni (V)M (N) + VM (A (R) — 2M7 1 (N). (9.50)
We define a linear relation A* [cf. (9.28)] by the equality

A ={f,if'Y=Ff-{0,1}: fes* {01} e &v2-T] f =0} (9.51)
It easy to check that the triple I = {&,T;, T2} with
T{ff}=VEPf-Pef,  Talf,f}= T (0.52)
forms a BVS for A*.
We show that the ILC-resolvent matrix corresponding to the BVS II coincides with the matrix 2()) of
the form in (9.47). A defect subspace 91x(Ao) of the operator
Ap:=Angt=5ngt=5n{0,2*} (9.53)
takes the form [cf. (9.31)]
Ma(4o) = T(S) + (S2 = V)L =n(NE + (S2 - N)7'E, (9.54)
that is, consists of the vectors fa = 71(A)l1 + (S2 — A)7'l2. Put
= {fu A} = (O + Bs, (W — {0,12} =: f — {0,12} € Ta(4o)-
By the definition (9.51) fy € A* if and only if |
T fy — V3l = T (3 (W + Rs, (W) = V2l = My(Wl +7*(A)lz — V202 = 0.
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The last equality is equivalent to the following one: I} = My(A)~'(v2 — v*(}))l2. Thus
fr€M(A) & i= (S = NH+nMNMTA)V2 =7 O = (51 = )+ V2n(N)MT (), (9.55)
where §; = ker T and the defect subspace of the operator A = kerI'; N ker T takes the form
Ma(4) = {fr=[(S1 = N+ V2n(A)M (V) : 1 e £} (9.56)

We are now in a position to find the y-field 7()) and the Weyl function M () corresponding to the BVS II:

Lo fr = ——\}—51‘_?* {Bs, W+ V2HO)M () =1 (9.5‘7)
Therefore : ‘
AN = —[(S1 = 1) + V()M (V). (959)

And finally we have
M) = T3 = —V2TT [Rs, (M + V23 (MM (M) 1] — Pg(S1 — A+ JiPm(A)Ml(,\)-l'z =
= [V2My (M) 1y () — 2M1 (M)~ + Pg(S1 — A) ™ + V2Pey (M) My () L. (9.59)
We mention also that according to (9.52)
Ay :=kerTy = ker[? =: 5. (9.60)

A comparison of relations (9.47)~(9.50) and (9.58)—(9.60) leads to the equality

M(A O |
AN = <Pg—§(£) P,:(.Zz(—),\)-1 rs)’ (0.61)

which means that 2(}) is a ILC-preresolvent matrix corresponding to the BVS I1* = {£,T;,I';} of the form
in (9.52): 2A(A) = Ang(A).
We now show that W(A) coincides with the IIL-resolvent matrix of the operator A corresponding to

the BVS 1% = IT = {¢,T'1,T';}. Rewriting equalities (9.46) and (9.42) in the form

m(»:(‘éfz ‘)é,?)ow,\), V(A)=(“J” "JI)OW(A), | (9.62)

we calculate the composition of the linear-fractional transformations which, on account of the assumption
0 € p(wz1(A)) for all A € Gw, takes the form

- (3 3F) (7 5w
-((8 8)ws (5 8)((8 )-8 &)

-1 - -
- ( r o ) ( 0 -I ) = ( ’f%llw”j_ ‘”211_1). (9.63)
wir W12 /) \ W21 W22 WiiWyy W22 — W12 W11Wqy
Since 2A(A) = Ang(A) we have by virtue of (8.17) W(A) = Wrg(A), that is, W(A) coincides with the IIS-

resolvent matrix corresponding to the BVS II* = {£,T',T';} of the form in (9.52). It remains to note that
£ 1 55(0), and in view of (9.51), (9.52) we have

Sy i=ker T3 = {f = {f, f + 1} : To{f, '} +1 = Tu{f, '} + Pef = 0}. (9.64)
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This proves the theorem. O

4. Theorem 9.4. Let A be a Hermitian operator in j, £ be a subspace of h, p(A;L) # 2,11 =
{£€,T1,T2} be a BVS for A* such that A5(0) L £, and Wie()) be the corresponding IIL-resolvent matriz.
Then we have:

(1) 0 p(wn(N) for all X € p(4; £);

(2) the operator-valued function

= C wpa(A)Ttwn(A) wi2(A)!
AN) = (wzz(z\)wlz(/\)—lwn(/\) ~ w1 () w22(,\)w12(,\)—1) (9.65)

may be holomorphically continued on C; NC_ to an Rege-function with values in [£ @ L], which satisfies
hypotheses (1)~(4) of Theorem 9.1.

Conversely, if an operator-valued function W(A) = (uz_,k(/\))J k=1 With values in [L @ L] is holomorphic
on a domain Gw, 0 € p(wa1(})) for all A € Gw, and A()N) satisfies hypotheses (1)—(4) of Theorem 9.1,
then W(X) is a ILC-resolvent matriz of an L-reqular Hermitian operator A, corresponding to the B VS
I ={¢,I'1,I2} suck that £ L A3(0).

