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Cardiac muscle is considered to consist o f  an intracellular domain and an extracellular 
or interstitial domain. Current passes from one domain to the other through the cell 
membrane. Electric potentials in interstitial space are shown to be associated with 
current sources proportional to the spatial gradient o f  the cellular transmembrane action 
potential, Om. Hence, give n the distribution of  ~) m throughout the myocardium, one can 
calculate the surface electrocardiogram and extracorporeal magnetocardiogram. The 
problem is considerably compficated when anisotropy is considered, l f  interstitial space is 
approximately isotropic, however, the sources are still proportional to V c ~  m . It is shown 
that the effects o f  intracellular anisotropy on the surface electrocardiogram may be 
relatively small. The inverse problem is discussed briefly, with consideration of  the 
relationship o f  the magnetocardiogram to the electrocardiogram. Finally, it is shown 
that if the heart can be considered to be bounded by a closed surface, then the value of  (Pm 
on this surface is uniquely related to the surface electrocardiogram to within a constant, 
provided there are no internal discontinuities. Such discontinuities, however, would be 
expected to occur in cases o f  ischemia and necrosis. 
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INTRODUCTION 

It has long been recognized that the heart electrically has properties of a 
syncytium. Furthermore, strips of heart muscle show cable-like properties when 
prepared to exhibit propagation either along the fiber axis (25), or transverse to it 
(4). The electrical properties differ in the two directions. Hence, cardiac muscle 
exhibits electrical anisotropy (15,18). This result is not unexpected since the 
heart cells are cylinders, and the cylinders are structurally arranged in parallel 
arrays in local regions, although the axis of fiber orientation does vary from one 
region of the heart to the other (23). 

Cable theory implies that the heart muscle is well characterized by an intra- 
cellular space and an extracellular space separated by a membrane (2). In 
contrast to the squid axon, which is part of a single cell, the cable properties of 
heart tissue extend over regions encompassing many cells. Hence, one is led to 
the picture of an intracellular domain and an extracellular domain, each of 
which may be pictured as effectively extending throughout the region of the 
muscle, independent of the cell boundaries. 

In this picture, then, the heart may be considered to consist of two syncytia: an 
intracellular domain and an extracellular domain. Current passes from one 
domain to the other through the cell membrane. The electrical properties of each 
domain depend on the passive electrical properties of the intracellular and 
extracellular fluids, electrical properties of the tight junctions between cells, and 
the geometrical arrangement of the cells. 

Starting from cable theory and generalizing it to two dimensions, Spach 
and Barr (21) and Spach and co-workers (22) were led to an "extracellular- 
intracellular" model of the heart's electrical activity in which extracellular 
potentials could be calculated from a knowledge of intracellular potentials. On 
the other hand, Miller and Geselowitz (13) developed a model starting from the 
concept of interpenetrating intracellular and extracellular domains (20). The two 
models are mathematically equivalent. They have been remarkably successful in 
accounting for the human electrocardiogram and magnetocardiogram for the 
normal and ischemic heart (7,13), as well as for potentials in a tissue bath 
preparation (22). The bisyncytial or bidomain model predicts that the bioelectric 
sources in the heart are proportional to the gradient of transmembrane potential. 
The present paper will develop the theory, with emphasis on the bisyncytial or 
bidomain model, and explore some of its consequences. 

MODEL 

Let oi and ~e be the effective conductivity of intracellular and extracellular 
(interstitial) space, respectively, where the intracellular and interstitial compart- 
ments are each taken to occupy the entire tissue space. The current density, J, 
is then 
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J = - a~VO~ - oeVOe , (1) 

where J is a macroscopic current density and 0~ and 4~e are macroscopic 
potentials in intracellular and interstitial (extracellular) space, respectively. Mac- 
roscopic quantities may be considered to be averages over small volumes of tissue 
including several cells. 

