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ABSTRACT 

Diekmann, 0., Metz, J.A.J. and Sabelis, M.W., 1988. Mathematical models of predator/prey/ 
plant interactions in a patch environment. Exp. Appl. Acarol., 5: 319-342. 

Several tritrophic systems are characterized by local over-exploitation of the food source. In- 
teractions between predatory mites, spider mites and their host plants are an example of such 
systems: either the spider mites over-exploit local patches of host plants or the spider mites are 
exterminated by predatory mites. It is often stated that modelling the overall population dynamics 
of such systems in a realistic way would soon lead to an unmanageable edifice. We advocate, 
however, the use of physiologically structured population models as a both general and formal 
mathematical framework. The advantage is that analytically tractable models may be obtained 
from the complex 'master' model by time-scale arguments or special choices of model ingredients. 
In this way a network of models can be derived, each concentrating on a particular aspect, all 
inadequate to cover the entire spectrum, but together (we hope) providing a coherent set of in- 
sights the relative importance of which can be assessed by computer experiments on the 'master' 
model. 

In this paper a rather realistic model of predator/prey interactions in an ensemble of host-plant 
patches is presented and, as an example of our approach, some special cases are derived from that 
model. Their analysis provided some first, useful insights. It is shown that prolonged duration of 
the prey-dispersal phase and prey dispersal from predator(-invaded prey) patches may result in 
a stable steady state, whereas a humped plant-production function may - -  under certain condi- 
tions - -  result in two stable steady states. 

INTRODUCTION 

T o  i n c o r p o r a t e  t h e  i n h e r e n t  n o n h o m o g e n e o u s  c h a r a c t e r  o f  s p a c e  a n d  t i m e  

in d y n a m i c  p o p u l a t i o n  m o d e l s ,  o n e  n e e d s  a m a t h e m a t i c a l  l a n g u a g e  t h a t  is r i c h  

e n o u g h  to  a l l o w  for  t h e  t r a n s l a t i o n  o f  v e r b a l  d e s c r i p t i o n s  o f  t h e  r e l e v a n t  b io -  
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logical processes into mathematical equations. In this paper we concentrate on 
a tritrophic system consisting of host plants, spider mites and predatory mites, 
and our aim is to exploit the framework of physiologically structured population 
models (Metz and Diekmann, 1986; the adverb 'physiologically' is used to in- 
dicate that we are dealing with structuring variables which are somehow 'in- 
ternal' to the individuals making up a population, as opposed to 'external' 
variables characterizing, for example, the environment to which the individu- 
als are exposed) to describe the interaction of phytophages and their natural 
enemies in an ensemble of local patches. Even though the patches reflect the 
spatial inhomogeneity of the lowest trophic level (i.e. the geographical distri- 
bution of plants) we shall not introduce spatial structure explicitly, but only 
deal with the subdivision of the population into local colonies. The key idea 
here is to consider the local colonies as 'individuals' characterized by such 
quantities as the available amount of food (or leaf area), the number of spider 
mites, and the number of predatory mites. Such 'individuals' will beget off- 
spring since spider mites disperse and found new colonies in suitable patches 
whereas predatory mites disperse to invade spider-mite colonies (we shall in- 
troduce auxiliary variables to describe the aerial plankton consisting of search- 
ing spider and predatory mites ). Such 'individuals' will grow (or shrink ) since 
local densities change in the course of time according to food/prey/predator- 
interaction equations; thus one obtains a rather complicatedly structured pop- 
ulation model. 

Population models range from overly simplified, qualitative, ordinary dif- 
ferential equations to extremely complicated quantitative simulation models 
and, likewise, the group of population modellers is subdivided in categories. 
Communication between exponents of different categories usually is frus- 
trated by the lack of a common language. The point of view advocated in this 
paper is that physiologically structured population models may serve as such 
a common language. On the one hand, one may implement the more compre- 
hensive versions on a computer, choose parameter values and initial condi- 
tions, and simulate. In fact, many of the usual large simulation models are 
essentially crude implementations of structured population models. (Re- 
cently, De Roos (1988) has developed a numerically more sophisticated method 
for solving general structured population equations.) On the other hand, one 
may exploit special choices of model ingredients as well as time-scale argu- 
ments to derive stripped versions which one can analyse with pencil and paper 
or relatively simple computer programs. Thus one obtains networks of models, 
and qualitative insights derived from the simplest elements may be used to 
direct quantitative simulation studies and to guide the interpretation of the 
outcome of such studies. 

This paper is a progress report on a joint research project which is far from 
finished. The paper of Sabelis and Laane ( 1986 ), presenting a simulation study 
of the regional dynamics of spider-mite populations that  become extinct locally 
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because of food source depletion and predation by phytoseiid mites, served as 
a starting point. An error in the implementation of the functions calculating 
the probability of predator invasion into a prey patch invalidates the simula- 
tion results reported in that paper. 

In the following section we present a verbal description of the various pro- 
cesses that  are to be considered, and in the next section we carry out the trans- 
lation into mathematical equations (which automatically involves further 
specification and elaboration ). Then we introduce, by means of some exam- 
ples, the two main means of model simplification: (1) the choice of special 
submodels for which it just happens that  the overall dynamics can be sum- 
marized by only a few variables; and { 2 ) time-scale arguments. Subsequently, 
we reduce the full model to a system of three ordinary differential equations 
and show the stabilizing influence a prolonged prey-dispersal phase. We next 
demonstrate, in the context of another simplified model, the stabilizing influ- 
ence of prey dispersal from predator-invaded patches. Finally, we use a third 
simplified model to call attention to the possibility that multiple stable steady- 
states may occur when regeneration of plant biomass becomes a limiting factor, 
a phenomenon which may have some relevance for biological control. 