The proof follows from Theorem 9.1 and Proposition 8.2.

Remark 9.4. A result close to Theorem 9.4 is contained in [63]. Note also that the inverse problem
for £-resolvent matrices of isometrical operators was considered in [3].

Remark 9.5. We omit the sharp statement of a version of Theorem 9.2 in terms of the resolvent
matrix Wize()). Note also that one can formulate the condition Ang()) € S(R \ (a, B)) with the help of
Wne(A) in the following way:

Wite(\) T, Wik s(A) = Jp > 0(<=> Wi\, Wire(A) — Jp > 0), VA€ (a,8), (9.66)

o I
I O
(9.66), are implied by the elementary identity

where J, = > The property of Wig(A) of being holomorphic on (a, 3), as well as the inequality

Wis(M)pWiie(A) — Jp = Y3 (A)[Ame (M) + Ao (MY (A), (9.67)

where the operator-valued function Y»()) is the same as in (8.20). In the case (a,8) = (—00,0) it follows
from (9.67) that the following equivalences hold:

Ane(N) € S(a,00) <= Wire(\,Wie(W) = J, >0 VAEC, ReA<g;

Are(A) € S7(—00,b) &= Wine(M),Whie(A) —J, <0 VA€C, Rer>b; (9.68)

10. TRUNCATED MOMENT PROBLEM

Application of Theorem 4.2 and Proposition 8.10 to the truncated Hamburger, Stieltjes, and Hausdorff
moment problems enables one to describe all of its solutions as well as solutions whose supports in some
intervals are finite or empty.

1. Let {s:}2" be a strictly positive sequence, sy = 1, h = C,[t] be a Euclidean space of polynomials of
degree € n endowed with the inner product

(fra) =Y sireaiBe (f=) oxth, g=> But* e Calt)). (10.1)
k=0 k=0

Jk=0

Let A be the operator of multiplication by ¢ in h and {Pi(t)}F be the standard basis of orthogonal
polynomials of the first kind. Then the following equalities hold:

Aey := APy(t) = tPi(t) = br—1Pi—1(t) + akPk(t) +bxPria(t) (0L k<n-— 1), (10.2)
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in which b, =0, by > 0, dk =4 (0<k<n~-1),D(A) =ho =h 6 {Pa(t)}.
Clearly, n+(A) = 1. Consider some self-adjoint extension Ay = A} of A, whose matrix with respect to
the basis {Px(t)} is the Jacobi matrix '

ag b 0 ... 0 0 a b 0 ... 0 *
bo a b1 0 0 bo a b1 0 %
Ao=| .. oo i v oo DA s ] (10.3)
0 0 0 ... apn-1 bp_1 ] 0o 0 0 . Qp-y  *
0 0 0 bn—l v an g ) 0 0 0 “es bn—‘l *

The orthogonal polynomials P¢(A) and Q4()) of the first and the second kinds can be expressed in terms
of the Jacobi matrix by the formulas

det(A ARy
e

det() — Ay

Py =04 o0 = (1<k<nt1), (10.4
baby ... br—1 '

in which the matrix A(()k) can be obtained by removing from the Jacobi matrix its last n + 1 — k rows and

columns, and fi(k) can be obtained by removing from A( ) its first row and column.
Prop051txon 10.1. Let A be a Hermitian operator of the form (10.2) in h = Cyft], S.‘, {eo}. Then
(1) the triple Il = {C,T'1,T3}, in which

Tif=c, Tof =(f,Pa®)), f={f,40f + c'en} € A", (10.5)

forms a BVS for the linear relation A* and Ay :=kerT', = Ag;
(2) the corresponding Weyl function M(), I1C-preresolvent and ILC-resolvent matrices Upe()) and
Wig()) take the form

M(’\) = ann+1(’\)/Pn(’\)1 (10‘6)
v 1 bpPpi1( X 1
2 = 5 (7Y )
was)= (B ) @07

Proof. (1) The first assertion is obvious.
2) It is easy to see that the defect subspace 91y is generated by the polynomial kernel h(),t) at the
point A, i.e., by the vector

fa= h(/\,t) = Zn:Pk(/\)Pk(t) = iPk(z\)ek(E ‘)’t,\) (10.8)
k=0 k=0
Ty fa =Ti{fn, M} =T1{fa A1 fr + baPasi(Nen} = baPas1(X). (10.9)
Therefore
T2/ = (Fr en)s = (R(A, 1), Pa(t))y = Pa()). (10.10)

This implies that equality (10.6) for M(A) holds. Equality (10.10) yields

~

(I = %(*/\) = 1(VI=3 ( 32 ZPk(A)Ek

=70 = 52 }: Pu(A)(f, en)
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Consequently,
a21(A) = Pgy(A) = Po(A)/Pa(X) = Po(N) 71, a12(A) = 7*(MNeo = P.(A) 7. (10.11)
Next we find an expression for age()) = ((A2 — A)™'LI). (A2 — A)~U = Y p-s cker since 4; = A4 .
Therefore, the vector &= {cx}3 " satisfies the equation
(45 — A)&= &= col {1,0,...,0} € C".
Taking account of the expressions (10.4) for P,()) and Q,()\) we obtain
| co = ((A2 — A)"Yeo, €0) = —Qn(A)/Pa(}). (10.12)

It is easy to see that cx = Qx(A) — coPi()) (1 £ k € n —1). Combining (10.6), (10.11), and (10.12) we
obtain the expression (10.7) for 2Apg(A).