The transmembrane potential, Om, is 

~bm = q ~ i -  ~be �9 (2) 

Hence 

J = - O i ~ )  m - -  (O i Jr  Ge)~7~Pe . (3) 

Since the volume conductor problem for electrocardiography is a quasi-static 
one, the divergence of J must vanish. Therefore, 

V ' G i V ~ m  = - - V ' ( O ' i  + O e ) V O e  . (4) 

Both oi and Oe will be larger in the longitudinal direction than in the transverse 
direction, reflecting the anisotropic nature of the myocardium. Hence, both 
conductivities are represented by tensors. Initially we will ignore anisotropy. We 
will also assume that the heart is immersed in a medium of conductivity, 

a =  ai + oe = l l p i +  l /p  e = l lp  , (5) 

identical to the bulk conductivity of the heart. In other words, we will assume the 
cardiac sources to be in a homogeneous isotropic volume conductor. 

Formally we can represent the sources by impressed currents (5). If j i  is the 
impressed current density at a point, then the total current J is given by 

j = j i _  aVO . (6) 

Since the divergence of J vanishes, 

V ' o V ~  = V ' J i  . (7) 

In an unbounded medium, Eq. 7 has as a solution 

1 I V . j i  dv . (8) 
q~ - 4~ro r 
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With use of the vector identity, V.aA = aV. A + A. Va, and the divergence 
theorem, Eq. 8 may be written 

r - 4~ro 

where the observation point is outside the source region. 
In the case of cardiac muscle, j i  during depolarization in non-zero only in a 

thin sheet of thickness of the order of 1 mm. Therefore, if t t d S =  Jidv, Eq. 5 
becomes to a very good approximation 

q5 - 4fro # v  -dS - 4~ro / ,d~  , (10) 

where dft is the solid angle. If the double layer, ~, is uniform and closed, then it is 
evident from Eq. 10 that 0 = 0 outside the region containing sources. Hence, a 
uniform double layer implies that no potentials will be observed until activity 
reaches the boundary of the source region. 

A comparison of Eqs. 4 and 7 indicates that the current source distribution, J;, 
is given by 

j i  = _ oiV(am = _ _  V O m / P i  (11) 

and hence is proportional to the negative of the gradient of the transmembrane 
potential. If 0m is continuous, which would be true as long as excitation has not 
reached a boundary of the myocardium, then the solution of Eq. 4 is 

(0 e - -  Oi d~ m . (12) 
ai q- a e 

Outside the source region, ~m = 0 and q~e = 0. Therefore the bisyncytial model 
leads to the conclusion that 0e is zero until the sources reach the boundary, or in 
other words, until epicardial or endocardial breakthrough has occurred. This 
conclusion is independent of whether the sources may be considered double 
layers, or whether the double layer is uniform. Equation 9 then indicates that J, 
is everywhere zero, with current in intracellular space equal and opposite to 
current in extracellular space. 

This result can be cast in a somewhat more formal form as follows. 
From Eqs. 8, 9, and 1 1, 

1 I fl) 1 l   i 0mdv t,3, Oe --  4rc(oi  -}- ~  ) o i V O m "  V d v  - 4rc(oi-4_ ~  ) r 

0m {--'r)dv = l 0<--'r)dV + f 0m  f--'r)dV (14) 
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where SH is the boundary of the source region, namely the surface of the heart 
(epicardial and endocardial). ~m is discontinuous on this surface. 

72(+)  = -4~-6(0), (15) 

where 6 is the Dirac delta function in three dimensions. 
Therefore, from Eq. 13, 

( ~ e  m 
-1  

47r(oi + (~e) 
I Oi6mVl~l t "dSH, outside heart 

l r !  

(16) 

-1  I ~ oi 47r(a i + ae) ~ r I Oi+O e 0m , inside heart 

Equations 13 and 16 are valid in an unbounded bidomain volume conductor. 
If the volume conductor is bounded, then an additional term must ~ added. This 
term involves the potential, V, on the bounding surface So, which is found by 
solving the appropriate boundary value problem. From Eq. 13 the source distri- 
bution is given alternatively as a vector current dipole moment per unit .volume, 
- -  O i ~ 7 0 m  (see Eq. 11), or as a scalar current per unit volume, V. a:Tg,,,. 

