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L. N. Kozeratskaya UDC 519.8 

The present article is related to [1-7], and it examines stability of vector optimization problems of the form 

(C, X) : "max"  { Cx: x E X}, (1) 

tl 

where C = [cu]Lx n is the matrixofcoefficients ofallparticular linear efficiency criteria ct (x) = ~_~ clyx], c t = {ca, c a . . . . .  Cl,~) 
j = l  

E R n, l = 1 . . . . .  L, L is the number of criteria, X is a bounded set of arbitrary structure (possibly discrete) in R n. 

Sec. 1 presents the necessary definitions and notation. Here stability and P-stability are understood in the sense of 

Hausdorff upper semicontinuity of certain set-valued mappings. 
See. 2 proves that our problem is P-stable in the decision space under changes of the criterion coefficients. Necessary 

and sufficient conditions of stab!lity under changes of criterion coefficients are proved, and simple sufficient condkions are 

given. For the problem with an unperturbed feasible region in the initial-data space, we identify the set of initial-data matrices 
for which the problem is stable in the decision space under changes in the criterion coefficients. We show that this set is 

everywhere dense in the initial-data space. 
See. 3 examines the equivalence of the concepts of stability in the decision space and in the space of alternatives. We 

show that for the vector mixed-integer optimization problem these concepts are not equivalent. Some sufficient conditions of 

their equivalence are given. We also prove necessary and sufficient condkions of stability of problem (1) in the space of 

alternatives under changes in the criterion coefficients. 
See. 4 considers yet another definition of stability (/-stability), which is based on Hausdorff  lower semicontinuity. In 

particular we show that the set of initial-data matrices C E R Lxn for which the problem (C, X 0) is not/-stable in the decision 

space under changes of criterion coefficients is of  measure zero for L _> n. 

1. A solution of problem (1) is some subset of one of the following sets: the set II(C, X) of all Pareto-optimal (efficient) 
solutions, the set P(C, X) of semi-efficient solutions, or the set S(C, X) of strictly efficient solutions. 

Recall [8] that the point x* E X is called efficient (or Pareto-optimal) if -x  E X: Cx >_ Cx*, Cx ~ Cx*; k is called 
weakly efficient (semi-efficient, Slater-optimal) i f - 'x  E X: Cx > Cx*; it is called strictly efficient i f - x  E X: x ~ x*, Cx >_ 

Cx*. Clearly S(C, X) c H(C, X) ___ P(C, X). 

Consider the convex cone K = {x E Rn: Cx >_ 0}, which can be represented as the set union ~K --- KoU K~ t.J K 2 , 

whereK 0 = {x E Rn: Cx = 0}, K 1 = {x E Rn: Cx > 0}; K 2 = K/(K 0 U K1). Then x :E r I (c ,  x )  r (x + K 1 LI K2) I'1 X = {x}; 
x E P ( C , X )  c , ( x  + K  1) N X =  {x}; x ~ S ( C , X ) ~ ( x + K ) N X = { x } .  

Let r(C) be the rank of the matrix C. Recall that K 0 = {0} ~ r(C) = n. We have the following obvious proposition. 
Proposit ion 1. If r(C) = n, then II(C, X) = S(C, X); if K 1 = ~ ,  then P(C, X) = X; if K 2 = ~ ,  then P(C, X) = 

I, 
II(C, X); if there exist nonnegative real numbers oq,~2 .... .  o~z, that are not all zero at the same time and such that,  ~ akc k '= 0 , 

k = l  

then P(C, X) = X; if r(C) = 1, then K 2 = ~ and P(C, X) = H(C, X). 

To the problem (C, X) we associate a family of perturbed problems {(C(u), X(u))}, where u is the perturbation 

parameter, u E R k (k > 1), so that the initial problem corresponds to the initial value of the perturbation parameter.  Here C(u) 
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n 

= [Cij(U)]Lx n is the matrix of coefficients of all particular linear efficiency criteria ct(u, x) = ~ ,  cO(u)x j, co(u ) E R n, l = 
1=1 

I . . . . .  L , L  is the number of criteria, X(u) is a bounded set in R n. For instance, we may take u = C E R L (L = k) when X(u) 

= X, and also assume that the vector u = (C, A, b) E R Lxn x R mxn x R m ifX(u) = X(A, b) = {x E Rn: Ax < b}, where 

A is an m x n matrix from R mxn, b is an m-vector from R m. 

