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ABSTRACT 

Metz, J.A.J., Sabelis, M.W. and Kuchlein, J.H., 1988. Sources of variation in predation rates at 
high prey densities: an analytic model and a mite example. Exp. Appl. Aearol., 5: 187-205. 

Some mathematical techniques for the analysis of satiation-based predation models previously 
developed by the first author are applied in the present paper to a model by the second author for 
predation by the predatory mite Metaseiulus occidentalis (Nesbitt) .  It turns out that  for this 
predator the predation rate should keep increasing at high prey densities as the square root of the 
prey density, x. This particular shape of the functional response is shown to occur if and only if 
the upper satiation threshold for prey capture coincides with the maximum gut capacity. The 
functional response predicted by the model, moreover, is in fair quantitative agreement with pre- 
dation rates observed by the third author in artificial arenas. 

A further analysis of the model shows that  the variance of the catch should also increase as the 
square root ofx. This prediction is consistent in a qualitative manner with the continued increase 
in the variance of the catch, However, quantitatively, the observed variances are even too large to 
be compatible with any model in which the feeding rate is subject to regulation by a negative 
feedback. Therefbre, the difference between predicted and observed variances is hypothesized to 
be due to nonhomogeneities in the experimental material. The inferred additional variance com- 
ponent proportional to x accords thirly well with the t rend apparent in the data. 

THE CASE FOR PHYSIOLOGICALLY STRUCTURED POPULATION MODELS 

T h i s  p a p e r  d e a l s  w i t h  s o m e  m a t h e m a t i c a l  p r i n c i p l e s  e x p l a i n i n g  t h e  p e c u l -  

i a r i t i e s  o f  t h e  p r e y - c a t c h i n g  b e h a v i o u r  o f  t h e  p r e d a t o r y  m i t e  Metase iu Ius  oc- 
cidental is  ( N e s b i t t )  a t  h i g h  p r e y  d e n s i t i e s .  H o w e v e r ,  b e f o r e  g o i n g  i n t o  t h e  

s p e c i f i c s  i t  s e e m s  e x p e d i e n t  t o  r e m a r k  o n  t h e  l a r g e r  c o n t e x t ,  a s  t h e  m e t h o d s  
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used were developed as part of a larger research program dealing with the mo- 
delling of 'physiologically structured' populations (see Metz and Diekmann, 
1986 ). 

Temporal and spatial scales and the functional response 

The old goal of population dynamics is dead. There just is not one, or even 
a few, mechanisms explaining all population behaviour. Rather, there is a great 
variety of possible mechanisms and a corresponding, though lesser, variety of 
population behaviours. This does not mean that population dynamics is dead 
as well - -  only that we should aim at the more modest goal of trying to under- 
stand the relation between particular biological mechanisms and their popu- 
lation-dynamical expression. This calls for a judicious interplay between 
experimentation and modelling. The ultimate aim is to arrive at a sufficiently 
well-organized collection of procedures and results so that we may, with some 
confidence, approach any practical situation that asks for our attention. 

One possible organizing principle is the hierarchy of temporal and spatial 
scales. Some processes are fast and others are slow; some are very localized 
spatially, whereas others can only be studied over large spatial scales. The 
important point is that this difference in scales, it' sufficient, allows us to study 
processes in partial isolation. We may, for example, study the local effects of 
predation within patches replete with prey without, for the time being, paying 
attention to the movement of a predator between such patches. On a large 
time-scale and a correspondingly larger spatial scale we may study predator 
movement among prey patches, assuming the outcome of the local, within- 
patch, processes as a given quantity. Whether the scales can indeed be sepa- 
rated in the indicated manner depends, of course, on the system under consid- 
eration. As a rule of thumb we may say that two characteristic times should 
differ at least by an order of magnitude (a factor of ten) to allow a separate 
treatment of the corresponding processes. 

It is against this background that  we should see the concept of functional 
response: it allows the separation of the relatively short behavioural time-scales 
from the longer population-dynamical ones. This does not mean that from the 
knowledge of the functional response we can go immediately to the full popu- 
lation dynamics. It may well be that the population dynamics itself also takes 
place on more than one scale, such as local predator-prey interactions, where 
the functional response plays its role, and a more global dynamics of patches 
in various stages of prey and predator occupation (cf. Diekmann et al., 1988, 
this volume). 

