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M A T H E M A T I C A L  A S P E C T S  OF C O N C E P T  A N A L Y S I S  
S. O. K u z n e t s o v  UDC 519.716 

1. I n t r o d u c t i o n  

Various applied studies use binary matrices for representing objects from a domain. A row of such a 
matrix is interpreted as an object and a column is interpreted as a binary at tr ibute.  An object possesses 
an at tr ibute if the corresponding element is 1 and does not possess it if the corresponding matrix element 
is 0. The more general case, where attr ibutes have more than two values, can be reduced to the binary 
one. The following problem arises often for these "object - a t t r ibute" matrices: given the set of objects B, 
determine the set of all at t r ibutes A that  hold for all objects from B and furthermore,  determine the set C 
of all objects that  possess the whole set of at tr ibutes A. In terms of binary matrices this means that  the 
maximal identity submatrix of the data  matr ix is sought, i.e., an identi ty submatrix such that  no supermatrix 
of it is an identity one. This submatrix may be associated with a concept, where the corresponding set of 
objects is the extent and the set of attributes is the intent of the concept. This model is in accordance with 
the traditional understanding of the notion of concept, which dates back at least to the Logique de Port-Royal 
of the XVII century. 

'_Po introduce more precise definitions we will use Galois connections [8]. In accordance with the "formal 
concept analysis," we use notations from [80]. To this end, we denote by G the set of objects (from Gegenstand, 

object (German)) and by M the set of at tr ibutes (from Merkmahi,  a t t r ibute  (German)).  By I we denote a 

relation defined on G • M: for g E G, m E M, g'Im holds iff the object g possesses the property m (i.e., the 
element of the corresponding matr ix which is in the row g and the column m is a unit  one). In accordance 

with [80], the triple K = (G, M, I) is called a contezt. 

Def in i t i on  1.1. Let K = (G, M, I) be a context and A _C G, t3 C M be arbi t rary subsets. Then the 
Galois connections s : G ~ M and t : M ~ G are given in the following way: 

s(A) ~- {m e MIgIm for all g E A}, 

t(B) = {g ~ GIgIM for all m ~ t3}. 

Following [80], we will also write A t and B t instead of s(A) and t (B) or just A' and B'  when the relation 

I is fixed. When it does not lead to confusion, we will also use the notation A" as an abbreviation for both 
t(s(A)) and (s(t(A)) (depending on whether A C_ M or A C_ G). 

The mappings A ~ A' and B ~ B', which define Galois connections over the sets 7~(G) and 79(M) 

(P(X)  denotes the power set of X),  possess the following properties (see [81, for example): 

(1) A~ C_ A2 implies that  A t __D A; for arbitrary A~, A2 _C G, 

(1') Bt C_ B2 implies that  B~ _D B~ for arbitrary B~, B2 C_ M, 
(2) .4 C_ A" and A' = A'" hold for arbitrary A C G, 

(2') B C_ B" and B' = B "  hold for arbitrary B C_ M: 

It is easy to see that  the operation " (the double application of the operation ', i.e., s o t or t o s) is a 
closure operation, since the following properties hold for all X, Y C_ G or X, Y C_ ~/: 

- extension: X C_ X",  
- idempotency: X" = X " '  and 
- isotonicity: X C_ Y implies X" C_ Y". 
Assume that  D is a binary matrix that  corresponds to the context K = (G, M, [). It is easy to show that 

an identity submatrix of D. maximal by inclusion, corresponds to a pair (A, B), where A _C G, B C M, A t = 

17, B' = A. In the sequel, we will speak about pairs of this form in terms of the formal concept analysis [80]. 
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Fig. 1. Bipartite graph corresponding to the context given in Table 1. 

Defini t ion 1.2 ([80]). Let K = (G, M, I) be a context. A pair (A, B) is a concept of the context K iff 
A C_ G, B _c M and A ~ = B,  B ~ = A. A and B are called the eztent and the intent of the concept (A,B),  
respectively. 

Contexts and their concepts can also be easily described in graph-theoretic language. Let K = (G, M, I) 
be a context. Consider a bipartite graph Z = (I/1 O V2, E), ~J C_ 1/1 x �89 The vertices of the first part 
are in one-to-one correspondence with objects from G and the vertices of the second part are in one-to-one 
correspondence with attributes from M. For arbitrary vertices vi E VI and v i E V2, (vi, vj) E E iff the object 
from G that corresponds to the vertex vi possesses the attribute from M that corresponds to the vertex vj. 

The concepts of the context K correspond to complete bipartite subgraphs of the graph Z maximal with 
respect to inclusion, i.e., to graphs of the form (W1U W2, W1 x W2), where all vertices of such a subgraph that 
belong to a common part are adjacent to all vertices of the other part, and no supergraph of this subgraph i~ 
a complete bipartite subgraph of the graph Z. 

Example .  Consider the context (G, M, [) represented by Table 1 taken from [9]. 

