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A lumped parameter compartmental model for  the nonsteady f low o f  the cerebro- 
vascular f luM is constructed. The model assumes constant resistances that relate f luM 
f lux  to pressure gradients, and compliances between compartments that relate f luM 
accumulation to rate o f  pressure changes. Resistances are evaluated by using mean 
values o f  artery and cerebrospinal f luid (CSF) f luxes and mean compartmental pres- 
sures. Compliances are then evaluated from clinical data o f  simultaneous pulse wave 
recordings in the different compartments. Estimate o f  the average CSF compartmen- 
tal deformation, based on the compliance between the CSF and brain tissue compart- 
ments, proves to be o f  ~he order o f  magnitude o f  actual experimental measurements. 

Keywords-Brain tissue, Compartmental model  Cerebrovascular fluid, Intracranial 
pressure, Compliance resistance. 

I N T R O D U C T I O N  

The lumped-parameter  compar tmenta l  model  o f  the cerebrovascular system is the 
first step towards the cons t ruc t ion  of  a more  comprehensive  model  of  the in t racra-  
nial  fluid system. The compar tmenta l  approach assumes that the intracranial  content  
may  be divided into a n u m b e r  of  units ,  or  compar tment s ,  the behavior  of  each of  
which is represented by a single value of pressure and  by values of  flux exchanged 
with adjacent  compar tments .  All these values may  be t ime dependent ,  but  they do 
not  vary in space. The resistance to the flow from a compar tment  to an  adjacent  one 
is lumped at the b o u n d a r y  between the two compar tmen t s .  Likewise, the integrated 
change in volume of two adjacent  compar tments  due to the movement  of their corn- 
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mon boundary in response to a pressure difference, is represented as a property called 
compliance that is assigned to the boundary between two adjacent interacting 
compartments. 

Monro's (14) first model of the intracranial cavity was bi-compartmental: Brain 
fluid and blood, as two almost-incompressible fluid phases. KelIie (11) modified this 
model by assuming three, instead of two, material compartments: arteries, veins and 
brain tissue. The Monro-Kellie models prevailed to this century and were modified 
in stages only in recent years. The number of  compartments was increased to six: 
arteries, capillaries, venous, venous sinus, jugular bulb and cerebrospinal (CSF) (1). 

More recent approaches considered the compartments to be (linearly) compress- 
ible, yet the fluid itself remained incompressible. As to the brain tissue, it is es- 
sentially a multiphasic material (e.g., brain tissue, blood and CSF) continuum. 
Experimental results show that its behavior is inelastic or, alternatively, that the cor- 
responding compliance is nonlinear. To overcome the "nonlinearity" of  a single coef- 
ficient, the tissue is assumed to be a rather complex, single-phase, multiparameter 
viscoelastic material (e.g., one whose constitutive relation involves four viscoelastic 
coefficients) (15). In the reports of these investigations, although not explicitly stated, 
the model of the intracranial content returned to be bi-compartmental: the CSF com- 
partment and "all the rest," or the vascular compartment and the rest, etc. In most 
cases, even for the multicompartmental model of the cerebrovascular fluid system (1), 
no numerical calculations were presented and the exposition of the subject remained 
theoretical. 

Our first objective, therefore, was to develop an N-compartmental model that can 
yield numerical values of  the various state variables (e.g., pressure, in quasi steady 
(9,10) and nonsteady flow (17)). So far, we have successfully achieved (16) this objec- 
tive for the general linear problem, assuming compliances and resistances of step func- 
tion nature according to the nonsteady flow and pressure regime. Physiologically, the 
assumption of  linearity corresponds to passive states in which the sensory and endo- 
crinological biocontrol mechanisms have but little effect on the resistances and the 
compliances. Nevertheless, one must first construct and solve a linear model and 
employ perturbation techniques in order to derive solutions for the generalized non- 
linear problem. Greenberg et al. (5) used a three compartment model to estimate one 
cerebrovascular controlling resistance. Their model does not include compliance ele- 
ments, accounts only for transport processes with constant flux values and no per- 
fusion pressure. 