The above considerations also imply that it does not suffice just to measure 
the functional response; its precise quantitative form may well depend on many 
local circumstances. Rather, we would like to model the predation process in 
such a way that we get some understanding of how the number of prey caught 
depends on the special features of the system. The functional response then is 
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one of a number  of useful intermediaries in t ranslat ing the effect of various 
modifications of the envi ronment  into their  populat ion-dynamical  conse- 
quences. Its calculation from first principles, followed by a confrontat ion with 
the measurements ,  provides a test  case for our unders tanding at the behav- 
ioural level. It also provides a stepping-stone towards the next  level in the 
hierarchy of t ime and space-scales. 

From individual processes to population equation 

Mite predatory behaviour is made up of a large number  of components  (cf. 
Holling, 1966). The  details of walking behaviour and sensory probing govern 
encounter  rates; the reactions of predator  and prey upon encounter  determine 
whether  tha t  encounter  turns  out to be successful, whence a prey is caught it 
may be eaten in full or be partially discarded, etc. All this is covered in detail 
by Sabelis (1981, 1986). In the present  paper we concentra te  on just one as- 
pect, the role of the state of the predator.  

The  mechanisms of population change lie in the reactions of individuals to 
their  environments .  However, these reactions may vastly differ between dif- 
ferent individuals. For example, a per-capita feeding rate of a population usu- 
ally is made up of feeding rates of individuals, some of which may be highly 
satiated while others may be very hungry. If we wish for a mechanistic under- 
s tanding of feeding rates we cannot  just lump all those individuals together.  
The  only problem is how exactly we should make our distinctions. It is here 
tha t  the concept  of state comes to the fore. 

Loosely speaking, the state of a system is a collection of variables such that  
the behaviour of the system at t ime t is fully determined {in a stochastic sense ) 
by the s ta te -cum-envi ronment  at t ime t, and tha t  the state at t ime t +  r is fully 
determined by the state at t ime t plus the intervening environmental  history. 
On a longer populat ion-dynamic time-scale the behaviour  of an individual may 
consist, for example, of giving bir th or dying. In our present  more modest  con- 
text,  behaviour will be considered to be the catching and eating of prey. 

If all individuals in a populat ion experience, on the average, the same envi- 
ronment  (this presupposes some sort of homogeneous mixing),  and if we are 
interested in overall populat ion propert ies such as total  feeding rate, then the 
state of a population corresponds to a frequency distribution over the space of 
individual states. This  frequency distribution moves due to the state changes 
of individuals, and it may also decrease due to deaths and increase due to births. 

The  tenet  of the 'physiologically structured'  population methodology is that  
we may write equations describing the changes of the populat ion state on an 
infinitesimal basis, and subsequently extract  from these equations information 
on population behaviour. 

From this point  of view the state concept forms a second organizing princi- 
ple, next  to that  of the time-scales. 
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A SATIATION-BASED PREDATION MODEL 

Biological ingredients 

Sabelis (1981) and Fransz (1974) found that,  in M. occidentalis, most char- 
acteristics of predatory behaviour such as walking speed and pa t te rn  and prob- 
ing behaviour are independent  of feeding history. Only the rate at which prey 
were actually taken once encountered,  the so-called 'success ratio', and to a 
lesser extent  the handling time, did vary. Moreover,  the whole feeding history 
could be summarized in just one state variable, satiation, which can provision- 
ally be equated to the amount  of food in the gut, and which could be measured 
by weighing the animals, 

Th a t  indeed satiation is just a one-dimensional  variable is not self-evident. 
In fact, Johnson et al. ( 1975 ) describe what  essentially is an example of a two- 
dimensional satiation state in damselfly larvae, including as components  the 
contents  of the fore and midgut, the former regulating the eating response, 
while both together  determine the capture rate. A non-physiological,  input- 
output  based approach to the satiation concept  can be found in Doucet and 
van Straalen (1980), in which is also discussed the problem of test ing whether  
satiation really can be represented one-dimensionally.  

There  is also some very circumstantial  evidence tha t  M. occidentalis may 
have a higher-dimensional satiation state. Overall, its success ratio is a de- 
creasing function of gut content ,  except at very low gut contents  where the 
success ratio appears to drop again ( cf. Fig. 1 ). Looked at from an adaptat ion- 
ist point  of view, this seems self-defeating. The  explanation tha t  by so doing 
the animal conserves energy when energy sources are scarce cannot  hold water 
as it does not appear to economize on moving; it only is more prone to overlook 
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Fig. L Rate constant of prey capture as a function of' satiation for the predatory mite Metaseiulus 
occidentalis feeding on eggs of the spider mite Tetranychus urticae in an arena with a web (based 
on data in Sabelis, 1981 ), The continuous curve is given by the formula g (s) = KR ( s ), with K, the 
rate constant of encounter, set equal to 21.05 cm'-'/day, and with the success ratios R (s) = 0. ] ( 1 -s~  
m ) + O . 3 2 ( ] - s / m ) ~ + 0 . 6 5 ( l + ] O  ~ (s /m-O.11)  ~') ~+].16402564.10-~;; m=3.3 /lg, the maxi- 
mum gut capacity. 