The theory of  stability analysis of optimization problems is based on continuity properties Of the set-valued mappings 

II(u), S(u), P(u), where II: u--, II(u) = II(C(u), X(u)); S : u -~ S(u) = S(C(u), X(u)); P : u --, P(u) = P(C(u),  X(u)), and also 

the mappings ~ n(u) = ~(C(u ) ,  II(C(u), X(u)), ~? (u )  = r163 P(C(u), X(u))),  r163 = 0s S(C(u), X(u))) ,  where 

~ : ( c , Q )  -, { y=  Cx ~ R L  I x ~ Q.}. 

The vector u ~ R ~ is an element in the initial-data space. The sets X(u), I I (u) ,S9u) ,  P(u) are subsets of  the decision 
space R n and elements of  the set 2 Rn (the set of all subsets of the set Rn), while the sets ~ (C(u), II(C(u), X(u))) I~(C(u), 

P(C(u), X)),  r (C(u), S(C(u), X(u))) are subsets of the space of alternatives R L and elements of the set 2 RL. The notion of 

continuity needed for stability analysis of  optimization problems requires the definition on the sets 2 Rn and 2 RL of topologies 

induced by the topologies of  the decision space and the space of alternatives, respectively. In what follows, any real p- 

dimensional space R p is treated as a norrned space. We assume that the topology in the relevant spaces is induced by the metric 

d(x, y)  = Ilx - y l l .  

Let us recall some basic definitions [6, 8-11]. 

Given are two normed spaces U and V. A mapping P which associates to every point of  the set U some subset of the 

set V is called a set-valued mapping of U to V. 

A set-value mapping I '  at the point u ~ E U is called: 

a) Berg6 upper semicontinuous (USC) if for every open set fl such that r (u  ~ _c f~ there exists 6 = 6(~2) > 0 such that 

r(u) _ f~ for every u E O ~ ( u  ~ (here O,5(u ~ = {u ~ U : ,11 u - u ~ 11 ~ 6}); 

b) Berg6 lower semicontinuous (LSC) or open if for every open set fl such that I'(U ~ Cl f2 ;e ~ there exists ~ = 6(f~) 

> 0 such that r(u) n fl ;~ ~ for every uEO~{u~ 

. c) Hausdorff USC if for every e > 0 there exists 6 > 0 such that F(u) _c O.(F(u~ fo r  every uEO~(u~ where 

o : ( . o ) )  = v: inf / l lx  - yll -<- e:y E F(u~ 

d) Hausdorff LSC if for every e > 0 there exists ~ > 0 such that F(u ~ -- O~(F(u)) for every u E O,~(u~ 

e) Berg~ (Hausdorff) continuous if this mapping is Berg6 (Hausdorff) USC and LSC at the point u ~ E U; 

f) closed if for any two sequences {Un} and {xn} such that u n ~ u ~ and x n ---, x ~ the inclusion x n E F(u n) implies the 
inclusion x 0 E F(u0). 

We now give some necessary elementary properties of set-valued mappings. 
1. Berg6 USC ~ Hausdorff USC. 

The converse is not true: in general, Hausdorff USC does not imply Berg6 USC. 

2. Hausdorff LSC = Berg6 LSC. 

In general, Berg6 LSC does not imply Hausdorff LSC. 

3. If  the mapping F(u) is closed at the point u ~ E U, then the set F(u) is closed at this point. 

4. If  the mapping F(u) is Hausdorff USC at the point u ~ E A and the set F(u ~ is closed, then the mapping F(u) is 
closed at the point u 0 E U. 

5. If the mapping F(u) is closed at the point u ~ E U and V is a compacmm, then F(u) is Berg6 USC at the point u ~ 
E U .  

6. If  the mapping F(u) is Hausdorff USC at the point u 0 E U and F(u 0) is a compactum, then F(u) is Berg6 USC at 
the point u ~ E U. 

7. If  the mapping F(u) is Berg~ LSC at the point u 0 E U and the closure cl F(u 0) is a compactum, then F(u) is 
Hausdorff LSC at the point u 0 E U. 

For the vector optimization problem, stability in the decision space is understood in the sense of  Hausdorff upper 

semicontinuity of the set-valued mapping H(u) that characterizes the dependence of the set of  efficient points on the initial data; 

stability in the space of  alternatives is understood in the sense of Hausdorff upper semicontinuity of the set-valued mapping 

Grt(U) that characterizes the dependence of the components of the vector criterion on the Pareto-optimal set on the initial data. 
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Stability in the decision space implies that, under small perturbations of initial data, for every efficient solution of the 

perturbed problem there is a sufficiently close solution of the initial problem. 
Stability in the space of alternatives implies that, under small perturbations in the initial data, for any combination of 

criterion values on the Pareto-optimal set of the perturbed problem there is an efficient solution of the initial problem with a 
sufficiently close vector of criterion values. 

