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In previously proposed models o f  capillary tracer exchange, red cell mem- 
branes have usually been assumed to be either infinitely permeable or completely 
impermeable to tracer molecules. Permeability o f  the extravascular cellular 
compartment has been treated previously, but never in conjunction with finite 
capillary and red cell permeability effects. Our objective was to examine the 
situation encountered with multiple indicator experiments in which tracer 
exchange may be limited by red cell, tissue and capillary membranes. A four 
phase model is presented which accounts for plasma, red cell, interstitial, and 
extravascular cellular regions. Results from this model indicate that transcapil- 
lary tracer exchange is affected by a minimum o f  seven dimensionless param- 
eters. The influence o f  relatively low red cell permeability is most pronounced 
when the dimensionless capillary permeability is high (i.e., ~cap ~> 1). Devia- 
tions in transcapillary extraction values from those corresponding to in- 

finitely permeable erythrocytes can be kept below 5% when capillary perme- 
ability is low (i.e., 0tca p ~< .15) by pre-equilibrating the injectate with tracer prior 
to injection. The additional barrier in the extravascular region necessarily de- 
creases overall transvascular tracer exchange but does not affect extraction 
values in the vicinity o f  the appearance time. 

I N T R O D U C T I O N  

A n u m b e r  o f  m a t h e m a t i c a l  m o d e l s  have been  r e p o r t e d  in the  l i t e r a t u r e  

which  descr ibe  t r ans i en t  exchange  o f  a d i f fus ib le  t r ace r  b e t w e e n  the  vascu la r  

and  ex t r avascu l a r  regions  o f  a cap i l l a ry  (10) .  The  t w o  m o s t  f r e q u e n t l y  used  

m o d e l s  were  f i rs t  p r e s e n t e d  b y  Crone  (5)  and  Sangren  and  S h e p p a r d  (13) .  

When  used  to  ana lyze  ac tua l  t r ace r  d a t a  these  m o d e l s  can p rov ide  e s t i m a t e s  
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of important capillary parameters such as flow, vascular volume, extra- 
vascular volume and the permeability-surface area product (PS) of the 
capillary to various tracers. Nearly all of these models are based on the 
assumption that the capillary vascular region and extravascular region are 
both homogeneous. 

Blood has generally been treated as though its volume were either that of 
the entire blood volume, when the tracer easily permeates the erythrocytes, 
or that of the plasma alone, when the red cells are assumed to be impermeable 
to the exchanging species. The only model presented to date which has in- 
cluded the effects of red cell-plasma tracer exchange on trans-endothelial 
exchange is that of Goresky et al. (6). Unfortunately their model is based on 
the assumption that the capillary endothelium is infinitely permeable to the 
diffusing species and is not useful when an estimate of capillary permeability 
is desired. 

The extravascular tissue region available to the diffusing species has 
generally been assumed to be either the entire extravascular volume, when 
the cell membranes do not impede tracer transport, or to be limited to the 
interstitial space, when the cell membranes are nearly impermeable to the 
diffusing species. A number of theoretical studies have included separate 
interstitial and cellular regions within the extravascular space. Rose et al. (11) 
recently presented a detailed model of capillary, extracellular and intracellu- 
lar tracer exchange which incorporated the assumptions of plug flow, rapid 
radial diffusion, negligible red cell exchange and negligible axial diffusion. 

Many of the earlier models included simplifications which are generally 
not applicable to transient multiple indicator studies. For instance, Corm and 
Robertson (4) and Bellman et al. (2) assumed the capillary extracellular and 
cellular regions were each well mixed so that tracer concentrations depend 
on time but not on axial position. Ziegler and Goresky (17) treated the 
special case when the diffusible tracer is confined to the cellular space after 
crossing the membrane (potassium and rubidium) while Sheehan and Renkin 
(14) and Tancredi et al. (15) considered only steady-state transport of these 
same tracers. 

Our primary objective was to develop a mathematical model which de- 
scribes transient tracer exchange in a capillary where both blood and extra- 
vascular volume are heterogeneous and capillary permeability is finite. This 
model was then used in a subsequent investigation (12) to estimate the 
effects that finite red cell permeability and finite extravascular cellular 
permeability have on the standard multiple indicator calculations of extra- 
vascular volume and capillary PS. 

The Model 

In this section we present a heterogeneous model which can be used to 
predict the concentration-time history of a diffusible indicator as it emerges 
from a single ideal capillary unit. Each capillary and its surrounding tissue is 
assumed to be isolated from neighboring capillary units and is not influenced 
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by tracer transport in adjacent capillaries. This concept was originally pro- 
posed by Krogh (9) to describe oxygen transport in tissue and has been 
adopted by a number of investigators to characterize capillary mass ex- 
change. Use of the Krogh cylinder model simplifies the problem consider- 
ably. Instead of treating the entire organ from the onset, we may begin by 
obtaining the solution for a single capillary unit. The responses of all capil- 
laries can then be combined to obtain the response of the entire organ. 

A schematic of our single capillary model is shown in Figure 1. The intra- 
vascular region of the capillary unit is divided into two separate components, 
representing the water volumes occupied by erythrocytes (VRc)and plasma 
(Vp) respectively. The red cell and plasma phases of the model are separated 
by an effective diffusion barrier, with surface area SRC, which represents the 
resistance offered by the erythrocyte membrane to indicator transport. The 
ease with which tracer molecules can pass through the erythrocyte-plasma 
diffusion barrier is characterized by the permeability of the barrier, PRC, to 
the particular tracer selected. The higher the permeability, the less is the 
resistance offered by the barrier to tracer transport. 

The extravascular tissue space of the capillary unit is also divided into two 
regions, representing the water volumes of the interstitial space (VI) and 
cellular space (Vc). These regions are separated by a diffusion barrier of sur- 
face area SC and permeability Pc representing the cellular membranes of the 
tissue region being used. The plasma and interstitial regions are separated by 
a third barrier of surface area Scap and permeability Pcap which represents 
the resistance offered by the capillary endothelium. 

The following simplifying assumptions are made: 
1. The permeabilities of all three barriers (i.e., erythrocyte membrane, 

capillary endothelium and extravascular cellular membrane) to any par- 
ticular tracer are allowed to be independent of each other but are as- 
sumed to be constant in both time (t) and axial position (x). 
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FIGURE 1. Four phase capillary model. 
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The cross-section of the capillary unit can be of arbitrary shape but the 
volumes per umt length. (i.e., the cross-sectional area) of each of the four 
compartments are assumed not to vary in time or space. 

3. Red cell and plasma velocities are assumed to be identical in the model 
presented here. The effects of allowing these to deviate from each other 
will be considered in the accompanying article in this issue (12). 

4. The convective transport of tracer in the plasma phase is assumed to be 
much larger than transport by axial diffusion (i.e., uL/D >> 1, where D is the 
diffusivity of tracer in plasma). The effects of finite axial diffusion and 
dispersion (i.e., when velocity profiles are not ignored) were examined 
theoretically by Bassingthwaighte (1) and were generally found to be 
small. Guller et al. (8) found that their model fit for myocardial sodium 
tracer data (high diffusivity) was not influenced significantly by large 
changes in the axial dispersion coefficient. 

5. The resistance to diffusion offered by the fluids in each of the four 
phases is assumed to be negligible in comparison to the resistances of- 
fered by the erythrocyte membranes, capillary endothelium or tissue cell 
membranes. In light of these assumptions, the concentration in any of 
the four compartments will be independent of radial location and will be 
a function of time and axial location only. This rapid diffusion is suf- 
ficient justification for allowing the cross-section of the capillary unit to 
have arbitrary shape. 