191 

the prey it encounters.  A possible mechanist ic  explanat ion is tha t  very low gut 
contents  occur only after  periods of prolonged fasting, which also lead to a 
general energetic deficit. The  low body energy levels alter the animal 's behav- 
ioural mode. It may, for example, stop investing in eggs and start  to search for 
richer pastures. If' this explanat ion is correct  one large meal would fill the gut 
but  would not immediately cure the apparent  lack of appetite.  In tha t  case, we 
would have to supplement  our state description with some measure of the an- 
imal's overall energetic condition. 

A second class of potential  state variables derives from the handling of cap- 
tured prey. If we wish to take account of handling times in a model which also 
includes satiat ion differences we cannot,  as is o[ten assumed, just  diminish the 
rate of successful encounter  by a Holling disk equation type correction factor. 
The  correct mathematical  representa t ion of our mental  image of the handling 
of prey is through the introduction of one or more state variables indicating 
the state of dispatch of the prey current ly  being handled. The  end results are 
fairly complicated formulas, the details of which may be found in Metz and 
van Batenburg (1985a) and also in Metz and Diekmann (1986, par t  A, chapter  
III ). However,  in the case of the predatory mites considered by Sabetis (1981, 
1986 ), handling t imes are sufficiently short  tha t  they can safely be neglected. 
This  can easily be seen by the following argument.  For M. occidentalis the 
highest experimental ly observed capture rate of eggs of Tetranychus urticae is 
18 per 24 h. The  handling t ime at high satiation is 4 min. Therefore,  even in 
the most extreme case the animal uses but  5% of its t ime budget in handling 
prey. At low satiation levels, handling times may be slightly longer, but  this is 
more than offset by the lower prey-catching rates which lie at the root of these 
low satiation levels. 

Summarizing, we may say tha t  the state process underlying prey capture by 
M. occidentalis appears to be one-dimensional.  The  rate of successful encoun- 
ter  is a function of satiation and is proport ional  to prey density. Between cap- 
tures, satiation decreases. Once a prey is caught, sat iat ion makes an 
instantaneous upward jump. To complete the picture we note tha t  sat iat ion 
appears to decrease at a rate which is proport ional  to its current  value, and 
that  the jumps appear to depend only on the prey size, except when this would 
bring satiation above the maximum gut capacity, in which case the animal just  
fills its gut to the brim and then  discards its prey. 

Below we shall concentra te  on a female M. occidentalis preying on eggs of T. 
urticae. Figure 1 depicts its rate constant  of successful encounter  in the pres- 
ence of a web, i.e. the area it searches per unit  of t i m e × i t s  success ratio {Sa- 
bells, 1981 ). This  predator  has the special proper ty  that  its rate constant  of 
successful encounter  appears to stay non-zero for all admissable values of sa- 
t iation, and to go smoothly to zero for satiation nearing the maximal value. As 
we shall show, it is precisely this proper ty  tha t  is responsible for some curious 
aspects of its functional response. 
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The population equation 

We start  with introducing some notat ion.  Satiat ion will be denoted as s, 
which ranges from 0 to m, the maximum gut capacity. The  rate of decrease of 
satiation between catches will be denoted as f, where f (s)= -as  (a is the rate 
constant  of digestion ), and the size of a full upward jump of s by w. The  rate 
constant  of prey capture will be denoted as g, the smallest value of s for which 
g(s) =0,  the capture threshold as c, and prey density as x. Finally, we shall 
denote the population state as p, where p(t,s)ds denotes the number  of pre- 
dators (per unit  area, but  we shall refrain from repeating this)  having satia- 
tions between s and s + ds at t ime t. 

With this notat ion the populat ion equation (see Metz and Diekmann,  1986, 
par t  A, chapter  I for the details of derivation ) becomes: 

ap(t,s) Of(s)p(t,s) 
O ~  - Os x(t)g(s)p(t,s) +x ( t )g ( s -w)p ( t , s -w)  ( l a )  

The  easiest way to visualize what  the components  of this equation mean is to 
th ink of the population as a heap of sand on a conveyor belt (see Fig. 2). This  
conveyor belt  moves to the left due to the decrease of satiation by digestion. 
This  movement  is represented by the first te rm on the r ight-hand side. To 
derive this term we just  concentra te  on a fixed length-element  along the satia- 
t ion axis and consider the changes in the number  of predators in tha t  length 
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Fig. 2. Conveyor belt representation of a structured population model. 
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element  due to outflow to the left and inflow from the right. The  second term 
corresponds to removal of predators  locally on the conveyor belt  when they 
catch a prey, and the third term represents  the local arrival of predators  which 
have just  eaten a prey item. 