Further, the matrices ™ne(A) and Wre()) are connected by equality (8.17). Making use of the
Liouville-Ostrogradskii formula [4, 6]

bl Pa(N)@n11(A) = Qu(N) Par(M)] = 1,

we obtain from (8.17) equality (10.7) for Wie()).
Remark 10.1. Formula (10.7) for Wie()) is also implied by formula (8.22). Indeed, the subspace
Mr, = (A — Xo)D(A) consists of the polynomials f(¢) with f(Ao) = 0. Therefore, for all f = Y ¢ ax Pi(t)

we have
PO = FN) =3 wPi(d),  QNf = Pe(A— NI —PONF =3 ax@e(d)  (1013)

and hence

P*(A) =P (NI X t) = fi(b), (10.14)

0

Q') = Q(A)II—ZQ

n

E=Y Qr(NP(2). (10.15)

1
Taking account of equalities (10.5), (10.8)—(10.10), we obtain from (10.14), (10.15)

DB (A) = (B, t)ealy = Pa(R),  TaP*(3) = Tufh(%, 1), 3h(%, )} = baPass(3),

ro = (3% Qk(X)ek,en)b = Qu(),T10%(A) = T3 {Q*(N), AQ*(N) + eo}

= T1{Q*()), 41Q°(A) + baQus1(Ven} = baQnis(A). (10.16)
Formula (10.7) for Wrg(\) is implied now by (8.22) and (10.16).
2. Consider the truncated Hamburger moment problem

o oo
S = / t*do(t) (0<k<2n-1), Son 2> / t2"do(t). (10.17)

-0

We denote by V(s;R) the set of all solutions o(t) of problem (10.17) and by V(s;R) the subclass of such
o(t) € V(s;R) for which the inequality in (10.17) is replaced by the equality

[e ]
S2n = / 2 do(t). (10.18)
-0
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The next theorem was proved by Nevanlinna (38] (see also [4, 6]). ‘
Theorem 10.1. Let {s;}2" be a stricily positive sequence, {Pr(N)}27, {Qi(N)}5*! be orthogonal
polynomials of the first and the second kind. Then the formula

[2 et ba@nt1(Y) + T(NQa(2)

—oot =X baPa1(A) + T(X)Pa(}) (10.19)

establishes a bijective correspondence between o(t) € V(s;R) and 7()) € R. In this case o(t) € V(s,R) if
and only if limy10o y~ 1 7(2y) = 0.

Proof. Let A be an operator of the form in (10.2) in a Euclidean space § = C,[t] with inner product
(10.1). £= {1}, Il = {C,I'1,T'2} be a BVS for the linear relation A* of the form in (10.5). We show first
that the set of solutions of the moment problem (10.17) coincides with the set of £-spectral functions of
the operator A, i v

o(t) € V(s;R) <= o(t) = (Ej(t)]I I), (10.20)
and o(t) € V(s,R) [i.e., equality (10.18) holds] if and only if A(0) = {0} (<= A is an operator).

Let A= A* be a m1n1ma1 extension of the operator A acting in a space b D b and A’ be its operator
part in the case A(0) # {0}. It is clear that dim A(0) = dim A*(0) = 1 since A is a minimal extension. Let

o € A(0), llool| = 1. Then the following equalities hold:
(AVI1=4"10<k<n-1), AM[=(4)T+coles, o €C. (10.21)
Indeed, assume that equalities (10.21) are proved for all k¥ < p < n ~ 2 and show that (A')P*1I = APHL.
Since A"]I L A*(0) = {Pa(t)} for all k < n —1 and A(0) C A*(0) ® (h ©h), we have A*I L A(0) for all
k < n ~ 1. Therefore the inclusions
{APT, AP '} egr AC 4, {(A"YPL (41} e A
yield AP*1[ = (A')P*11. The last equality in (10.21) is implied by the relations
{A" LA™} egr AcC A, {(A) 'L (A)" 1} e 4.

Now we obtain from (10.1) and (10.21) for k¥ + j < 2n — 2 the equality
skt = (t5,8))p = (AL A7T) = ((4)*1,(4')]) = / I d(E(t)L, 1), (10.22)
R

in which E(t) = E4/(t)Pp(ar) is a spectral function of the linear relation A. Analogously, taking account
of (10.1), (10.21), we find

san—1 = (AL, A™ ') = ((A')*L + coleo, A" 1) = ((A")*L, A ') = / 1B, 1),
! R

son = (A™L A™) = [[(A)"T+ colool” = [(A)*TIZ, (40) + leof® = /m " d(E()L, )

+leo? > / 2 d(E(t)L, ). (10.23)
R
It follows from (10.23), in particular, that
lcol® = 520 — / "do(t),  o(t) = (E;(t)LI). (10.24)
R
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Relations (10.22), (10.23) show that each £-spectral function (E(t)I,I) of the operator A is a solution of
problem (10.17).