As long as ai and oe do not depend on J, the problem is linear and superposition 
holds. The potential, 6, in the volume conductor, and its value, V, on the surface, 
can be expressed as a weighted sum or integral of the sources throughout the 
myocardium. As noted, the sources are related to the gradient of the trans- 
membrane action potential and may be expressed in either scalar or vector form. 
This point will be taken up again below when we discuss simulation of the 
electrocardiogram and anisotropy. 

MAGNETOCARDIOGRAM 

The magnetic field is given by 

'I I+) H =  ~ r ~ J x V  dv. t17/ 

From Eqs. 6 and 1 l, J is everywhere proportional to the gradient of a scalar. 
Hence V • J vanishes everywhere except where it is discontinuous on the surface 
of the heart, SH, or on the surface of the volume conductor, So. Following the 
derivation given by Geselowitz (6) for a bounded volume conductor, we then 
obtain 
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1 
H = T ~  ~ 

1 
4~r 

J j i x  v ( + ) d v + ~  I X dSo 

aidPmV X dS H + ~ a VV X dSo , 

(18) 

where V is the potential (electrocardiogram) on the surface of the volume 
conductor. Hence, there is no magnetic field until epicardial or endocardial 
breakthrough occurs. This result is also evident from the observation that J is 
zero until breakthrough. Note that Eq. 18 involves the solution of the boundary 
value problem for the electric potential (see also ref. 3). 

SIMULATIONS 

Miller and Geselowitz (13) have applied the bidomain model to the human 
electrocardiogram, and Geselowitz (7) has extended it to the human mag- 
netocardiogram. The computer model employed a realistic human torso of 
homogeneous resistivity delineated by 1,426 planes triangular elements (1). The 
heart was represented by a three-dimensional array of approximately 4,000 
points. An action potential, q~m, was assigned to each point on the basis of 
available electrophysiological evidence. 

The source term, -oiV4)m, was approximated using discrete differences. 
To simplify the calculations of surface potentials, the source distribution was 
coalesced to a discrete set of 23 lumped dipoles representing 23 regions of the 
heart. If Pm is the moment of the m th dipole, and V, is the potential at the centroid 
of the surface element n, then 

23 
Vn = ~ (ZT)nm'Pm , 

m-1 (19) 

where Zr  is a transfer coefficient matrix, each element of which is a vector. ZT 
represents, in essence, the solution to the boundary value problem for a 23 dipole 
source. 

A summary of the procedure used to calculate the electrocardiogram and 
magnetocardiogram at each instant of time is as follows: 

1. The simulated cellular action potential at each of the approximately 4,000 
points in the heart model is calculated using the assigned activation times and 
action potential data. 

2. The value of the gradient of the cellular action potential distribution is 
approximated at each point by discrete differences of the potentials at its six 
nearest neighbors (see Eq. 11). The result is a current dipole at each point in the 
model. 

3. The moments of the 23 dipoles are obtained by summing the moments of 
the dipoles at all of the points within the corresponding regions of the heart 
model. 
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4. Potentials on the surface of the torso are calculated using the set of 23 
dipoles to yield the electrocardiogram (see Eq. 19). 

5. The magnetic field intensity is calculated from Eq. 18. The torso conduc- 
tivity was taken to be 2 x 10 -3 ohm/cm; oi/~ was taken to 0.37. To simulate 
ischemia and infarction, abnormal action potentials are assigned to the injured 
region. The ischemic action potentials exhibit a shortening of duration, a 
decrease in the magnitude of the resulting potential, a decrease in the maximum 
depolarization potential, and an increase in depolarization rise time. Prolonged 
action potentials are also incorporated in the model. 

Note that calculation of the electrocardiogram requires a value for ~;/a 
whereas calculation of the magnetocardiogram requires knowledge of a~ and 
separately (see Eqs. 16 and 18). In their original development Miller and 
Geselowitz (13) used Eq. 1 and hence related volume conductor potentials to ~i 
with a scale factor o~/oe. In practice their simulations used q~m rather than ~i, 
which differs from (~m because of significant values of ~e in the myocardium. In 
essence, therefore, they were using the formulation presented here in which the 
sources are proportional to ai~m and the appropriate scale factor is ~/~. Surface 
electrocardiograms of the correct amplitude were obtained when this ratio was 
assigned a value of 0.37. 