Equat ion ( la  ) still has to be completed with a side condition accounting for 
all the predators tha t  do not  complete the eating of their  prey, due to their  
satiation reaching its maximum value. All these predators  end their  jump at 
position m on the conveyor belt. Equat ing d t × t h e  arrival rate at  m to the 
number  of predators  which are stacked on the length element  of size - f ( m  )dt 
which rolls past  m during tha t  t ime gives: 

r 
- [ (m)p( t ,m)= J x(t)g(s)p(t,s)ds ( lb )  

m - -  t t  

Given the solution to (1) we can calculate the number  of prey caught per 
unit of' t ime as: 

c 

H(t) = fx(t)g(s)p(t,s)ds (2) 
l )  

If we wish to calculate the catch per predator  we should divide through by 
the total number  of predators.  However, we specifically neglected any changes 
in predator  number  through births and deaths in phrasing our model. In other  
words, (1) conserves total  predator  number. Therefore  we may just as well 
normalize right from the star t  and set 

I p(t,s)ds= l (3) 

From now on we shall keep to this convention.  
Formula  (3) also points to another  possible in terpreta t ion of our equations. 

If x would be a constant  or, rather,  a given function of t ime not  influenced by 
the behaviour of a given predator,  then convent ion (3) allows us to interpret  
p (t,s)ds as the probabili ty tha t  tha t  predator  has satiation between s and s + ds, 
and H as the average rate at which it captures prey. We shall re turn  to this 
interpretat ion (p. 198) when we calculate the variance of the catch. 

THE FUNCTIONAL RESPONSE 

Calculation procedure 

As stated at the outset, the whole idea of a functional response is predicated 
upon a difference between the time-scales ofbehaviour  and population dynam- 
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ics. As, generally,  p reda to r s  are  m u c h  scarcer  t h a n  thei r  p rey  the  cap tu re  o f  
one  prey  i tem m a y  m e a n  m u c h  to  a p reda tor ,  bu t  it co r re sponds  to on ly  a very  
slight relative decrease  o f  the  prey  popula t ion .  I t  is this  d i f ference in relat ive 
con t r ibu t ions  which  sets the  differences in t ime-scales .  

Guided  by the  difference in t ime-scales  we set  the  prey  dens i ty  to a c o n s t a n t  
value and  consider  the  s teady popu la t ion  s ta te /5  (.), which  can be ca lcula ted  
f rom 

d f (  s )/5 ( s ) 
0--- ds xg(s)/5(s)+xg(s-w)/5(s-w) (4a)  

toge ther  with the  normal i za t ion  condi t ion  

m 

l = ~ / 5 ( s ) d s  (4b) 

0 

( In  Metz  and  van  B a t e n b u r g  (1985b) it is shown t h a t  t5 defined this  way  au-  
tomat ica l ly  satisfies (2b) ;  the  exponen t i a l  convergence  o f p ( t , . )  to  t5 for con-  
s t an t  x was p roven  by He i jmans  (1984)) .  Given  the  solut ion to (4) the  
func t iona l  response  can be ca lcula ted  f rom 

(. 

F(x) = f xg(s)/5(s)ds (5) 

(Note that/5 also depends on x. ) 
T h e  best  way to  in tegra te  (4a) numer ica l ly  is to use so-called ' upwind  dif- 
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Fig. 3. The functional response calculated from Formulas (4) and (5} for [(s)=-as, a=2.93 
day - ', w = 1 pg, and g as in Fig. 1 except that K was set equal to 46.55 cm ~/day to make the change 
from a webbed to an unwebbed arena, ( ), together with the results from approximation 
Formulas (8) ( ....... ),and (10) ( . . . .  ). 
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ferencing' on a fixed grid of width A=w/k, k some integer, replacing 
-df(s )lS(s)/ds=d(aslS(s)/ds by ( - -as .~(s  i ) -t-asi+ tp (si+ i) ) / A ,  for si = iA, and 
using some arbi t rary value of/5 (A) to s tar t  the integration. (It may be neces- 
sary to renormalize a few times during the integration to prevent  overflow.) 
After the integration is per tbrmed the result is normalized to conform to (4b). 
Finally, F is calculated by the numerical equivalent  of (5). (This  procedure is, 
barring some minor  details, equivalent to the procedure for calculating Fb a se d  
on the queueing model expounded in Sabelis ( 1981, 1986 ). ) 

The  result of calculating F in such a manner  for M. occidentalis feeding on 
eggs of T. urticae in an unwebbed arena is displayed in Fig. 3, together  with the 
results from some approximations to be discussed in the following subsections. 