Conversely, assume that ¢(2) is the solution of the moment problem (10.17) and A’ = (4')* is multi-
plication by ¢ in Ly(do). Consider the self-adjoint linear relation

A={{fo{0},4 f ®c}: f eD(A),ceC} (10.25)

in a Hilbert space b = Ly(do) @ C with the operator part A’. We define the embedding i of the space
f = Cy[t] into b, setting

itF)=t*® {0} (0<k<n-1), (") =t"®co, (10.26)

where co = (s2n — Jgt*"do(t))!/2. By virtue of relations (10.22) and (10.23) the embedding i : § — f is
isometric, which enables us to consider A as an extension of the operator A with exit in h. o(t) is an £-
spectral function of A since o(t) = (Fa:(¢)I,I) and E;(t) = Ea ()P, where P is the orthogonal projection
in b onto La(do): _
o(t) = (Ez()LT) = (E4(ALT), £+ {I}.
The implications
A(0) = {0} =% ¢o = 0 == o(t) € V(s;R)

follow from (10.21), (10.23). Conversely if o(t) € V(s;R), then ¢; = 0 and relations (10.21) take the form
Al = (AT (0< k< n) Hence, | (A’) D § => A(0) L h => A(0) = {0} since the extension 4 is
minimal.

Thus, in order to describe all solutions of problem (10.17) it is necessary and sufficient to describe the

£-spectral functions o(t) of the operator A. On account of the relation Ay :=kerI's = A+ N we derive the

desired assertion from Proposition 10.1 and Corollary 8.2.
Remark 10.2. As shown in Remark 10.1, formula (10.7) for Wre(}) is implied by (8.22). In view of
- (10.13)~(10.15), identity (8.23) takes the form

b (Qn(’\)Qn+1(/‘) = Qn+1(N)@n(r) Qni1(A)Palp) — Qn('\)Pn+1(H)>
P\ Pat1(N)Qn(p) — Pa(N)@n+1(#)  Po(A)Pny1(s) — Prs1(A)Pu(p)

0 I
- (-1 0)
+ (1 —A) (— i;::l Iﬁk(/\)Qkk(,u,) E;“:O Pkf/\)PkZul) ) (10.27)

and coincides with the well-known Cristoffel identity [4, 6]. Note also that the general identity (8.23), as
well as the Cristoffel identity (10.27), are consequences of the Green formula.
3. Consider a truncated Stieltjes moment problem:

o o0
Sk = / thdo(t) (0<k<2n—1), s, 2> / t2"do(t). (10.28)
0 0

As is known [36, 38], problem (10.28) is indeterminate if and only if the sequence {s;}3™ is strictly positive
on (0,00), i.e., the sequences {sx}2", {sk+1}2""? are strictly positive. Following [38] we introduce the

Stieltjes polynomials
Pn-i-l(t) Pn(t)

Pn+l(0) Pn(o)

and their conjugated polynomials an(t) Q741(t). Here P (1), QF;,4+1(t) are normed by the conditions
P (0) = Q3,4 (0) = 1.
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Pn(t)

Pl(t) = O Pl (t) =D (10.29)




Proposition 10.2. Let the sequence {si}3™ be strictly positive on [0,00) and A be ¢ Hermitian operator
in b = Cp[t] of the form in (10.2). Then

(1) A is a positive operator;

(2) the triple II; = {C,T'},T}} with

P (0) (f1 P, )')7 N ;f = b‘nPn-i-l(O)(f: Pn) - CPu(O) | (10.30)

forms a BVS for the linear relation A* = {f = {f, Aof+cP,}: f € !j,c € C} such that A} :=kerT), = Ak,

[ L .
Aj :=ker'] = Ap;
(3) the corresponding Weyl function My()) and II; £-resolvent matriz Wi, ¢(\) take the form

__ P
M =R Loy
IR (- SCO I ACOAY
Waeld) “(—P;:L(A) L) ) (s

Proof. (1) The positiveness of the sequence {s;}3™ enables us to consider C,[t] as a Euclidean space
endowed with the scalar product (10.1). The positiveness of the operator A is a consequence of the property
of the sequence {si+1}2" 2 to be strictly positive.