Schmitt (19) has reported an average torso resistivity of a = 2 • 10- 3 ohm/cm. 
This value was used in the simulation of the magnetocardiogram and gave 
magnetocardiographic amplitudes in close agreement with those observed exper- 
imentally. From these values of ~/~ and o, one can calculate oi and ~. The results 
are G~ = 0.74 x 10 -3 mho/cm, Oe = 1.26 • 10 -3 mho/cm, corresponding to 
resistivities of p~ -- 1350 ohm-cm and Pe = 794 ohm-cm. 

ANISOTROPY 

Both the intracellular domain and the extracellular domain exhibit anisot- 
ropy. The principal axes are determined by the fiber orientation and may be 
expected to be the same for both domains. A general solution to Eq. 4, for the 
anisotropic case is not available. If, however, we assume extraceUular space to be 
uniform and isotropic, then this equation is Poisson's equation for which solu- 
tions can be written. See Eq. 13, which shows two alternative expressions for the 
potential in isotropic extracellular space outside the source region. 

If intracellular space is anisotropic, then o; or pi must be treated as a tensor. A 
practical difficulty arises in that we do not have good data concerning these 
tensors. Cable theory enables us to replace resistivity by conduction velocity, 0, a 
more readily measured characteristic of the tissue. 

From cable theory, 

(Pit + Pe,) 02 = (pit+ Pel) ~ = K , (20) 
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where the subscripts I and t designate the longitudinal and transverse directions, 
respectively, and K is a constant if membrane properties are independent of the 
direction of propagation. Tasaki and Hagiwara (24) showed that K could be 
related to the time constant, rf, of the foot of the action potential as follows: 

11rf = 2KvCmla , (21) 

where Cm is the membrane capacitance per unit area, a is the fiber radius, and v is 
the volume fraction of fibers (9). 

Let 

o~ = (1 +pe/Pi) (22) 

Then the two expressions for the extracellular potentials, taking extracellular 
space to be isotropic and homogeneous, but considering intracellular space to be 
anisotropic, are 

, lion, q~e-  47roK 

O2(Om O2~m O2dpm 1 
~ Y  2 +  ay 2 -1+ 02~ ~T-Z2 ]--r dv (23) 

1 1{~176 00m0 (+t 00m0 f--'r)l 00m0 ,24, 4 e -  4rroK Ox Ox + 0---7-O~ + 02a/ Oz Oz 

where the z axis is taken to coincide with the longitudinal axes of the fibers. 
The parameter o~ still poses a problem since its value depends on the resistivi- 

ties. If oi > > Pe then oe will approach unity. Alternatively, if o~, = o# then oe can 
be taken outside the equation, where it will effectively modify the constant K. 
A two-dimensional version of Eq. 23 with o~t = oct = 1 was used by Spach et al. 
(22) in studies of a tissue bath preparation. 

Note that for pi > > 0e, 

PiA~ = Pu 02 (25)  

The data of Clerc (4) provide some experimental justification for the validity of 
this approximation. 

In the situation where extracellular space is anisotropic but o~, = o~, then 
Eq. 12 is still valid and J will be zero until breakthrough occurs (14). Conversely, 
if this condition does not hold, J will not be zero prior to breakthrough, and 
electric and magnetic fields may be expected to exist outside the source region. 

Equations 23 and 24 are derived for an unbounded uniform volume conduc- 
tor. If the conductor is bounded, and if there are internal inhomogeneities, then 
the appropriate boundary value problem must be solved to obtain the potential. 
Because of linearity, the potential at any point is the superposition of the contri- 
butions of the individual source elements. Let the weighting function for the 
scalar source be Z. Then 
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1 Z[ [ ~ - x  2 102~m 02dpm 024)m ]d F 

1 f[e~,02(.O0 m OZ OOm OZ) O*m OZ]d v (27) 
Oe = -  ~ Ox Ox + Oy Oy + ~0~ Oz Oz 

where - VZ is the transfer impedance. Note that Z and VZ are functions of both 
the source location and the observation point. In Eq. 19 ZT has been used to 
indicate the transfer impedance for observation points on the surface of the 
bounded volume conductor. 

