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A method is presented for the use of a unit impulse response and responses to impulse 
pairs of variable separation in the calculation of the second-degree kernels of a quadratic 
system. A quadratic system may be built from simple linear terms of known dynamics 
and a multiplier. Computer simulation results on quadratic systems with building ele- 
ments of various time constants indicate reasonably that the larger time constant ~erm 
before multiplication dominates in the envelope of the off-diagonal kernel curves as 
these move perpendicular to and away from the main diagonal. The smMier time con- 
stant term before multiplication combines with the effect of the time constant after 
multiplication to dominate in the kernel curves in the direction of the second-degree 
impulse response, i.e., parallel to the main diagonal. Such types of insight may be helpful 
in recognizing essential aspects of (second-degree) kernels; they may be used in simplify- 
ing the model structure and, perhaps, add to the physical/physiological understanding 
of the underlying processes. 

INTRODUCTION 

T h e  un i t  impu l se  response  serves  v e r y  well in  c o m p l e t e l y  de sc r i b ing  t h e  be-  
h a v i o r  of a l inear  s y s t e m  (Lee, 1966). I t  can  be shown t h a t  t h e  responses  of a 
q u a d r a t i c  s y s t e m  to  a un i t  impu l se  and  to  impu l se  pa i r s  of v a r i a b l e  s e p a r a t i o n  
can  be  used  to  ca l cu l a t e  t he  s econd-deg ree  2 ke rne l s  of t h e  q u a d r a t i c  sy s t e m.  A 
q u a d r a t i c  sy s t em can  be bu i l t  w i th  s imple  l i nea r  ( f i rs t -degree)  e l e m e n t s  w i th  
k n o w n  d y n a m i c s  a n d  a m u l t i p l i e r  as shown in T a b l e  1. I n  th i s  p a p e r ,  we c l a r i fy  
t he  t h e o r e t i c a l  j u s t i f i ca t i on  for  t h e  d o u b l e  i m p u l s e  a p p r o a c h  in t h e  c a l c u l a t i o n  
of t h e  second-degree  ke rne l s  of a q u a d r a t i c  sys t em.  Also,  we examine ,  b y  m e a n s  
of c o m p u t e r  s imu la t ion ,  t h e  effects u p o n  t h e  s econd -deg ree  ke rne l s  d u e  to  v a r i a -  
t ions  in t he  t ime  c o n s t a n t s  of t h e  l i nea r  b u i l d i n g  e lements .  I n  th i s  w a y  we ga in  
ins igh t  in to  t he  f ac to r s  which  affect  t h e  s econd-deg ree  ke rne l s  of such  a sSs tem.  

* Present adress: Electrical Engineering Department, University of Technology, Eindhoven, 
The Netherlands. 

1 Submitted October 15, 1976. This work was supported by NI t t  Grant 5-T01-EY00076-4. 
2 In terms of differential equations of a system, order is equal to the highest derivative while 

degree is equal to the highest power of the terms. For example, 2 = ay is a first-degree second- 
order system; (4) 2 = ay is a second-degree first-order system. 
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INTERPRETATION OF KERNELS, I 131 

There have been very few attempts in applying physical interpretation to the 
kernels. Sandberg and Stark (1968) calculated the kernels of the pupillary system 
by means of a cross-correlation method developed by Lee and Schetzen (1961). 
They found that the first (hz) and second (h2) degree kernels are of opposite 
signs, and in drawing physical-physiological interpretations from their study, 
concluded that these represent the first terms of a saturation nonlinearity. The 
width of h2 off the main diagonal is less than 0.5 sec which indicates that there 
is no second-degree nonlinear interaction longer than this time. Baker (1963), 
using double pulse monocular and binocular stimulation of the pupillary system, 
concluded that the important nonlinearity occurs after the binocular summation 
point and is attributed to amplitude saturation. Watanabe and Stark (1975) 
proposed a second-degree heuristic model of the pupillary system which consists 
of the simultaneous input through two linear elements and the multiplication of 
their outputs. Sandberg and Stark introduced the use of double pulses of variable 
separation in the calculation of the kernels of the pupillary system. The approxi- 
mate kernels obtained in this manner do not correspond exactly to those found 
using the cross-correlation technique and they attempted interpretation of the 
differences. Marmarelis and Naka (1972) applied a two-input two-output cross- 
correlation method to a neuron chain in the catfish retina, and by inspecting 
the shapes of the kernels, attempted to derive some of the characteristics and 
topology of this system. Diskin, Boneh, and Golan (1975), using kernels to 
describe a civil engineering water runoff catchment system, discussed the physical 
constraints of the system as reflected in the kernel's structure. 