6. The red cell membrane and capillary membrane are assumed to be ex- 
tremely thin so that no measureable accumulation of indicator occurs 
within the membranes. Mass transfer across the membrane can then be 
assumed to be in a quasi-steady state (i.e., the time rate of change of 
concentration within the membrane is small with respect to the flux 
through the membrane). Therefore, instantaneous flux through the mem- 
brane depends upon the permeability of the membrane to the tracer and 
the instantaneous concentration difference across the membrane. We will 
be concerned only with indicators that diffuse passively across the three 
diffusion barriers so that no carrier systems (concentrating mechanisms) 
are involved and the rate constants for the influx and efflux for each 
individual barrier are identical. 

In light of the above assumptions, a membrane-limited transport equation 
can be written for each of the four regions of Figure 1 in terms of the red 
cell concentration, CRC, plasma concentration, cp, interstitial concentration, 
cI, and extravascular cellular concentrations, co: 

Red Cell region 

aCRC ~CRC ] 
VRC l ~  + u ~ l  = PRCSRC(Cp--cRC) (1) 

Plasma region 

[~Cp c~cpl 
Vp ~ + u ax i = PRC SRC (CRC -- Cp) + Pcap Scap (cI - cp) (2) 
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Interstitial region 

~c I 
VI at =PcapScap(Cp-c I )+PcSc(cc -c I )  (3) 

Extravascular Cellular region 

Vc acc at = PcSc (cI  - -  cC)  (4) 

The frame of  reference is fixed in the stationary capillary endothel ium or 
extravascular volume with x -- 0 at the capillary inlet and x = L at the outlet.  
Equations 1-4 imply that tracer molecules cannot pass between the red cells 
and the extravascular region unless they first enter  the plasma phase. There- 
fore, the occurrence of red cell-endothelium contact  is assumed to be rare or 
tracer flux is virtually prevented by the combined resistance of  the double 
membrane.  

Equations 1-4 are to be solved for the initial conditions: 

Cp (0,X)  = CRC ( 0 , x )  = c I ( 0 , x )  = CC (0,X)  = 0 

and boundary conditions: 

(5) 

Cp (t,0) = Cpo (t) 

CRC (t,0) = CRC o (t) (6) 

where Cpo (t) and CRCo (t) are known input concentrations in the plasma 
and red cell phases respectively, at x = 0. 

We were interested in two particular forms of  the boundary condition, 
Eq. 6. The first was an ideal Dirac impulse in each of  the plasma and red 
cell phases at x = 0: 

Cp ( t , 0 )  = mi'p 6 (t) 

CRC (T,0) = mi'RC 6 (t) = 
FRC 

(mi-mi'p) 8 (t) (6a) 
FRC 

where mi is the total mass of  indicator injected in the pulse, mi,p is the mass 
injected in the plasma phase alone, mi,RC is the mass injected in the red cell 
phase alone and Fp and FRC are the plasma and red cell volumetric water 
flow rates respectively (i.e., Fp = Vp u/L, FRC = VRC u/L). The second set of  
boundary conditions we employed was chosen to be more representative of  
the actual shape of  indicator curves found at the capillary inlet: 

Cp (t,0) = Cp,i ( _t__ 02 exp (--ot) ) 
t t 

CRC(t,0) = CRC,i ( t  a2 exp (~_~ot)) 
t t 

(6b) 
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where t- is the mean vascular transit time (t- = (VRc + Vp)/(FRc + Fp) ), 
Cp, i and CRC,i are constants and o is a paramter which controls the dispersion 
of the input function. 

Conservation of mass in the plasma and red cell phases at the capillary 
inlet requires that: 

mi, p = Fp Cpo (t) dt 
O 

and 

mi,RC = mi -- mi,p = FRC CRC o (t) dt 
0 

substituting Eq. 6b into the above equations we find the constants Cp,i and 
CRC,i are related to the total mass injected and the mass injected in the 
plasma phase in the following manner:  

mi,p F 
Cp,i - (VRc+Ve) Fp 

_ (mi--mi,p) F 
CRC,i (VRc+Vp) FRC 

It is virtually impossible to measure independently the capillary outlet 
concentrations Cp (t,L) and CRC (t,L), since the instantaneous separation of  
red cells and plasma at the capillary exit can not be easily achieved. The 
quanti ty measured experimentally at any axial location, x, is the flow- 
averaged concentration of  indicator in the blood, ~ (t,x): 

_ Fp FRC 
(t,x) --F- Cp (t,x) + - - 7  CRC (t,x) (7) 

At the capillary inlet (x = O) the flow averaged concentrat ion for the 
boundary conditions given in Eq. 6a, is: 

mi 
(t,0) = ~ 8 (t) 

and for the boundary conditions of  Eq. 6b the flow-averaged concentrat ion is 

mi t e x p ( ~ ) )  
c- (t,0) - (VRC+Vp) (a 2 t 

If the tracer cannot permeate the capillary endothel ium it is said to be a 
vascular indicator. The concentration-time history at the capillary exit for a 
vascular indicator is known as the vascular reference curve, CR (t,L). Since 
no reference indicator leaves the capillary and no axial diffusion is allowed, 
the reference curve is simply the flow averaged inlet curve delayed in time by 
the vascular transit time, t-: 
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C R (t,L) = 0 t < t- 

c R (t,L) = c- (t-}-,0), t i> i- (8) 

Therefore when the red cell and plasma velocities are equal, the reference 
curve for boundary  conditions of  Eq. 6a is simply a delayed impulse: 

mi 
CR (t,O) = ~ -  6 ( t - - i )  

and for boundary  conditions of  Eq. 6b the intravascular reference curve is 
described by:  

C R (t,0) = 0, t < ]- 
(8b) 

CR(t,0) = mi _ o 2 ( t _ l ) e x p ( _ o ( t _ l ) ) , t > t  
(VRc+Vp) t t 

No n-D irnensio nal iz a tio n 

Introduct ion of  the following quantities 

X = X/L 

T = t l f  

C = cFt- = c (VRC+Vp) 

mi mi 

into Eqs. 1-4 will produce the dimensionless transport  equations: 

Red Cells 

0CRc OCR C 
~T + ' ~ - -  = tXRC (Cp - CRC ) (9)  

Plasma 

~Cp ~Cp _ 
3 T  + ~ - flaRC (CRC--Cp) + (l+/3)Otcap (CI -Cp)  (10) 

Interstitial Space 

Cellular Space 

O-D act 
7 (1+/3) aT = txcap (Cp-CI )  + O~C ( C c - C I )  (11) 

~ aCc 
(l+fl) aT = aC ( C I - C c )  (12) 
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where 

(SRc) PRC SRC _ PRC t- 
aRC - FR C VRC 

Pcap Scap _ Pcap Scap 
acap - F ( ~ )  }- 

Pc Sc Sc Vc 
O~C = T  = PC (~C) (~-) 

VRC 
Ve 

vi+Vc 
7 - Ve 

vc 
= Vz+Vc 

In the terminology of  Rose et al. (11), ~" = 0 / (0  + "[) where 7 = VI/(VRc +Vp) 
and 0 = Vc/VRc + Vp). The definition of  ~, used in this article follows the 
original definition in Goresky et al. (6). 

The parameters  ceRC , CCcap and o~ C are dimensionless mass transfer coeffi- 
cients. Each can be multiplied by various combinations of  fl, 3, or ~" to yield 
different dimensionless parameters but  all can be reduced to the product  of  
three separate effects: 1) the permeability,  which will depend only on the 
physical properties of  the tracer and the structure of  the membrane;  2) a 
geometric factor, which is the ratio of  the surface available for indicator 
transport to its volume of  distribution, and 3) the time required for the 
indicator to traverse the volume (or membrane contact  time). Increasing any 
of  these factors will promote  increased tracer exchange. 