INVERSE PROBLEM 

Equation 16 gives the expression for the potential outside the heart. This 
expression is of the form of a double layer on the surface of the heart. When 
considering ventricular activity, it would appear reasonable to represent the 
ventricles such that the endocardial surface is continuous with the epicardial 
surface, forming a closed surface that encloses the ventricular myocardium. 

If we can treat SH as a closed surface, then the double layer, and hence ~m, is 
uniquely determined on this surface to within a constant (see Appendix B). Note 
that the sources inside the myocardium are not determined uniquely. Further- 
more, it does not follow that a solution for q~m can be found which is well behaved 
in the presence of noise. One might expect from the geometry, i.e., the arrange- 
ment of the endocardial surface relative to the epicardial surface, that there 
might be severe practical difficulties. Nonetheless, the solution appears to be 
unique for a given surface, SH. 

The magnetic field also depends on ~m on S H (see Eq. 18). Hence, it appears 
that, ideally, the magnetic field can be determined from the electrocardiogram, 
provided the shape of the heart is known (17). In the case of injury to heart 
muscle, however, SH is no longer the only surface where V'oiV~m is discon- 
tinuous. For example, in a necrotic region the cells are electrically inactive. 
Therefore, the boundary of this region is an internal surface that must be 
considered in calculating the integrals of Eqs. 16 and 18 and "breakthrough" 
occurs when activation reaches this boundary. The inverse solution on Sh, is no 
longer unique. 

Injured cells generally have a resting potential different from normal cells. 
Therefore, it appears reasonable to model l~7~m as discontinuous across the 
boundary separating normal cells from injured cells during parts of the cardiac 
cycle (13). If such a discontinuity is present, then additional terms would appear 
in the equation for V or H involving ~r on all surfaces where ~m changed 
abruptly by 60m. 

Either necrosis or injury gives rise to sources in addition to the double layer on 
SH. Hence this double layer is no longer unique, and the above argument relating 
the magnetocardiogram to the surface electrocardiogram collapses. 
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DISCUSSION 

Schmitt (20) introduced the concept of "interpenetrating domains" based 
on a consideration of the electrical properties of a region containing many cells. 
He proposed that each point in the muscle be represented by an intracellular 
resistivity "representing cytoplasmic impedance of a neighborhood of like cells 
on a volume normalized basis," and by a similar extracellular resistivity. The 
two would be connected at each point by a distributed nonlinear admittivity 
simulating active cell membrane. 

If the current voltage relations of the membrane are incorporated in the 
model, then the model would, in principle, predict intracellular and extracellular 
currents and intracellular, extracellular, and transmembrane potentials. Appar- 
ently this approach has yet to be implemented in three dimensions. Instead, we 
have chosen to incorporate into the model a best estimate of the spatial and 
temporal distribution of transmembrane potential, i.e., cellular action potentials. 
The resulting model is, of course, a much simpler one. 

The equations of the bidomain model are a three-dimensional version of the 
cable equations. Spach and co-workers approached the heart model from the 
standpoint of cable theory. The two approaches lead to mathematically 
equivalent expressions relating extracellular potentials to the transmembrane 
potential. The source term can be represented alternatively as being proportional 
to ~71~ m (a vector) or to V- "~7~m (a scalar). Numerical considerations may indicate 
which approach is more feasible to implement. 

