Limitations of the Open Loop Gain Concept in Studies of Respiratory Control

Frederick M. Bennett

Department of Biomedical Engineering Worcester Polytechnic Institute Worcester, MA

(Received 3/8/89; Revised 10/30/89)

A steady state mathematical model was used to study the limitations of applying the open loop gain concept to the ventilatory control system. Open loop gain is a term used in the study of linear control systems and is an indicator of how well the controlled variable is regulated. The model contained descriptions of the O_2 and CO_2 control systems as well as their interactions. Disturbances to the system were modelled as occurring via inspired air, metabolic rate and ventilation. The ventilatory response to hypoxia was simulated for (a) hypocapnic hypoxia, (b) normocapnic hypoxia ($PaCO_2 = 40$ torr) and (c) hypercapnic hypoxia ($PaCO_2 = 45$ torr). The open loop gains of the O_2 and CO_2 loops were calculated at each operating point. In addition, the sensitivity of the controlled variable to disturbances to the loop were also compared. It was observed that open loop gain did not completely describe the characteristics of the ventilatory control system. This was due to the fact that the ventilatory system is nonlinear and the regulatory ability of the ventilatory system depends on the route of the disturbance, and (2) open loop gain ignores the interactions of the CO_2 and O_2 loops, which can be substantial.

Keywords - Ventilatory control, Respiration models.

INTRODUCTION

Regulation of arterial levels of O_2 and CO_2 (i.e., PaO_2 and $PaCO_2$) occur via powerful negative feedback systems which, in effect, sense PaO_2 and $PaCO_2$ via peripheral and central chemoreceptors and adjust the level of ventilation in response to perturbations in these blood gas levels. The O_2 and CO_2 control systems interact, since the slope of the CO_2 response line is a function of PaO_2 , and the slope of the O_2 response line at any PaO_2 is affected by $PaCO_2$ (3). The regulatory ability of either the CO_2 or O_2 loop has been estimated by applying the concept of open loop gain (GL) to the respiratory system (2,6–13,16,17). For a linear system, the higher the value of GL, the greater the regulatory ability or effectiveness of the loop (14,15). However, the concept of open loop gain has a number of possible limitations when applied to the ventilatory control system, for example, the respiratory system is nonlinear (1,2,5), and open loop gain calculations ignore the effects of secondary inter-

Acknowledgment-This work was supported by a grant from the Whitaker Foundation.

Address correspondence to Frederick M. Bennett, Ph.D., Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609.

acting loops (15). Thus, although the concept of open loop gain has been applied to the study of the respiratory system in the context of steady state regulation, the consequences of its limitations have not been systematically examined.

To examine these issues, a nonlinear steady state model of the O_2 -CO₂ control systems, based on the methods of Khoo et al. (7), was used. The ventilatory responses to increasing levels of hypoxia (PIO₂ from 150 to 80 torr) were predicted for hypocapnic hypoxia (PaCO₂ allowed to decrease), normocapnic hypoxia (PaCO₂ maintained constant at 40 torr), and hypercapnic hypoxia (PaCO₂ maintained constant at 45 torr). At each operating point, the open loop gains for the O_2 and CO_2 loops $(GLO_2 \text{ and } GLCO_2, \text{ respectively})$ were calculated. Disturbances to the ventilatory system were modelled as occurring to the O_2 loop via changes in metabolic rate and inspired air ($\dot{V}o_2$ and PiO_2 , respectively), to the CO₂ loop via changes in metabolic rate and inspired air (V_{CO_2} and P_{ICO_2} , respectively), and to the controller as a disturbance in ventilation (\dot{V}_{E_d}). Sensitivities of the controlled variables to the disturbances were evaluated with and without consideration of the secondary loop. Sensitivity was defined as the change in an independent variable that resulted from a change in a disturbance. Thus, the sensitivity of PaO₂ to a disturbance in PIO₂ was designated as $\Delta PaO_2/\Delta PIO_2$. Other sensitivities examined were: $\Delta PaO_2/\Delta Vo_2$, $\Delta PaO_2/\Delta VE_d$, $\Delta PaCO_2/\Delta PICO_2$, $\Delta PaCO_2/\Delta VCO_2$, and $\Delta PaCO_2/\Delta VE_d$. The open loop gains for both the O₂ and CO₂ loops were compared to the sensitivities for the respective loop, and the effects of the secondary interacting loop were directly assessed.

METHODS

A block diagram of the steady state model is shown in Fig. 1. The model contained control loops for both PaO_2 and $PaCO_2$. The inputs to the controller were $PaCO_2$,

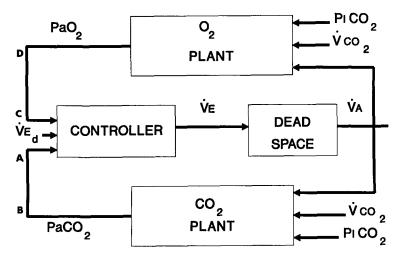


FIGURE 1. Block diagram of the model. The controller block (Eq. 1) has inputs $PaCO_2$, PaO_2 , and $\dot{V}E_d$, which signifies a disturbance to ventilation. The output is $\dot{V}E$. The second block, labeled dead space (Eq. 4), describes the dependence of $\dot{V}A$ upon the input $\dot{V}E$. The O_2 plant is the gas exchanger for oxygen (Eq. 6) and relates the output PaO_2 to the inputs PIO_2 , $\dot{V}O_2$, and $\dot{V}A$. The CO_2 plant represents the exchange of carbon dioxide (Eq. 5) and relates the output $PaCO_2$ to the inputs $PICO_2$, $\dot{V}CO_2$ and $\dot{V}A$.