This paper does not survey existing knowledge derived from prey/predator/ 
patch models (see Nachman, 1988, this volume). Neither does it claim to add 
substantially to such knowledge. Our chief aim is to introduce structured pop- 
ulation equations as a modelling tool and to demonstrate the flexibility of this 
tool by means of some examples (see also Edelstein-Keshet (1986)). 

INVENTORY OF RELEVANT PROCESSES 

Consider a prey population consisting of many local colonies. The following 
processes are responsible for changes in the number of such colonies: 

new colonies are founded by emigrants from existing colonies invading 
'empty' patches; 

colonies come to an end when the local food source is over-exploited; and 
predator invasion will, after a while, lead to prey extermination. 
The process of invasion by prey removes 'empty' patches available for col- 

onization. We shall assume that these patches are replenished by some intrin- 
sic dynamics. In the special cases discussed below, we shall also make specific 
assumptions about the replenishment process. Our terminology in describing 
the interpretation of empty patches is deliberately vague. Depending on the 
spatial scale under consideration, one may conceive of them as leaves, single 
plants or clusters of plants. Even though the numerical values of parameters 
may depend on the case at hand, the mathematical structure of the equations 
does not. 

The invasion of a predator brings about an abrupt change in the 'state' of a 
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local colony. When the local prey are extinct, all remaining predators disperse 
in search for other prey colonies. 

So, apart from the usual processes in a system with three trophic levels: ( 1 ) 
food dynamics; (2) prey increase at the expense of food; and (3) predator 
increase at the expense of prey, we have to account for: changes in the number 
of uninhabited food patches (host plants); dispersal, i.e. the tendency to dis- 
perse, and survival of aerial plankton; foundation of prey colonies; and pre- 
dator invasion in prey colonies. We illustrate these processes in Fig. 1. 
Our ideal is to answer the following general question: how do all these factors 
contribute to the dynamics of the global populations, conceived as an ensemble 
of local subpopulations? Our motivation partly derives from biological pest 
control where, in particular, one wants to know whether the system: (a) will 
have a stable steady state (with, preferably, the prey at a very low level); or 
(b) will exhibit wild oscillations leading to global extinction either of the pre- 
dator or of both the prey and the predator; and (c) how the answer to this 
question depends on the various factors involved. 

A fundamental dilemma presents itself: in how much detail do we have to 
model the various processes mentioned above? Our strategy will be to neglect 
this dilemma to some extent: we build a relatively detailed and complicated 
master model and then discuss various simplified versions obtained by i.a. time- 
scale arguments. However, both for the sake of simplicity and for the sake of 
exposition, we shall from the very beginning model rather superficially both 
the food biomass growth within a host-plant patch as well as the creation of 
new uninhabited patches of host plant; the same holds for the survival of the 
aerial plankton. 

>-~  EMPTY PATCHES ~ PREY PATCHES ' | 

[ ZEDATOR PATCHES j~ 

Fig. 1.Flow diagram of relevant processes. 
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TRANSLATION INT0 MATHEMATICAL LANGUAGE 

We first concentrate on patches in which only prey are present. Let x denote 
the number of prey in such a patch. We introduce a density function n(t,x) 
such that the number of prey patches at time t with prey population level be- 
tween xl and x2 is given by 

X2 

f n(t,~)d~ 
x l  

f: For instance, n (t,~)d~ is the total number of prey patches at time t. 

As an idealization, assume that the local food availability is either a fixed 
constant (in space and time) or zero (so we imagine over-exploitation as an 
instantaneous and complete 'crash' of the host plant; before the crash the rate 
at which individual prey consume food is constant; after the crash this rate is 
zero). Let v (x) denote the rate at which a local prey population of size x in- 
creases in the presence of food and the absence of predators. If we follow any 
particular prey patch, its x-variable changes according to the ordinary differ- 
ential equation dx/dt=v(x). Bookkeeping arguments (see Metz and Diek- 
mann (1986) p.15 and pp. 92-96) then show that  the process of growth of local 

prey colonies contributes a term ---~(v(x)n(t,x)) to the rate of change of  

n(t,x); that is 

~tt ( t , x ) = - d  (v(x)n(t,x) ) +... 

At x = 1 we have an influx of newly founded colonies. Let no (t) denote the 
number of suitable empty patches at time t and let P(t) denote the number of 
potential prey colonists around at time t; then, assuming mass action kinetics, 
the rate at which new prey colonies are founded is given by 

~no(t)P(t) 

where ~ denotes a 'reaction' constant. The flux away from x =  1 is given by 
v (x) n (t,x), the product of the 'velocity' v and the density n. Consequently, the 
founding of new prey colonies is described by the boundary condition 

v(1)n(t,1) =~no(t)P(t) (1) 

Let us, for the time being, leave the possibility of over-exploitation of the 
host plant out of consideration, and concentrate on predator invasion only. 
Let Q(t) denote the number of potentially invading predators around, then the 
rate at which prey colonies of size x are invaded is, again assuming mass action 
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kinetics, given by rl (x) Q (t) n ( t,x ), where the 'vulnerability' ~/is an x-dependent 
reaction coefficient describing how attractive (or, conspicuous ) a prey patch 
of size x, is; hence 

7 ( t , x ) = - d  (v(x)n(t,x) )-rt(x)Q(t)n(t,x) (2) 

Any invaded prey patch becomes a (prey/)predator patch. To describe such 
patches we introduce y, the number of predators, as another state variable and 
we define the density function m (t,x,y) such that 