For a single-criterion problem, an analog of the notion of stability in the solution stable is stability by solution, and 
an analog of the notion of stability in the space of alternatives is stability by the functional. 

Stability by the functional implies that sufficiently small perturbations in inkial data lead to sufficiently small changes 

in the functional values. 
Stability by solution implies that, under sufficiently small perturbations in initial data, for any optimal solution of the 

perturbed problem there is a sufficiently close optimal solution of the initial problem. 

Other definitions of stability using various notions of continuity are also used in the literature. Following [7], we can 

introduce for (1) the notion of P-stability, which replaces the set of efficient points with the larger set of weakly efficient points. 
DeFinition 1. Problem (1) is called stable (P-stable) in the decision space if for every e > 0 there exists ~ > 0 such 

that for any vector u E /~  and any matrix C(u) E R Lxn satisfying the inequalities 

I l u l l < 5 , 1 1 C ( u ) - C l l < ~ ,  (2) 

the set II(C(u), X(u)) of Pareto-optimal solutions (the set P(C(u), X(u)) of semi-efficient solutions) of the problem (C(u), X(u)) 
is nonempty and is included in the e-neighborhood of the set II(C, X) (the set P(C, X)), 

n(c(u),  X(u)) c o~n(c, x) (P(C(u), x(u)) c_ o~P(c, x)). (3) 

Definition 2. Problem (1) is called stable (P-stable) in the space of alternatives if for every e > 0 there exists 5 > 

0 such that for any vector u E / ~  and any matrix C(u) E R Lxn that satisfy inequalities (2) the set of criterion values ~Ii(U), 

iI(u) = ~(C(u), H(C(u), x (u))) (~p(u),  ~/,(u) = ~(C(u), P(C(u), X(u))) of the problem (C(u), X(u)) is nonempty and 
is included in the e-neighborhood of the set ~ii(t~p), 

l~n(U ) c Oe~ n (~,(u) c_ O~6;p). (4) 

DeFinition 3. Problem (1) is called stable (P-stable) in the decision space under changes in criterion coefficients if for 

every e > 0 there exists 6 > 0 such that for any matrix C(5) ~ R z.• satisfying the inequalities 

II C ( 5 ) -  C II < 5, (5) 

the set II(C(5), X) of Pareto-optimal solutions (the set P(C(~), X) of semi-efficient solutions) of the problem (C@, X) is 

nonempty and is included in the e-neighborhood of the set II(C, X) (the set P(C, X)), 

n(c(6),  x)  c_ o ,n (c ,  x) (e(c(6), x)  c_ o,p(c,  x)). 

Def'mition 4. Problem (1) is called stable (P-stable) in the space of alternatives under changes in criterion coefficients 
if for every e > 0 there exists ~ > 0 such that for any matrix C(~i) E R I'xn that satisfies inequalities (4) the set of criterion 

values ~ 11(6), ~; 11(6) = ~ (C(~), II(C(6), X)) (i~p(~i), ~p(6) = ~; (C(~), P(C(6), X)) of the problem (C(~), X) is nonempty 
and is included in the e-neighborhood of the set ~ I I (~  p)- 

2. It is shown ha [7] that problem (1), where X is a bounded set in Z n, is always P-stable under changes of criterion 
coefficients. We will prove a similar proposition for problem (1) in the general case. 

Proposition 2. If the set X 0 is bounded, then the set-valued mapping P(C) = P(C, X~ is a closed mapping. 

Proof. Consider any two sequences {Cn} and {xn} such that C n ~ C 0, x n --, x 0, and we have the inclusion xnEP(Cn). 
We will show that x 0 E P(C). If, by contradiction, x 0 ~ P(C~ then ax' E X such that COx ' > COx ~ Since C n .--, C ~ 
inequalities (5) imply the existence of N > 0 such that for n > N we have the inequality Cnx' > Cnx n. This contradicts the 

inclusion x n E P(Cn). 
COROLLARY 1. If X 0 is a nonempty bounded closed set in R n, then the mapping P(C) = P(C, X~ is Hausdorff 

upper semicontinuous, i.e., problem (1) is P-stable under changes in criterion coefficients. 
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Proof follows directly from properties 5 and 1 of set-valued mappings. 