Open Loop Gain

 PaO_2 , and \dot{V}_{E_d} . The controller equation which described the relationship between \dot{V}_E and $PaCO_2$, PaO_2 , and \dot{V}_{E_d} is given in Eq. 1, adapted from Khoo *et al.* (7) using the parameters for the awake sea level condition. It was assumed that ventilation increased linearly with increases in $PaCO_2$ and that the slope of this response increased with decreasing PaO_2 . In addition, the ventilatory response to hypoxia was described as an exponential function. Thus, the interaction of the O_2 and CO_2 responses were modelled by the equation. \dot{V}_{E_d} was used to signify a disturbance to the present level of ventilation. Thus, \dot{V}_{E_d} could represent any change in \dot{V}_E due to mechanisms other than $PaCO_2$ and PaO_2 .

$$\dot{V}_{E} = G_{p} \exp(-0.05 PaO_{2})(PaCO_{2} - I_{p}) + G_{c}(PaCO_{2} - I_{c}) + \dot{V}_{E_{d}}$$
(1)

where G_p and G_c are the peripheral and central chemoreceptor gains, respectively, and I_p and I_c are the peripheral and central thresholds, respectively.

The controller function was followed by an empirical description for the dependence of dead space on the level of ventilation and respiratory pattern (Eq. 2) (1,2,4). Breathing frequency was assumed to be a linear function of $\dot{V}E$ (Eq. 3), and the relationship between $\dot{V}E$ and $\dot{V}A$ is given in Eq. 4.

$$\dot{\mathbf{V}}_{\mathbf{A}} = (1 - \mathbf{K}_{\mathbf{D}}\mathbf{S})\dot{\mathbf{V}}_{\mathbf{E}} - f\,\mathbf{V}_{\mathbf{D}}\mathbf{S}_{0} \tag{2}$$

$$f = f_0 + \mathbf{K}_f \dot{\mathbf{V}} \mathbf{E}.$$
 (3)

Equations 2 and 3 can be combined to yield:

$$\dot{\mathbf{V}}_{\mathbf{A}} = (1 - \mathbf{K}_{\mathbf{D}}\mathbf{S} - \mathbf{K}_{f}\mathbf{V}_{\mathbf{D}}\mathbf{S}_{0})\dot{\mathbf{V}}_{\mathbf{E}} - f_{0}\mathbf{V}_{\mathbf{D}}\mathbf{S}_{0}$$
(4)

where VA is alveolar ventilation; KDs and VDs₀ are the slope and intercept, respectively, of the dead space tidal volume relationship; K_f and f_0 are the slope and intercept, respectively, of the $f - \dot{V}E$ relationship. Equations 2-4 are described in greater detail in an earlier study (1) and the same parameter values have been used.

The blocks for the plants (or controlled systems) of the O_2 and CO_2 control loops represent the appropriate mass balance equations, which assumed equilibrium across the alveolar-capillary membrane, i.e., $PACO_2 = PaCO_2$ and $PAO_2 = PaO_2$ (Eqs. 5 and 6). $PICO_2$, VcO_2 and PIO_2 , VO_2 were viewed as inputs to the CO_2 and O_2 gas exchangers, respectively.

$$PaCO_2 = PICO_2 + \frac{863 \cdot \dot{V}CO_2}{\dot{V}A}$$
(5)

$$PaO_2 = PIO_2 - \frac{863 \cdot \dot{V}O_2}{\dot{V}A}$$
(6)

where P_1CO_2 and P_1O_2 are inspired partial pressure of carbon dioxide and oxygen, respectively, $\dot{V}CO_2$ is CO_2 production rate, and $\dot{V}O_2$ is O_2 consumption rate.

Thus, the independent variables are P_1CO_2 , P_1O_2 , VcO_2 , $\dot{V}O_2$, and $\dot{V}E_d$; and the dependent variables are $\dot{V}E$, $\dot{V}A$, $PaCO_2$, and PaO_2 . For any set of independent variables and parameters, the values of the dependent variables can be obtained using a Newton-Raphson algorithm (1,2).

The open loop gain for the O_2 and CO_2 loops can be obtained by calculating the negative of the products of the slope of each element in the appropriate loop (14). For example,

$$GLO_2 = -\frac{\partial \dot{V}_E}{\partial PaO_2} \frac{\partial \dot{V}_A}{\partial \dot{V}_E} \frac{\partial PaO_2}{\partial \dot{V}_A}$$
(7)

= (.05 exp(-0.05PaO₂)G_p(PaCO₂ - I_p))(1 - KDs - VDs₀K_f)
$$\left(\frac{863 \cdot VO_2}{\dot{V}A^2}\right)$$
(8)

and

$$GLCO_2 = -\frac{\partial \dot{V}_E}{\partial PaCO_2} \frac{\partial \dot{V}_A}{\partial \dot{V}_E} \frac{\partial PaCO_2}{\partial \dot{V}_A}$$
(9)

$$= (G_{p} \exp(-0.05 PaO_{2}) + G_{c})(1 - KDs - VDs_{0}K_{f}) \left(\frac{863 \cdot \dot{V}co_{2}}{\dot{V}A^{2}}\right).$$
(10)

As can be seen from Eqs. 8 and 10, both $GLCO_2$ and GLO_2 are not constant but are nonlinear functions of the operating point ($\dot{V}E$, $\dot{V}A$, $PaCO_2$, PaO_2). In particular, the slopes of the controller function and plant function vary with the operating point. The slope of the relationship between $\dot{V}A$ and $\dot{V}E$ is assumed constant for these simulations.

The open loop gain (GL) is indicative of the regulatory ability of a linear control system. A greater value of GL would indicate a greater regulatory ability (14,15). However, GL has some limitations in the context of respiratory control since the system is nonlinear and there are two control loops, the O_2 and CO_2 loops, which interact. First, implicit in the derivation of the open loop gains is the assumption that the second loop does not affect the first loop (15). Thus, with respect to Fig. 1, it is as if the control loops are opened between A-B for the CO_2 loop and C-D for the O_2 loop. An equivalent method of calculating GLCO₂ would be to apply a signal $\Delta PaCO_2(A)$ at A and measure the response at B, $\Delta PaCO_2(B)$. The open loop gain is then $\Delta PaCO_2(B)/\Delta PaCO_2(A)$ (14). $\Delta PaCO_2(A)$ introduced at A would produce a change in \dot{V}_E and thus \dot{V}_A , which would in turn change PaO₂. Note that if both loops are open, the change in PaO_2 would not feed back to the controller and affect VE. Thus, the concept of open loop gain does not take into account interactions between multiple control loops. The second limitation of open loop gain is that it does not always accurately reflect the ability of a nonlinear control system to regulate the controlled variable in response to variations in certain inputs (2).