X2)~2 

ffm' x,'d,  
X l y l  

equals the number of predator patches with predator level between y~ and Y2 
and prey level between x, and xz. Let g(x,y) and h(x,y) be such that for any 
particular predator patch 

dX-g(x'Y)'dt ~t =h(x'y) (3) 

In other words, g and h describe the local prey-predator interaction. (Note 
that by definition v(x) =g(x,O). ) The (assumed) fact that the number of pre- 
dator patches changes only due to influx at the 'invasion' boundary y =  1 {and 
outflux at the 'extermination' boundary x = 0 ) is expressed by the conservation 
law 

d d 
-~tm(t,x,y)+~(g(x,y)m(t,x,y))+ (h(x,y)m(t,x,y))=O (4) 

and the boundary condition 

h(x,1)m(t,x,1) =tl(x)Q(t)n(t,x) (5) 

The system (3) defines curves in the (x,y)-plane and individual predator 
patches follow such curves (Fig. 2). The observation that the predators drive 
their prey locally to extinction translates into the assumption that these curves 
connect the invasion boundary y = 1 with the extermination boundary x = 0. 

This completes our description of the dynamics of prey- and predator patches, 
but we have yet to specify the dynamics of the free patches no and the aerial 
plankton variables P and Q. 

For the dynamics of the number of suitable empty patches no we can make 
various assumptions. We shall simply take no to be constant, so here we ignore 
the possible lack of patches at which new colonies can be formed. This is jus- 
tified whenever the predators keep the number of prey colonies at such a low 
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4-  
Xo = 1000 
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8OO 

3- 700 

600 

50O "~ '~ "~ /  

--~ 2 - 400 300 ~ /  2O0 

0 , In (x) 
prey $ ~ predator 

invasion , In (x)  (y=O, x:O) ,nv,~as,o~ ...... , 

o ~ '~ 4 ~ 8 

Fig. 2. The lower x-axis corresponds to prey population size on a logarithmic scale in the absence 
of predators.  Note the jump from x = 0 to x = 1 representing prey invasion in an empty  patch.  The 
upper x-axis and the  y-axis correspond to, respectively, prey and predator  population size after 
predator  invasion (both on a logarithmic scale). Note the  jump from y=O to y =  1 represent ing 
predator  invasion in a prey colony. 
The curves in the  l n x -  lny plane are obtained by solving ( 3 ) for the  special choice g(x,y) = c~x- fly, 
h(x,y) = ?3' with the (for spider and predatory mites } more or tess realistic parameter  values c~ = 0.28 
day -  ', f l=20 day-  J (p rey /preda tor )  and 7=0.32 d a y -  t. 

level that the number no of uninhabited host-plant patches remains effectively 
at the carrying capacity; in the next section (third limiting case) we use 

d n o  
dt =f(n°)-~n°P (6) 

no 
where f is ,  for example, the familiar logistic function: f (no) = rno ( 1 - - K ) .  

It is perfectly possible to take the 'age' structure of the aerial plankton into 
account, where 'age' refers to the time elapsed since dispersal (see Metz and 
Diekmann (1986) p.122). But in this paper we just assume that all members 
of the aerial plankton are equivalent. 

Let ~(x,y) denote the overall rate at which prey disperse from a given patch 
of prey size x and predator size y then we will take either 

1 0 1 

(7a) 

where/z denotes a death rate or 
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1 0 1 

(7b) 

which is the quasi-steady-state approximation to (7a) for both very large 
and I~. 

We assume (for simplicity ) that  predators remain in the patch until the very 
last prey individual is found, and then leave collectively. So the rate of produc- 
tion of predator aerial plankton equals the weighted (with weight y) outflux 
at the boundary x = 0. Thus we obtain ( note that g (0,y) < 0! ) 

1 

(8a) 

o r  

1 

(8b) 

if we make a quasi-steady-state approximation. 
In (7) and (8) we incorporate changes in P and Q due to 'landing' in suitable 

patches in the terms FtP and vQ, respectively. So, in a sense, we assume random 
landing. Alternatively one may add terms like - ~no (t) P ( t ) and 

-J~(x)n(t,x)dxQ(t) to, respectively, (7) and (8). 
1 

Along the same lines as followed above one may introduce the food (leaf area 
~- host-plant biomass) in a given patch as another state variable z and work 
with densities no ( t , z ) ,  n ( t , x , z )  and m ( t ,x ,y , z ) .  In doing so one increases not 
only the generality but also the complexity of the model considerably. For the 
time being we have, therefore, abstained from describing local food dynamics. 
In particular we assume that all empty patches offer an identical prospect for 
the prey. 

Strictly speaking, the aerial plankton Equations (7) and (8) should contain 
additional source terms corresponding to, respectively, prey and predators 
leaving crashing patches. As a consequence of our assumption that  empty 
patches are identical, a prey patch will crash exactly when x reaches a certain 
level Xmax- This observation will be the basis for the alternative version of (7) 
which we shall use in Appendix II (but below we shall take X m a ~ = ~  or, in 
other words, no crash at all). Of course there has to be a 'crash' boundary in 
the (x,y)-plane as well, corresponding to prey patches being invaded by a pre- 
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dator so late in their development that over-exploitation of the host plant can- 
not be prevented. To compute this resource-exhaustion boundary from a 
mechanistic submodel for food/prey/predator interaction may be rather dif- 
ficult (see Metz and Diekmann (1986) p.82 for the simplest example). Here 
we do not go into such exercises but confine ourselves to remarking that  the 
presence of a resource-exhaustion boundary yields a considerable complication. 