(2) Clearly, the triple II; is a BVS for the linear relation A* and the relation ker Ty = A+ {0,e.} = Ar
holds. Further it is easy to see that \

(n) |
Az :=kerTy = {f, A0f+ (fs €n) IT;+E(§))} Er (0 A?)b - a*n) ’ (10'32)

where A((,") is a submatrix Ag of the form in (10.3), which can be obtained by removing from the matrix
Ay its last row and column,

fin = Gn + ba Pny1(0)/Pa(0) = —bp_1Pn_1(0)/Pa(0). (10.33)
In view of (10.4) Pa_1(0)/Pa(0) = —bn_; det A"/ det A(™; hence
det Ay = dn det AT — 2_, det A"V = 0. (10.34)

Equality (10.34) yields A; = Ak.
(3) Let fa = {h(A,2),AR(),t)}. Then we have

Ty fa = Pa(0) ™ (R(A,2), Pa(t))s = Pa(A)Pa(0)™" = P (M),

T3 fx = bnPas1(0)Pa(X) — b Pat1(A)Pa(0) = =Pt 1, (A). (10.35)

Hence we obtain relation (10.31) for M;(\); moreover, the above-mentioned coincidence A; = A is implied
by the equality P, ,(0) =0
Further, as in (10.16) we find

PG () = Pa0) (30 Qe ) = Pa0)7@ulh) = @R,

T3Q0°(A) = —bn[Q2n+1(A)Pa(0) + Prs1(0)@n(M)] = Q011 (A)- (10.36)
Formula (10.31) for Wrzg(A) is implied by Theorem 8.1.
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In the following theorem f/(s;~R+) stands for the set of all solutions of problem (10.28) and V'(s;R4)
stands for the subclass of o(t) € V(s;R4) for which the inequality in (10.28) is replaced by the equality
Sop = j:o t27do(t).

Theorem 10.2 [36]. Suppose that the sequence {s;}3™ is strictly positive on (0,00); Py (M) and
P 1()) are Stieltjes polynomials, QF,()) and QF, +1(X) are conjugated polynomials. Then the formula

*®do(t) _ Q3a(A) — T(N)@3a 11 ()
/o t=X " PL()- r(A)Pét.L(A) (1030

establishes o bijective correspondence between o(t) € V(s;Ry) and r()) € § = §(0,00). In this case
o(t) € V(s;Ry) if and only if
liTm yr(iy) = oo. : (10.38)
ytoo

Proof. Let A be multiplication by ¢ in § = C,[t], II; = {C,I'},I'}} be a BVS of the form in (10.30).
Application of Propositions 10.2 and 8.10 enable us to prove Theorem 10.2 in the same way as Theorem
10.1. We clarify only the origin of condition (10.38). Owing to the fact that A; = Ak is an operator and
limyteo iyM(iy) = C < oo [see (10.31)], the M-admissibility condition for the function 7()) takes the form

liTm y'l(r(iy) + M(iy)) " =0 <= liTm 1y(r(iy) + M(iy)) = 0 liTm y7(iy) = co.
yToo yloo yToo

Remark 10.3. A description of all solutions of the Stieltjes moment problem was obtained by Krein
[36, 38] (canonical solutions were described earlier by T. Stieltjes).

4. In this section, we describe solutions of problem (10.17) that have no mass in given intervals.

Let a sequence {sk }2™ be strictly positive on R\ (a, 8). It is well known that this condition is equivalent
to the strict positiveness of the sequences {s¢}3" and {s}}2"~? with

S: = Sk42 — (a + ,B)5k+1 + a,BSk. (1039)

The positiveness of the sequence (10.39) implies that an operator A of the form in (10.2) acting in h = C,[t]
has a spectral gap (a, 8) (see [79]).

Let f(z) be a function holomorphic on a domain G, containing the segment [a,S]. Denote by
nullg(,)(a, B) the number of its zeros on the interval (@, 8). The notion of nully(,)[e, 5] has the same
meaning with respect to the segment [a, 3].

Lemma 10.1 [79]. Suppose that A is a Hermitian operator, n+(A) =1, and one of 1ts Weyl functions
M(}) is meromorphic with noncancelable representation M(A) = fi(A)/fa()A). Then the operator A has a
gap (e, 3) if and only if

(a) 6 := f1(B)fo(e) — fr(a)f2(B) 2 0; (10.40)

b) either nullg,(yy(a, 8) =0 or nullg,(y)la, f] = 1.

The set Ex 4o, B) is infinite if and only if inequality (10.40) is strict.

Proof. In accordance with the Calkin theorem [34], the property of an operator A to have a spectral
gap (@, B) is equivalent to the existence of a self-adjoint extension A = A € Ex 4 with the gap (o, 8)(<=
Ex 4(a, ) # @). The last condition yields that some Weyl function M () of the operator A is holomorphic
on (a,3). In view of the connection M(A) = (X131 M1(A) 4+ X12)(X21 M1 (A) + X32)~! between M()) and
M;(A), this condition is equivalent to conditions (a) and (b) for M(A). O

Corollary 10.1. Let a sequence {si}2™ be strictly positive and A be multiplication by t in h = C,[t].
If some of its Weyl functions M()) are meromorphic on [a, B] with & noncancelable representation M()) =
Fi(N)/ f2(X), then the positiveness of the sequence {s;}3" 2 of the form in (10.32) is equivalent to conditions
(a), (b) of Lemma 10.1, and its strict positiveness is equivelent to conditions (b) and § > 0.