TABLE 1 
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The Frechet  (1910)-Volterra (1930) functional is a generalization of the power 
series expansion for an instantaneous function to tha t  for a noninstantaneous 
function. The first-degree noninstantaneous te rm is the well-known linear con- 
volution integral. The  generalization of the convolution technique to tha t  for a 
nonlinear, t ime-invariant,  and finite memory  system leads to the  Frechet -Vol ter ra  
representat ion : 

y( t )  = yo -t- y l ( t )  -t- y2(t) ~- y~(t) + . . .  
with 

y~(t) -- h ~ ( t ) x ( t -  7)d7, 

y~(t) = h~(~ ,  7 , ) x ( t  - 7~)z(t  - 7~)d7~d7~, 

y , ( t )  = h,(71, r2, m ) x ( t  -- 71)x( t  -- 72)x(t  -- m)dr~d72dT, ,  

where 

x( t )  is the system input, 
y( t )  is the system output ,  consisting of: y0, a constant  value not dependent  

on the input Yl; (t), the contribution due to the linear (first-degree) te rm;y2( t ) ,  
the contribution due to the  quadratic (second-degree) term, etc. ; 

hi(r1), h~(rl, 72) , . . .  are called the kernels of the first, second . . . .  , degree. 

I t  is assumed tha t  the system is at rest at t = 0. 
The different degree terms in the Frechet -Vol ter ra  representat ion are non- 

orthogonal in the sense tha t  if higher-degree terms are added in fitting the 
representation of the system, all the different degree kernels under  consideration 
are modified. On the other hand, the Wiener (1958) representation, which is an 
orthogonalized version of the Frechet -Vol ter ra  representation, contains kernels 
which are not changed when higher-degree kernels are added to the representat ion 
of the system. 

Table 1 shows as a preliminary survey examples of quadrat ic  dynamical  sys- 
tems of increasing complexity from case a to f. Besides the block diagram there 
are given the expressions for h2(7~, r2) and illustrations of some of the charac- 
teristics of h2. For  physical realizability h(71, 7~) = 0 for all T 1 ~ 0 an d /o r  r2 < 0. 

Case a shows the simplest second-degree element, i.e., a pure  squarer (multi- 
plier). In  this case, 

h~(7~, 73) = ~(7~)~(7~) ,  

where the ~'s are Dirac functions. This can easily be verified by  subst i tut ion 
in the expression for y2(t).  The graphical representat ion of h~ has only a Dirac 
function in the origin (71, 7~) = (0, 0). 

Case b shows a squarer followed by  linear dynamics ( H a m m e r s t e i n  model) .  
Again one can verify the expression 

h~(71, 72) = ho(71)~(71, 72), 
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and one notices tha t  for this configuration h~ has only contributions unequal  to 
zero for points at the "diagonal"  r l  = r2. 

Case c shows linear dynamics followed by  a squarer ( W i e n e r  model) .  In  this 
case, 

h2(r~, r~) = ha(T1)ha(r2).  

This kernel is characterized by  the properties 

= constant and - constant.  
h~(~, c~) h~(c~, ~2) 

The cases a, b, and c may  serve to recognize from an experimental ly determined 
kernel h2 whether the system under  s tudy has predominant ly  a part icular  simpli- 
fied structure. Note  tha t  there is symmet ry  around the diagonal r l  = r2, hence 

h2(~,,  r~) = h~(~2, ~1). 

In case d the outputs  of two (different) linear dynamic elements are multiplied, 
and 

h2(r~, T2) = ha(r~)hb(r2) .  

Case e is the same as case d but  with another  linear dynamic element following 
the multiplier, and the kernel is represented in the convolution form:  

/j h2(T1, T2) = ]$a(T1 - -  ~)hb(r2 - -  } ) h ~ ( } ) d } .  