C O R O L L A R Y  2. If X is a nonempty bounded closed set in R n and II(C, X) = P(C, X), then problem (1) is stable 

in the decision space under changes in criterion coefficients. 
Proof.  By Corollary 1 problem (1) is P-stable, and thus for every e > 0 there exists di = 8(e) > 0 such that for any 

matrix CO) ~ R Lxn satisfying inequalities (5) the set P(C(6), X) of semi-efficient solutions of the problem (C(6), X) is included 

in the e-neighborhood of the set P(C, X), where/ ' (C(6),  X)) _c O,P(C, X). Since H(CO), X)) G P(C(5), X)) and by assumption 
cl II = P, we have c/II(C(tS), X)) G P(C(5), X) ~_ OeP(C, X ) =  OeclII(C, X)) ~_ O2eH(C, X)). Thus, for every e > 0 there 
exists/~ = ~(e/2) > 0 such that for any matrix C(6) ~ R Lxn satisfying inequalities (5) the set H(C(5), X) of  efficient solutions 

of the problem (C(tS), X) is included in the e-neighborhood of the set I'I(C, X), rI(c(d),  x ) )  _ Oell(C, x) .  

To prove the converse, we have to consider the family of problems {(C~, X)}. 
The matrix Cr is constructed by perturbing each row Q, k = 1 . . . . .  L, of the matrix C in the following way: 

L 

~ = ~ - ~ , ,  o = ~ ]  ~,~, ~,~>o, ~=1  ..... L. 
k = l  

Here ~ is a numerical parameter. 

L 

Consider the cone K* = { x ~ R ,t : x = ~ 2~c~, 
k = l  

L 

v E ri K*. For definiteness, we take ~] /~  = 1. 
k=l .  Consider the cone 

Kj = {-: 

The following properties 

1) V~:~  

2) V '~>  

2 k ;* 0, k = 1 . . . . .  L} ,  which is the conjugate of K. Clearly [12], 

R":c~x=o}i K/={xeR":C,x>0}; K~=Z,:,\(K(~UZ,:t'). 

of these cones are actually proved in [5, 7]: 

[ 0 , 1 1 : K r ~ K  ; 

O : K r N K C - K  1 U K  0 ; 

3) v ,  e R:Ko--- g~; 
4)  V~ ~ 0:K--- KT; 

5) V-~ <O:KC_K~UK~; 
6) Vr  <O:KNKgC-Ko;  

7) q q , r  2 ~ [ -  | 1), q < r 2 : g _ |  = { x ~  R " : ~ c ; , 0 }  __ K~ ,_K, , .  

The following proposition holds for any nonempty set X. 
Proposit ion 3 [7]. V r < 0 : P(C v X) C_ l'I(C, X). 

Proposition 3 leads as a corollary to the well-known folding property [8]. 
C O R O L L A R Y  3. v z < 0 ~' v E r/K*: argmax {vx: x E X} c_ p(cr ' X) c II(C, X). Moreover,  v e > 0 3 fi > 

L 

0 such that for 11 C(~) - C [1 ~ ~ L(c~) = ~ /zkct(~ ), argmax {r.(c~)x : x E X} _C O, argmax {vx : x E X} C_ OeP(Cr, X) C_C_ 
k = l  

o~(c, x). 
Proof. The first chain of inclusions in the corollary follows directly from Proposition 3. Now, by Proposition 1, for 

the problem (C_o*, X): max {vx: x E X} we have {vx: x E X} = P(C_r X) = H(C_O*, X). By Corollary 1, the problem 
(C_o., X) is P-stable, and therefore the second chain of  inclusions holds. 

Proposition 4. V , e  (0, 1) : P(C, X) ~ H(C,, X). 
Proof.  Let x E P. Then (x + K 1) n X = {x}. We will show that x E I I (C r, X), i.e., (x + K1 r O K2 r) N X = {x}. 

Indeed, Kj ~ O K~ = K~\K~}. By property 3 of perturbed cones, K o c Ko r. Therefore, K,\Kg C_ K T \KO. By properties 1, 2 

of perturbed cones, for vr  E (0, 1) Kr c K I U K o. Hence it follows that KT\K ~ c K T \K  o C K l . Then (x + Kit O K2*) N 
X c (x + K 1) N X = {x}. We have thus shown that x E H(C r, JO. 