If the sequence {s}}2"~? is strictly positive, then via (10.6) and Corollary 10.1 we have

A= P,,+1(,H)P,,(a) - P,,_H(a)Pn(ﬂ) > 0. (1041)
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‘This enables us to define quasiorthogonal polynomials

Py = - L|Bri0) Pa()

Z Pn+1(.a) Pn(a)v ’ Pp(/\)'=bn P"-H(,\) P"(A) (10'42)

Pn+1(13) Pn(ﬂ)
and their conjugated polynomials Q,(X) and Qg()A). Note that polynomials P,()) and Pg()) are char-
acterized by the conditions Py(a) = Pg(B) = 0, —Po(B8) = Qs(B) = 1 in the set of quasiorthogonal
polynomials. ‘ o ’

Proposition 10.3. The following assertions are equivalent:

(2) a sequence {si}3™ is strictly positive on R\ (e, 8);

(b) the sequences {sk}3", {s}}2"~2 are strictly positive;

(c) Pa(z) <O0Vz € (a,B];

(d) Ps(z) <0 Vz € [a,B).

In this case the following statements hold:

(1) the triple II; = {C,TY,T5} in which for all f={f,Aof +cP.}

DYf = o (Pasa(@)(fiP) = cPu(@)},  T4F = cPa(B) = baPrna(B)(S, P, (1043)

is a BVS for the relation A*, AY :=kerI'} = Aq; AY :=ker'j = Ap;
(2) the corresponding Weyl function M()) and II;L-resolvent (£ = {CP,}) matriz Wi, e(}) take the

form ‘
Pa(}) —Qa(A) —Qp(A
My(A) = Ps(n)’ Wi,2(X) =( Pa(f\)) P,sAzE\)))' (10.44)

Proof. In order to prove statement (1) it is sufficient to check the relations ker 'y = Aq, ker['y = Ag.
In the case Pp(a)P,(8) # 0 we obtain from (10.5), (10.6), and (10.43)

ker '] = ker(I'; — M(a)l'), ker Iy = ker (I'y — M(B)T2). (10.45)

The desired assertion follows from Proposition 4.6 [see (4.26)]. In the case Pn(a)Pn(8) = 0 one should to
apply relations (4.25). Note, however, that the equality kerI'j = Ap is implied by the relation

det(AY — B) = (dn — B)det(A™ — 8) — b2 _, det(A" ™ - B) =0

(Gn = Gn + ba Pas1(B)Pa(B) ™),

which can be proved in the same way as (10.34).
Further, relations (10.9), (10.10), and (10.43) yield

. . 1 _ .
DY Fa = TYB" () = 2o (b Pari(@)Pa(X) — buPass(MPa(@)} = Pa(Y),  T3fr = Po(3)
Therefore, the Weyl function M()) takes the form in (10.44). Analogously, (10.16) and (10.43) imply

rQ*(\) = %[Qn()‘)Prﬁl(a) = Qurni(MNPaMN] = Qa(d),  T3Q°(X) = Q).

In accordance with Theorem 8.1, we obtain formula (10.44) for Wi, 2(A).

The equivalence of conditions (a)-(d) is implied by formula (10.44) for Mz(}), the equalities Py(a) =
Pg(B) =0, and Corollary 10.1. O

We denote by V(s; Em, ) the set of all solutions o(t) of the moment problem (10.17) having, in given
intervals (aj, 8;), exactly s; points of increase. Here

s={s)3",  x={5}re€2?, Cm=J@h) Em=R\Gm.

j=1
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In particular, 17(5; En) = T?(s;E,,.;O) consists of measures do(t) that have no mass in intervals (aj, 8;)
(1<j<m) .
- Let V(s; Em; ») be the subclass of solutions o(t) € V(s; Enm; 5) for which equality (10.18) holds.
Theorem 10.3. Suppose that {s;}3™ is a sequence strictly positive on R\ (o, B); Pa(}), Ps()) are
polynomials of the form in (10.42); Qa()), Qa()) are their conjugated polynomials; By = R\ (a1, ;). Then

the formula '
/ do(t)  Qa(A)r(A) +Qs(N) (10.46)

T=X " Pa(AN)T(N) + Pa(N)

establishes a bijective correspondence between o(t) € V(s; E;;5n) and 7(A) € S5*(a,B). In particular, the
following equivalence holds:

do(t) € V(s; Ey) < ‘r(/\) € S(e, B). ' (10.47)
In this case we have: (1) if Po(B) # 0, then
_Pa(e)

da(t) € V(s; Ey;511) <= 1(00) + ———— b APA(B) # 0; (10.48)
(2) i Pa(8) = 0 (=> Pa() #0), then
do(t) € V(s; Eq, ) < .r}lTElo y~lr(iy) = 0. (10.49)

One can easily derive the proof from Theorems 4.2, 10.1, and Proposition 10.3.
In order to formulate the next theorem, we introduce the required notation, setting for all j € Z,
7 <n,