Note  that ,  due to the symmet ry  in the integral for y2(t) with respect to x ( t  - ~1) 
and x ( r2  - t), the kernel may  be made symmetrical  by the procedure:  

h28ymm(~'t, T2) ---- l {h2asy  . . . .  (T1) T2) -~- h2asyram(T2 , T1)}* 

In  the following we will always consider symmetrical  kernels. Since f is a two- 
input  system it does not, strictly speaking, belong to this table. This case is 
given, however, in order to emphasize tha t  in this system the aysmmet ry  of 
h~(rl, r2) is essential if h~ ~ hb: 

y ( t )  = h~(r~, r2)x ,(g --  7:~)xb(t --  r2)dr~dr2. 

The h2(r~, r2) of cases d and e are more difficult than the previous cases to deter- 
mine and to recognize from experimental  data. I t  is for this reason tha t  in the 
following some simulation results are given in order to enhance the insight into 

x(,) _I h, I 
-I I Y'(') 

FIGURE 1 
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y,(t)-- b,(t) I 

FmunE 2 

the  characteristics of these kernels. The  discussion will concentrate  on the  rela- 
t ion between these kernels and the impulse and biimpulse responses of the system. 

L Determination of the First-Degree Kernels of a Linear System 
Using a Single Impulse 

Consider the response y~(t) due to input  x(t) through a system with a first- 
degree kernel hi(r)  assuming initial conditions at t = 0 to he zero (Fig. 1) : 

yl(t) = h~(.r)x(t-  r)d~-. (1) 

For  a signal consisting of a unit  impulse (Dirac function) x(t) = ~(t), the  
ou tpu t  is 

y~(t) = h~(~ )~ ( t -  ~)dr. 

A contribution occurs only when t = r. For  each t, instead of a convolution 
in dr, we get only one value for yl (t), namely hi (t). Hence we obtain Yl (t) = hi (t). 
This is a nice result because hl is now a function of t instead of t and r, and the 
single unit impulse response of the first-degree system will be identical to h~(t) 
(see Fsg. 2). 

11. Determination of the Second-Degree Kernels of a Purely 
Quadratic System by Means of Single Impulses 

and Impulse Pairs 

Consider the response y2(t) due to input  x(t) through a quadrat ic  system with 
second-degree kernel h2(rl, r2), assuming initial conditions at t = 0 to be zero 
(Fig. 3) : 

y2 ( t )  = h2(~-1, r 2 ) x ( t  - r l ) z ( t  - r ~ ) d r l d r 2 .  (2) 

x(t) ~J hz [ ~yz(t) 
FIGURE 3 
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Note  tha t  the response of a purely quadratic system conta ins  only second- 
degree kernel contributions. For  a signal consisting of two unit  impulses, x ( t )  

=~(t) -t- 8(t - 0), the output  is 

Yido~3~e(t) = h2(r~,  r2){c3(t -- r ~ ) ~ ( t  - -  r2) -1- ~( t  - -  0 - -  r ~ ) ~ ( t  - -  0 - -  r2) 

- t -6 ( t  - -  r l ) 6 ( t  - -  0 - -  r2) + 6( t  - -  0 - -  r l ) 6 ( t  - -  r 2 ) } d r l d r ~ .  (3) 

Since each of the four ~ products  in (3) can have a value only when the argu- 
ments of both  5 functions are zero, we can eliminate the terms rl  and r~ by  equat-  
ing these with their respective combination t and 0 terms within the ~ functions 
and then substi tuting into the rl, r~ terms in h2. We obtain 

Y aouble (t) = h2 (t, t) 
impulse 

-t- h2 (t - -  O, t - -  O) ( =  h2 (t, t) delayed over t ime interval 0) 

+ h2 (t,  t 0) 
/ (identical due to physical considerations). (4) 

+ h ~ ( t - -  0, t) J 

The  last two terms of (4) represent the nonlinear interaction within the system 
due to unit impulses at times t and t - 0 before the observation of the output  at 
t ime t. The impulses under consideration occur at times 0 and 0. Since for a 
quadratic system an impulse pair is indistinguishable from the same impulse pair 
presented in the reverse order, the values of the last two terms in (4) are identical 
and indistinguishable. This is a physical argument  in favor of making ha sym- 
metrical as indicated before. 