Our compartmental model involves a number of resistances and compliances, the 
values of which must be known before the model can be employed in predicting per- 
fusion pressure and flux changes. In a previous paper (16) it was assumed that the 
compliances and resistances are also functions of  known ratios between certain pairs 
of resistances. The objective of the present paper is to present a methodology for esti- 
mating the values of  the various compliances and resistances and the above men- 
tioned ratios. 

The methodology is based on the assumption that flow and pressure are periodic 
in time. It uses actual time varying clinical observations to evaluate resistances from 
mean phasic values. The compliances are then estimated by the latter and a set of 
equations assembled from different time observations. This inverse method is a tool 
applicable to any general compartmental modeling and is thus explained separately 
from our earlier paper (16). 
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1. THE COMPARTMENTAL BALANCE EQUATION 

The governing equations for the lumped-parameter compartmental model describe 
the balance of mass and the balance of linear momen tum for each compar tment .  
Essentially, each such equation states that the temporal  rate of  change of  either the 
fluid mass, or its momentum,  in a compartment,  is equal to the amount of  net influx 
of that quantity through the compartmental  boundaries, plus the external sources. 
The mass balance of  the n-th compar tment ,  surrounded by a number of  compart-  
ments denoted by m = 1,2 . . . .  , can, therefore, be written in the form 

dV .  = ~a qm. + Q,, (1) 
d t  (m) 

where qmn ( =  --qn,n) denotes the flux f rom compar tment  n to m, Q.  denotes exter- 
nal sources in the n-th compar tment  and V. is its volume. 

The flux qnm can be expressed in terms of  the difference in pressure, P,,m ( = P .  - 
Pro) between the n-th and the m-th compar tment ,  and a conductance Z,,m (recipro- 
cal of  the resistance R,,m), in the form 

~m 
q,,., - - Z . , , , P . m .  (2) 

Rnm 

Note that fluxes are determined by differences in piezometric head which is the sum 
of  pressure head and gravity head. However,  within the cerebral system, differences 
in the latter are much smaller than those in the former. Hence, only pressure differ- 
ences have been considered here. 

As an example to account for the diffusion and perfusion processes between cap- 
illaries and brain tissue (13) we introduce a conductance which manifests the pres- 
sure fall through the blood brain barrier. 

The change in volume, AV. is produced by the change in the pressure differences, 
AP,,m, in adjacent compartments,  taking into account the presence of  compliances, 
Cnm, between these cells 

A V .  = ~ C, . .AP~m.  (3) 
(m) 

Together,  we obtain for the n-th compar tment ,  a mass balance of  the form 

~_j Cnm dP, , .  - -  + ~ ZnmPnm = On. (4) 
(m) dt  ~m) 

Another compact  form of  this equation for all cells simultaneously is 

= d t  + Z_P = _Q (5) 

where _P(t) is the time-dependent ( N  • 1) pressure vector; Q ( t )  the source ( N  x 1) 
flux vector, and Z and C are the ( N  x N )  conductance and the compliance matrices, 
respectively. 
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2. P A R A M E T E R  ESTIMATION 

The compartmental balance equations for fluid mass, written in the compact form 
of Eq. (5), involve conductivities and compliances, expressed by the matrices _Z and 
__C. In the present work, these parameters are assumed to be constant. 

To predict the pressure (and flux) response of the model to external changes, the 
values of the parameters C and Z must be known. In order to estimate them, we need 
measured values of pressure in the various compartments at a sufficient number of 
points in time. With information from clinical data (8), of simultaneous P , )  pulse 
wave recordings at the different compartments, we apply the following inverse 
procedure. 

First, because C and Z are assumed constant and p ( t )  is cyclic, by taking a tem- 
poral average of Eq. (5) over the cycle time T, (i.e., integration over the cycle time 
divided by that period), we obtain, 

__fi*_Z = Q* (6) 

(-) denotes the difference between adjacent compartment, P* = -~1 f r p d t  where 

and Q* 1 f r  = -T Qdt denote the obtained mean values of pressure and source fluxes, 

respectively. We note that Eq. (6) is a quasi-steady state equation, With known values 
of P* and Q*, we thus solve Eq. (6) for Z. 