Currents, potentials, and conductivities appearing in the model may be con- 
sidered averages over a region containing several cells. Clearly, potentials of 
interest vary over distances greater than the dimensions of a single cell during 
ventricular repolarization when gradients of potentials are distributed through- 
out the heart. Intracellular potentials vary over much shorter distances during 
activation, however, and spatial extent of these distributions should be consid- 
ered in more detail. The width of the activation region can be estimated assuming 
a conduction velocity of 48 cm/sec along the fiber axis and 16 cm/sec normal to 
the axis, and an upstroke rise time of approximately 2 msec (4). This results in 
estimated wave widths of 960/~m and 320/~m, respectively, which are greater 
than the corresponding dimensions of a typical myocardial cell (on the order of 
100/zm in length and 15/zm in diameter). 

In principle, the model could incorporate time-varying conductivities. Data 
currently available indicate that although some variation does occur during a 
cardiac cycle, to a reasonable approximation the assumption of constant values 
for ~; and oe may be valid (2,4,11). In addition to possible conductivity changes 
during each cardiac cycle, it is also necessary to consider changes in ~; and Oe that 
may occur over longer periods of time. Changes in the extracellular potentials 
measured during pathologic cardiac states can occur both through changes in the 
spatial distribution of in.tracellular potentials (i.e., changes in activation 
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sequence or cellular action potential shapes) and through changes in the bulk 
intracellular conductivity, resulting, for example, from changes in cell shape or 
changes in resistive cell-to-cell connections. In accordance with this view, 
Lepeschkin (11) has suggested that an increase in bulk intracellular conductivity 
corresponding to cell swelling is a major factor leading to the large extracellular 
potentials often observed during myocardial hypertrophy. Through such 
increases in bulk intracellular conductivity, extracellular potentials could 
increase significantly, independent of increases in the total muscle volume or the 
instantaneous area of the activation wave front. Similarly, the experimental 
studies of Holland and Arnsdorf (10) indicate the influence of decreases in bulk 
intracellular conductivity, related to cell dissociation, on the evolution of the ST 
segment deviations in chronic myocardial ischemia. Changes in bulk intra- 
cellular conductivityduring certain pathologic cardiac states may thus play an 
important role in the generation of extracellular potentials, and further studies in 
this area should contribute to the understanding of the "abnormal" 
electrocardiogram. 

The basic structure of the bidomain model readily incorporates both intra- 
cellular and extracellular anisotropy. When anisotropy is included, however, 
solutions of the equations become a much more formidable task. In their simula- 
tion of the electrocardiogram and magnetocardiogram, Geselowitz and Miller 
assumed that the torso was a homogeneous isotropic bounded volume conduc- 
tor. In their simulation of a tissue bath preparation, Spach and co-workers 
assumed that intracellular space was anisotropic, but that extracellular space 
was homogeneous, isotropic, and unbounded; good agreement could not be 
obtained with isotropic intracellular conductivities. In all these cases simulated 
potentials agreed well with those measured experimentally. 

Appendix A provides a clue as to why ignoring extracellular anisotropy might 
be reasonable for the body surface electrocardiogram (16). Equation 24 provides 
an indication of why intracellular anisotropy may not be an important considera- 
tion either. The anisotropy in the source term appears as an anisotropy in o~ and 
in conduction velocity. The velocity of propagation in the ventricles is, to a good 
approximation, uniform. Hence 0t = 0t which is equivalent to considering intra- 
cellular space to be isotropic provided the effect of c~ is not important. The 
condition of uniform conduction velocity is probably not valid in the case of 
ectopic beats or hypertropby. Hence, in these cases intracellular anisotropy may 
be an important factor in explaining the observed electrocardiogram. 

In a tissue bath preparation, intracellular anisotropy cannot be neglected. 
Spach et al. (22) compared experimental potentials with those calculated from 
Eq. 23, which assumes extracellular conductivity is isotropic. In a computer 
model study Geselowitz and co-workers (8) incorporated extracellular anisot- 
ropy. They showed that Eq. 23 was a reasonable approximation because of the 
low conductivity of the perfusate. Incorporation of extracellular anisotropy 
explained some of the discrepancies observed in the earlier study. 
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SUMMARY 

The myocardium can be viewed as a three-dimensional array of electrically 
interconnected cells intermeshed with an interstitial conducting medium. Path- 
ways for currents exist in the intracellular network through contacts between 
adjacent cells, in the extracellular network around cells, and through the cell 
membranes from one network to the other. The mathematical description of 
these currents forms the basis of the bidomain model in which each domain is 
viewed as a syncytium. 