In order to obtain a complete set of second-degree kernels up to some T~ = r2 
= rlimit, we must  extract  from the single and double impulse experiments the 
values of h2(t ,  t) ,  h2 ( t  - -  O, t - 0),  h2( t ,  t - 0),  and h2( t  - O, t) for t up to Tli~it. 

A single impulse through the quadratic system will result in 

s Y single ( t )  = h2(T1 ,  T 2 ) ~ ( t  - -  T 1 ) ~ ( t  - -  T2)dTldT2 "~ h2(t, t).  ( 5 )  
impulse 

Hence the single impulse experiment gives us h2( t ,  t) .  Analogous to h i ( t )  for 
a single impulse through a first-degree system, h2(t, t) is the second-degree im- 
pulse response of the quadratic system. In the plot of h 2 ( r l ,  r2) vs rl  and r2, 
h~(t, t) is the set of kernel values on the main diagonal. 

We can perform a set of impulse-pair experiments using different values of 
impulse separation O, along with the single impulse result, to obtain the  off- 
diagonal kernels, where for each separation : 

h2 (t, t - -  O) -[- h2 (t - O, t) = Y double -- 
impulse 

h 2 ( t ,  t) - -  h ~ ( t  - -  0, t - -  0)  

from single impulse result, 

h 2 ( t , t -  0) = h 2 ( t -  0, t) = �89 -- h2(t,t) - - h z ( t - -  0, t -  0)}. (6) 
impulst~ 
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x(t) = y(t) 
I 

~ . e - ~  

FIGURE 4 

The off-diagonM kernels h2(t, t -  O) represent the system nonlinearity due to 
impulses separated by an interval 0. Looking at (6), we note tha t  h2(t, t -- O) 
represents one-half of the difference between the system response to an impulse 
pair and the second-degree single impulse response as well as the shifted second- 
degree single impulse response. We call these off-diagonal kernels the separation 
nonlinearities. 

I I I .  Direct Calculation of Second-Degree Kernels of a Quadratic 
System by Means of Impulse Pair Inpu t  

Consider a quadratic system with block diagram (Fig. 4; same as Table  1, 
case d). 

If  x(t) is a unit impulse, x(t) = 6(t), then 

From (5), 

= e - a t e - O r  = e - (a+O)t .  

h2 ( t ,  t) = y single (t) -- e -(=+t~)t. (7) 
impulse 

Consider an impulse pair stimulus, x (t) = 6 (t) + 6 (t - O) 

yd~ub~ ( t ) =  [ f ' e - ~ ( ~ ( t  - r ) + ~ ( t - - O - - r ) ) d r  1 

[/o ] �9 e-"~(6(t - r) + 6(t - 0 - r ) )dr  

= ( e - "  + e - ~ 1 7 6  �9 (e-~' + e -~ ( ' -~  

= e '-("+~)' + e -"~-~(~-~ + e - " " - ~  + e - ( " + ~ ) " - ~  (8) 
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Substi tut ing (7) and (8) into (6), we obtain:  

h:(t, t - 0) = �89 -" '-~(t-~ + e-"(~-~>-~9 

= + 

= �89 -"~ + e -~~ .e - ("+~)(t-~  (9) 

Consider the term e -("+~)(t-~ in (9). In  the direction parallel to the main 
diagonal and away from the origin, the off-diagonal curves have the same t ime 
constant  as the curve on the main diagonal (i.e., second-degree single impulse 
response) in which the smaller of the two t ime constants, 1/a and 1/B dominate.  
Consider the term �89 -"~ -F e -e~ in (9). The  values of a, B, and 0 affect the 
magnitude of the off-diagonal kernels which in turn  affect the t ime constant  
of the curves as these move perpendicular to and away from the main diagonal. 
For  example, if a > B (i.e., the t ime constant  1/fl > l / a ) ,  then the larger t ime 
constant  dominates in affecting the t ime constant  of the envelope of the curves as 
these move away from the main diagonal. 