~bn | Pa(A)  Ppyi(N) G) —bn | Pa(A)  Pat1(A)
PUY(A +1 PP () = + 10.50
()= — B | Pa(Bi)  Pnia(B) | (V)= 3 a;j | Pn(@j)  Pny1(aj) (10.50)
and, further, for j = (j1,52,...,Jr) = (4", Jr) €ZL, Wwithm > j1 > j2 > ... > 5, > 1
' » (' P
PPy = | BP0 B0 | p gy 1| BEO) BR[|
A~ B | PY (85.) Pn.zl-l(ﬂjr) = . | Pa’ (ej,) P, +1( @j,)

Theorem 10.4. Suppose that the moment problem (10.17) is solvable and indeterminate on each of
the sets R\ (a;,8;), 1 <j <m. Then it is solvable on En = R\ UTL (e, B;) (i-e., V(s; En) # @) if and

only of

POYBLY=0  Vi=(1da-rir) €8L, m2i>..>j21,  r22 (10.52)

Further, problem (10.17) on Em is indeterminate if and only if all the inequalities in (10.52) are strict and
determinate (i.e., there exists a unique solution o(t) € V(s;Ep,)) otherwise.
In the fa'rmer case, all solutions a(t) € V(s;Em, ») are described by formula (10.19), in which 7()) € R

and
T(/\) — Pn(aj)T(/\) + ann+1(aJ-)
! Pn(ﬂj)'r(’\) + ann+1(ﬂj)

€ er,- (aj,ﬂj).

In particular

o(t) € V(s; Em) <= 1i()) € S(aj, B;) V7 <m.

In this case the following equivalence holds:

yToo
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The proof of the theorem as well as a general description of the case V£(Enm; ») of £-resolvents of an
operator A with gaps (a;,8;) (1 < j < m) will be given in another paper. Note only that the second part
of this theorem (the description of all solutions o(t) € V(s; Em, ») can easily be derived from Theorem 10.1.

Remark 10.4. One can formulate a solvability criterion and indeterminacy conditions of problem
(10.17) on each of the sets R\ (¢;,8;) (1 £ j < m) in terms of the orthogonal polynomials, making use
of the Weyl function M(A) = by Pat1(A)Pa(A)™? [cf. (10.6)]. By virtue of Corollary 10.1 these conditions
take the form (for each j < m):

(2) P +1(B]r) > 0 <> Pni1(Bj)Pn(@;j) — Pat1(@;j)Pa(B;) > 0, (10.53)

(b) nullp, (xy(ej,B8;) = 0 or nullp, (x)(@j,8;) = nullp, (x)le;, B5] = 1. (10.54)
Thus, the solvability criterion for problem (10.17) on E,, = R\ UP*(a;j, 8;) can be expressed by mequalltles
(10. 52), (10.53), and conditions (10.54).

For the full (non-truncated) moment problem, Theorems 10.3, 10.4 and the corresponding abstract
results on a densely defined Hermitian operator A with gaps (a;j, 8;) were proved by the authors in [20,
21, 79] Note, finally, that the problem of describing all solutions of a one-dimensional, as well as a
multidimensional, moment problem, subject to prescribed localization condltlons, was posed by Vladimirov
(see, for example, [11]). _

5. Consider the Hausdorff moment problem

sk = / bt" do(t) (0<k <2n), | | (10.55)

and denote by V'(s;[a, b]) the set of its solutions.
Suppose that the sequence {s;}2" is strictly positive on [a,}], that is, the two sequences {si}Z"
{5}2"~2 are strictly positive, where

sk = (a+b)sk+1 — sk42 — a - bsi. (10.56)

In this case zeros of the orthogonal polynomials Px(A) are simple and are contained in [a, b]. Following [36,
38] we define the polynomials

-3 243

and their conjugated polynomials Q(A), Q()). Since P(a) = P(b) = 0 the quasiorthogonal polynomials
P(X), P()), Q()), and Q()) have simple zeros which belong to the segment [a, 8]. Therefore, the following
inequalities hold:

Pay1(A)  Pa(}) - (10.57)

PO= 1200 Pud)|’

Pa()>0,  (=1)*Pn(a) >0, (10.58)
P(b) = (~1)*[Pat1(b)Pn(a) — Pa(b)Pat1(a)] = (—1)"*' P(a) > 0. (10.59)

Note also that for a sequence {sx }2™ nonnegative on [a, b] the equality P(b) = P(a) = 0 is equivalent to the
property of {s;}2"~2 to be singular positive.

Proposition 10.4. Let a sequence {sx}3" be positive on [a,b], A be a Hermitian operator of the form
in (10.2) on §h = C,[t], £= {CP}. Then we have:

(1) a <AL

(2) the set I# = {C,T* T4}, in which for all § = {f, Aof + cP,} € A*

. . br,
LY f = k[Pa(b)b7 ¢ — Pasa(B)(f, Pa)l,  THF = (=1)"k[Pa(a)by’c — Paga(a)(f, Pn)l, k= 0)°
| (10.60)
forms a BVS for the linear relation A*, kerT% = A,, ker['y = A,;
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(3) the corresponding Weyl function, II* £-preresolvent, and II# L-resolvent matrices take the forms

_P)
PP (kPO
s = (gdg_(;»zl _gEar ) o
_ (20 -Q()
Wi =4 (50 Ty )

~ Proof. (1) The inequalities a < A < b are implied by the property of the sequence {s;}3"~2 of the
form in (10.56) to be positive.