The model predicts that the source of the extracellular potential is a volume 
distribution of current dipole moment equal to - aiVCm. Intracellular anisotropy 
cannot be ignored for potentials in or near the heart; the tensor nature of o must 
then be considered. From the observed cable-like properties of cardiac muscle, 
one can replace the tensor ~i by a tensor o~02, where o~ depends on the ratio of 
extracellular to intracellular resistivity. If o~ is close to unity, then the anisotropy 
enters in terms of the conduction velocity, 0. Spach and co-workers have shown 
good agreement between calculated and measured potentials in a tissue bath 
preparation with consideration of the variation of 0 with direction. 

Calculated electrocardiograms and magnetocardiograms for the normal heart 
as well as for simulated ischemia and infarction, assuming both extracellular 
and intracellular space to be isotropic, agree well with recordings obtained on 
human subjects. Arguments are presented to show why it is plausible to ignore 
anisotropy in this case. 

The fact that the sources are proportional to the gradient of a scalar has 
certain mathematical consequences. For example, the volume distribution of 
current source moment can be replaced by a source distribution on the heart 
surface. In the case of injury, however, boundaries of necrotic regions, or where 
there is a discontinuity in resting potential, must also be considered, thus sub- 
stantially reducing any possible simplifications arising from considering the 
heart surfaces rather than the volume of the myocardium. 

APPENDIX A 

Consider an anisotropic-conducting sphere of radius, R, immersed in a con- 
ducting medium of conductivity, o0. Let the conductivity of the sphere be ox, Gy, 
o~ parallel to the x, y, and z axes, respectively. We are interested in determining 
the potential, 1,1, at a point outside the sphere arising from a current dipole of 
moment P within the sphere. 

Let the center of the anisotropic sphere be the origin of the coordinate 
system and (r, 0, r be the spherical coordinates of the observation point. From 
considerations of linearity, 

V = P.Z T , (A-l) 
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where Zr  is the transfer coefficient relating the potential to the source dipole 
moment and where the potential at very large distances from the sphere has been 
taken to be zero. From reciprocity or lead field theory (12,16), ZT is equal to the 
electric field at the point in the sphere where the dipole is located that results from 
a unit current injected at the observation point (r, 0, 0). 

For simplicity we will consider the case where r > > R. Consider, for a 
moment, that all space is filled with a conductor of conductivity, ~0, and that unit 
current is injected at (r, 0, 4~). Then the electric field, E0, in the region r<_R is 
approximately uniform, and given by 

1 r r 

E o -  4 "Trao r2 r Eo r (A-2) 

where r is the radius vector from the origin to the observation point. 
We seek the electric field, E, inside the anisotropic sphere. The problem is the 

classical one of a sphere immersed in a uniform field, except that the sphere is 
anisotropic. The result is 

E - 3 [i sinO cos, sinO sin, cosO ] 
47rr 2 Ox+2Oo + j %+2ao + k oz+2~o~) " (A-3) 

From reciprocity, E is equal to ZT. Therefore, from Eq. A-l, 

V _  3 [ PxsinOcos4) PysinOsinda PzcosO ] 
47rr 2 o x + 2o- o + oy + 2o0 + vy + 2o-~ " (A-4) 

Equation A-4 is just the form of the potential of a current dipole except that each 
component of the dipole has a different weighting. Note that the lead field is 
uniform inside the sphere. Therefore, Eq. A-4 is valid for any source dipole 
location within the sphere. 