The dimensionless flow-averaged concentration of  indicator in the blood 
(i.e., the dimensionless form of  Eq. 7 is: 

1 
(T,X) = ~ (Cp (T,X) +/3 CRC (T,X)) 

The initial conditions in dimensionless form become:  

Cp (0,X) = CRC (0,X) = C I (0,X) = C C (0,X) = 0 (13) 

while the boundary  conditions for the impulse input  functions become:  

Cp (T,0) = t~ (1+/3) 6 (T) (14a) 

CRC (T,0) = ( l -u )  (1+/3) 6 (T) 
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or for the more general input conditions of  Eq. 6b: 

Cp (T,O) =/.t (1+~) o 2 Y e -oT 

CRC (T,0) = ( l -u )  (1+/3) 02 T e 7 qT 
~3 

(14b) 

The parameter # is the rate at which indicator is deposited in the plasma 
phase divided by the total rate at which indicator enters the capillary inlet, i.e., 

Cp (T,O) FI, _ 1 Cp (T,O) 

C (T,0) F (1 +/~) ~ (T,O) 

In general g can be a function of  time. However in our analysis we will 
assume that the red cells and plasma are injected simultaneously and that 
their input functions have the same shape. This assumption is implicit in the 
boundary conditions in Eqs. 14a and 14b. In addition, we assume that  the 
red cells and plasma are separated until they are deposited at the capillary 
inlet and hence the ratio Cp (T,0) / C (T,0) is a constant. Then the above 
expression for g after integrating over all time, simplifies to: 

f •  Cp(T,0) dT 
1 _ mi,p 

Io mi c Cr,o) dT 

/ . t = - -  

The dimensionless reference concentrat ion at the capillary exit (X = 1) for 
an impulse input at X = 0 (i.e., Eq. 8a) is: 

C R (T,1) = 8 (T-I )  (1 5a) 

and for the more general input function (i.e., Eq. 8b) is: 

C R (T ,1 ) -  

O, T < I  

o 2 ( T -  1 )e ( T - l x p ( - o ) )  T>~I 

(15b) 

Finding general analytic solutions to Eqs. 9-13 and either 14a or 14b 
would be a formidable task. Each of  the four dependent  variables Cp, CRC, 
CI and CC are functions of  two independent  variables, X and T, and seven 
dimensionless parameters aRC, acap, c~C, ~, 7, # and ~. If  the more general 
boundary conditions of  Eq. 14b are used, then an eighth dimensionless 
parameter,  o, will also influence the solutions. We did not  a t tempt  to obtain 
analytic solutions. A finite difference technique similar to that employed by 
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Bassingthwaighte (1) was used to obtain approximate dimensionless con- 
centration-time solutions to Eqs. 9-14 at various axial locations within the 
plasma, red cell, interstitial and cellular regions. Details are given in the 
Appendix.  

RESULTS 

Accuracy of  the finite difference method 

Generally, for Otca p less than 20, the C(T) curves produced with the finite 
difference techniques were not  altered appreciably when the number  of  axial 
compartments  was increased beyond  20. For higher values of  the dimension- 
less capillary permeabili ty it was necessary to use 40 compar tments  and 
occasionally (particularly for impulse responses) we used 80 compartments.  
The effects of  sequentially quadrupling the number  of  axial compartments  
per region from 10 to 160 is shown in Table 1. Here, an impulse function at 
T = 0, X = 0 was approximated by  a finite pulse (i.e., all the indicator was 
initially placed in the first plasma compartment) .  We chose the dimension- 
less capillary permeabili ty in this example to be the highest employed in any 
of  our subsequent  C(T) presentations (~cap = 10).  The other parameters used 
in constructing Table 1 were C~RC = 3,/3 = .5, 3, = 3 and otc -+ oo (i.e., a homo- 
geneous extravascular region). We have not  included comparision at T = 1 
where the dimensionless concentrat ion would theoretically be infinitely 
large for a Dirac impulse input. The maximum deviation of  the 10 compart- 
ment  concentration solutions from the 160 compar tment  concentrations in 
Table 1 is less than 10%. In fact, less than 0.7% difference can be found in 
the solutions tabulated when the number of  compartments  is greater than 
or equal to 40. 

In Table 2 we compare the finite difference solution when aRC = 10,000 
to the Sangren-Sheppard analytic solution given by Goresky et al. (7) for a 
dimensionless capillary permeabili ty of  10. For  this case and for lower values 
o f  Otca p the finite difference technique is accurate to within one percent. 

TABLE 1 
Variat ion in the numerical C (T) solut ion* at the capillary 

outlet as the number of compartments, I M A X ,  is increased 

T C(T) 

IMAX = 10 IMAX = 40  I M A X  = 160 

1.2 .1103 ,0999 ~993 
2.0 .2539 .2400 .2385 
3.0 .3171 .3283 .3290 
4.0 .2182 .2356 .2370 
5.0 .1006 .1023 .1025 
6.0 .0350 .0303 .0299 

* I m p u l s e  r e s p o n s e  w h e n  a C  ""  = ,  a c a p  = 10 ,  a R C  = 3,  ~3 = .5 ,  3" = 3 , / 2  = 1, X = 1. 
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TABLE 2 
Comparison of the exact Sangren-Sheppard solution C* 

to the finite difference solution* C" when aRC = 10 4 

213 

T C*(T) C(T) 

1.2 .0219 .0222 
2.0 .3095 .3098 
3.0 .4375 .4368 
4.0 .1955 .1955 
5.0 ,0471 ,0472 
6.0 .0076 .0076 

* I m p u l s e  r e s p o n s e  w h e n  a c a  p = 10 ,  ~ = .5 ,  7 = 3,  bt = . 6 6 6 7 ,  I M A X  = 8 0 ,  X = 1, ot C -~ ~o. 

No finite difference technique can truly describe an emerging impulse 
function at X =- 1 and T = 1. The finite element size would have to approach 
zero for the concentration to become infinitely large. However,  we were not  
interested in calculating the dimensionless concentrat ion at this point  (which 
we knew to be infinitely large), but  instead we wanted to calculate the 
fraction of  tracer which could not  cross the capillary endothel ium and there- 
fore emerged as an impulse at T = 1 (i.e., m/mi). For  a pulse-like input the 
transmitted mass fraction, can be estimated from the finite difference 
solution, i.e., 

m ~ ~(1,1)AT 
mi 

The mass fraction emerging in the impulse can be determined analytically 
by  solving Eqs. 1-6 when back-diffusion is not  allowed. We have compared 
the emerging mass fraction computed with the finite difference technique 
(IMAX >1 20) to the analytic solution for various values of  ~cap, aRC and ~. 
For  all conditions when ~cap = 5.1 or 1.0 and under most condit ions when 
O~ca p = 10, the two values agree to within 1%. When O~ca p is 10 and ~RC is 
high the deviation is somewhat  greater. This is due to the fact that C (1,1) 
AT includes not  only the indicator which emerges in the impulse at T = 1 but  
also any additional mass of  indicator which emerges during the interval from 
T = 1 to T = 1 + AT. At high capillary permeabilities, the additional mass 
emerging during this period may be a significant fraction of  C (1,1) AT, since 
the impulse at T = 1 is very small. 

We also compared the finite difference solutions for C, CRC and Cp when 
otRC = 3, q, = 5, fl = .5, O~cap = 106 and/a = 0 (Fig. 2) to the analytic solution 
given by Goresky et al. (6) when ~cap -~ oo. Although the analytic-finite 
difference agreement is not  as close when ~cap -+ oo as it is when o~RC --> oo 
(i.e., Table 2), the theoretical and finite difference concentrations agree to 
within 5% for T < 4.6. A more accurate finite difference solution would 
require more than 80 axial compartments  to adequately approximate the 
delayed step function at T = 6. The largest dimensionless capillary perme- 
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FIGURE 2. Comparison of the finite difference composite (C'), plasma (Cp) and red cell (CRc)  con- 
centrations to the corresponding analytic solutions (solid, dashed and hatched lines respectively) of 
Goresky et al. (6) when CXca p ~ =o. Finite difference model parameters used were ~cap = 106 �9 aRC = 3, 
/3 = .5, 3' = 5, # -- 0, c~ C ~ 0% I M A X  = 80. Impulse area at T = 1 was .0498 for the exact solution and 
.0505 for the finite difference solution. 

ability used in our s tudy was 10 (rather than O~ca p ~ ~ )  and therefore the 
finite difference technique was not  required to mimic awkward step func- 
tions or impulse functions except  at T = 1 where it was quite satisfactory. 