( Then with the already evaluated Z values and pk( _- p(tk)), pk ~/5( t  k) = __~ } 

values from the clinical data at various time observations t k, we write by virtue of 
Eq. (5)-(6) a K set of equations for the compliances 

/SkC=_b~; k =  1 ,2 ,3 , . . . ,K  (7.1) 

where 

b* = Q k - - z P k .  (7.2) 

By the Gauss-Markov theorem, the C values are derived as an assortment of the 
set of information at all K time observations 

c = ( _ ~ % ) - ~ - ~  r 

here 

= [! (7.4) 
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B 1 2 = [# ,b_ . . . . .  b _ x ] .  

5 

(7.5) 

This concludes, at least formally, the (inverse) process for identifying parameters 
appearing in Eq. (5) for an N-compartment model. 

3. EVALUATION OF MODEL RESISTANCES 
AND COMPLIANCES 

Let us determine the values of C and Z in the case of a seven-compartment model 
(N = 7). Figure 1 shows the model consisting of the following compartments: arterial 
(A), capillary (C), cerebrospinal fluid (F), brain tissue (B), venous (V), venous 
sinus (S) and the jugular bulb (J). The (lumped) resistances are: between the artery 
and capillary compartments (RAc); the capillary and cerebrospinal fluid compart- 
ments (RcF), the capillary and brain tissue compartments (RcB), the capillary and 
vein compartments (Rcv), the brain tissue and vein compartments (RBv), the cere- 
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brospinal fluid and brain compartments (RFB), the vein and venous sinus compart- 
ments (Rvs), the cerebrospinal fluid and the venous sinus compartments (RFs), 
between the venous sinus and the jugular bulb compartments (Rvs); altogether nine 
resistances. In Fig. 1, the capillary compartment is divided into: the choroid plexuses- 
those tufts of  small capillary vessels inside each of  the four ventricles-- and the cap- 
illary system outside the ventricles. However, in the equations, only the combination 
in parallel of  the conductances Z.~c + Z,~c = ZAC and Zbv + Z~v = Zcv appear, so 
that only the combined resistances RAC and R c v - i n t o  and out of  the capil laries-  
are included in the model. 

The resistances Rcs, RCF, and RFB a r e  identified as the lumped blood-brain bar- 
rier; the lumped blood-cerebrospinal fluid barrier, and the lumped cerebrospinal 
fluid-brain barrier, respectively. 

We recall that the compliance elements, Cnm, indicate that an increase in volume 
of  one compartment equals the volume of  the "cup" formed by the deformed mem- 
brane. This volume, in turn, equals the volume displaced from the neighboring com- 
partments, all this within the rigid container of the skull bones (the Monro-Kellie 
doctrine). 

In the nonsteady state, which takes into account the deformability of the compart- 
ments, we first introduce a compliance element CA8 between the artery and the brain 
tissue compartments to represent the overall pulsatory effect of  the arteries on the 
brain tissue. Next, the capillary system is considered nondeformable, so that no com- 
pliance is introduced between this compartment and any of its neighbors. The 
choroid plexuses, however, although capillary in nature, possess other material prop- 
erties. Hence, they can, and in fact do convey pulsations to the CSF system (2). 
Accordingly, a compliance CCF is introduced between them. Furthermore, the CSF 
system and the brain tissue share common bounda r i e s - a t  the ventricles and along 
the subarachnoidal space -which  are deformable. A compliance element CF~ is 
therefore, inserted between the two. Finally, to account for observed sharp drop in 
pressure along the cardiovascular passage, additional compliances CBv and CFs are 
inserted between the brain tissue and venous compartments and between the CSF and 
venous sinus compartments, respectively. Altogether, in our presentation, we assume 
five compliances between adjacent elements of the cerebrovascular fluid system. 

The mechanical properties of  resistances and compliances are symmetric with 
respect to the change of  direction between one compartment and its neighbor, i.e. 
in formulae 

RAC = RCA , RCF = RFC , etc. 