Let us consider that the sphere represents a region of myocardium where the z 
axis corresponds to the fiber axis. Then ~rx = Oy = ot represents the conductivity 
perpendicular to the fiber axis (transverse direction), while az = ~rz represents the 
conductivity along the fiber axis (longitudinal direction). We can define an 
effective dipole moment, P, such that 

V - 1 (Px sin0 cosq~ + Py sin0 sinq~ + Pz cos0) (A-5) 
4vrao r2 

It then follows that 

Pz _ Pz _ crt +2~r0 Pz 
Px Py or+ 2o0 Px 

(A-6) 
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Since a~> at the anisotropy will tend to enhance dipoles oriented in the trans- 
verse direction with respect to dipoles oriented in the longitudinal direction. 
Alternatively we can consider that the dipole is immersed in a homogeneous 
conductor with an effective conductivity a0. Then 

^ az+2o0  
at - 3 (A-7) 

^ o l + 2 a 0  
crt - 3 (A-8) 

for transverse and longitudinal dipoles, respectively. 
Data for tissue conductivity in the literature are not consistent. If we take the 

resistivity values reported by Rush et al. (18), then pt = 563 ohm cm, p~ = 252 
^ ^ 

ohm cm, po = 463 ohm cm. Using these data we obtain Pt/Pt = 0.74 Pz/Pt from 
Eq. A-6. 

The above analysis does not attempt to consider the geometry of the heart or 
the pattern of fiber orientation, which varies from region to region. Nonetheless 
it should provide insight into the effect of anisotropy of the cardiac muscle on 
external fields such as would exist at the skin. It would be much less useful for 
analyzing the effect on potentials at epicardial or myocardial plunge electrodes. 

If we accept the value 0.74 as a reasonable result, then it is possible to conclude 
that ignoring the anisotropy may not seriously distort calculations of skin poten- 
tials, given the other uncertainties in attempts to model the electrocardiogram. 
For example, the result can be interpreted to indicate that the effective moments 
of transverse and longitudinal dipoles differ by only 15 % from a mean effective 
value. Furthermore, the variation of fiber direction in the heart may be expected 
to bring the effective values closer together. 

A P P E N D I X  B 

Consider that on a closed surface, SH, there are two nonuniform double layer 
distributions, ~1 and t~2, each of which produces an identical potential distribu- 
tion outside the double layer. Consider a double layer ~1 - ~2 on SH. The 
potential everywhere outside the double layer #j - t~2 is zero, and there are no 
sources inside the double layer. The double layer introduces a discontinuity in 
the normal derivative of the potential. Since the potential is everywhere zero 
outside the double layer, its normal derivative vanishes just outside the double 
layer. The double layer /J,  1 - -  / . t  2 introduces no discontinuity in the normal 
derivative. Hence, it must be zero just inside the double layer. From the unique- 
ness theorem, the potential everywhere inside the closed surface is therefore a 
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constant. Hence, at every point on the closed surface there is a constant disconti- 
nuity in potential. This discontinuity of constant amplitude must be associated 
with a uniform double layer. Hence ~ and ~2 differ by a constant, and hence ~m 
on Sn is unique to within a constant. 

N O M E N C L A T U R E  

r 

E 
H 
J 
j i  

K 
P 
SH, So 
V 

V 

Z 
Z r  

Og 

6 
0/, 0t 

# 

Pi, Pe, 

P 

(Yi, Oe, 
(7 

0i, 0~, 

0 

= radius of cardiac fibers 
= membrane capacitance per unit area 
= electric field 
= magnetic field 
= current density 
= impressed current density 
= constant from cable theory. See Eqs. (20) and (21) 
-- current dipole moment  
= surface of heart and body, respectively 
= volume fraction of cardiac fibers 
= electric potential on body surface, or in volume conductor 

(Appendix A) 
= transfer coefficient relating potential to scalar current source 
= transfer coefficient relating potential to source current dipole 

moment.  
= parameter defined in Eq. (22) 
= Dirac delta (impulse) function 
= velocity of propagation of action potential in longitudinal, 

transverse directions 
= moment  of double layer 
= resistivity of intracellular, interstitial space, bulk resistivity. 

Additional subscripts l,t denote parallel or transverse to fiber 
axis. 

= conductivity of intracellular, interstitial space, bulk conductivity. 
Additional subscripts l,t denote parallel or transverse to fiber 

axis. 
= time constant of foot of action potential 
= electric potential in intracellular, extracellular space, volume 

conductor 
= transmembrane potential 
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