One final check on the finite difference technique was to compare the 
first and second moments  of  several computed curves with the analytic 
moment  solutions given in the appendix of  Roselli & Harris (12). In all cases 
the zeroth,  first and second moments  computed  from the finite difference 
C(T) curves were within 1% of  the value obtained using the analytic solutions. 

Model Results 

Because there is such a large number  of  parameters in the model  it is not  
possible to present the effects of  varying each here. We will not  concern our- 
selves with variations in extravascular volume, which has been adequately 
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described by Goresky et al. (7) and Bassingthwaighte (1), or hematocri t  
value, which has been discussed by Bassingthwaighte (1). Instead we fix the 
erythrocyte  to plasma water volume ratio (~) at 0.5 (i.e., Hct  = 40%) and the 
extravascular to plasma water volume ratio (3,) at 3.0 (which corresponds to 
an extravascular to vascular water ratio of  2.0), a value characteristic of  
normal lung tissue. 

We believe that  it is essential to show impulse responses of  the capillary 
model  under various combinations of  red cell permeabili ty,  microvascular 
permeabili ty and extravascular cellular permeability.  These are presented 
in the next  section. In addition, we shall also present C(T)responses  and 
the corresponding extractions for a more realistic skewed exponential  
input function. 

IMPULSE RESPONSE 

Effects of  Red Cells 

In Figure 3 we present the effects o f  changing red cell permeabili ty on the 
impulse response when indicator is injected only in the plasma phase (# = 1) 
and the extravascular region is homogeneous (~c -~ ~) .  In the first set of  
curves the dimensionless permeabili ty of  the capillary endothel ium was low 
( i . e . ,  O~ca p = 0.15) and the dimensionless red cell permeabili ty varied be tween 
1 0  -6  and 1 0  +6.  The mass of  indicator emerging in the impulse at the capil- 
lary outlet  only changed from 80% of  the injected mass (i.e., at X = 0, T = 0) 
when red cells are impermeabile (i.e., o~RC = 10 -6 ) to 86% of  the initial mass 
when aRC = 1 0  +6 �9 This variation would be even smaller if bo th  erythrocytes  
and plasma were initially pre-equilibrated with tracer (i.e., # = 1/(1+~) at 
X = 0). Note  that when red cell permeabili ty lies be tween these two ex- 
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tremes both  the impulse area and the tail (i.e., back-diffusion portion) of  the 
curve lie between the aRC = 10 -6 and aRC = 10 +6 impulse responses. The 
maximum variation in transmitted impulse areas becomes considerably larger 
when the dimensionless capillary permeabili ty is increased to C~ca p = 1 (i.e., 
23% for aRC = 10 -6 vs. 37% for aRC = 10+6). The transmitted impulse area 
for an intermediate value of  aRC still lies between these two extremes but  
red cell exchange has altered the back-diffusion port ion of  the curve so that 
it no longer is bounded at all times by  the aRC = 10-6 and aRC = 10 +6 curves. 

When the dimensionless capillary permeabili ty is increased to acap = 10 
the transmitted impulse areas are negligible (i.e. < 1 0  -4) at both  aRC = 10 -6 
and aRC = 10 +6. However if aRC = 1 then 1.4% of the tracer initially in- 
jected at X = 0, T = 0 will emerge in the impulse at X = 1, T = 1. Another  
interesting phenomenon found at acap = 10 is that although all of  the mass 
was initially injected as an impulse in the plasma phase alone, 94% of the 
mass emerging in the transmitted impulse is transported in the red cell phase. 
This is an example of  what has been referred to by  Chinard et al. (3) as red 
cell trapping. 

A more instructive presentation of  the trapping phenomenon may be 
found in Figure 4 ( a R C  = 1, a c a  p = 10) where a sequence of  five axial tracer 
distributions in the red cell, plasma and extravascular regions are shown. For  
comparison we also present the same sequence when red cells offer essen- 
tially no resistance to diffusion. The tracer is initially deposited as an im- 
pulse in the plasma phase at X = 0 and T = 0. Tracer molecules which remain 
intravascular throughout  their residence in the capillary unit emerge in the 
transmitted impulse at X = l ,  T = 1. This should not  be interpreted to mean 
that tracer molecules in the emerging impulse are confined to the plasma 
phase. They may cross the erythrocyte  permeability barrier any number of  
times and still be included in the emerging impulse function. However once a 
tracer molecule crosses the stationary capillary endothelium, it cannot 
emerge in the transmitted impulse. 

The area under the traveling impulse decreases steadily with time since the 
tracer is always diffusing to an extravascular region at zero concentration. 
Most of  the plasma tracer moves rapidly across the highly permeable capil- 
lary endothelium but  some of the indicator also diffuses across the erythro- 
cyte membrane into the initially tracer-free red cell phase. However,  before 
the impulse moves 20% of  the way through the capillary the mass of  indi- 
cator in the plasma is depleted to such an extent  that the direction of  
plasma-red cell tracer transport reverses. Thereafter, tracer is transferred 
from the red cell phase back to the plasma phase where most  of  it is trans- 
ported across the capillary endothelium. But the loss of  tracer from the red 
cells is a much slower process than its initial uptake because the concentra- 
tion gradient is considerably smaller. The final mass of  tracer emerging in 
the red cell phase of  the impulse is therefore only slightly less than one half 
of  its maximum value (i.e., near T = .2). 
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An exchange process similar to the one described above for the impulse 
also occurs in the back-diffusion port ion of  the aRC = 1 curve of  Figure 4. 
Indicator accumulates in red cells as they move through the region of  high 
plasma tracer concentrat ion near the inlet of  the capillary. After  passing the 
point where the plasma and red cell concentrations are equal, the red cells 
begin to lose tracer. Once again this loss will be at a much  lower rate than 
the rate of  uptake because the concentrat ion gradient in the exit region of 
the capillary is relatively small. Due to the trapping of indicator in the red 
cells, the initial concentrat ion (at X = 1) will be higher and the mean tracer 
residence time will be shorter (Figure 3). Therefore, for high capillary 
permeabilities and intermediate red cell permeabilities, neither the impulse 
area nor the back diffusion portion of  the curve will necessarily be confined 
between the limiting curves aRC ~ 0 and aRC ~ oo. 

We may conclude from Figures 3 and 4 that the tracer impulse response 
can be significantly altered when red cell permeability is finite. The differ- 
ences are particularly noticeable when capillary permeability is high. 

Effects o f  the Extravascular Cellular Space 

Since tracer within the plasma impulse is constantly exposed to an extra- 
vascular volume at zero concentrat ion in our ideal capillary unit,  the trans- 
mitted mass fraction (i.e., emerging impulse area) cannot be altered by 
changing either the intracellular permeability or either of  the extravascular 
volume ratios 3, or ~'. However, the back-diffusion portion of  the impulse 
response will be influenced by any additional permeability barriers present 
in the extravascular region. 

In Figure 5 variations in the impulse response are shown when red cell 
effects are negligible (aRC = 1000) and the dimensionless cellular perme- 
ability is varied from 100 to .001. Sixty percent of  the extravascular water 
volume is assumed to be cellular while the remaining portion is occupied by 
interstitial fluid (i.e., ~" = 0.6). All other parameters are the same as those 
specified in Figure 3. Less tracer enters the cellular space when cellular 
permeability is low. Therefore,  the smaller the cellular permeability, the 
higher will be the initial tracer concentrat ion in the back-diffusion portion of 
the vascular curve. However the same barrier restricts the movement  of  
tracer back into the interstitial space after the concentrat ion gradient re- 
verses. Thus the plasma tracer concentrat ion will eventually fall below the 
value expected if no cellular barriers existed. This phenomenon is clearly 
shown in Figure 5 when aca p is O. 15. 