Proposition 5. If  problem (1) is stable in the decision space, then cl FI(C, X) = P(C, X). 
Here no additional constraints are imposed on the set X. 
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Proof. By contradiction assume that problem (1) is stable, but axe  P(C, X)\cl II(C, X). Since x f~ cl II(C, X), there 

exists ~ > 0 such that Of[x} (7 cl 1-I(C, t') = C). By Proposition 4, v ~- E(0, 1): P(C, X) ~_ FI(Cr, X). Let C(5) = C~. Recall 

that C7 = C - ~-V, where V is the L x n matrix with each row equal v, II c~ - c I I  = ~ U vii. ~f 

ro(~ ) = min{a(~) / II V II, 1}, (6) 

then by stability of problem (1) v r  E (0, to(e)): H(C r, X)) c OeH(C, X), and from the last two inclusions we obtain that P(C, 
X) c O~H(C, X). Therefore for x E P(C, X) \ci II(C, X) there exists x' E Os{x} (7 II(C, X). A contradiction. 

Corollary 2 and Proposition 5 directly lead to the following assertion. 
Proposition 6. If X is a nonempty bounded closed set in R n, then problem (1) is stable in the decision space under 

changes of criterion coefficients if and only if clH(C, X) = P(C, X). 
Let us now state some simple sufficient conditions of stability in the decision space under changes of criterion 

coefficients. 
Proposition 7. Let X be a nonempty bounded closed set. Assume that at least one of the following conditions is 

satisfied: 

I) K 2 = o ,  

L 

2) there exist nonnegative real numbers cq ,c( 2 ..... o~ L not all of which are simultaneously zero such that ~ akc k ~= 0 , 
k = l  

3) r(C) = 1. 
Then problem (1) is stable in the decision space under changes in the criterion coefficients. 

Proof follows directly from Propositions 1 and 6. 
Proposition 8. If X is a nonempty bounded closed set, then there exists r o > 0 such that for v r  E (0, r o] the problem 

(C 7, X) is stable in the decision space under changes in criterion coefficients. 

Proof. By Corollary 1, for v e > 0 3~(~) > 0 such that for ~ < ~(~/2) we have the inclusion P(C(~), X)) c__ Oe/2p(c, 

X). By Proposition 3, w- E (0, 1): P(C, X) c_ H(Cr ' X), therefore Od2P(C, X) ~_ Oe/2II(C r, X). If ~'o = to(el2), where to(d2) 
satisfies (6), then Vr E (0, r0(~/2)): P(C r, X) ~ Od2P(C,X) c_ Oe/2H(Cr, X) and O~/2P(Cr, X) C_ O,II(C~, X) . By Corollary 

1, for ve > 0 3~l(e) > 0 such that for ~ < ~}l(e) we have the inclusion P(C~(5), X)) c Od2P(Cr, X). Hence it follows that 
p(CT(c) ), X)) c_c_ 0 ~I1 (C~, X) . Since n(cr(,5), X)) _.c P(C~(c)), X)), we have [l(C~(d), X)) C O~II(C~, X). Q.E.D. 

Consider the space R Lxn as the space of initial data, u = C E R Lxn, and identify in R Lxn the set G(X ~ of initial-data 

matrices C for which the problem (C, X ~ is stable in the decision space by the vector criterion. 
COROLLARY 4. cl G(X ~ = R Lxn . 

Thus, the set G(X ~ of all initial data of vector optimization problems (C, X ~ of fixed dimension with a fixed feasible 
region that are stable in the decision space by the vector criterion is everywhere dense. 

3. Stability of linear programming problems has been studied in considerable detail [13]. Necessary and sufficient 

stability conditions have been derived for the linear programming problem, and it has been shown that the notions of stability 

by solution and stability by the functional are identical in this case. For the integer linear programming problem a similar result 

has been obtained in [14]. Equivalence of these stability concepts for some classes of multicriterion optimization problems, 
including linear and integer multicriterion problems, follows from the results of [15]. 

We will show that stability in the decision space implies stability in the space of alternatives for problems of the 

form (1). 
LEMM.A. Let M be a bounded set in the space R n and C E R Lxn. Then for every ~ > 0 there exists 5 > 0 such 

that for G - O~(M) C(6) E O~C we have the inclusion ~(C(6), 63 - O,~(C, M). 