IV .  Equivalence of Second-Degree Kernels as Obtained by Impulse 
Pairs and by Inspection of the Two-Dimensional Convolution 

Consider a quadratic system with block diagram as in Fig. 4. y(t) can be 
obtained as the product  of two convolution integrals. Tha t  is, 

f y(t) -- Jo e -" 'x ( t  - r )dr  e-O~x(t - r)dr,  

f 'f '  y(t) = 2 - " ' ~ e - ~ ' x ( t -  r i ) x ( t -  r~)dr~dr~. 
Jo Jo I_ / Y ~. 

It2~,T1, r2) 

Since the choice of r l  and r~. to be associated with a and/3 is arbi trary,  we should 
average over the two combinations of r l  and r2. Hence 

h2( r l ,  r2) = �89 -~7~ + e-"7~e-~l). (1O) 

In order to obtain a correspondence with the result of Section III ,  we introduce 
a representation which is diagonally equivalent to the rectangular  rl, r~ co- 

x(t) 

-I I 
~'--~.e-~ 

FIGURE 5 
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o~+~ t 
In r 

FIGURE 6 

ordinates so tha t  t and 0 are made  equivalent  to r l  and r l  - r~. I f  the length on 
the graph is considered relevant,  then  the former  are longer than  the respect ive 
la t ter  te rms by  a factor  of 2~. Since, however,  the two representat ions ac tual ly  
belong to separate  domains, we can let the length scale of the diagonal sys tem 
be 2} times greater  than  tha t  of the rectangular  system. Subst i tu t ing the equi- 
valent terms into (10), we obta in :  

h2(rl, r2) = h2(t, t - -  O) = �89176  -~t  + e -" t e  -~( t -~  

= �89 - ("+~)( t -~ (e - "e  + e-~~ (11) 

Equat ion  (11) is identical to (9). Note  t ha t  we could have  chosen r2 = t and 
r l  = t - 0 and the result  for h2(t - -  O, t) would have  been identical to (11), as 
would be expected, since the off-diagonal kernels are symmetr ic  abou t  the main  
diagonal. 

V. S ing le  I m p u l s e  Through  a Quadra t i c  S y s t e m  wh ich  i s  Fo l lowed  by a L a g  T e r m - -  

i n  Order to I l l u s t ra t e  the E f f ec t  of  the L a g  T e r m  

Consider the following quadrat ic  sys tem (Fig. 5; similar to Table  1, case e, 
Hammers t e in  model). I f  x( t )  = ~(t), then f rom (7), y ( t )  = e -("+~)~ 

/0 /0 z( t )  = e -~e - ( "+~) (~ -~ )dr  - e -("+~)t e("+~-~)tdr 

= e-("+~)t(e ("+~-~)t - 1 ) / ( a  + fl -- 7) 

= (e-~ t - -  e - ( " + ~ ) t ) / ( a  + fl - -  ~) .  (12) 

x(t) ~ ~  z ( t )  

FIGURE 7 
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The effect of the third lag term in smoothing the peak of the y(t) curve and 
moving the maximum z (t) value down the time scale is shown in Fig. 6. 

The lag term after the multiplication process is seen to increase the overall 
memory of the system. This is in agreement with Sandberg and Stark (1963), 
who showed that a linear system following a second-degree system smears out 
the second-degree kernels of the combined system along lines parallel to the 
main diagonal. 

VI. Calculation of Second-Degree Kernels of Quadratic Systems 
by Means of Computer Simulation 

A general representation of a purely quadratic system consists of two linear 
parallel elements whose outputs are multiplied and then act as input to a third 
linear element (Fig. 7). 

As can be seen from Section V, the expressions for the second-degree kernels 
for a general quadratic system would be similar to (9), but the third element 
does make the expressions more cumbersome. Nine computer simulations were 
performed using different combinations of values of A, B, and C. A tenth simu- 
lation was concerned with a quadratic system with a biphasic component (Fig. 8). 
A fourth-order Runge-Kutta integration routine (PDP8/I  computer, Tektronix 
611 Storagescope, and Tektronix 4601 hard copy unit) was used for the simul- 
taneous solution of the response of each element to its input. The solution of the 
single inpulse response of the model with selected time constants was stored in 
computer memory, and this was appropriately subtracted from the biimpulse 
response to give the second-degree kernel values for a particular separation be- 
tween impulses. The second-degree curves for each model are stagger plotted with 
the curves shifted down by an amount equal to the biimpulse separation (see 
Fig. 9). The exponential filters used in each of the building elements theoretically 
have infinite memory. Practically, however, the memory of the filters are limited 
by the resolution limit of the simulation display. 