The effect of  low cellular permeability on the vascular impulse response 
is even more pronounced when the capillary dimensionless permeability is 
increased to 10. The peak plasma concentrations occur much earlier when 
cellular permeability is low than when it is high. In fact when T is less than 
3.5, the a c  = .01 curve cannot be distinguished from one issuing from a 
capillary unit having a homogeneous extravascular volume equal to that of  
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comparison w i t h  the  ~C  = .01 curve. 

the interstitial fluid volume alone (i.e., where 7 is replaced by 7 (1-~')).  
Theoretically these two different capillary units could be distinguished by 
comparing the first moment of  their response curves. However the distinc- 
tion between the two curves is not obvious until C falls below .0001 (Figure 
5). This would be very difficult to detect experimentally, especially in the 
presence of  recirculation. 

Combined  Effects 
The Sangren-Sheppard model curve (i.e., aRC ---> oo, ac  --~ oo) is shown in 

Figure 6 for aca p = 10 and # = 1. Also drawn for comparison are the curves 
resulting when the dimensionless red cell permeability alone is finite (aRC = 
1) and the dimensionless cellular permeability alone is finite (ac  = 1). The 
fourth curve in Figure 6 is the impulse response of  the same capillary unit 
when both aRC and a C are finite (aRC = ac  = 1). 

The C(T) curve characterizing a capillary unit with finite erythrocyte 
permeability has a higher initial concentration (excluding impulse) than the 
corresponding Sangren-Sheppard curve, a lower maximum concentration and 
the peak is shifted to the right. The initial concentration (i.e., near T = 1) is 
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also higher when cellular permeability is finite, but this increases the maxi- 
mum concentration, shifts the peak to the left and lowers the final rate at 
which indicator is removed from the capillary unit. 

The C(T) curve which results when both aRC and c~C are unity reflects a 
combination of the separate effects of each. The initial concentration (ex- 
cluding impulse) is the highest of the four curves while the terminal washout 
rate is the slowest of all. Both the location and magnitude of the peak lie 
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between those for finite otRC alone and finite aC alone. Generally the non- 
impulse port ion of  the curve appears to resemble the curve resulting when 
o~ C alone is finite rather than when O~R C alone is finite. The impulse area, 
on the other  hand, is identical to the impulse area resulting when aRC = 1 
alone and, as was shown earlier, is much higher than the Sangren-Sheppard 
(or finite a c )  impulse area. 

None of  the curves with finite c~RC or a c  in Figure 6 can be mistaken for 
the corresponding Sangren-Sheppard curve. However,  each might be mis- 
taken for a Sangren-Sheppard curve issuing from a homogeneous capillary 
unit where 3' and O~ca p differ from the actual values. Thus if either or both  of  
the dimensionless parameters 7 and Otca p a re  estimated from a non-homo- 
geneous capillary unit C(T) curve using the homogeneous  Sangren-Sheppard 
model,  the estimated parameter values will be in error. The magnitude of  the 
error will depend on each of  the dimensionless parameters (O~cap, o~c, OtRC , 
/3, g, ~,, f)  and is discussed in detail by Roselli and Harris (12). 

NON-IMPULSE INPUT FUNCTIONS 

In addition to the impulse response we also determined the tracer re- 
sponse to a more realistic skewed exponential  function (Eq. 6b). The re- 
sulting dimensionless intravascular reference curve is described by Eq. 1 5b 
and is shown in Figure 7 for o = 1. Also drawn in Figure 7 for future refer- 
ence are the Sangren-Sheppard C(T) curves and extraction-time curves for 
the same input function when Otca p = . l  5,  1 and 10. 

EXTRACTION 

The extraction at the capillary outlet,  E, is defined as E = 1 - C  (T)/CR (T) 
and is often used as an indicator of  capillary permeability. When back- 
diffusion can be ignored, Crone (5) has shown that Otca p c a n  be determined 
from the extraction using the following equation: 

aca p = - l n  (1 - E) = - l n  C ~ .  (16) 

In real capillaries extravascular volumes are finite and back-diffusion can- 
not  be ignored. The buildup of  tracer in the extravascular region cont inuously 
reduces the flux of  tracer from the vascular to the extravascular region. 
Therefore, extraction becomes smaller with time and eventually tracer 
diffuses back into the vascular region, producing a negative extraction. 
Generally, then, only the early extraction values (i.e., T ~ 1) will produce use- 
ful experimental estimates of  dimensionless capillary permeabili ty (Figure 7). 

We wish now to determine the manner in which the response curves of  
Figure 7 are altered by: 1) red cell effects, 2) extravascular cellular effects, 
and 3) dispersion of  the input function. 
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EFFECT OF RED CELLS 

Red cells can influence transcapillary tracer transport whenever the di- 
mensionless capillary tracer permeability is of the same order of magnitude 
or larger than the dimensionless red cell permeability. It is clear from the 
impulse response (Figure 3) that the "red cell effect" is most prominent at 
low dimensionless red cell tracer permeabilities, high capillary permeabilities 
and high hematocrit values. In addition, the initial plasma-red cell tracer 
distribution and the shape of the input curve can significantly alter the 
extraction patterns. 

Red Cell Permeability 

In Figure 8 we show the effects of changing the dimensionless red cell 
tracer permeability, aRC, for a pre-equilibrated injectate. When %ap -- .15 
(not shown) there is very little difference between low red cell permeability 
(aRC = .001) and high red cell permeability (aRC = 999) C(T) curves. Most 
of the tracer molecules initially deposited in the erythrocytes cannot per- 
meate the red cell membrane let alone the capillary barrier before emerging 
from the capillary. The trapping effect is more pronounced when the di- 
mensionless capillary permeability is increased to unity (Figure 8a). The 
maximum extraction in this case is reduced to about 0.5 when aRC = .001 
rather than the value of 0.62 found when the red cells are infinitely perme- 
able. The effect of low red cell permeability on the C(T) curve and extrac- 
tion pattern is most pronounced when the capillary permeability is high 
(Figure 8b). As in the cases where a c a  p = . 15 or acap = 1, very little tracer 
escapes from the red cells when %ap = 10 and aRC = .01. Both plasma and 
red cell concentrations are shown for this case in Figure 9. In contrast to the 
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previous examples, nearly all of the plasma indicator diffuses into the extra- 
vascular space. Therefore the composite vascular curve (Figure 8b) has two 
peaks which result from combining the red cell curve, which has the same 
shape as the reference curve, and the plasma curve, which is shifted to the 
fight and more dispersed because of the additional time spent by the tracer 
molecules in the extravascular volume. 

Initial Plasma-Red Cell Tracer Distribution 

Low red cell permeability has very little effect on the C(T) curve or the 
extraction pattern when the tracer is initially pre-equilibrated with the in- 
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jectate blood sample and Gca p is small. This is not  true when the tracer is 
initially introduced into either the plasma phase alone or the red cell phase 
alone (Figure 10). In the latter case (/a = 0) the flow averaged tracer curve is 
almost identical to the reference curve so the extraction is nearly zero. When 
tracer is introduced in the plasma alone (~ = 1) the C(T) curve lies below the 
pre-equilibrated (/a -- .667) curve since some tracer is driven across the capil- 
lary endothelium by the steeper plasma-interstitial concentrat ion gradient. 
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(Note that although the plasma concentrat ion is higher in the/a = 1 case than 
the pre-equilibrated case, the red cell concentrat ion is nearly zero so that the 
flow-averaged concentration,  C, is lower than in the pre-equilibrated case). 
When C~RC = .04 and O~ca p -- 1, the extraction is about  60% higher than in the 
pre-equilibrated case. When the dimensionless capillary permeabili ty is low 
(O~ca p = .  15) this difference is reduced to slightly more than 30%. 