Our modelling exhibits a strange but deliberate inconsistency. Whereas prey 
colony growth is described by a differential equation for a continuous variable 
x, the founding of the colony is described by a discrete change x = O ~ x =  1. So 
we are not very precise about the short phase of colony up-building in which a 
more detailed demographic description involving age structure (and possibly 
stochastic effects) seems more appropriate. Yet such a more detailed descrip- 
tion can in principle be incorporated in the present approach, by adopting the 
alternative parametrization of patches by the age of the colony and the age at 
the moment of predator invasion (see Metz and Diekmann (1986) pp. 
110,111,136,137 and 345-375 ). We do not feel motivated to actually carry this 
out. A related point is that we have systematically neglected the effects of prey 
aerial plankton landing in prey or predator patches and of predator aerial 
plankton landing in predator patches The argument here is that, after a very 
short initial phase, population growth by reproduction is far larger than pop- 
ulation growth by immigration. 

The ideal is to understand the global dynamical behaviour of the presented 
model and, in particular, how this behaviour is affected by the various ingre- 
dients and submodels. In reality this is an impossible task since we are dealing 
with a nonlinear infinite dimensional dynamical system with many parame- 
ters; so we shall look for simplifications. 

In three different limiting cases we shall investigate how the qualitative be- 
haviour depends on the model parameters which are treated as constants. These 
constants may be considered as set by the species under consideration, the 
particular experimental arena, temperature, relative humidity etc. 

SOME LIMITING CASES 

The processes of dispersal, prey colony growth and local prey/predator in- 
teraction all have their characteristic time-scales, and these need not be the 
same. If some of these scales are widely different, we may use either quasi- 
steady-state approximations or neglect some of the delays between cause and 
effect to obtain less-complicated models. Moreover, even if these time scales 
are actually not very different one may still adopt the sound mathematical 
strategy of studying limiting special cases first before tackling the full problem. 
Most of the time, insight obtained from special simplified cases is of much help 
in the analysis of the general case. Last but not least, any qualitative under- 
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standing of close relatives of complicated models can be a key factor in the 
design and sensitivity analysis of computer experiments. 

Instantaneous prey extermination after predator invasion 

By way of example, assume that the time between predator invasion and 
prey extermination is negligible compared to the average time of dispersal and 
prey colony growth. Then we may forget about (4) and (5), drop the term 
involving m in (7), and describe the dynamics of Q by 

(8c) 
1 

where fi is the prey-to-predator conversion factor. 
As a further simplification, we may consider the special case where both 

v (x) and 7r (x,0) are proportional to x and r/is constant. More precisely, let us 
take 

v(x)=ax, n(x,O)=~x and ~/(x)=O (9) 

If we now introduce 
oo 

O(t) : = f xn(t,x)dx (10) 
1 

we can derive a closed system of ordinary differential equations for O,P,Q and 
no (this is called linear chain trickery; see e.g. Metz and Diekmann (1986) 
IV.5). Indeed, if we multiply Equation (2) by x and integrate over x from 1 to 
oo we obtain, using integration by parts and the boundary condition (1), 

t = ~noP + v~O- OQO ( l l a )  

while (7a) and 8c) can be rewritten as 

dP 
- e O - p P  (11b) 

dt 

dQ_ dOQO- vQ ( 11c ) y -  

If we take no to be constant the system (11a-c) has a unique nontrivial steady 
state given by 

- P ~P ~ ~ - ~  
0=-5-0" I~- 50~' Q= ( a +  ) (12) 
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The stability of this steady state is determined by the position of the roots of 
the characteristic equation 

/[a +12 (~+  ~n° ~) +/[v(~n°e+c~) + llv(~n°e+v~) = 0  (13) 

in the complex/[-plane. According to the Routh-Hurwitz criteria (see, for in- 
stance, May (1973) and Appendix II) all roots lie in the left half-plane and 
consequently the steady state (12) is asymptotically stable. 

If both e and ~ are very large we may replace ( 11b ) by the quasi-steady-state 

approximation P=E-O. Effectively this amounts to the assumption that prey 
Iz 

dispersal is instantaneous. As a result, (11) reduces to the two-dimensional 
system 

dO _ ~no~, ~,~ 
-~-= O{- - i f - .  ~ -  ~ ,  (14a) 

dQ 
dt = Q{JO0- v} (14b) 

which is precisely the familiar Volterra-Lotka system. The steady state of ( 14 ) 
is still given by ( 12 ) but the corresponding characteristic equation 

/[2+ v(~no~+a ) =0  (15) 

has two roots precisely on the imaginary axis implying that the system (14) is 
on the borderline of stability. Comparing (14) and (11) we therefore conclude 
that a prey dispersal phase of non-negligible duration has a stabilizing effect on 
the global prey-predator interaction. We can easily understand this result in- 
tuitively. Indeed, the prey dispersal phase acts as a temporary refuge since, 
during this phase the prey are, notwithstanding all kinds of other dangers (death 
of starvation, drowning etc.), safe as far as predation is concerned. We note 
that, in contrast, the predator dispersal phase acts as a destabilizing delay 
(compare the following subsection). 

Constant interaction time, predator yield, vulnerability and prey dispersal rate 

The prey/predator interaction time (i.e. the time between predator invasion 
and prey extermination), as well as the predator yield at the end of the inter- 
action, depend on the prey colony size at the time of predator invasion. The 
precise form of this dependence is determined by the solutions of the ordinary 
differential system (3). The partial differential equation (4) adds to this no 
more and no less than the bookkeeping of the number of patches. 