Table 1 

G \ M [ [  11  2 [ 3 I 4 I 5 I 6 [  7 [ 
a 0 1 1 0 0 1 0 
b 1 1 1 0 0 0 1 
c 1 1 0 0 1 0 1 
d 1 0 0 1 1 0 0 
e I 0 0 1 0 0 0 
f 0 0 1 0 0 0 0 

This context can be represented by the bipartite graph shown in Fig. 1. By way of example, the complete 
bipartite subgraphs ({a, b} U {2, 3}, {a, b} x {2, 3}), ({d, e} U {1, 4}, {d, e} x {1,4}) of this graph correspond 
to the concepts ({a, b}, {2, 3}), ({d, e}, {1,4}) of the context (G, M, I). 

In this survey we consider the papers related to mathematical aspects of concept analysis. On the one 
hand, these are algebraic problems that arise from the lattice nature of the set of all concepts (Sec. 2). Here, 
the decomposition of concept lattices into smaller ones seems to be one of the most important problems. On 
the other hand, we will dwell on applications of concepts in data analysis, in particular, on methods of search 
for dependences between attributes (Sec. 3). Third, we will consider results related to algorithmic problems 
of concept generation (Sec. 4). And, finally, we will consider problems of different nature related to concepts, 
including the Zarankiewicz problem, where conditions for a concept of a given size are to be found (Sec. 5). 
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We assume that the reader is familiar with some elementary notions of the theory of sets, the lattice theory 
[8, 35], and the theory of computational complexity [I, 34]. 

2. Algebraic  Aspec t s  of  C o n c e p t  Analys i s  

2.1. T h e  Main  T h e o r e m  of Formal  C o n c e p t  Analys i s  

The concepts of a context (G, M, I) are partially ordered in the following way: 

(A~, Bx) < (A2, B2) = Ax C_ A2 (B~ _D B2). 

The pair (Ax, B~) is called a subconcept of the concept (A2, B~) and (As, B2) is called a superconcept of the 
concept (At, B1). 

Following [80], by L(G, M, I) we denote the set of all concepts of the context (G, M, I) and by ~(G, M, I) 
the partially ordered set (L(G, M, I), <_) (from Begriff, concept (German)). 

Def ini t ion 2.1.1. A set D of a lattice L is called infimum-dense (supremum-dense) if 

L = { A x t x  C D} (= { V xlX C D}, respectively). 
a:EX ~:6X 

Haralick [42] found that the set of concepts is closed with respect to certain operations, which define 
idempotent, commutative, and associative operations (i.e., form semilattices or "idempotent commutative 
monoids," as Haratick [42] called them). In [80], a more general result was proved. 

T h e o r e m  2.1.1 ([80]). Let (G, M, I) be a context. Then ~ ( G , M , [ )  is a complete lattice called the 
concept lattice of (G, M, [); its infima and suprema can be described as follows: 

A (Ai 'Bi) = ( N  A J ' ( N  Aj)'), 
j e J  jeJ jEJ 

jEJ jEJ  jEJ  

Conversely, if L is a complete lattice, then L ~- ~(Gi M, I) iff there are mappings 7 : G ~ L and 
# : M ~-~ L such that 7G is supremum-dense in L, #M is infirnum-dense in L, and g lm is equivalent to 
7g < #m for all g E G and m E M, in particular, L ~- ~(L, L, <). 

In some papers, for example, in [7], the lattice ~(G, M, I) is called a "Galois lattice." 
Example .  The Hasse diagram of the concept lattice, which corresponds to the context (G, M, [) from 

Sec. 1, is given in Fig. 2. Recall that in the Hasse diagram of a lattice, the vertices correspond to the 
elements of the lattice, the bottom-up direction corresponds to the order relation of the lattice, and two 
vertices are joined by an edge if the higher of these two vertices corresponds to an element of the lattice 
which is immediately superior to the element that corresponds to the other vertex. The diagram illustrates 
the well-known reciprocal relation between the intent and the extent of concepts (the greater the intent, the 
less the extent). 

Let J(L) be the set of all V-irreducible elements of the lattice L and M(L) be the set of all A-irreducible 
elements of L, i.e., elements that cannot be represented as suprema (respectively, infima) of some other 
elements of the lattice. Then, by Theorem 2.1.1., L ~ ~(J(L),  M(L), <), The context (J(L), M(L), _<) is the 
least context with the property that its concept lattice is isomorphic to L. 

The Dedekind-MacNeille completion of a partial order to a lattice (see, e.g., [8, 77]) can be easily 
described in terms of concept lattices. By way of example, consider a set G of graphs with labeled vertices. 
The graphs from G are ordered with respect to the subgraph isomorphism relation <: (for F, G E G, 
F < G iff F is isomorphic to a subgraph of G). [nfimum and supremum operations corresponding to the 
partial order _< cannot be defined for graphs. At the same time, these operations can be defined on the 
Dedekind-MacNeille completion of the partially ordered set (G, <). The elements of this completion are 
sets of pairwise incomparable (in the sense of <) graphs [50]. The mapping of the partially ordered set 

1656 



Fig. 2. Hasse diagram for the concept lattice of the context (G, M, I) from Sec. 1. 