To overcome these limitations, a set of sensitivities were calculated. They reflect the sensitivity of the controlled variable, either PaO₂ or PaCO₂, to changes in an independent variable, PiCO₂, PiO₂, VcO₂, VO₂, or VE_d (i.e., for the CO₂ loop, sensitivities are described as Δ PaCO₂/ Δ PiCO₂, Δ PaCO₂/ Δ VcO₂, and Δ PaCO₂/ Δ VE_d). These sensitivities can be calculated with or without inclusion of the interactions of the O₂ loop. A second group of sensitivities can be calculated for the O₂ loop with or without consideration of the influence of the CO₂ loop. The controller equation as well as the mass balance equations for O₂ and CO₂ is nonlinear. Following the methods of Riggs (15), these equations can be linearized and the resultant sensitivi-

536

ties calculated. The results indicate sensitivity of controlled variables to a very small change in independent variables around a particular operating point. Because of the nonlinear nature of the system, the open loop gains as well as the sensitivities will vary with the operating point, i.e., $\dot{V}E$, $\dot{V}A$, $PaCO_2$, or PaO_2 . Thus, the equations for the independent variables can be written as:

$$PaO_2 = f_1(P_1O_2, \dot{V}O_2, \dot{V}A)$$
 (11)

$$PaCO_2 = f_2(PICO_2, \dot{V}CO_2, \dot{V}A)$$
(12)

$$\dot{\mathbf{V}}_{\mathbf{E}} = f_3(\mathbf{PaO}_2, \mathbf{PaCO}_2, \dot{\mathbf{V}}_{\mathbf{E}_d})$$
(13)

$$\dot{\mathbf{V}}_{\mathbf{A}} = f_4(\dot{\mathbf{V}}_{\mathbf{E}}). \tag{14}$$

By linearizing these equations about an operating point, changes in the independent variables can be obtained (15) from:

$$\Delta PaO_2 = B_{11}\Delta PIO_2 + B_{12}\Delta \dot{V}O_2 + B_{13}\Delta \dot{V}A$$
(15)

$$\Delta PaCO_2 = B_{21}\Delta PICO_2 + B_{22}\Delta \dot{V}cO_2 + B_{23}\Delta \dot{V}A$$
(16)

$$\Delta \dot{\mathbf{V}}_{\mathrm{E}} = \mathbf{B}_{31} \Delta \mathbf{P} \mathbf{a} \mathbf{O}_2 + \mathbf{B}_{32} \Delta \mathbf{P} \mathbf{a} \mathbf{C} \mathbf{O}_2 + \mathbf{B}_{33} \Delta \dot{\mathbf{V}}_{\mathrm{E}_{\mathrm{d}}}$$
(17)

$$\Delta \dot{V}_{A} = B_{41} \Delta \dot{V}_{E} \tag{18}$$

where

$$\mathbf{B}_{11} = \partial f_1 / \partial \mathbf{P} \mathbf{I} \mathbf{O}_2, \quad \mathbf{B}_{12} = \partial f_1 / \partial \dot{\mathbf{V}} \mathbf{O}_2, \quad \mathbf{B}_{13} = \partial f_1 / \partial \dot{\mathbf{V}} \mathbf{A}$$
(19)

$$\mathbf{B}_{21} = \partial f_2 / \partial \mathbf{P}_{\mathrm{I}} \mathbf{CO}_2, \quad \mathbf{B}_{22} = \partial f_2 / \partial \dot{\mathbf{V}} \mathbf{co}_2, \quad \mathbf{B}_{23} = \partial f_2 / \partial \dot{\mathbf{V}} \mathbf{A}$$
(20)

$$\mathbf{B}_{31} = \partial f_3 / \partial \mathbf{PaO}_2, \quad \mathbf{B}_{32} = \partial f_3 / \partial \mathbf{PaCO}_2, \quad \mathbf{B}_{33} = \partial f_3 / \partial \mathbf{V}_{\mathsf{E}_{\mathsf{d}}}$$
(21)

$$\mathbf{B}_{41} = \partial f_4 / \partial \dot{\mathbf{V}}_{\mathrm{E}}.\tag{22}$$

Hence, Eqs. 8 and 10 for the open loop gains can be rewritten as:

$$GLCO_2 = -B_{23}B_{41}B_{32} \tag{23}$$

and

$$GLO_2 = -B_{13}B_{41}B_{31}.$$
 (24)

One example, the sensitivity $S_1 = \Delta PaO_2/\Delta PiO_2$ ignoring the effects of the CO₂ loop, will be derived. The remaining sensitivities and the formulas used to calculate each sensitivity are summarized in Table 1. Ignoring the effects of the CO₂ loop means that $\Delta PaCO_2 = 0$. Substituting Eq. 18 into Eq. 15, assuming $\Delta \dot{V}O_2 = 0$, gives:

$$\Delta PaO_2 = B_{11}\Delta P_1O_2 + B_{13}B_{41}\Delta VE.$$
(25)

Without econdary Loop 1 GLO ₂ 863	With Secondary Loop $\frac{1 + GLCO_2}{1 + GLO_2 + GLCO_2}$
-	
-	$1 + \text{GLO}_2 + \text{GLCO}_2$
863	
000	$863(1 + GLCO_2)$
1 + GLO ₂)	$\dot{V}A(1 + GLO_2 + GLCO_2)$
3∙Vo₂B ₄₁	863 · Vo ₂ B ₄₁
$(1 + GLO_2)$	$\dot{V}A^2(1 + GLCO_2 + GLO_2)$
1	$1 + GLO_2$
GLCO2	$1 + GLCO_2 + GLO_2$
863	863(1 + GLO ₂)
$1 + GLCO_2$	$\dot{V}A(1 + GLCO_2 + GLO_2)$
3∙Vco₂B ₄₁	863 · Vco ₂ B ₄₁
$(1 + GLCO_2)$	$\dot{V}A^2(1 + GLCO_2 + GLO_2)$
VDSOK	
	$\frac{1}{GLCO_2}$ $\frac{863}{1 + GLCO_2}$ $\frac{33 \cdot \dot{V} co_2 B_{41}}{c(1 + GLCO_2)}$

TABLE 1. Definition of sensitivities.