Proof. Let y E 1~ (C(~i), G). Then the set G contains an element x such that y = C(~)x. Since x E G, there exists x ~ 

E M such that II x - ~o U -< 6, moreover, II x ~ II -< A, where A is a constant. Then yO = Cx 0 E '  15 (C, M) and Ily - -  yO II 

= II c(~)x - c., --o II = U c (~ )x  - Cx + cx - Cx o II = II ( c ( ~ ) ,  C)x  + c ( x  - x o U = II (c(~) - c)  <x o + (x - ~ ) )  + c(x 
_ x O )  ii <__11 c ( ~ ) -  cll  I1.,-~ + I I c ( ~ ) -  cU I I x - ~ l l  + I lcll  I I x - x ~  -< ~A + ~2 + ~ I lcll  <- ~ ie~ satisfies the 
inequality 

0 < a < -  { - ( A +  II C II)+ [(A+ II c 11)2 + 4el ~ / 2 } / 2 .  (7) 
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Proposition 9. If  problem (1) is stable in the decision space, then it is stable in the space of alternatives. 

Proof.  Take an arbitrary e > 0. Let ~1 satisfy inequality (6). By assumption problem (1) is stable in the decision space, 

and so for e '  = /il there exists/i2 > 0 (we may assume that/i2 < /il) such that for any vector u(62) ~ R k and any matrix 

C(u(~2)) E R L•  satisfying inequalities (2), for/ i  = /i2 the set rl(c(u(b2)), X(u(32))) of Pareto-optimal solutions of the 

problem (C(u(3z)), X (u(62))) is nonempty and is included in the /il-neighborhood of the set I-I(C, X), 17(C~u(~2) ), 

Xfu(82))) _c:o,~ rI(C, X) . Since/i2 satisfies inequality (7), by the proof of the preceding lemma we have ~(Cu(~2); H (C(u(~z)), 

;~(~-'(~2))) c o~ ~;(c,  l-I(C, x) ) .  

We have thus proved stability of problem (1) in the space of  alternatives. 

C O R O L L A R Y  5. I f X  is a nonempty bounded closed set in R n, then problem (1) is P-stable under changes of  criterion 

coefficients in the space of alternatives. 
We will now give an example of a problem of the form (1) which is stable in the space of alternatives but not stable 

in the decision space. 
Example .  Consider a vector mixed integer linear programming problem of the form (1), where x = (xl, x2, x3) 

X(A,  b) = {x E D : A x  ~< b} = { ( O , O , O ) ; ( O , l , O ) , ( l , l , a ) , l  >>. a >~ O}CZ I x Z ! • R I, 

It is easy to show that 

[ o 001 i si [ o -I1 1 
0 0 - 

n ( c ,  x )  = / ( 0 ,  l ,  0); ( l ,  l, . ) ,  1 ~ ~ > o}, 

~ i  = {(t, 0); (  - ~, ~), ! ~ ~ > 0}. 

The problem is stable in the space of alternatives and unstable in the decision space, because for every e > 0 we have 

{g(C, X) _ O , ~ n  and there exists a perturbed criterion matrix 

[ - t + c ~ ,  ! + 3 2  - 1 + ~ 3 ]  
C(d) = 0 + ~4 0 + ~5 1 + 66 

such that for sufficiently small/ii, i = I .. . . .  6, for instance/i5 < 0, /i t = -/i2, /i4 = -/i5, we have H(C(6), X(5)) = X ~ O, 
n ( c ,  x )  

Proposition 10. Let r(C) = n. Moreover, assume that the sets X(u) are jointly bounded in some neighborhood of the 

point u = 0 and the set-valued mapping X(u) is closed at this point. Then stability of problem (1) in the space of alternatives 

implies its stability in the decision space. 
Proof.  Assume that problem (1) is stable in the space of akernatives. Then by definition for every e > 0 there exists 

/i > 0 such that for any matrix C(u) = C(~) e R Lx,~, satisfying (2), (5) the set of criterion values {gn(u), ~gn(u) = ~(C(u) ,  

r i (e (u) ,  X(u))), of  the problem (C(u), X(u)) is nonempty and is included in the e-neighborhood of the s e t  ~n-  Thus, for any 

point' x(u) e H(C(u), X(u))  3 500  e 1-I(C, X) such that 

11 C:~(u) - C(u)x(u) 11.< e. (8) 

Since the sets X(u) are nonempty, closed, and jointly bounded, we can extract convergent subsequences from the sequences 
{~(u)} and {x(u)}. Without loss of generality, assume that the sequences {~(u)} and {x(u)} converge: ~ (u) - - ~  ~ c l  r I (c ,  x )  

as u --, 0; x(u) " ,  x .  Then C(u)x (u )  - ,  Cx, CE(u) --- C~ :, and by (8) 

Cx = C'~. (9) 