The interaction time and the predator yield are the relevant quantities and, 
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if we make alternative assumptions for these, we may forget about (3) and (4). 
In this subsection we shall assume that both are constant, i.e. independent of 
the prey colony size at the time of predator invasion. 

Under the above assumption, prey colony size is still relevant since it deter- 
mines the vulnerability q, the prey dispersal rate zr and, finally, whether or not 
the patch will crash. But if we assume that q is a constant, zr is a constant 7rl 
for prey patches and a constant z~2 for predator patches, and that host plants 
are never over-exploited, the size of the prey colonies becomes totally irrele- 
vant. We may then dispose of n and work with the total number of prey patches 

o ~  

N(t)  = tn(t ,x)dx (16) 
0 

instead. Adopting, moreover, the quasi-steady-state approximations for P and 
Q we arrive at the system of differential delay equations 

dN 
dt - ~noP- qQN 

P(t) = l ( z q  N(t)  + 7r2 M(t)  ) 
(17) 

Q(t) =e~yQ(t-r)N(t-r)  

M(t) =q _i Q(cr)N(a)da 
t--T: 

where r denotes the interaction time, e the yield coefficient (the number of 
predators dispersing after prey extermination ) and M the total number of pre- 
dator patches. This system has a nontrivial steady state 

- u ~no 7rl r~no 7q v z q  v 
N = - - ,  Q -  _M_ /5_ (18) 

e~l r / (p -  ~noZr2 r) ' e~/(p- ~nort2 r) ' eq(lz-- ~no zr2 r) 

provided ~non2r//l < 1 (if this inequality is not satisfied the number of prey 
patches will grow exponentially). The stability of this steady state is governed 
by the compound parameter ¢noTr2r/tz. More precisely, ~ndz2r/l~ > ½ guarantees 
stability (see Appendix I ). The compound parameter is the product of ~no/lt, 
which is the probability that  a dispersing prey individual will found a new 
colony, and ~2r which is the number of prey dispersing from a predator patch 
during the entire interaction period. So the parameter ~no~z2r/g itself can be 
interpreted as the number of prey patches found by one predator patch. We 
conclude that the founding of new prey colonies by prey dispersing from preda- 
tor patches is a stabilizing mechanism. 
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Fig• 3. Stability boundaries for two models: (1) upper and lower hyperbolic curves apply to the 
case of uniform predator dispersal during the interaction period; (2) upper and intermediate hy- 
perbolic curves apply to the case of predator dispersal at the end of the interaction period. 
The symbols a and e are shorthand for. respectively, the horizontal and vertical variable (see 
Appendix I ). 

If we put  ~2 = 0, the steady state is unstable due to the delay between predator  
invasion and the yield of new dispersing predators.  So we may also say tha t  
this destabilizing effect of the interact ion period can be overcome if prey dis- 
perse from predator  patches. However, if too many prey disperse the predator  
is no longer able to keep the prey in check. 

In Sabelis and Diekmann (1987) essentially the same conclusions were ob- 
tained in the context  of a slightly different model. There  we assumed that  the 
predator  aerial p lankton Q is proport ional  to the total  number  of predator  
patches M or, in other  words, tha t  predators  disperse from predator  patches 
uniformly during the interact ion period (and not, as in the model of this paper, 
all together at the end of the interact ion period).  The  stability boundaries of 
both models are drawn in Fig. 3. It appears tha t  the stability region is larger in 
the case of uniform predator  dispersal. We conclude tha t  postponement of pre- 
dator dispersion to the end of the interaction period is a destabilizing mechanism. 

Instantaneous host plant destruction, possibly defeated by predator invasion 

Whenever  the prey exhaust  their  host plant  very quickly, we may employ a 
somewhat  more sophist icated time-scale argument.  In the absence of preda- 
tors, the founding of a prey colony now leads instantaneously to the product ion 
of new searching prey• When  predators  are around they may invade, and then 
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the instantaneous yield consists of predators rather than  prey. In Appendix II 
we derive the following simplified system, start ing from the assumption tha t  
g ( x,y ) = o~x-  fly and h ( x,y ) =?,y: 

d P  
dt = Xmax (,hoPe - ' ° Q -  ~LP 

(19) 
dQ 

-#noPh(Q)- vq 
dt 

where by definition 
xnmx  

f t7(a) w= da (20) 
1 

and 
1 + ( ' / / f l )Xm.x f3/p(2/-- 1 ) 

h ( Q )  fl f y d [ 1 - e x p ( - Q  ~ ~/(a)da~]  =)7 ~ / J  (21) 
1 + (; , / f l )  1 

Note in particular that  co and h depend on the function ~ so that  the simplified 
system inherits certain characteristics from its structured mother. 

If we now supplement ( 19 ) with 

dno 
dt - f(no) -g ,  noP (22) 

we are describing the system by following the number of empty patches as well 
as the prey and predator aerial plankton as a function of time, while the rise 
and annihilation of a local colony reduces to a point event. 

The equilibria of (19)-(22 ) fall into three categories: 
(1) When f (rio)=0, P = Q = 0  the empty patches are in a steady state, and 

there are neither prey nor predators. If ~o is stable with respect to the equation 

dno = f(no) it is stable with respect to prey invasion if and only if r~ o < /1 
dt Xma x ~" 

(2) The steady state go =----g--g, = f(no) ,~ ~ corresponds to the situation 
Xma~ ~ P = ~fio ' ~ ' = "  

in which the density of empty patches is completely determined by the 'pre- 
dation pressure' of the spider mites, while there are no predatory mites. With  
respect to the system 

dno 
dt - f(n0) - ~noP 

(23) 
dP 
dt - Xm~ {noP- -  # P  
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this steady state is stable if' and only if riof(rio ) < f' (rio). For the usual density- 

dependent growth rates f, like the logistic f (no)=  r n o ( 1 - K  ), this condition 

holds for any rio. The steady state is stable with respect to predator invasion if 

and only if f( /z Xmax~)h'(O) -p<O. 