Approximation [ormulas 

At very low prey densities satiation hovers, most of the time, very near to 
zero; theretbre,  for very small x 

F(x)=g(O)x (6) 

Fi~tre  3 shows that  F is too curved over the range of x values of practical 
interest for (6) to be of any use. Clearly, the functional response can only be 
understood by paying careful a t tent ion to the changes in satiation. 

Below we shall argue that  in M. occidentalis the shape of the functional re- 
sponse is dominated by the, to a large extent ,  wasteful killing at high satiation 
levels. As par t  of tha t  argument  we shall first consider yet another  poor ap- 
proximation: the fact tha t  this approximation does poorly, and that  the final 
approximation which we shall consider does so well - -  contrary  to our experi- 
ence for some other  animals for which such wasteful killing does not occur or 
occurs only rarely - -  precisely makes our point. 

When x is constant ,  a predator  eating numerous small prey experiences only 
relatively minor  satiation fluctuations due to the operat ion of the law of large 
numbers.  Taking this line of argument to its extreme we may consider a pre- 
dator whose satiation process satisfies 

ds 
~ =  -[(s) + xwg(s) (7) 

The  functional response is just  the prey capture rate tbr s at  its s teady-state 
value: 

F(x) =xg(g)  (Sa) 

with ,¢ defined by 

xwg(g) = / (g )  (8b) 

The  result of this calculation for the Metaseiulus-Tetranychus system is also 
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indicated in Fig. 3. (Note that Fig. 4 in Metz and van Batenburg ( 1985b ) which 
purports to show the good quality of approximation (8), refers to a thought 
experiment in which there was assumed to be no restriction on the gut capacity. ) 

Metz and van Batenburg (1985b) also consider a correction term to (8) 
taking account of the curvature of g. To that end they fitted the Metaseiulus 
success-ratio data with a much smoother curve than the one shown in Fig. 1. 
For such smooth g curves their approximation performs almost unbelievably 
well. For the g curve used in the present paper the correction term gives next 
to no improvement compared to (8). 

The final approximation which we shall consider assumes x to be sufficiently 
large to make it unlikely that the satiation ever comes more than w below the 
maximum gut capacity m. In that case every capture results in satiation being 
set equal to m, making it relatively easy to calculate the mean time between 
captures. In the stationary state the average capture rate just equals (mean 
time between captures) - 1 If we also make some further approximations along 
the lines laid out in Metz and van Batenburg ( 1985a ) appendix 3, and set 

b = - g ' ( c )  

for convenience of notation, we obtain 

(9) 

Equation (9) implies that usually the functional response goes to an asymptote 
which equals a / l n ( m / c ) .  Only when, as appears to be the case in M. occiden- 
talis, the capture threshold and the maximum gut capacity coincide (c= m), 
the functional response keeps increasing as 

F(x)- 2a~_cx (10) 
-- ~] ~z 

Approximation (10) is also depicted in Fig. 3; it can be seen that it performs 
not too badly. 

As ( 10 ) is essentially based on the reset of s to m upon a prey capture, which 
corresponds to a killing that  is at least partially wasteful, the good performance 
of (10) implies that this wasteful killing dominates the shape of the functional 
response. 

Confrontation with the data 

Figure 4 shows a set of measurements by Kuchlein (unpublished data) of 
predation rates by M. occidentalis females preying on eggs of T. urticae placed 
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on a fresh leaf disc (see the Appendix for the details of the experimental  pro- 
cedure ), together  with the functional response already depicted in Fig. 3. The  
fit, at least for high prey densities, is surprisingly good, taking into account 
that  all parameters  were est imated in separate experiments.  The  direct mea- 
surements  of the capture rate therefore confirm the coincidence of the capture 
threshold and the maximum ~o~t capacity suggested by the data points in Fig. 
1. 

We should make one caut ionary remark,  however. As is shown by Formula 
10), the catching rate at high prey density is ra ther  sensitive to b, the slope 

of" g at m. It is particularly difficult to est imate b with some precision. Three  
curves fitting the data points in Fig. 1 about  equally well in an overall sense 
turned  out to have b values which differed by as much as 30%. The  curve which 
appears in Fig. 1 was derived as a sort of middle-of-the-road compromise be- 
tween a number  of least-squares fits with formulas of the form 
u ( m - s )  + v ( m - s )  2 to the last 3, 4, etc. data points in combinat ion with an 
ad-hoc formula to take care of the hump at tow satiations. This  way we tried 
to do as much right as possible to the importance of the behaviour o fg  near m. 