Remembering that $\Delta PaCO_2 = 0$ and assuming $\Delta \dot{V}E_d = 0$, Eq. 17 is substituted into Eq. 25, which yields:

$$\Delta PaO_2 = B_{11}\Delta PIO_2 + B_{13}B_{41}B_{31}\Delta PaO_2;$$
(26)

rearranging, yields:

$$\frac{\Delta PaO_2}{\Delta PIO_2} = \frac{B_{11}}{1 - B_{13}B_{41}B_{31}} = \frac{1}{1 + GLO_2},$$
(27)

since $B_{11} = 1$.

The ventilatory responses were predicted for decreasing levels of P_{1O_2} between 150 and 80 torr for three conditions: (a) P_{aCO_2} was allowed to decrease (hypocapnic hypoxia), (b) P_{aCO_2} was maintained constant at the normal resting value of 40 torr (normocapnic hypoxia), and (c) P_{aCO_2} was maintained constant at the hypercapnic value of 45 torr (hypercapnic hypoxia). For each predicted operating point the open loop gains and sensitivities were calculated. By comparing the predictions for conditions b and c, the effects of an increase in P_{aCO_2} upon the regulatory properties of the respiratory system can be discerned for any value of P_{aO_2} . To simulate isocapnic conditions, P_{aCO_2} in Eq. 1 can be set equal to either 40 or 45 torr, and Eq. 5 can be ignored when solving for the new operating point. When calculating G_{LCO_2} (Eq. 10) it was assumed that V_{CO_2} had not changed. Therefore, we implicitly assumed that P_{aCO_2} during hypoxia was maintained at isocapnic levels by altering P_{1CO_2} , although this does not have to be done by explicitly changing P_{1CO_2} in Eq. 5.

RESULTS

CO₂ loop gain

The predicted behavior of the open loop gain of the CO_2 loop (GLCO₂) for the three progressive hypoxic conditions is shown in Fig. 2 as a function of the predicted steady state PaO₂. For the hypocapnic response to hypoxia, ventilation increased with decreases in PaO₂, which in turn led to decreases in PaCO₂. GLCO₂ increased approximately threefold with decreasing PaO₂. However, if PaCO₂ was maintained during hypoxia at the normocapnic value (40 torr), GLCO₂ was predicted to decrease with increasing levels of hypoxia. Increasing PaCO₂ to 45 torr resulted in a further decrease in GLCO₂ at all levels of PaO₂. Thus, these predictions suggest that the regulatory ability of the CO₂ loop was improved during hypocapnic hypoxia but was reduced during isocapnic hypoxia. For any value of PaO₂, the effect of increasing PaCO₂ was to lower GLCO₂.

GLCO₂ is equal to the negative product of the slopes around the CO₂ loop; i.e., GLCO₂ = $-B_{23}B_{32}B_{41}$, where $B_{23} = \partial PaCO_2/\partial \dot{V}A$ is the slope of the CO₂ plant function, $B_{32} = \partial \dot{V}E/\partial PaCO_2$ is the slope of the controller function with respect to PaCO₂, and B_{41} is the slope of the dead space relationship and was assumed constant for these simulations. To gain further insight into the factors affecting GLCO₂, Fig. 2 also shows B_{23} and B_{32} . B_{32} was a unique function of PaO₂ and increased monotonically with decreasing PaO₂. This simply represents the augmentation of the CO₂ gain by hypoxia. However, B_{23} depends on the PaCO₂ as well as the level of $\dot{V}A$, since B_{23} can be written as:

$$B_{23} = \frac{\partial f_2}{\partial \dot{V}_A} = \frac{863\dot{V}_{CO_2}}{\dot{V}_A^2} = \frac{PaCO_2 - P_1CO_2}{\dot{V}_A}.$$
 (28)

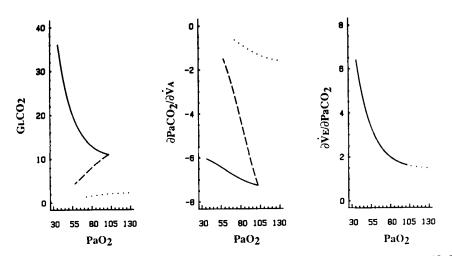


FIGURE 2. Open loop gain of the carbon dioxide loop. The open loop gain of the CO₂ loop (GLCO₂), the slope of the CO₂ plant function ($B_{23} = \partial PaCO_2/\partial VA$), and the slope of the controller function with respect to PaCO₂ ($B_{32} = \partial VE/\partial PaCO_2$) are plotted versus the predicted PaO₂ for hypocapnic hypoxia (solid lines; —), normocapnic hypoxia (dashed lines; ---), and hypercapnic hypoxia (dotted lines; ···). PIO₂ was varied between 80 and 150 torr for each of the three hypoxic conditions.

For hypocapnic hypoxia the magnitude of B_{23} decreased with hypoxia. $G_{L}CO_{2}$ increased since the increase in B_{32} was greater than the decrease in B_{23} . However, for isocapnic hypoxia, $PaCO_{2} = 40$ torr, B_{23} decreased to a much greater degree and the net result was a decrease in $G_{L}CO_{2}$. Increasing $PaCO_{2}$ to 45 torr caused a further decrease in B_{23} and thus a further decrease in $G_{L}CO_{2}$ for any level of PaO_{2} . Therefore, the differences in the predicted behavior of $G_{L}CO_{2}$ between the three hypoxic conditions resulted primarily from changes in the plant characteristics and not from the controller, since the slope of the controller function was a unique function of PaO_{2} .