# of the scalar equation (3) Any solution rio> Xm~( 

F(no) = f ( n o ) g ( ~ l n X m a x ~ n o )  ] - v - -O  (24) 
o3 ~z 

where by definition 
h(Q) for Q > 0  

g(Q)  = Q 

h ' (O)  for Q = 0  
yields a steady state with 

(25) 

p: _f(rio) and Q: =AlnXmax~riol 
~rio co # 

or, in other words, a steady state with all three trophic levels present. Note 
that 

F(gl/Xm~x~) =f(#/Xm~x()h '  ( 0 ) -  V 

and that, consequently, predators are able to establish themselves when con- 
fronted with a steady state of empty and prey patches if and only if 
F(#/Xmax~) >0. Note, furthermore, that if f has a zero greater than #/Xmax~ 
and F ( #/Xmax ~) > 0 then necessarily at least one solution of (24) exists. 

The function g defined by (25) and (21) is monotone-decreasing, no matter 
the precise form of 0. However, when f is a humped function the function F 
may be humped as well and multiple (stable) steady states are possible. 

We intend to report in another paper on a detailed investigation of Equation 
(24) as well as the characteristic equation determining the stability for the 
special case where f(no) = rno (1 - (no~K))  and ~/is proportional to x. Here we 
shall only summarize the main results obtained so far: it turns out that indeed 
the system admits two stable steady states (as well as one unstable steady 
coexistence state) in a large domain of parameter space. In one of the stable 
steady states the predators are absent and the prey keep the plants (i.e. the 
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empty patches no) far below the carrying capacity K. If one tries to achieve 
biological control by introducing a small number of predators, the stability of 
this steady state prevents success. However, the introduction of a large number 
of predators may bring the system into the other stable steady state in which 
the plants are almost at carrying capacity while the prey are kept at a low level 
by the predators. There also exist regions in parameter space in which the 
latter steady state is unstable and, presumably, stable oscillations around this 
steady state exist. 

DISCUSSION 

Structured population theory provides a framework for the formulation of 
complex realistic models in terms of mathematical equations. Given a 'master' 
model one can try to use experimental and field observations to obtain quan- 
titative specification of the ingredients (submodels) or one can perform a mul- 
titude of thought experiments which produce more tractable caricatures. In 
this paper we illustrated the second approach because we feel it is somewhat 
neglected. By using time-scale arguments and special choices of model ingre- 
dients, analytically tractable models were obtained. An important advantage 
of this indirect approach to simple models is illustrated by the system of Equa- 
tions (19) derived in the last section and Appendix II. Had we started by con- 
structing simplified models directly, this system would have escaped our 
attention. So this is one good reason to formulate a 'master' model which in- 
corporates many aspects of the 'real' system and then to proceed by deriving 
various caricatures which concentrate on some particular aspect while neglect- 
ing many others. Another good reason is that the 'master' model brings about 
coherence in the network of models and that it bridges the gap with simulation 
models. 

In this paper we investigated a few elements and links of the network and 
some first insights were obtained. We found that, whereas the predator-dis- 
persal phase acts as a destabilizing delay, the prey dispersal phase acts as a 
stabilizing refuge. The destabilizing effect of the predator-dispersal phase is 
reinforced by postponement of predator dispersion to the end of the interaction 
period. On the other hand, the founding of new prey patches by prey escaping 
from predator-invaded patches during the interaction period constitutes a sta- 
bilizing mechanism. Finally, we observed that a humped plant-production curve 
at the large spatial scale may lead to a bistable situation in which predators 
may or may not be successful in controlling the prey, depending on the initial 
conditions. 

Among the more specific problems to be studied in the near future are the 
following: 
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(I) The role of an aggregative response of predators to local prey density 
One can incorporate a temporary refuge by taking the vulnerability index tl 

to be zero for x ~< x~.rit, where xcrit is the critical prey colony size below which, by 
assumption, predators are unable to detect and invade the colony. More gen- 
erally, one can include an aggregative response by allowing ~/to increase with 
x. We plan to investigate the effect of the shape of 11 on the stability of the 
steady state. Note that the present model does not fix the prey colony size 
distribution n a priori (compare Hassell and May, (1974); May, (1978); Has- 
sell, ( 1984 ); and Chesson and Murdoch, (1986) ), but that n is dynamically 
influenced by the predation process. 

(2) The role of interception of dispersers in already colonized patches 
So far we have neglected the interception of' prey in prey or predator patches 

and of predators in predator patches. What influence does this interception 
have? 

(3) Euolutionary questions 
Such as: "Why do predatory mites drive local prey-mite populations to ex- 

tinction?" and "Under what conditions does selection favour predators with 
properties causing a delay of local prey extermination?" 

In working together on this paper we directly experienced how" mathematics 
and biology, act as symbionts. We hope that the paper itself radiates that feeling. 