By assumption r(C) = n. Recall that K o = {x ~ R "  : Cx = 0) = {0} '~ r(C) = n. Then from (9) we obtain that x = ~ and 

x(u) .', ~ E cl r I(c ,  x )  . By contradiction, assume that problem (1) is unstable in the decision space. Then there exists e > 

0 such that for any/i > 0 there is a matrix. C(u) ~ R L• satisfying inequalities (2) such that the set l ' l(C(u), X(u))  of Pareto- 
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optimal solutions of the problem (C(u), X(u)) is either empty or is not included in the e-neighborhood of the set H(C, X). Since 

problem (1) is stable in the space of alternatives, the sets X(u) are nonempty and ~e > 0 such that for u --, 0 

3 x(u) ~ r l (c~u) ,  x ( , ) )  v x e l i f e ,  x )  : II x - x(u) II > ~-. ( lo )  

By the above argument we may assume that the sequence {x(u)} converges. Let x(u) ---, x. Then by stability of problem (1) in 

the space of alternatives x e cl H(C, X), which contradicts (10). 

The contradiction proves the proposition. 

If r(C) = n = L, the last proposition can be proved without assuming closure of the set-valued mapping X(u). 

Proposition 11. Let r(C) = n = L and the sets X(u) are jointly bounded in some neighborhood of the point 5 = 0. 

Then stability of problem (1) in the space of alternatives implies stability of this problem in the decision space. 

Proof. Assume that problem (1) is stable in the space of akernatives. Then 35 o > 0 such that for 0 < 8 < 8 o the set 

ll(C(u), X(u)) isnonempty for anymatrix C(u) e .R tx'z that satisfies inequality (2). We wiU show that V.e > 0 3 8 > 0 : l-l(C(u), 

X(:O) c_ O~I-I(C, X) . By stability of problem (1) in the space of alternatives, for e 1 ---- e II cII/2 3 ~1 > 0 such that for 0 <  

< 81 < min {8o, et/A} (here A = max {11 x tl :x  ~ X(,] ,  0 ~< ~ .< ~0}) for any point x(a) e l-I(C(u), X(t,)) 3?~(?,) 

l'l(C, X) such that II c:~(,~) - c (u )x (~ )  II -< ~. Denote z(b) = C7r - C(~)x(dJ). Since r(C) = n = L. 3C -1 such that 

CT~z(5) =-~(5)--C-1C(u)x(5) . Hence it follows that II -~(~) - x(b) II -- II c-zz(~)  + c -~c(u)x(b) - x(b) II < II c -~ IIz(~)ll + 

II c -~ C(u) - i II il x(~) Ii ~ II c -~ II e~ + II c -~ II ~ i! -~(~) ii ~- ,- Q . E . D .  

Using Proposition 6 [6], which follows from the results of [15], we can state a sufficient condition of equivalence of 

the notions of stability in the space of alternatives and stability in the criterion space for problems of the form (1). 

Proposition 12. If  the set H(C, X) of problem (1) is closed, then stability of problem (1) in the decision space implies 

its stability in the space of  alternatives, and conversely, stability in the space of alternatives implies stability in the criterion 

space. 

An example of a vector mixed integer optimization problem of the form (1) with an open set of efficient points which 

is stable in the decision space is given in [6] (example 7). 

Let us now prove the necessary and sufficient conditions of stability in the space of alternatives under changes in 

criterion coefficients. 

Proposition 13. Assume that the set X is nonempty and bounded. Problem (1) is stable in the space of alternatives 

under changes in criterion coefficients if and only if ci f~,(C, 11) = ff.,(C. P). 

Proof. Note that cl t~(C, 11) _c_ ~(C, ,~'}. Let u = C, X(C) = X. We will first show that the condition 

~, (c ,  P) g d ~ ( c ,  n )  (11) 

implies stability of problem (1) in the space of alternatives under changes in criterion coefficients. By contradiction, assume 

that condition (11) is satisfied, but problem (1) is unstable in the space of alternatives under changes in u -= C : 3  6 > 0 V ~ > 
o 3 c(a)  : II c(a)  - c: Ii -'-=- :', 3 x(a) e n ( c ( a ) ,  x )  v y e ~ n ( u )  = ~ ( c ,  n ( c ,  x ) )  : 

II c (~)x(~)  - y II ~ ~. (12) 

Without loss of generality assume that x(~) --* x o as 8 --, 0. S ince  x(6) ~ n (c (o) ,  x)  _c P(c(6),  x ) . ,  by Proposition 2 x 0 E 

P(C, X) and passing to the limit in (12) we obtain , V y ~  {~n(U) = ~ (C, l l (C, .X)):  II c x o - y  I1 ~- =. Since y e  ~(c ,  rKc, 

X)), Cx o E ~(C, P(C, X)), we obtain a contradiction with (11). 