O_2 loop gain

For hypocapnic hypoxia, GLO_2 increased by a factor of approximately six, suggesting that the regulatory ability of the O_2 loop improved with progressive hypoxia (Fig. 3). For normocapnic hypoxia (PaCO₂ = 40 torr), GLO_2 increased slightly with decreasing PaO₂ and reached a peak at a PaO₂ of approximately 65 torr. Thereafter, GLO_2 decreased slightly with further decreases in PaO₂. For hypercapnic hypoxia (PaCO₂ = 45 torr), GLO_2 was decreased relative to both hypocapnic hypoxia and normocapnic hypoxia but did increase slightly with progressive hypoxia. Thus, it would appear that maintaining PaCO₂ constant during hypoxia degraded the regulatory ability of the O₂ loop. Also, hypercapnia further degraded the regulatory ability of the O₂ loop at any value of PaO₂.

The predicted behavior of GLO_2 for the three hypoxic conditions can be explained by changes in both the plant and controller characteristics. GLO_2 is equal to the negative product of the slopes around the O_2 loop; i.e., $GLO_2 = -B_{13}B_{31}B_{41}$, where $B_{13} = \partial PaO_2/\partial VA$ is the slope of the O_2 plant function, $B_{31} = \partial VE/\partial PaO_2$ is the slope of the controller function with respect to PaO_2 , and B_{41} is the slope of the dead space

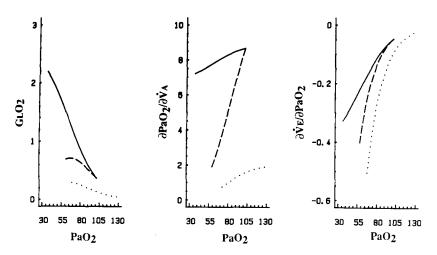


FIGURE 3. Open loop gain of the oxygen loop. The open loop gain of the O_2 loop (GLO₂), the slope of the O_2 plant function (B₁₃ = $\partial PaO_2/\partial VA$), and the slope of the controller function with respect to PaO_2 (B₃₁ = $\partial VE/\partial PaO_2$) are plotted versus the predicted PaO_2 for hypocaphic hypoxia (solid lines; —), normocaphic hypoxia (dashed lines; ----), and hypercaphic hypoxia (dotted lines; ···). PlO₂ was varied between 80 and 150 torr for each of the three hypoxic conditions.

function. The magnitude of B_{31} increased with decreasing values of PaO_2 , and at a particular value of PaO_2 was further augmented by increases in $PaCO_2$. The magnitude of B_{13} decreased slightly during hypocapnic hypoxia. This decrease was offset by the increase in B_{31} , and GLO_2 increased substantially. Maintaining $PaCO_2$ constant during hypoxia at the normocapnic value greatly decreased B_{13} at any value of PaO_2 . Thus, although maintaining $PaCO_2$ constant at 40 torr increased the magnitude of B_{31} , the decrease in B_{13} was such that the increase in GLO_2 during hypoxia was substantially reduced. Increasing $PaCO_2$ during hypoxia to 45 torr further decreased B_{13} and, thus, GLO_2 . Therefore, the predicted increase in GLO_2 during hypocapnic hypoxia was due primarily to characteristics of the controller function; whereas, the predicted decreased in GLO_2 resulting from maintaining $PaCO_2$ constant at either normocapnic or hypercapnic values was due primarily to the characteristics of the O_2 plant function, i.e., the gas exchange process.

Regulation of PaO_2

The regulation of PaO_2 in response to disturbances in either PIO_2 , $\dot{V}O_2$, or $\dot{V}E$ are shown in Fig. 4, with and without consideration of the CO_2 loop. First, the sensitivities ignoring the effects of the CO_2 loop will be discussed. Consistent with the earlier predictions (Fig. 3) that GLO_2 increased with decreasing levels of PaO_2 for all three hypoxic conditions, thereby suggesting an improved regulatory ability, the mag-

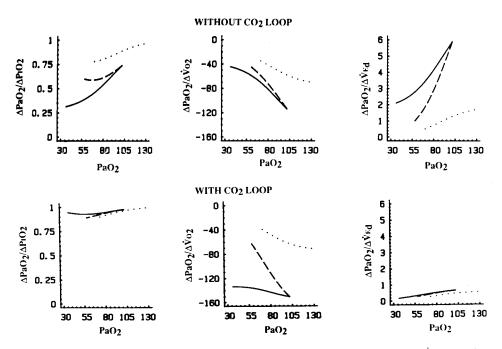


FIGURE 4. Regulation of PaO₂. The sensitivities $S_1 = \Delta PaO_2/\Delta PiO_2$, $S_2 = \Delta PaO_2/\Delta \dot{V}o_2$, and $S_3 = \Delta PaO_2/\Delta \dot{V}E_d$ are plotted against the predicted value of PaO₂ for hypocapnic hypoxia (solid lines; _____), normocapnic hypoxia (dashed lines; ____), and hypercapnic hypoxia (dotted lines; ...). The upper row of graphs are the sensitivities when the secondary effects due to the CO₂ loop are ignored, and the lower row represents the predicted sensitivities when the effects of the CO₂ loop are included.

nitude of the sensitivities $S_1 (\Delta PaO_2/\Delta PIO_2)$, $S_2 (\Delta PaO_2/\Delta VO_2)$, and $S_3 (\Delta PaO_2/\Delta PO_2)$ ΔV_{E_d}) all decreased with increasing levels of hypoxia (Fig. 4) for the three conditions. Thus, the change in PaO₂ per unit change in either PIO₂, Vo₂, or \dot{V}_{E_d} would be less during hypoxia than during normoxia for the hypocapnic, normocapnic and hypercapnic conditions. Thus, GLO_2 does qualitatively reflect the change in regulatory ability of the O_2 loop with increasing levels of hypoxia. However, the effects of changing $PaCO_2$ during hypoxia on the regulatory characteristics of the O_2 loop is more complex. For any value of PaO₂, increasing PaCO₂ from hypocapnic to normocapnic to hypercapnic levels resulted in decreases in GLO_2 (Fig. 3), indicating decreased regulatory abilities of the O_2 loop. Consistent with this prediction, S_1 is increased at higher levels of $PaCO_2$ for any value of PaO_2 . However, at any value of PaO_2 , the magnitudes of S_2 and S_3 were decreased for increasing values of $PaCO_2$. Thus, at any level of PaO_2 , increasing $PaCO_2$ reduced the regulatory ability of the O_2 loop to disturbances in P1O₂, but improved the regulatory ability of the loop to disturbances in either $\dot{V}o_2$ or $\dot{V}E_d$. Thus, the relationship between either S_2 or S_3 and GLO₂ was rather complex and GLO₂ did not provide a complete description of the regulatory ability of the O_2 loop, even when the influence of the CO_2 loop was ignored.