APPENDIX I, STABILITY ANALYSIS OF SYSTEM 17 

In order to simplify the notation we first perform a scaling of variables. Define 

X( t )=&lN(r t ) ,  Y(t)=r~lQ(rt), Z(t)=&TM(rt) ,  p p 

~n o 7[ 1 T 7C 2 
a - - - - ,  e-- 

then (17) can be rewritten as 

~t ( t )=a(X( t )  + e Z ( t ) ) - X ( t ) Y ( t )  

Y(t)= Y(t -  1)X(t-1) 

Z(t) = i X(~) Y(a)d~ 
t - - I  



3 3 6  

The linearization about the steady s ta te /~= 1, 17_ a Z =  a 
1 - ea '  1 - e a  

~rt o 7~ 2 7: 
(which is positive provided e a =  - -  < 1 ) is given by 

d~ 
~ - ( t )  = a ( 3 ( t ) + Z ( t ) ) - H ( t )  - 17~{ t) 

H ( t )  = H ( t -  1) + 17~(t- 1) 

t t 

t - 1  t - 1  

The characteristic equation is obtained by looking for a solution of the linear- 
ized system of the special form 

~ - e  )'t H o 

I_Z(t) Zo 
By substitution and straightforward manipulation it follows that such a solu- 
tion exists if and only if 2 satisfies 

).(1 - e  -~) + a e  - ~ + d  e - ~ -  1 + 2 _ 0  
2 

where 

a 2 e  
d =  

1 - - e a  

Our first objective is to divide the positive (a,d)-parameter plane into the sta- 
ble region where all roots of the above characteristic equation lie in the left 
half-plane and the unstable region in which at least one root lies in the right 
half-plane. The boundary of these two regions necessarily consists of curves 
which are characterized by the fact that a root lies precisely on the imaginary 
axis. Therefore we study such curves first. 

= 0 is a root if and only if a = 0. If ,~ = ico,co # 0 is a root then 

-o92(1-cos  w + i  sin co) + aico(cos w - i  sin w) 

+d(cos co- i  sin co - l+ i co )  =0  

Splitting this equation into its real and its imaginary part yields the system of 
equations 

- co2(1 -cos  co) + a c o  sin co+d(cos co-1)  =0  

-(02 sin c o + a c o  cos c o - d  sin c o + d c o = O  
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//" 
/ 

Fig. 4. The stability region is shaded. 

which is l inear in a and  d. Solving for a and  d we find 

1 - cos o) 
a - - d = o 9  2 : 

w sln w+cos (o-I 

provided to sin co + cos (o- 1 # O. If sin o9 = 0 and cos (o-- 1 we find a = - d. If (0 

sin (o+cos (o-1=0 and sin (0#0 there are no solutions. So the stability 

boundary  is composed of pieces of the lines a = 0 ,  a = d  and possibly a =  - d .  As 
we shall show in the next  proposi t ion,  the stabil i ty region is as depicted in Fig. 
4. 

Proposition 
All roots of the character is t ic  equat ion lie in the left half-plane if and  only 

i f d > a > 0  or d < a < 0 .  

Proof 
We first compute  which way the  root )[ = 0 goes if we per turb  away from the 

line a=O. So for fixed d we look for a root ,~= 0a-bHOT, where HOT indicates 
higher order t e rms  in a. A s t ra ight forward  computa t ion  shows tha t  necessarily 
0 =  - 2 /d .  Hence  a necessary and  sufficient condit ion for Re ~ < 0 is d >  0 for a 
small but  posit ive and d < 0 for a small  but  negative.  

I f  a = d =  0 all roots lie on the imaginary  axis. Indeed, they  are given by 
2kn i , keZ .  We now compute  where these roots go if we per turb  along a line 
d = aa .  In order to do so we put,~ = 2k•i+ 01a + 02a 2 + HOT, subst i tute  and  make  
Taylor  expansions.  We find 

1 + ~ .  1+c~ 1 - ~  1 + 2 ~ . .  

Consequent ly  Re )~ < 0 if and only if ei ther  ~ > 1 or ~ < - 1. 
So in a neighbourhood of ( a , d ) =  (0,0) we have stabil i ty precisely when 

d > a > 0 or d < a < 0. Since stabil i ty can change only a t  the lines a = 0, a = d, 
a = - d  this local character izat ion remains  globally valid. 
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R e m a r k s  
1 ~Ft o Y[ 2 l" 

(i) d > a > 0 if and only if x < ea = - -  < 1. Note tha t  the right inequality 
Z P 

corresponds to the condition for the existence of an equilibrium. The case 
d < a < 0 has no biological meaning. 

(ii) At the line a=d stability is lost by complex conjugated pairs of roots 
crossing the imaginary axis. An unusual aspect of the present system is tha t  
passage of the line a = d in parameter space is accompanied with a simultane- 
ous passing of the imaginary axis in the complex plane by a multi tude (in fact 
infinitely many)  of pairs of roots. This is due to the fact tha t  one of the equa- 
tions is a pure difference equation. As a consequence one cannot  apply stan- 
dard Hopf bifurcation theorems about the existence of periodic solutions. 

A P P E N D I X  II. DERIVATION OF T H E  L I M I T I N G  EQUATIONS D E S C R I B I N G  

I N S T A N T A N E O U S  I N T E R A C T I O N  

When u (x) = ax the solution of 
d d 

{ ~ ( t , x )  = - ~ ( u ( x ) n ( t , x ) )  -~l(x)Q(t)n(t ,x) 

u( 1 ) n(t,1) =(no(t)Q(t) 
is given explicitly by 

~n0 ( t - l l n x ) P ( t -  l l n x )  ; ,nx 
C~ 0~ n(t,x) - exp( - ~l(e~%Q(t- l lnx+a)da)  

OLX OL 
o 

(The basic technique to obtain such explicit expressions is integration along 
characteristics; see Metz and Diekmann (1986, Ch. III, section 4.1). 