CAB = CBA , CCF = CFC , etc. 

All Rnm'S and Chin's are positive. 
We now evaluate the temporal average of  the cerebral P(t )  of  the pulse wave 

recordings (8) and of  the pressure profile of  the cardiovascular system cited in the 
literature (6) both over a time cycle. In the arteries, the average pressure--between 
systole and diastole- is  P,~ -- 100 mmHg. It drops to P~ = 30 mmHg in the capillar- 
ies, including the choroid plexuses; P,~ = 10 mmHg in the CSF system; P~ = 9.5 
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m m H g  in the brain tissue; P~ = 9 m m H g  in the venous system; P~ = 8 m m H g  in 
the sinuses and P ;  = 2 m m H g  in the larger jugular veins and in the spinal leading 
into the vena cava (Fig. 1). The mean values of  the injected and ejected fluxes at the 
artery and jugular bulb are Q~] = Qy = 750 ml /min .  

As explained following Eq. (2), the above average pressures are based on neglect- 
ing the gravity head. In fact, to maintain a certain flux, a certain piezometric head 
difference is required. Then, the pressure difference will depend on whether the per- 
son is in a horizontal or a vertical position, due to not the same differences in the 
gravity head of the two positions. However, in our work, the gravity head difference 
has been neglected as being much smaller than the pressure one. 

The effect of  gravity is more significant when considering the flow interactions 
between the body and the cerebral system. There, the relative position between the 
two becomes important  in affecting pressures in the cerebrovascular system (19). 

Altogether, nine resistance values have to be determined. However,  the matrix 
equation (6) comprises only six independent balance equations for the various com- 
partments of  the cerebrovascular model. Thus, the redundancy of the system is three, 
and three additional conditions are needed to solve the set. One of them is the mean 
flux (from choroid plexus to the CSF ventricles) Qk = 0.3 ml /min ,  which can be 
taken as pivot value with high credibility f rom the literature (3). 

Thus, the ZCF value can be evaluated f rom the expression 

QT: = ZcFP~F.  (8) 

Two more conditions have to be stipulated for resistances, based on the existing 
physiological data. We now introduce the scalar coefficients. 

R FB Z vs 
c~ - - (9) 

Rvs ZFB 

l ~ -  RFB -- ZCB (10) 
RCB ZFB 

Here o~ indicates the ratio of  the resistance of  the cerebrospinal fluid-brain barrier 
to the vein-venous sinus resistance, where 3 is the ratio of  resistance of  the cerebro- 
spinal fluid-brain barrier to that of  the blood-brain barrier. 

For our compartmental  configuration (Fig. 1) and in view of Eqs. (8)-(10), we are 
left with four unknown Z values. We thus write the explicit form for Eq. (6). 

3p~e 

P *Fn 

O~ * PVS 

o 

o o 

(11) 
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The explicit form of Eq. (7. I) for any observation time t k, is 

~B 

P~v 
P ~  

CAB 

CCF 

CBv 

CFs 

PkF8 CF~ 

Zs jp~j  - zAcp~c 

ZAcP~ C -- l c v P ~  V - Z c F p ~  F -- Z c B P ~  B 

Z<sp~s - Z ~ v p b v  - z ~ v p ~ v  

Z k sJPsJ Z v s p k s  -- ZFspks  

- z s j n I ~  + Z ~ c p ~  + z ~ s p f s  - z ~ p b ~  - z ~ p g ~  - Z~Bp~F~ 

(12) 

Note that both __Z and __C values were evaluated from a nonsteady flow system. 
Given the conductances one can solve a quasi steady flow regime. Including the com- 
pliances one can solve the perfusion problem described in Eq. (5) given the appro- 
priate initial conditions (17). 

Thus, Eqs. (6) to (12) allow a complete solution for the resistances Rnm(Ot,/3) and 
compliances Cnm(~,/3) with the values of  c~ and /3. Figures 2 and 3 describe an 
example of  the surfaces R c v ( a , / 3 )  and CBv(a , /3 ) ,  respectively. 