The interaction between the O_2 and CO_2 loops has substantial effects on the predicted behavior of S₁, S₂, and S₃. For both S₁ and S₂ the CO₂ loop acted to degrade the performance of the O_2 loop. For both S_1 and S_2 the degradation of performance was greatest for the hypocapnic hypoxia and least for hypercapnic hypoxia (Fig. 4). However, if the disturbance was introduced via VE_d , the CO₂ loop acted to greatly improve the performance of the O₂ loop. The improvement in performance was approximately eightfold for the hypocapnic hypoxic condition. These results demonstrate the importance of including the effects mediated by the CO_2 loop in the regulation of PaO₂. Also, these results point out that the effects of the interaction of the O₂ and CO₂ loops on regulation of PaO₂ depend on the route of the disturbance. The inability of GLO_2 to completely describe the regulatory properties of the O_2 loop is apparent. It is concluded that GLO_2 does not adequately describe the regulatory properties of the O_2 loop since it does not always predict, even in a qualitative manner, the ability of the O₂ loop to regulate PaO₂ when disturbances are introduced via either metabolism or ventilation; it also ignores important interactions with the CO₂ loop.

Regulation of PaCO₂

The regulation of PaCO₂ in response to disturbances in either PICO₂, \dot{V} co₂, and \dot{V}_{E_d} are shown in Fig. 5, with and without consideration of the O₂ loop. First, the predictions ignoring the O₂ loop will be discussed. Consistent with the prediction that GLCO₂ increases during hypocapnic hypoxia (Fig. 2), indicating an improved regulatory ability, the magnitudes of S₄ = $\Delta PaCO_2/\Delta PICO_2$, S₅ = $\Delta PaCO_2/\Delta \dot{V}co_2$, and S₆ = $\Delta PaCO_2/\Delta \dot{V}E_d$ all decreased with decreases in PaO₂ during hypocapnic hypoxia. Thus, for hypocapnic hypoxia, the regulatory ability of the CO₂ loop improved for all three routes of disturbances for increasing levels of hypoxia. Maintaining PaCO₂ during hypoxia at the normocapnic value (40 torr) resulted in a predicted decrease in GLCO₂ (Fig. 2) and a corresponding increase in S₄. These predictions suggest an improvement in regulatory ability.

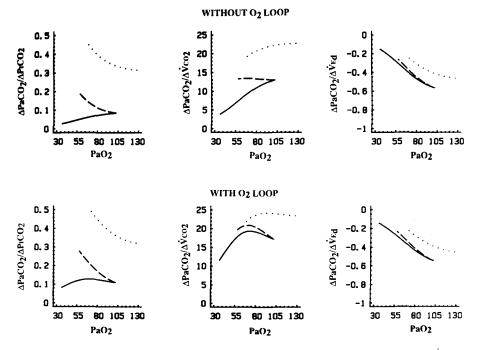


FIGURE 5. Regulation of PaCO₂. The sensitivities $S_4 = \Delta PaCO_2/\Delta PICO_2$, $S_5 = \Delta PaCO_2/\Delta VcO_2$, and $S_6 = \Delta PaCO_2/\Delta VE_d$ are plotted against the predicted value of PaO₂ for hypocapnic hypoxia (solid lines; —), normocapnic hypoxia (dashed lines; – –), and hypercapnic hypoxia (dotted lines; · · ·). The upper row of graphs are the sensitivities when the influence of the O₂ loop is ignored, and the bottom row of graphs are the sensitivities when the effects of the O₂ loop are included.

dition, S_5 remained essentially constant and S_6 decreased with progressive hypoxia and did not follow the predicted change in GLCO₂. Thus, compared to hypocapnic hypoxia, the regulatory ability of the CO₂ loop during normocapnic hypoxia was degraded for disturbances via $PICO_2$ but improved for disturbances via Vco_2 and remained unchanged for disturbances via V_{E_d} . For hypercapnic conditions, decreasing levels of PaO_2 caused a reduction in the predicted $GLCO_2$. There was a corresponding increase in S₄ with increasing levels of hypoxia. However, the magnitudes of S_5 and S_6 decreased with increasing levels of hypoxia. Therefore, for hypercapnic conditions, increasing levels of hypoxia decreased the regulatory ability of the CO₂ loop with regard to disturbances in PICO₂, but increased the regulatory ability of the loop with regard to disturbances via \dot{V}_{CO_2} and \dot{V}_{E_d} . At any level of PaO₂, increasing $PaCO_2$ produced a decrease in $GLCO_2$ and corresponding increases in S_4 and S₅. However, the magnitude of S₆ decreased with increasing PaCO₂. Thus, hypercapnia decreases the regulatory ability of the CO₂ loop to disturbances in P1CO₂ and \dot{V}_{CO_2} but improves the regulatory ability of the loop to disturbances in V_{E_d} . These results demonstrate that $GLCO_2$ does not completely describe the regulatory properties of the CO_2 loop.

The O₂ loop acted to substantially decrease the regulatory ability of the CO₂ loop when the disturbances were introduced via P_1CO_2 or $\dot{V}co_2$. However, the O₂ loop acted to slightly improve the regulation of $PaCO_2$ when the disturbance was via $\dot{V}E_d$.

In all cases, the influence of the O_2 loop upon the CO_2 loop was the greatest at the lower values of PaO_2 . By including the effect of the O_2 loop, the predicted values of S_4 and S_5 at the lowest PaO_2 increased by a factor of approximately 2.5. The monotonic decreases predicted for S_4 and S_5 when the O_2 loop was ignored were changed by the action of the O_2 loop to biphasic responses. There were initial increases followed at lower values of PaO_2 by decreases in the sensitivities. These results further suggest that the interaction of the secondary loop, the O_2 loop in this case, has substantial effects on the performance of the primary loop.