Let us now prove that stability of problem (1) in the space of alternatives under changes of  criterion coefficient s implies 
the inclusion (11). By contradiction, assume that. 3 y E ~(C. P) \ cl ~(C, 11). Then y = Cxo, where x o E P \ c111 and 3e 

> 0 such that 

V x  e c l r l :  I l y - C x  U ~ �9 (13) 

897 



Let C(8) = C r, where r = 6/11 v 11. Then by Proposition 4 for 0 < 6 < 11 v II we have the inclusion Xo ~ P(C, X) C_ rl(c(~),  

A! = r] CQ . :':~ and by stability of problem (1) in the space of alternatives V e > 0 3 6 o > 0,  such that for 0 < 6 < min 

{11 vii, 60} a x r I :  [ly - cxll < t. This contradicts (13). 
4. As we know, definitions of stability can be based on other variants of continuity. It may be useful to define stability 

on the basis of Hausdorff lower semicontinuity. 

Def'mition 5. Problem (1) is called/-stable in the decision space under changes in criterion coefficients if for every 
e > 0 there exists ~ > 0 such that for any matrix C(d) ~ R z.• satisfying inequality (5) the set II(C, X) of Pareto-optimal 
solutions of the problem (C, X) is nonempty and is included in the t-neighborhood of the set 17(C(~5), X),  17(C, X))  C_. 0~I'I(C(6), X). 

/-stability in the decision space implies that, under small perturbations O f initial data, for any efficient solution of the 

initial problem there is a sufficiently close efficient solution of the perturbed problem. 

The notion of/-stability is useful for finding solutions of families of problems of the form (C(u), ~ ) ,  where C(u) E 

U c RLxn.  Indeed, suppose that for some e > 0 there exists a finite covering of the set U by ~-neighborhoods O~C(ui), i = 
1 . . . . .  S, where  (C(ui), X O) is an/-stable problem. Then V x ~ rI(c(ui) ,  x ~  i = I . . . . .  s ,  is an e-approximation of some 

efficient solution of any problem (C(u), ~ )  if II c(ui) - c (u)  II ~ d. Solving finitely many problems from the family (C(u), 

X~ we obtain an idea about part of  efficient solutions of any problem from this family. 

The following necessary and sufficient condition of/-stability of the problem (C, X) with a bounded feasible region 
has been actually proved in [5]. 

Proposition 14 [5]. If  the set X is nonempty and bounded, then the problem (C, X) is/-stable in the decision space 
under changes in criterion coefficients if and only if cl S = el II. 

Propositions 1 and 14 directly lead to an important sufficient condition of/-stabil i ty under changes in criterion 
coefficients. 

Proposition 15. If  the set X is nonempty and bounded and r(C) = n, then the problem (C, X) is/-stable in the decision 
space under changes in criterion coefficients. 

In the initial-data space R r.• identify the set GI(X ~ of initial-data matrices C ~ R L• for which the problem (C, 

X ~ is/-stable in the decision space under changes in criterion coefficients. Consider the set C(GI (X~ = R T'x" \ G I (X ~ of 

initial-data matrices C ~ R Lxn, for which the problem (C, X ~ is not/-stable in the decision space under changes in criterion 

coefficients. 

Proposition 16. Assume that the set X ~ is nonempty and bounded and L _> n. Then the set C(GI(.X~ is of measure 
zero. 

Proof.  Let C ~ R L• \ G t (X~ By Proposition 15, r(C) < n. This means that any n rows in the matrix C, e.g., ci~, 

ci2 . . . . .  c i ,  are linearly dependent, i.e., det(ci~, ci2 , .il, c i )  = O. Let Tbe  the set of all sequences of r row indices i 1 < i 2 < 

... <; i n, r = {t 1, i 2 . . . . .  in}. Clearly, [ T[  = Cr. n. Thus, if C E R L• G 1 (X ~ , then it satisfies a system of C ~  

equations of the form det(ci I, ci 2, . . . ,  ci, ,) = 0 V "r E T, Therefore C(G I (X~ _C M - {C ~ R Lx,z ] det (ci~, Ci2 . . . . .  Cin ) = 

0 v ~- E T}. The intersection of Cr. n surfaces deffmed by n-th order polynomial equations is of  measure zero. 
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