The figures demonstrate zones of  a and/3 that generate unacceptable values (e.g., 
negative Z's as in Fig. 2) of  resistances and compliances and zones of  high sensitiv- 
ity of  the resulting Z's and C's to small changes of  o~ and/3. Our choice is, therefore, 
to rely on ot and/3 values that generate stable Z's and C's. 

There are almost no data about the physiological, or pathological, ranges of c~ and 
/3. It was found that when a and/3 are in the range of  1/1,000 and 10,000, respec- 
tively the resistances and compliances meet the desired aforementioned criteria. 
Hence for/3 = 1 0  - 3  and ot = 1 0  +4  Eqs. (4) to (8) result in the following values: 

RAC = 0.933 mmHg.ml/min.  

RCF = 66.667 mmHg.ml/min.  

R c v =  0.028 mmHg.ml/min.  

R c s  = 13338.0 mmHg.ml/min.  

R v s  = 0.0013 mmHg/ml /min  

RFS ----- 7.6187 mmHg/ml /min  

R s j  = 0.0080 mmHg/ml /min  

RFB = 13.338 mmHg/ml /min  

RBv  = 3.33 mmHg.ml/min.  
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CAB = 0.0012 mmHg.ml/min.  

CCF -~- 0.0357 mmHg.ml/min.  

CBv = 0.3746 mmHg.ml/min.  

CFS = 0.0494 m m H g / m l / m i n  

CFB = 0.2093 mmHg/ml/min 
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With the above value of  CFB , w e  can now assess the average deformat ion of  the 
CSF compartment .  Let us assume a spherical configuration of  this compartment ,  
with a mean diameter rF. Its volume, VF, and surface area, SF, are given by VF = 
4 3 ~rrp and SF = 4a'rF 2. By virtue of  Eq. (2), we may thus express the change in VF by 

A V F = S F A r F  ---- C F B P ~ B .  (13) 
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According to Hak im et al. (7), the mean diameter of  the CSF compar tment  is 
1 600 

rF . . . .  ram. Thus, in view of  the mean pressure difference PEn = 0.5 m m H g ,  
4 2~r 

the compliance value CFB = 0.2093 m l / m m H g ,  and f rom Eq. (13), we obtain 

ArF = 0.015 mm.  

This estimate of  displacement of  the CSF compar tment  boundaries is consistent 
with measurements done by Lewer et al. (12). 

Finally, we wish to emphasize that the model approach presented here (and in 
10,17) constitutes a methodology that  can be implemented to various compar tmen-  
tal schemes representing different aspects of  clinical data. 

4. C O N C L U S I O N  

This paper presents a general methodology for parameter  estimation that can be 
applied to any compartmental  model given its phasic pressure and flux cyclic curves. 
The present lumped parameter  model is based on discretizing the cerebral flow sys- 
tem into seven characteristic compartments with conductances and compliances both 
assumed as step functions in time. Hence, in prolonged excitations such as diseases, 
a different set of  mean conductance and compliance coefficients is determined to 
describe a new linear nonsteady system. This set of  coefficients are evaluated by an 
inverse procedure and minimal sensitivity of  the conductances and compliances with 
respect to changes in conductance rations of  cerebrospinal fluid-brain barrier to 
vein-venous sinus and to the blood-brain barrier one. 

Model calibration with the evaluated conductances and compliances enabled pre- 
dictions well within the range of available clinical observations regarding: (a) Degree 
of deformation of  the ventricles (10,17), and measured by Lewer et aL (12); (b) 
Appearance of suction pressure in the jugular bulb during some interval of  the pres- 
sure period (16). 

Also the validity of  the model was proven when showing a possible cause for the 
occurrence of Normal  Pressures Hydrocephalus.  This prediction was confirmed by 
an actual head surgery reported by Sorek et al. (18). 

The cerebral system is a complex continuum medium where a saturated solid phase 
matrix (brain tissue) interacts with fluid phases in the vessels and in the ventricles. 
Yet, the compartmental  model (9,16) enables a prediction of average trends and 
response of  the system when subject to pressure and flux excitations. 
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