A final point worth noticing is the relatively poor fit of the calculated func- 
tional response at low values of x. The  data points lie consistently under  the 
predicted curve. (n.b. The  dip in g at low satiations also leads to an S-shaped 
appearance of the calculated functional response, but  this effect is only notice- 
able for extremely low values of x, and cannot  even be seen on the scale of Figs. 
3 and 4.) The data on the success ratio underlying the function g which we 
used in our calculations were all collected in the presence of a web. The  absence 

20 

T j 

E° 10 
u. 

O0 10 20 3(3 
X (cm "= ) 

/ 
J 

Fig. 4. Experimentally determined prey capture rates {br female M. occidentalis feeding on T. 
urticae eggs in an unwebbed arena. Data from Kuchlein (unpublished). The error bars correspond 
to two standard deviations. The continuous line is the theoretical functional response from Fig. 
3. 
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of a web in Kuchlein 's  exper iment  (data not presented)  was only accounted 
for by changing the encounter  rate to a new value, est imated from observations 
of the walking behaviour on clean leaf discs. Apparently,  being on an otherwise 
clean leaf disc does not disturb the predator  when the going is sufficiently good. 
But the discrepancy between observed and predicted capture rates at low prey 
density points to some behavioural change. Our guess is that  the predators 
were t rying to leave the experimental  arena. Having a really low satiation is 
indicative of being in a prey patch of poor quality. Combined with the absence 
of any indirect indicators of prey presence, this should make any right~minded 
predator decide to try its luck elsewhere. 

THE VARIANCE OF THE CATCH 

Calculation procedure 

As indicated earlier (p. 193), the assumption of constant  x allows us to in- 
terpret  our model as a stochastic process pertaining to one individual. The  
phrasing in the previous section also often alluded to this fact. Yet all the 
results discussed in tha t  section are meaningful and can be derived in the con- 
text  of a purely deterministic model dealing with an (infinitely) large popu- 
lation of predators.  

For the quanti ty which we shall discuss in this section, the variance of the 
total catch, the stochastic interpretat ion is indispensable. This  also means that  
we have to introduce some new notation.  We shall use N to denote the total  
catch by a single predator  and S will denote its satiation. Both  S and N are 
random functions of time. E will denote the expectat ion operator  (i.e. taking 
averages) and VAR and cov  will, as usual, refer to variances and covariances. 
Below we shall quote only the results, and refrain from giving even an heuristic 
derivation, as this would take us too tar afield (see Metz and van Batenburg 
( 1985b ) for the technical details ). 

Alter a short  initial phase, the precise nature  of which depends on the way 
the experiment  was started, the variance of the catch starts to grow linearly 
with t ime at a rate v which can be calculated from 

v(x) =x(2cov(N,g(S)  ) + Eg(S)  ) (11) 

In this expression 

xEg(S) = F ( x )  (12) 

And cov(N,g(S)  ) can be calculated from 

cov(N,g(S)  ) -- Ig(s  )~(s )ds ( 13 ) 
0 

where ~ satisfies 
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Fig. 5. The variance of one day's catch calculated from Formulas (11) to (14), for the same pa- 
rameter  values as in Fig. 3 ( ), together with the results from approximation Formulas ( 16 ) 
( ....... } .and (18) ( . . . .  ). 

O= 
d[(s)~(s) 

ds -xg(s)2(s) +xg(s-w)2(s-w)  

+ xg(s-w)lS(S-W) -F(x)13(s) 

r n  

o=fe(s)ds (14) 

Equation (14) can be solved numerically in exactly the same manner as (4), 
the only difference being that instead of normalizing we have to add a multiple 
of/5 in order to satisfy the integral condition. 

The result of calculating v for the Metaseiutus example is displayed in Fig. 5 
together with the result of some approximation formulas to be discussed below. 
Comparison with Fig. 3 shows that the variance is always well below the mean, 
as is to be expected for a point process in which the occurrence of a point event 
lowers the rate at which subsequent point events occur. 

Approximation formulas 

This subsection follows exactly the same pattern as its earlier-given coun- 
terpart (p. 195). To avoid needless repetition we only give the details of an 
argument where it differs from the corresponding argument in that subsection. 