DISCUSSION

This study examined the regulatory properties of a steady state model of the oxygen and carbon dioxide ventilatory control systems. The model was composed of an O_2 loop and a CO_2 loop which interacted at the level of the controller. An important result of this simulation study was the prediction that the open loop gains, GLCO₂ for the CO_2 loop and GLO₂ for the O_2 loop, did not adequately describe the regulatory properties of the respiratory control system. There are two principal shortcomings of employing the open loop gain concept in the study of the respiratory system. First, open loop gain is a concept derived from the study of linear control systems (13,14) and cannot completely describe the properties of a nonlinear system. In the present context this is demonstrated most clearly by the predictions which show that the effects of hypoxia upon the ability of a control loop to regulate its controlled variable depend on the route of the disturbance and the operating point. Second, open loop gain does not take into account the possible interactions of the two loops (15). For example, it was demonstrated (Fig. 4) that the CO_2 loop could exert strong modulatory actions on the regulatory properties of the O_2 loop during hypoxia.

For the respiratory system, open loop gain is defined for a particular operating point, i.e., \dot{V}_{E} , PaO₂, and PaCO₂, and if the operating point is changed the value of the open loop gain will also change. However, the value of an open loop gain at a particular operating point may not be unique. In other words, for a particular set of values for VE, PaCO₂, and PaO₂, the value of the open loop gain at this operating point will depend on the inputs (e.g., PICO₂, PIO₂, VO₂, VCO₂) and parameters (e.g., G_p and G_c). There may be more than one set of parameters and inputs which would be consistent with a particular operating point and the open loop gain would be different for each. In this simulation study, disturbances were modelled as occurring via three routes: inspired air, metabolism, and ventilation. Ignoring for the moment loop interactions, open loop gain adequately described the regulatory ability of the loop for a disturbance introduced via inspired air but not to disturbances introduced via metabolism or ventilation. In other words, $S_1 = \Delta PaO_2/\Delta PiO_2$ was a simple function of the open loop gains, whereas $S_2 = \Delta PaO_2/\Delta Vo_2$ and $S_3 = \Delta PaO_2/2$ $\Delta \dot{V}_{E_d}$ also depend on \dot{V}_A and \dot{V}_A^2 , respectively (Table 1). Previous studies have shown that the open loop gain is a function of the operating point and varies with changes in inputs or parameters (13). However, the present study is the first to clearly show that open loop gain does not completely describe the regulatory properties of a nonlinear control loop. This is illustrated by the prediction that for any value of PaO_2 , maintaining $PaCO_2$ at normocapnic levels during hypoxia decreased GLO_2 and increased $S_1 = \Delta PaO_2 / \Delta P_1 CO_2$, which is consistent with a decreased regulatory ability. However, $S_2 = \Delta PaO_2/\Delta Vo_2$ and $S_3 = \Delta PaO_2/\Delta Ve_d$ were decreased, indicating an improved regulatory ability. Thus, under these circumstances open loop gain did not accurately predict the ability of the O_2 loop to regulate PaO_2 when the disturbances are introduced via metabolism or ventilation. Similar comments apply to the CO_2 loop.

The inability of the open loop gain to accurately reflect the regulatory ability of the system to disturbances in metabolism or ventilation has other possible consequences. Since CO_2 inhalation is an experimental condition and disturbances to the system via metabolism and ventilation most likely occur in normal settings, open loop gain might not provide a relevant indication of the regulatory ability of the system. It suggests further that CO_2 inhalation may not always be an appropriate method of assessing the ability of the control system to regulate $PaCO_2$.

This study has demonstrated the importance of considering loop interactions. The nature of the loop interactions depended on the route of the disturbance. For example, the CO₂ loop acted to increase the sensitivity of PaO₂ to disturbances introduced by either P1O₂ or $\dot{V}O_2$ but decreased the sensitivity of PaO₂ to a disturbance by $\dot{V}E_d$. Similar comments apply to the effect of the O₂ loop on the CO₂ loop. Thus, the O₂ loop and CO₂ loop worked in opposition when the disturbance to the respiratory system was via inspired air or metabolism; whereas, the loops worked in a complementary fashion if the disturbance was by ventilation. Therefore, it is important to consider the route of the disturbance when discussing the regulatory properties of the respiratory ability of the O₂ loop as evidenced by the substantial difference in the magnitudes of S₁, S₂, and S₃ when comparing the predictions of the O₂ loop acting alone with the predictions for the loops interacting (Fig. 4). Quantitatively, the O₂ loop had relatively minor effects on the regulatory ability of the CO₂ loop during normoxia, but the effects became more substantial with hypoxia.

Due to the nonlinearities of the respiratory system and the interactions between the O_2 and O_2 loops, the regulatory ability of the respiratory control system is best described as a series of sensitivities which describe the change in a controlled variable (PaCO₂ or PaO₂) to a small disturbance (PICO₂, PIO₂, $\dot{V}co_2$, $\dot{V}o_2$, or $\dot{V}E_d$ in the present study). These sensitivities can be derived in a way that takes into account loop interactions. As noted above, the open loop gains and sensitivities are functions of the operating point. Thus, in order to describe the regulatory characteristics of the respiratory system, the resting operating point ($PaCO_2$, PaO_2 , VE) as well as the metabolic rate and controller functions must be specified. The sensitivity functions can then be calculated for various inputs or changes in parameters permitted by the model. For example, if one desired to examine the effects of a drug infusion on the regulatory properties of the respiratory control system, it would be necessary to determine the metabolic rates, operating point, and controller function before and after the drug infusion. The sensitivities could be calculated for the two conditions and compared. The techniques described herein could be applied to alternative or more complex models of the respiratory system. Additional sensitivities could also be calculated, e.g., $\Delta PaO_2/\Delta VDs$, where VDs is dead space volume. Therefore, these techniques represent a systematic method of quantitatively examining regulatory properties of the nonlinear respiratory control system.