Of  particular experimental interest is the comparison between the di- 
mensionless capillary permeability calculated from the early extraction 
values (using a pre-equilibrated injectate with low red cell permeabili ty;  
aRC = .04) and the actual imposed dimensionless capillary permeability. If  
~ c a p  is  . 15 or less, the predicted value is within 4% of the actual value. The 
percent deviation increases to 27% when %ap is 1. 

H e m a t o c r i t  Value 

If red cells interfere with transcapillary tracer transport at one hematocri t  
value, then the effect  will be more pronounced at a higher hematocri t  value. 
We examined the effect  of  changing the hematocri t  value from zero to 60% 
while keeping the injectate pre-equilibrated and the red cell permeability 
low. The extraction and C(T) curves are only minimally affected by  changes 
in hematocri t  value at low dimensionless capillary permeabilities (C%a p < .3). 
The effect becomes more important  when O~ca p is increased to unity,  where 
the extraction is considerably reduced when the hematocrit  is increased from 
0 to 60%. The effects of  low red cell permeabili ty become most  evident at 
high hematocri t  values and high dimensionless capillary permeabilities where 
extraction may become almost completely dictated by hematocrit  value. 

EFFECT OF EXTRAVASCULAR CELLS 

Cellular Permeabi l i t y  

In Figure 11 we show the effects of  changing the extravascular cellular 
tracer permeability from .001 to 999 when 60% of  the extravascular volume 
is cellular, 3, = 3 and O~ca p = 1. When cellular permeability is very low the 
C(T) curve is essentially the same as one produced from a homogeneous ex- 
travascular volume with ~, = 1.2 (i.e. one where the cellular compartment  is 
completely impermeable). Deviations between these two curves would not  
be apparent until times much later than T = 7 and they probably could not  
be distinguished experimentally. Thus the extraction patterns for the ~c = 
.001 and a c  = 999 curves are as one would expect  by accounting for the 
volume effect  alone. The extraction pattern using an intermediate cellular 
permeabili ty (i.e. a C = 1) behaves initially like the c~ C = .001 curve but  
eventually its extraction actually exceeds the extraction of  the high cellular 
permeabili ty case. Such behavior cannot be due simply to a smaller volume 
of distribution and is at tr ibuted to non-uniform exchange in the extra- 
vascular region. 
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Cellular V o l u m e  Frac t ion  

The effects of  changing the cellular fraction in the extravascular region 
(i.e., ~') from 0 to 0.9 when the cells are only slightly permeable were also 
explored. As in Figure 11, the observed effects seen while T < 7, acap = 1 
and aC = .01, were almost entirely due to cellular volume exclusion and were 
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not  significantly distorted by back diffusion from the slightly permeable 
cellular region. The variation in the response when the extravascular cellular 
volume is changed for high dimensionless capillary permeability (i.e., OZca p = 

10) and a dimensionless cellular permeability of  uni ty  is more significant. In 
that case, each of the non-zero ~" curves crossed the ~" = 0 curve (i.e., homo- 
geneous extravascular regions) before crossing the reference curve, indicating 
that the response was not  simply due to volume-exclusion. 

DISPERSION OF THE REFERENCE CURVE 

Transcapillary tracer exchange will also be affected by the dispersivity of 
the input curve, independently of  capillary, red cell or intracellular effects. 
When a major fraction of  the tracer enters the capillary in a time interval 
shorter than the vascular mean transit time, then a high concentrat ion 
gradient exists across the capillary membrane and a large fraction of  the 
tracer moves into the interstitial space. On the other  hand, if the tracer is so 
dispersed by the time it reaches the capillary level that it takes many capil- 
lary transit times for the tracer to enter the capillary, then the relationship 
between the reference curve and the diffusible curve will be quite different 
(Figure 12). In this case the plasma-interstitial concentrat ion gradient is 
initially much smaller and the buildup of tracer in the extravascular region 
causes the extraction to diminish to a small percentage of  its initial value by 
the time the peak of the reference curve emerges from the capillary. 

Comparing the curves in Figure 12 can be misleading because the time 
scales are different. If the time scales were the same, extraction for the 
highly dispersed input curve would actually be higher than that of  the more 
pulse-like input curve. However, in practice investigators often use "integral 
extract ion"  as a characteristic of  capillary permeability. This is obtained by 
integrating the diffusing and reference curves from the appearance time to 
the peak time of  the reference curve; then inserting the integrated concen- 
trations, rather than the instantaneous concentrations, into Eq. 16. Clearly, 
from Figure 12 the integral extraction obtained when the reference curve is 
dispersed would be much smaller than that when the reference curve is more 
pulse-like. This is true even though the capillary permeability, red cell 
permeability and cellular permeability are the same in both cases. It is possi- 
ble then that significant underestimates of capillary permeability may result 
when the integral extraction method is used to analyze data where the 
dispersion of the reference curve is large in comparison with vascular capil- 
lary transit time. However, it is not  likely that this would pose a problem 
during the collection of  multiple-indicator data since the mean transit time 
of  the injected bolus is not  two orders of  magnitude larger than the intra- 
vascular transit time for a single representative capillary. 
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DISCUSSION 

Dimensionless Parameters 

Although the maximum number of independent dimensionless parameters 
associated with the system of Eqs. 1-6 is invariant, our particular choice of 
dimensionless parameters is not unique. Different dimensionless parameters 
can always be defined by multiplying or dividing one independent dimen- 
sionless parameter by another. For instance under certain circumstances a 
more convenient parameter than ~c or O~ca p may be defined by dividing the 
first by the second. The new parameter, PcSc/Pcapgcap does not depend on 
the flow and can be used as an independent parameter in place of either of 
the dimensionless parameters which were combined to define it. 

The red cell permeability-capillary permeability ratio is not simply the 
ratio c~RC/O~cap, since the surface areas and flows in the definitions ofo~RC and 
OZca p are not identical. When the red cells and plasma move through the capil- 
lary at the speed this ratio becomes: 

PRC Scap VRC aRC l Scap VRC aRC 
Pcap Vcap SRC ~ - fB V'cap SRC acap 

V'ca p is the physical volume of the capillary (to be distinguished from 
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Vca p which is the water volume of the capillary) and fB is the water fraction 
of  the blood: 

fB = fRC Hct + (1-Hct) fp. 

The ratio of  the membrane surface to the intracellular water volume 
(Scap/V*cap) is a constant for red cells. Goresky et al. (6) have calculated this 
to be 24,324 cm -1 for canine erythrocytes.  The surface to intracapillary 
volume ratio is also relatively constant. For  a cylindrical capillary, this is 
simply 2/Rcap where Rca p is the radius of  the capillary. If the capillary 
radius is assumed to be 4 micrometers and the hematocri t  is 40%, then: 

PRC aRC 
- -  - . 2 4  - -  

Pcap ~ 

The figures presented in the previous section with aRC = .04 and O~ca p = 1, 
for example, can alternately be associated with a tracer-capillary system 
where t~ca p = 1 and PRC/Pcap = .01. 

Pre-Equilibration Time 

The model  results indicate that  if a tracer is erroneously assumed to dis- 
tribute equally well in both  plasma and erythrocytes,  the resulting C(T) 
curves will be significantly different from the Sangren-Sheppard curve only 
w h e n  Otca p is larger than aRC. On the other  hand, for a tracer modeled as 
though i t  were totally excluded from red cells, significant deviations from 
the expected Sangren-Sheppard curve can only arise when o~RC is of  the same 
order of  magnitude or larger than Otcap. 