The results indicate that the larger of the time constants before multiplication 
dominates the time constant of the envelope of the off-diagonal curves as the 
curves move away from the main diagonal. The tenth biphasie simulation demon- 
strates dramatically the dominance of the large time constant term (with nega- 
tive sign for the linear lag term) on the off-diagonal curves. The smaller of the 
time constants before multiplication combines with that of the lag term after 

I--- 

z(t) 

FIGURE 8 
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the multiplication process to dominate the time constant of the envelope of 
kernel curves as these move parallel to the main diagonal. 

DISCUSSION 

The impulse-pair simulations, using various time constants for the building 
elements of quadratic systems, give clear and easily interpretable results. We 
note that the off-diagonal kernels are concerned with the nonlinear interaction 
of the system due to impulses separated in time. The off-diagonal curves are in- 
fluenced mostly by the larger of the time constants which enter into the multipli- 
cation process. This is reasonable, since the larger time constant term determines 
the extent to which its effect from the first impulse extends pass the start of the 
second impulse and be multiplied by the smaller time constant term which con- 
eomitantly experiences the second impulse. The smaller time constant before 
multiplication determines the time constant of the envelope of the curves in the 
direction parallel to the main diagonal, i.e., the quadratic impulse response. This is 
reasonable since the smaller time constant term is multiplied against the larger 
time constant term until the smaller time constant term becomes negligible. 
Beyond that the second-degree impulse response is zero since the contribution 
due to the smaller time constant term becomes zero. 

The time constant after the multiplication process affects the kernels in the 
directional parallel to the main diagonal. This is in agreement with Sandberg 
and Stark, who showed that  a linear system following a second-degree system 
(e.g., Hammerstein model) smears out the second-degree kernels of the combined 
system along lines parallel to the main diagonal. Also, they showed that a linear 
system followed by a second-degree system (e.g., Wiener model) tends to smear 
the kernels both paralleI and perpendicular to the main diagonal. Therefore, as 
Sandberg and Stark have noted, a linear system preceding a nonlinear one will 
in general increase the nonlinear interaction time whereas a linear system follow- 
ing the nonlinear one will only increase the overall memory of the system. 

One of the drawbacks of the functional approach has been the computational 
difficulties in obtaining even up to the third-degree kernels. Watanabe and Stark 
introduced a method for the calculation of kernels using least squared error ap- 
proximation of each degree functional constructed from a linear combination of 
a small number of finite base functions such as the quasi-Laguerre functions 
(Laguerre functions were first put forward by Wiener). These were further modi- 
fled in an iterative technique to resemble the system dynamical properties. The 
calculation of the approximate third-degree kernels of the pupillary system, for 
500 data points, required only 30 sec on the CDC 6600 computer. 

The ability to construct models using simple building elements facilitates the 
process of generating and interpreting kernels and appears very profitable in 
recognizing essential aspects of the second-degree kernels (Alper and Poortvliet, 
1963; Eykhoff, 1974; Hung, 1977; Stark, 1968). In this way the model struc- 
ture may be simplified. Also it may add to the physical-physiological under- 
standing of the underlying process. Future extensions of this work might involve 
the simulation of quadratic kernels of more general systems. The present method 
may also be applied to the simulation of cubic kernels, using an impulse triple. 
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SUMMARY 

A theoretical basis has been presented for obtaining the second-degree kernels 
of a quadratic system by using unit  impulse ~nd impulse p~irs of variable separa- 
tion. The representation of the kernels obtained in this m~nner is seen to be 
equ iwlen t  to tha t  obtained by direct inspection of the kernels in the two-dimen- 
sion~l convolution of the s~me quadratic system. Computer  simulation results on 
quadratic systems with a third lag term show that,  in ~greement with the results 
derived for ~ simple quadratic system with no third lag term, the l~rger of the 
t ime constants before multiplication dominates the time constant  of the envelope 
of the off-diagonal curves as the curves move away from the main diagonal. The 
smaller of the time constants before multiplication combines with tha t  of the 
third element to dominate the time constant  of the envelope of kernel curves as 
these move parallel with the main diagonal. 
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