At the normoxic eucapnic operating point, $GLCO_2$ was predicted to be 10.96. This value is lower than the value predicted in an earlier study (2; $GLCO_2 = 23.8$) due to the difference in the assumed values for the slope of CO_2 response line. How-

Sensitivity	Units	Without Secondary Loop	With Secondary Loop
S ₁	torr/torr	0.734	0.971
S_2	torr/l/min	-114.0	-150.7
S ₃	torr/l/min	5.904	0.652
S ₃ S ₄	torr/torr	0.084	0.110
S ₅	torr/l/min	12.98	17.15
S ₆	torr/l/min	-0.564	-0.547
$GLO_2 = 0.362$ $GLCO_2 = 10.96$			

TABLE 2. Predicted sensitivities at the normal operating point.

ever, both these predictions fall within the values obtained experimentally (6,11,12). The value of GLO_2 was predicted to be 0.362 for the normal operating point and is slightly less than the values obtained experimentally (10; $GLO_2 = 0.5$ to 5.0). That $GLCO_2$ was predicted to be substantially greater than GLO_2 agrees with experimental results obtained in human subjects (12) and suggests that the CO_2 control loop is a better regulator than the O_2 loop. Comparison of Figs. 2 and 3 indicates that the primary reason for this difference between the loop gains of the O_2 and CO_2 loops was due to the controller function, i.e., $B_{32} = \partial VE/\partial PaCO_2 = 1.62$ l/min/torr but $B_{31} = \partial VE/\partial PaO_2 = -0.045$ l/min/torr for the normoxic eucapnic control point. Even at a $PIO_2 = 80$ torr, where $PaCO_2$ and PaO_2 were predicted to be 36.8 and 36.1 torr, respectively, B_{32} increased to 6.41 l/min/torr while B_{31} increased to only -0.328 l/min/torr. That the CO_2 loop may be a better regulator than the O_2 loop is also supported by predictions that, when ignoring the effect of the second loop, S_1 was greater than S_4 , S_2 was greater than S_5 , and S_3 was greater than S_6 (Table 2).

In summary, this simulation study has demonstrated that, in the context of steadystate regulation, the concept of open loop gain has serious limitations when applied to nonlinear systems, especially those with multiple interacting control loops. It was also shown that the regulatory ability of a control loop of a nonlinear system will depend on the specific operating point, the actions of any other interacting loops, and the route of the disturbance. With regard to this latter point, the present study extends the results of a previous study (2) which suggested that $GLCO_2$ did not adequately describe the regulatory properties of the CO_2 loop even when considered in isolation from the O_2 loop. Although this report did not investigate the use of open loop gain in studies of the stability of the respiratory system (7), it raises the possibility that similar limitations to those discussed here may apply.

REFERENCES

- 1. Bennett, F.M.; Fordyce, W.E. Gain of the ventilatory exercise stimulus: definition and meaning. J. Appl. Physiol. 65:2011-2017; 1988.
- Bennett, F.M.; Fordyce, W.E. Regulation of PaCO₂ during rest and exercise: a modelling study. Submitted J. Appl. Physiol.
- Cunningham, D.J.C.; Robbins, P.A.; Wolff, C.B. Integration of respiratory responses to changes in alveolar partial pressures of CO₂ and O₂ and in arterial pH. In: Handbook of physiology. The respiratory system. Vol. II. Control of breathing. Part 2. Bethesda, Md.; 1986: pp. 475-528.

- 4. Gray, J.S.; Grodins, F.S.; Carter, E.T. Alveolar and total ventilation and the dead space problem. J. Appl. Physiol. 9:307-320; 1956.
- Grodins, F.S.; Gray, J.S.; Schroeder, K.R.; Norins, A.L.; Jones, R.W. Respiratory responses to CO₂ inhalation. A theoretical study of a non-linear biological regulator. J. Appl. Physiol. 7:283-308; 1954.
- Honda, Y.; Hayashi, F.; Yoshida, A.; Ohyabu, Y.; Nishibayashi, Y.; Kimura, H. Overall "gain" of the respiratory control system in normoxic humans awake and asleep. J. Appl. Physiol. 55:1530–1535; 1983.
- Khoo, M.C.K.; Kronauer, R.E.; Strohl, K.P.; Slutsky, A. Factors inducing periodic breathing in humans: a general model. J. Appl. Physiol. 53:644–659, 1982.
- 8. Loeschcke, H.H. The respiratory control system: analysis of steady state solutions for metabolic and respiratory acidosis-alkalosis and increased metabolism. Pflugers Arch. 341:23-42; 1973.
- 9. Loeschcke, H.H. The effectiveness of the control of pH in the extracellular fluid of the brain by the respiratory control system. Pflugers Arch. 341:43-50; 1973.
- 10. Masuyama, H.; Hayashi, F.; Honda, Y. An assessment of overall "gain" of the O₂ feedback control system with and without external dead space breathing. Jpn. J. Physiol. 33:699-710; 1983.
- 11. Masuyama, H.; Honda, Y. Difference in overall "gain" of CO₂ feedback system between dead space and CO₂ ventilation in man. Bull. Eur. Physiopathol. Respir. 20:501-506; 1984.
- Masuyama, H.; Akiyama, S.; Honda, Y. An assessment of overall open-loop "gain" of CO₂ ventilation feedback control system in hypoxia. Jpn. J. Physiol. 35:545-552; 1985.
- Milhorn, H.T., Jr.; Guyton, A.C. An analog computer analysis of Cheyne-Stokes breathing. J. Appl. Physiol. 20:328-333; 1965.
- 14. Milhorn, H.T., Jr. The application of control theory to physiological systems. Philadelphia, Pa.: Saunders; 1966.
- Riggs, D.S. Control theory and physiological feedback mechanisms. Huntington, New York: R.E. Krieger Publishing Co.; 1976.
- Stegemann, J.; Seez, P.; Kremer, W.; Boning, D. A mathematical model of the ventilatory control system to carbon dioxide with special reference to athletes and nonathletes. Pflugers Arch. 356:223-236; 1975.
- Takano, N.; Sakai, A.; Iida, Y. Analysis of alveolar Pco₂ during the menstrual cycle. Pflugers Arch. 390:56-62; 1981.