One might argue that a tracer, having a low ery throcyte  permeability 
which is deposited in the plasma phase of  a blood sample only minutes prior 
to injection, would cause only minor errors in multiple indicator capillary 
permeability estimates. However a short calculation will show that  this is 
not  necessarily true. The time constant associated with the resistance of  the 
e ry throcyte  membrane is: 

(SRc) 
T -- 1 / 0 + ~ )  PRC VRC " 

For a relatively impermeable substance such as thiourea (PRc = .7 x 10 -6 
cm/sec) at room temperature,  and a blood sample with a hematocri t  value 
of  40%, the time constant is approximately 40 seconds. After  three time 

cons t an t s  (i.e., 2 minutes in this example) the plasma and red cell concen- 
trations in the injectate would be very close to their equilibrium values. On 
the other  hand, for a mean capillary transit time of  1 second, a character- 
istic value of  aRC for thiourea would be: 

aRC = PRC (xSr~RC) ~- = (.7 x 10 -6) (24,324) (1) = .017 
*Rt2 
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Therefore it would not be unusual for an indicator, which has been in 
contact with red cells for only a short time and which has a low aRC, to be 
nearly pre-equilibrated at the capillary inlet. In fact under experimental 
conditions tracer molecules, which are injected only in the plasma phase but 
have time constants of the order of 1 second or less, may have sufficient 
time during their pre-capillary arterial transit to equilibrate with surrounding 
red cells before reaching the capillary bed. If capillary permeability is high 
and capillary transit is less than one second, however, these same cells would 
interfere with transcapillary transport, leading to an underestimate of capil- 
lary permeability using any of the standard multiple indicator techniques. 

Ex t rac t i on  

In selected examples we have shown how the flow-averaged concentration- 
time and extraction-time curves are influenced by variations in characteristic 
red cell and extravascular parameters. It is not possible to present C(T) 
curves for all or even most combinations of the parameters O~ca p , "y,/s, o~RC ,/3, 
~c, ~', or tr which may be relevant to experimental determinations of capillary 
permeability. However the qualitative effects of each parameter and the 
approximate range over which each influences the extraction can be esti- 
mated from the results presented here. 

When the dimensionless capillary permeability is low (i.e., ~cap ~< �9 15) and 
the injectate is pre-equilibrated, the extraction is only minimally affected if 
any of the remaining parameters are varied within physiological limits. The 
only significant deviations from the homogeneous solutions at low C%a p 
occur when the erythrocyte permeability is low and the initial plasma-red 
cell tracer distribution (/a) is far from the equilibrium value. When a higher 
percentage of tracer than the equilibrium value is injected in the plasma 
phase, the extraction will necessarily be higher than in the pre-equilibrated 
case because the plasma-interstitial concentration gradient is initially steeper. 
Similarly an initial excess of tracer in the red cells will lead to an extraction- 
time curve which falls below that of the pre-equilibrated curve. 

Generally, the effects of low red cell permeability become more notice- 
able as capillary permeability is increased. Equilibrating a blood sample with 
tracer before its introduction at the capillary inlet cannot compensate for 
the effects of low red cell permeability when capillary permeability is high. 
The extraction in the vicinity of the appearance time for a pre-equilibrated 
injectate must be lower when red cell permeability is low than when the 
tracer easily permeates the erythrocyte membrane (all other conditions re- 
maining unchanged). Therefore, the dimensionless capillary permeability 
estimated by either the Crone technique or by application of the more 
sophisticated Sangren-Sheppard model will be lower than the true dimen- 
sionless capillary permeability whenever red cells impede trans-endothelial 
tracer transport. If all the tracer is introduced in the plasma phase and tracer 
is assumed to be excluded from the red cells, when in fact exchange does 
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occur across the erythrocyte membrane, then the dimensionless capillary 
permeability will also be underestimated using standard multiple indicator 
techniques. Increasing the hematocrit  results in even larger underestimates 
of capillary permeability since a larger fraction of the total tracer mass must 
be transported in the relatively impermeable red cell phase. 

Inhomogeneities in the extravascular region also affect the extraction pat- 
tern. However, in the absence of red cell effects, the extraction in the vicin- 
ity of  the appearance time (i.e., T = 1) depends only on the dimensionless 
capillary permeability. From T -- 1 to the peak of  the reference curve, the 
interstitial concentration rises at a faster rate than the cellular concentration, 
impeding the extraction of additional tracer molecules. The time interval 
over which we can obtain accurate estimates of extraction could be signifi- 
cantly shortened if a relatively impermeable intracellular region exists. Ob- 
viously, as the ratio of  interstitial volume to cellular volume decreases this 
effect will become even more pronounced and could easily affect capillary 
permeability estimates, particularly when the integral extraction technique 
is employed. Use of the integral extraction technique to analyze data where 
the dispersion of the input function is large in comparison with the capillary 
vascular transit time, may also lead to a significant underestimate of  capillary 
permeability. 

CONCLUSIONS 

1. Initial extraction (i.e., extraction as T ~ 1) and integral extraction are 
both influenced by finite red cell permeability. Variations from the Sangren- 
Sheppard curves are most significant when the dimensionless capillary per- 
meability is high (O~ca p >~ l). Deviations from the Sangren-Sheppard extrac- 
tion caused by finite erythrocyte permeability, can be kept below 5% when 
capillary permeability is low (i.e., O~ca p ~< . 15) by pre-equilibrating the injec- 
tate with indicator prior to injection. 

2. The initial extraction value (or impulse area in the case of an impulse 
response) is unaffected by variations in extravascular cellular volume or per- 
meability. However integral extraction will always be lower than the Sangren- 
Sheppard value because of the additional barrier in the extravascular space. 
This barrier will cause particularly noticeable C(T)variations when O~ca p is 
greater than ~c. 

3. The initial extraction value is not  affected by the dispersion of the in- 
put  function. However, if the dispersion is very large the integral extraction 
will be considerably smaller than when the input function is pulse-like. 

APPENDIX 
Finite Difference Technique 

The finite difference scheme used to obtain approximate solutions to the 
system of partial differential equations (Eqs. 9-14) is briefly presented here. 
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The method is very similar to that at tr ibuted to J. L. Stephenson and used 
by Bassingthwaighte (1) to examine the effects of  axial diffusion and axial 
variations in capillary permeability on the basic Sangren-Sheppard model. 
This was chosen over more standard techniques for solving systems of  hyper- 
bolic and parabolic partial differential equations (16) because of  its greater 
accuracy in describing the response to a pulse-like input function. 

The cellular, interstitial, plasma and red cell regions were each divided 
along the capillary axis into an equal number  of  finite element compart- 
ments (IMAX). Tracer exchange was artificially split into two consecutive 
but independent  processes: 1) axial tracer movement  via convection in the 
vascular region, followed by 2) membrane limited radial tracer transport 
between the four concentric compartments  (red cell, plasma, interstitial and 
cellular) at each finite element position. Since axial tracer movement  is by 
convection alone, this can be accomplished by moving the tracer concentra- 
tion in each red cell and plasma elemental compar tment  forward to the next  
axial position in a time interval, Ax, which is equal to the distance traveled, 
Ax (i.e. L/IMAX) divided by the fluid velocity, u. In demensionless terms 
the increments are identical: 

Ax 1 
AX- - 

L I M A X  

At 1 
AT = ~ _  - t IMAX 

(A1) 

The extravascular compartments  are stationary. Hence tracer movement  by 
convection from one axial location (j - 1) to the next  (j) is described by the 
following set of  equations: 

C*RC,j(T+AT) = CRC,j_ 1 (T) 

C*p,j(T+AT) = Cp,j_ 1 (T) 

C*I,j(T+AT ) = CI,j(T ) 

C*C,j(T+AT ) = CC,j(T ) 

(A2) 

(A3) 

(A4) 

(AS) 

The asterisks indicate the concentrations in the artificial state assumed to 
exist after the tracer in the plasma and red cell compartments  have been 
convected to the next axial location but  before radial exchange occurs. After  
moving the contents of  each plasma and red cell compar tment  ahead to the 
next axial location, we allowed membrane-limited radial tracer transport  for 
a dimensionless time interval AT. The following stationary version of Eqs. 
9-12 can be written for each set of  concentric compartments.  
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dCRC,JdT (T)= A [ Cp,j(T) - CRC,j(T) ] (A6) 

d~PTJ (T)= B [CRc,j(T)- Cp,j(T)[ + C [CI,j(T) - Cp,j(T) } (A7) 

d ~ j  (T) = V [ CI,j(T) _ CC,j(T)] (A9) 