(2) Since P(b) > 0 the constant k = 1/b,P(b)~1 and, therefore, the mappings ¥ (j =1,2) in (10.60)
are well defined. The straightforward calculations yield that the tnple n* = {C,I'} I‘" } is a BVS for A*.
On account of (10.5) and (10.6) the mappings I'{, T’y may be rewritten (provided tha.t Pp(a)Pr(b) #0) in
the form

T¥ = b7 kP, ()T — M(B)[a], TP = (—1)"%“‘%1 — M(a)Ta). (10.62)

Hence, owing to Proposition 4.6, we obtain that kerI'' = A4;, kerT'4 = A,. In the case P,(a)P,(b) = 0 the
last equalities follow from Corollary 4.5.
(3) Relations (10.9), (10.10), and (10.60) yield

% fx = TYP*(X) = k[Pu(b)Pat1(A) = Payar(b)Pa(M)] = EP(N),

T fr = T5P*(A) = (=1)"k[Pa(a)Pat1(}) = Pas1(a)Pa(N)] = kP(D). (10.63)

Equalities (10.63) imply that formula (10.61) for the Weyl function M,(}) holds. In the same way we
obtain from (10.15) and (10.60)

Ti0*(X) =kQ(\),  T4Q*(R) =kQ(N). (10.64)

Formula (10.61) for Wi« g() is implied now by (10.62), (10.63), and (8.22). Equality (10.61) for Ang(A) is
obvious.

Remark 10.5. A similar statement for the BVS II™ = {C,I'¥, T} = {C,-T%,T}} also holds. In
this case we have Mp(A) = —P())/P(}),

~P(A)P(AN)™ (kQ(A)? E e
(kQ(A)™ ~TQ’(,\)F(,\)-1)’ WH“S('\)—(ﬁ(,\) —E_(A))' (10.65)

Note also that the Weyl function M,(A) = P(A)/P()) (Mm(X) = —P(X)/P(})) coincides in the case
[a,b] = [—1,1] up to the multiplier (—1)*P,(d)/Pn(a) ((—1)"*1P,(a)/Pn(b)) with the Q,-function (Qum-
function) of a Hermitian contraction A [cf. (3.73), (3.74)].

Remark 10.6. Relations (10.61) and (10.65) yield, in particular,

(A — o) Moo, e0) = ~Q(@)P(5)™Y, (s —2)leo,e0) = —Q(@)P(a)".  (10.66)

Therefore, from the extremal properties (3.69) of the extensions A, and Ay (A—1 = A,, A1 = Apm in the
case [a,b] = [—1,1]) follows the well-known inequalities of Markov [38]:

Q) _ [tda(t) _ [*dolt) _ [do(t) _ Qla)
B(x)—lz—ts_/az—ts uz—t_?(:l:) V-’I:ER\[a,,b], (1067)

Anag(N) = (

which hold for all o(¢) € V([a,b];s), where s = {s;}3", o(t) = (Ea,(t)LI), 7(t) = (E4,(2)L,1) are the
lower and the upper main distribution of mass.
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Inequalities (3.69) applied to the vectors fx = t* yield more general inequalities (z € R\ [a,8],0 < k¥ <

/a"t'”‘dg(t) < /a"t”da(t) < /:tz"dﬁ(tt) Vz €R\ [a,8]. | (10.68)

n):

z—t z—1t z -

On the other hand, they follow from (10.67) and the obvious equalities

"tzkd&'(t) ) 6(/\) _ tzkda(t) , Q()) _2k—1‘ ;
,[7t7““kﬁs~[ o A pgy = 2 Vemnin

Remark 10.7. It is easy to see that the resolvent matrix Wi g(A) of the form in (10.59) is symplectic.
Therefore, .

PR -PNRN) = = ‘%Q ! bl)n[ Put1(8)Pa(@) = Pa(b)Pas1(a)]. (10.69)

One can show that identity (10.69) is equivalent to identity (2.11) from [38]. Note also that the equality
det Wiie()) = 1 for the symplectic matrix Wig(A) of the form in (10.7) yields the Liouville-Ostrogradskii
formula.

Making use of Propositions 3.7 and 10.4, we obtain the following result of Krein [36] (see also [38]).
Proposition 10.5 [36]. Let a sequence {sk} be strictly positive on [a,b]. Then the formula

bdo() PN+ TP
[23- 0 + 1) (10-70)

establishes a one-to-one correspondence between o(t) € V(s;[a,b]) and (A) € S[a, ).
A criterion of existence and a description of solutions of the Hausdorff moment problem with gaps
(@j,B8;) (1 <j < m)will be given in another paper (cf. [24]).
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