W h e n g ( x , y ) = a x - f l y  and h(x,y)=)~y t h e s o l u t i o n o f  
d d d 

{ ~m(t,x,y) +-~(g(x,y)m(t,x,y) ) +~y(h(x,y)m(t,x,y) ) = 0  

h(x,t )m( t,x,1) =~l(x )Q( t )n( t,x ) 
is given explicitly by 

.... ~' )O( t -  ~ 1 m ( t,x,y ) = yy rl(Xo(x,y) l ny )n ( t -  -lny,xo(x,y) ) ?, 

where, by definition 

xo(x,y)=xy-? + fl ( 1 - y ' - } )  
O ~  - -  ), 
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We assume that a prey patch which is not invaded by predators will never- 
theless crash after a fixed period due to local food over-exploitation, and that  
all prey will disperse at that very instant (whereas earlier no prey emigrate 
from the colony). Let Xmax denote the number of prey in a crashing colony. (So 
xm~ is the maximal realisable colony size and, as such, it is an indirect measure 
of the value of an empty patch with regard to exploitable energy.) Then the 
rate R at which new prey aerial plankton is produced is given by the product 
of x .... and the 'flux' v (xm~) n ( t,xm~ ) which is the rate at which prey patches 
reach Xraax: 

R(t) =x . . . .  P ( X m a x ) r t ( t , X m a x )  = ~ ax T~, n ( t,Xm~ ) 
Similarly, the rate at which new predator aerial plankton is produced is given 
by 

y m ~ x  
t l  

S(t) = -  J yg(O,y)m(t,O,y)dy 
3him 

where Ymi, and Ymax are the minimal and maximal possible local predator pop- 
ulation sizes. 

We ignore the possibility of host plant exhaustion for a predator-invaded 
patch (which would result in the simultaneous production of prey and predator 
aerial plankton ) because this possibility becomes negligible in the limiting case 
that  we will consider here. 

The formulas above allow us to express R and S in past values of no, P and 
Q and consequently we can derive a closed system of delay-differential equa- 
tions for these three variables. In order to simplify these expressions and to 
obtain ordinary differential equations we are going to take the limit a,fl, 7, ~]~ 
with a/y--+O but fl and 7' of the same order, and a and r/of the same order. 

In this limit we have 

..... ~/(a)da ) R(t) =x .... ~no( t )P( t )exp(-Q(t) j~  

and 

y m ~  

f (_  d S(t)=fl-~no(t)P(t) yQ(t)~O~xo(O,y ) exp ~' J1 o~ 
ymln  

ym~x 

=~no( t )P ( t )  f y d [ 1 - e x p ( - Q ( t )  fi~°(°*'*~7~)da) ] 
Ymin 
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The biological interpretation is as follows. We assume that  both prey and pre- 
dators reproduce infinitely fast, but predators still an order faster than  prey. 
The rate of production of prey aerial plankton R equals the product of the yield 
factor x . . . .  the rate of founding of new prey colonies ~no(t)P(t)  and a reduc- 

Xm~x 

tion factor exp ( - Q (t) ~| 71 (a~da) due to predator invasion. Similarly, the rate 
J C~(T 

1 

of production of predator aerial plankton S is proportional to the rate of found- 
ing of new colonies with a proportionality constant  which is the mean yield 

_~m .x 

h ( Q ( t ) ) : ~ f  yd[1-exp(-Q(t,~°'°'y~'t(a)'da,]Jl o~a 
ymi*~ 

Note that  the mean yield depends on Q and the vulnerability index ~1- The point 
is tha t  the yield in predators depends on the size of the prey colony at the 
moment of invasion, while the probability for invasion at some particular size 
depends on both ~7, a descriptive model ingredient, and the dynamical variable 
Q. 

We now specialize, by way of example, ~ to be tl(x) = c~Ox or, in other words, 
we take the probability of predator invasion to be proportional with prey col- 
ony size. Then 

x 

f ' f l ; ) d a : O ( x - 1 )  and R ( t ) = x  .... ( n o ( t ) P ( t ) e x p ( - O ( x  ..... - 1 ) Q ( t ) )  
1 

R 
Since in the limit xo(O.y)=~-(y-1)  

), 
), ). 

(and therefore Ymin = 1 + ~  ym.x= 1 +=Xm~x) 
P P 

we obtain 

S ( t ) fl 1 - e  -'"Q" ~ 
¢no(t)P(t)  - (  +xm"~) (1-e-~°Q~'~) + OQ(t) "[- 1 - -  X m a  x 

where, by definition, v)= O(x .... - 1 ). 

Taking d =  -fl+ xm~x and p = o) Xm~x -- 1 
;' dO-- x~.~ + fl/), < 1 

we obtain 

d -  ~h(Q) = 1 - e  - ~ Q + p ( - -  1 ) , Q > 0  



~)= 0 

0.2 

341 

o.s- ~ o.s 
0.6 

0.25- 0.8 

1,0 

0 
o ~" lb 1; 2b 

Q • 

Fig. 5. The relation between h and Q for ( o =  1, 6= 1 and various values ofp. 

and h (0 )= l im  h(Q)=0. The graph ofh  is sketched in Fig. 5. 
QI0 

Note that an increase in the number of searching predators may actually lead 
to a decrease of the production of new predator aerial plankton, since prey 
colonies may be invaded so early in their development that they produce, at 
the end of the interaction period, few predators. 

Similarly, the assumption that t/is constant, say t / (x)  = L~0, leads to 

), x I~,Q _ 1 
h(Q)= (l-b~Xmax)(1--XmeaxQ)"Fl--Xmax H 1-OQ 
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