A = OtRC 

B =/3aRC 
C =(1 +/~) Otca p 

(1 + ~) Otca p 
D = 

7 ( 1  - ~') 
(1 +/3) ot C 

E -  ~ , ( 1  - ~') 

(1 +/3) a C 
F -  

We should point out that the parameters A, B, C, D, E, and F in Eqs. 
A6-A9 are identical for each compartment  and hence the equations are in- 
dependent  of the number of  compartments chosen. This is because the sur- 
face to volume ratio of each region in each compartment is identical to the 
surface to volume ratio of  the same region for the capillary as a whole. Al- 
though the equations are independent of  IMAX the solution to the equations 
(and therefore the accuracy of the finite difference method)  does depend on 
the number of compartments used. The solution to Eqs. A6-A9 with initial 
conditions (Eqs. A2-A5) at T = T* + AT can be found using Laplace trans- 
forms. The concentrations after radial exchange but before the next convec- 
tive step are: 

Cpj(T*+AT) = all C*p,j(T*) + a12 C*RC,j(T* ) + aI3C*I,j(T* ) + alaC*c,j(T* ) 

CRC,j(T*+AT) = a21 C*p,j(T*) + a22 C*R C,j(T*) + a23 C*I,j(T*) + a24 C*C,j(T*) (A 1 0) 

CI,j(T*+AT) = a31C*p,j(T*) + a32 C*RC,j(T*) + a33 C*I,j(T*) + aa4 C*C,j(T*) 

CC,j(T*+T) = a41 C*p,j(T*) + a42 C*RC,j(T*) + a43 C*I,j(T*) + a44 C*C,j(T*) 
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where: 

all = ADFAo + (S~ +A)*G(S1 )AI + (S2+A)G(S2) + (S3+A)G(S3)A3 
a12 = B[DFAo + G(SI)A1 + G(S2)A2 + G(S3)Aa] 
a13 = C [AFAo + ($1 +A)(S1 +F)A1 + (S2+A)(S2+F)A2 + (S3+A)(S3+F)A3] 
a14 = CE[AAo+(SI+A)Aa + (S2+A)A2 + (S3+A)A3] 
a21 = A[DFAo +G(S1)AI + G(S2)A2 + G(S3)A3] 
a22 = AB [DFAo/A + G(S1 )A1/($2 +A) + G(S2)A2/($2 +A) + G(S3)A3/($3 +A)] 
a23 = AC[FAo + (SI +F)A1 + (S2+F)A2 + (S3+F)A3] 
a24 = ACE[Ao +AI +A2 + A3] 
a31 = D[AFAo + (S~ +F)(S1 +A)A~ + (S2+F)(S2+A)A2 + (S3+F)(Sa+A)Aa] 
a32 = BD[FAo + (SI+F)A1 + (S2+F)A: + (S3+F)A3] 

| AFAo (S1 +A)(S~ +F) 2 A~ ($2 +A)(S2 +F) 2 A2 
a33 = CD[--- -~ ~ G(Sa ) ~ G(S2) 

[AAo (S,+A)(SI+F)A, (S2+A)(S2+F)A2 (S3+A)(S3+F)A3] 
a34 = CDE ~ +  G(Sa) + G(S2) I G(S3) 

a41 = FD[AAo + (S1 +A)A1 + (S2+A)A2 + (S3+A)A3] 
a42 = BDF[Ao + A1 + A2 + A3] 

[AAo (Sl +A)(S1 +F)AI ($2 +A)(S2 +F)A 2 ($3 +A)(S3+F)A3 1 
a43 = CDF[---~- + G(S1) + G(Sz) + G--~3) i 

AAo (S1 +A)A1 (S2 +A)A2 (S3 +A)A3 l 
a44=CDEFF-D-+ G(S1) + G(S2) + G--(~a) 1 

(S3 +A)(S3 +F) 2 A3 ] 

and: 

G(Sn)=Sn 2 + ( D + E + F ) S n + D F  

-1 
A o -  - -  

8 1 5 2 8 3  

e SlAT 

A 1  = 5 1 ( 5 1 _ S 2 ) ( 5 1 _ 8 3 )  

e S2AT 

A2 = $2($2-S~ )($2-$3) 

e S3AT 
A3 = Sa(Sa -S~ )(Sa-S2) 

$1, $2 and S 3 are the roots of  the cubic equation" 

S 3 + S 2 (A+B+C+D+E+F) + S[(A+B)(D+E+F) + C(A+E+F) + DF] 
+ (A+B)DF + (E+F)AC = 0 

(A11) 

These roots were computed using the International Mathematical and Statis- 
tical Libraries (IMSL) Library 1 Subroutine ZRPOLY. 
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Normally we used 40 to 80 axial compartments  for each region. All com- 
partments were initially set at zero concentration. The dimensionless concen- 
trations in the first plasma compar tment  and first red cell compar tment  were 
then set at: 

C*p,l(O ) = p (1 +/3) IMAX 

C*p,I(T:P0 ) = 0 

C*RC, I(O ) = (1-/~) IMAX 

C*RC, 1 (T:/:0) = 0 

to approximate an impulse input or were set at: 

C*p,I(T ) =/a (1+/3) a2Te -aT 

C*RC, I(T ) = ( 1 - / . t ) ~ )  a2Te -aT 

for the more general input function. The tracer was then allowed (mathe- 
matically) to diffuse radially in all compartments  for a dimensionless time 
interval, I/IMAX. The corresponding concentrations at the end of this 
period are found using Eq. A10. Next, the concentrat ion in each red cell 
and plasma compar tment  was shifted to the next axial location where 
radial transport between the four  phases was again initiated. This two-step 
(convection-diffusion) procedure was repeated until the concentration-time 
histories in the final compar tment  were sufficiently defined. 

c 
Cp,i, CRC,i 
Cpo, CRCo 

C 

E 
f 
F 
Hct 
IMAX 
L 
m 
mi 
P 
S 
t 

TABLE OF NOMENCLATURE 

tracer concentrat ion (g/ml) 
constants. (See equations prior to Eq. 7) 
input concentrations Cp(t,0), CRf(t,0) 

cFT 
dimensionless tracer c o n c e n t r a t i o n s , - -  

mi 

extraction, 1 -C(T ,  1 )/CR (T, 1) 
water fraction 
water flow (ml/sec) 
hematocri t  value 
number  of  finite element compartments  
capillary length (cm) 
mass of tracer which emerges at T = 1 at capillary outlet 
mass of tracer injected in blood at X = 0 
permeability (cm/sec) 
surface area (cm 2 ) 
time (sec) 
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T 
T 
H 

V 
V ' c a p  

x 

X 

mean capillary transit time, L/u 
dimensionless time, t/T 
plasma and erythrocyte velocity (cm/sec) 
water volume 
physical volume of capillary, g c a p / f  B 

axial position from capillary inlet (cm) 
dimensionless axial position, x/L 

B 
cap 
C 
I 
P 
R 
RC 

blood 
capillary 
cellular 
interstitial 
plasma 
reference 
erythrocyte 

Subscripts 

Superscript 
flow averaged value 

~Xcap 
Ot C 

OtRC 

3' 
a(t) 
AT 

Greek Symbols 
dimensionless capillary permeability, Pcap Scap/F 
dimensionless cellular permeability, PcSc/F 
dimensionless erythrocyte permeability, PRCSRc/FRc 
ratio of red cell to plasma water volumes, VRc/Vp 
ratio of extravascular to plasma water volume, (VI+Vc)/Vp 
Dirac impulse function 
Single compartment dimensionless transit time, I/IMAX 
ratio of cellular to total extravascular volume, Vc/(VI+Vc) 

dimensionless inlet tracer distribution, mi,p 
mi 

parameter which controls the dispersion of the input function. 
time constant associated with resistance of erythrocyte 
membrane 
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