The argument from p. 195 can be extended to show that, at very low prey 
densities, the catch follows approximately a Poisson process, implying that  for 
sufficiently small x 
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v (x) = F ( x )  =g(0)x  (15) 

When taking the limit for infinitely many, infinitely small prey which gave 
us Formula (8), we lose any information about the variance. To recover this 
information we can consider a so-called diffusion approximation around the 
deterministic limit. The resulting approximation for v is 

o 

.. f'(~) \- 
v(x) =xg(~) \ t '  (~] $-xwg(~)) (16) 

The approximation for large x corresponding to Formula (9) can be found 
by using the fact that the forced passing through m makes the catch process 
into a so-called renewal process. Using the formulas in Cox ( 1962, p. 40) to- 
gether with some further approximations we find 

2 ( 1 - ~ / 4 ) a  2 
v ( x ) -  :~ (17) 

(n.b. The factor (1-7r /4)  is erroneously wanting in Formulas (3.5), (6.4), 
and (A3.2) of Metz and van Batenburg (1985b)). Our Formula (17) implies 
that, for large prey densities, the variance off the catch decreases to zero, ex- 
cept when the capture threshold and the maximum gut capacity coincide. In 
that case v keeps increasing, as 

v(x) 4(1-~/4)  (2a~cx) ~ 
- - -  (18) 

7~ 

Both Approximations (16) and (18) are displayed in Fig. 5, showing that, 
according to our model for M. occidentalis, also the variance of the catch is 
dominated by the wasteful killing resulting from the coincidence of capture 
threshold and maximum gut capacity. 

Confrontation with the data 

Figure 6 shows the variances of catches in Kuchlein's data which also formed 
the basis of Fig. 4. Clearly, the observed variances are far above the calculated 
ones. In fact they are well above the Poisson variances, showing that no process 
in which there is a negative feedback from the capturing of a prey to the capture 
rate can explain the observations. The only possible explanation seems to be 
some sort of nonhomogeneity among the many replicates. Such nonhomo- 
geneities only slightly affect the means, whereas the effect on the variance is 
considerable. 
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Fig. 6. Observed daily variances of the catch, from the same data set as in Figure 4. The error bars 
correspond to one s tandard  deviation. The continuous line is the theoretical daily variance from 
Fig. 5, the  broken line corresponds to the  daily variance of  a Poisson process with the same mean. 

Interestingly enough, it is not necessary to leave it at this seemingly defeatist 
s ta tement ,  thanks  to the simple form of Formula ( 10 ). Let 

Nonhomogenei ty  among the replicates would mean that  Q is a random van-  
able. Let, as beibre, the catch be denoted as N; then, for sufficiently large x, 
the conditional mean and variance of the catch given Q are 

E N I Q = Q x  ! and V A R ( N ! Q ) - - 4 ( 1 - - ~ / 4 )  Q x  ~ (20) 
7~ 

Taking the expectat ion over Q we get 

E N = E  E N  I Q = E Q x  ~ (2i) 

which is the same formula as (10), provided we substitute an appropriate es- 
t imate fbr EQ. However,  for the variance we find 
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VAR(N) = E  VAR(N tQ) +VAR(EN [Q) 

_ 4 ( 1 - ~ / 4 )  EQ x ~ + V A R ( Q ) x  
7[ 

(22) 

i.e. in addition to the term corresponding to (18) there has appeared a linear 
term VAR (Q) x. ( This  feature is again directly due to the coincidence of capture 
threshold and maximum gut capacity. If  rn is larger than  c then the variance 
component  due to the stochastic nature  of the catch process goes to zero and 
any variance component  due to nonhomogeneit ies  in the experimental  mate- 
rial becomes constant  for large x. ) 

Judging from the fit of F we had apparent ly hit  upon a fairly good estimate 
of EQ. Therefore  we can test  whether  relation (22) indeed holds good by plot- 
t ing the difference of the observed and predicted variances for the larger x 
values against x. Figure 7 shows the result. It is not particularly good, but  
neither is it part icularly bad, taking into account  the ra ther  crude assumption 
tha t  the replicates for all series of exper iments  were nonhomogeneous in ex- 
actly the same manner.  

As final check we est imated VAR(Q) by a weighted least-square procedure, 
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Fig. 7. The observed daily variance for the six highest prey densities from Fig. 6 after subtraction 
of' the variance component inherent to the predation process itself. 
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taking account of the pattern in the estimated error bars. The result is that, to 
explain the data, we have to assume a coefficient of variation of Q of ca 40%. 

Sabelis {1981, pp. 154-156, tables 58 and 59 ) reports variance mean ratios 
of the catch in the presence of a web of ca. 0.5. These values are about twice as 
large as those predicted by the model, which suggests that in Sabelis' experi- 
ments there also was some parameter variation. Yet these values are consid- 
erably lower than the values of up to 3 seen in Kuchlein's {unpublished) data. 
Possible explanations for this differences are: 

(i) the leaf discs in Kuchlein's experiments lacked the usual arrestment 
stimuli produced by the prey, such as a web, faeces, etc. We have already argued 
that this may induce the predator to try leaving the experimental arena. Any 
variance in this escape reaction adds to the variance in Q; 

( ii ) the experiments were carried out by a number of different persons; 
(iii) the replicates were obtained over a 1½-year period, which corresponds 

to about 40 generations of' both predator and prey, so that there may be well 
have been genetic changes in the stock cultures. 

Considering these possible additional sources of variation we do not feel a 
variability of 40% in Q to be unexpectedly large. 

CONCLUDING REMARKS 

Our modelling of the predation behaviour of M. occidentalis has led to a 
number of insights. First, there is a relatively poor prediction of the functional 
response at low prey densities. This points to the presence of some behavioural 
components which we have not taken into consideration, such as the possible 
tendency to start emigrating when the going is poor. Secondly, we have found 
an interesting explicit formula which should approximate the functional re- 
sponse when prey densities a re  not too low. This formula may also be used 
direct for the fitting of experimental prey capture data. Finally, we have given 
an explanation for the curious behaviour of both the functional response and 
the variance of the catch at high prey densities in terms of the particular form 
of wasteful killing exercised by this predator. Those phenomena are by their 
very nature mathematical, but they are also intrinsic properties of the animal. 
The fact that at high prey densities the functional response keeps increasing 
as the square root of x makes it a new type, viz. without an upper limit, to be 
included in the commonly recognized range of types first introduced by Holling 
(1959). 
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APPENDIX: THE PREDATION EXPERIMENT 

The following features of the experimental procedure are relevant here: 
(1) The experimental arena consisted of a disc punched out of a leaf of a 

Lima bean, floating upside down on water-soaked cotton wool in a Petri dish; 
the water barrier surrounding the disc prevented the mites from escaping. The 
area of the leaf disc was equal to 5 cm 2 except at the two lowest prey densities 
in which areas of 20 cm 2 and 50 cm 2 were used. 

(2) Eggs of T. urticae were sampled from infested bean leaves and trans- 
ferred with the aid of a fine brush to the leaf disc. In this way, prey densities 
of I egg per 50 cm 2, i egg per 20 cm 2, and 1, 2, 3, 4, 6, 8, 12, 32, 50, 75, 100, 125, 
and 200 eggs per 5 cm 2 were obtained. To facilitate counting the prey, eggs were 
positioned on the leaf disc in groups of 5 when their total number was equal to 
or exceeded 50. 

( 3 ) Young adult females ofM. occidentalis (2-5 days old since the final moult) 
were placed on the disc at 16:00 h on the day before the actual predation 
experiment. 

(4) Prey eggs that died due to predation or other causes were replaced the 
next morning at 08:30 h, and then at half-hour intervals until 17:30 h. Only 
the last 6 h of the 9-h experiment were used, to ensure steady-state conditions. 

(5) To check whether prey mortality was due to predation or to other causes 
(such as the manipulation during egg transfer to the leaf disc) some control 
experiments without predators were carried out in a series parallel to the pre- 
dation experiment. 

(6) The total egg mortality over the last 6 h of the predation experiment was 
corrected for the mortality measured in the control experiments. To reduce the 
fluctuations in the measured mortality in the control experiments a weighted 
mean with weights 1/8, 1/4, 1/4, 1/4, 1/8 over the nearest density classes was 
used. For the next-to-highest and highest densities we used the weights 1/7, 
2/7, 2/7, 2/7, and 1/3, 1/3, 1/3. For the two lowest densities, comparable weights 
were used. 

(7) The numbers of replicates of the experiments at each prey-egg density 
level were, in order of increasing prey density: 240, 70, 200, 100, 103,200, 75, 
75, 75, 150, 60, 60, 60, 60, 203. 

(8) The experiments were done at a temperature of 25-26 °C and a relative 
humidity of 60-80%. 

(9) The experiments were carried out between June 1977 and December 
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1978 by a c h a n g i n g  c o m b i n a t i o n  of  th ree ,  out  of  four, t e chn ica l  a ss i s tan t s ,  wi th  

de lays  be t ween  s u b s e q u e n t  e x p e r i m e n t s  o f  up to 7 m o n t h s .  
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