(P, <) into its Dedekind-MacNeilIe completion ~(P,  P, _<) is given by the function t: ~x = ((z], [x)), where 

x E P, (x] = {YIY <- x}, Ix) = {YIY >- x}. 
T h e o r e m  2.1.2 ([80]). The mapping tx = ((x], [x)) is an order-preserving one-to-one mapping of(P, <) 

into ~(P, P, <). I f  for X C P infimum A X  and supremum VP can be defined in (P, <_), then ~(AX) = A(LX) 
and L(VX) = V(eX). I f  A is a one-to-one order-preserving mapping of (P, <) in a complete lattice L, then 
there exists an order-preserving mapping tr of the lattice ~(P,  P, <_) into L such that A = x o ~. 

2.2. Many-Va lued  C o n t e x t s  

The situation of non-binary attributes is frequently encountered in many applied problems of data anal- 
ysis. Many-valued contexts were proposed in [801 to represent situations of this kind. 

Defini t ion 2.2.1 ([80t). A many-valued contezt is a quadruple (G, M, I4/, I) such that G,M, and W are 
sets and I is a binary relation between G and M x W (I _C G x M x W), where gI(m,  w~) and gI(m, w~) 
imply wt = w7 for arbitrary g E G, m E M, wl,w~ C_ W. If g I (m ,w)  forg  E G,m E M , w  E W, then the 
object g is said to take the value w for the attribute m. If IWI = n, then ( G , M , W , I )  is called an n-valued 
context. 

In the case where the attribute values are understood as nominal data, a many-valued context (G, M, W, I) 
can be represented by the binary (or "one-valued") context (G, M x IV, I). In this case, the context (G, M, W, I) 
is called nominal. The lattice ~__(G, M x W, I) is called the concept lattice of (G, M, W, I). A context 

(G ,M,W, I )  is said to be complete if for any g E G,m E M there exists w E W such that gI(m,w) .  
For a characterization of the concept lattice of a complete n-valued nominal context the following definition 
is used. 

Defini t ion 2.2.2 ([80I). An element d of a complete lattice L has valence n if n is the smallest cardinatity 
of a subset D of L\{0} containing d, which is maximal with respect to the property that x/~ y = 0 for all 
x,y E D such that x # y. Recall that a lattice is atomistic if each lattice element is either 0, or an atom, or 
a supremum of some atoms. 

T h e o r e m  2.2.1 ([801). A complete lattice L is isomorphic to a concept lattice of a complete n-valued 
nominal context iff L 

Coro l l a ry  2.2.2 
nominal context iff L 

Coro l l a ry  2.2.3 
nominal context iff L 

is atomistic and has an infimum-dense subset of elements of valence <_ n. 
([80]). A finite lattice L is isomorphic to a concept lattice of a finite complete n-valued 
is atomistic and every A-irreducible element of L has valence <_ n. 
([SO])..4 finite lattice L is isomorphic to a concept lattice of a finite complete 2-valued 
is atomistic and every A-irreducible element of L has a pseudocomplement. 

2.3. Fusion of C o n t e x t s  
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In a series of papers on formal concept analysis, the problems arising from "fusion" of several contexts 
are studied. From the data analysis standpoint, this problem is interesting in view of data aggregation. In 
the closely related papers [81, 83] Wille considers the subdirect products studied earlier by him for general 

complete lattices in [78, 79]. In particular, a relation between the subdirect products of concept lattices and 

closed relations defined on the sums of the corresponding contexts is established in [84] (see Sec. 2.4). Results 
from [80] concerning the decomposition of lattices into direct products are found in Sees. 2.5 and 2.6. Before 
introducing the notion of fusion of contexts, we present some auxiliary definitions and results. 

Def in i t ion  2.3.1. Let L1 = (T1, A1, V1), L2 = (T2, A2, V2) be lattices on sets TI, T2. Let f be a mapping 
f:T1 ~ T2, al, bl be any elements of T1, and <-1, <2 be order relations induced by A1, V1, and A2, V2. If 
aa <_1 b~ --+ f(al)  <_2 f(b2), then f is called an order-preserving mapping from L1 to L2. If f is one-to-one, 

then it is called an order-preserving homomorphism. If f (al  V1 bl) = f(al)  V, f(bl),  then f is called V- 
homomorphism from L1 into L2. If f is one-to-one, then it is called a V-embedding of L1 into L2 (analogously 
for a A-homomorphism and a A-embedding). A mapping from L1 into L2 that is a A- and V-homomorphism 
is called a homomorphism of L1 into L2. A mapping from Lt into L2 that is a V- and A- embedding is called 
an embedding of L1 into L2. An embedding of L1 into L2 is an isomorphism if it is a mapping of L1 onto L2. 

Def ini t ion 2.3.2 ([6]). A lattice L is called a subdirect product of a family of lattices (L,)e~s if there 

exists an embedding f: L ~ XsEsL, such that for each s E S, the mapping p, o f :  L ~ Le is onto (where p~ 
is the projection of X,esLs onto Ls). 

Def ini t ion 2.3.3 ([81]). Let K = (G, M, [) be a context. Relation J C_ G • M is called a closed relation 
of the context K if every concept of (G, M, J)  is a concept of K. 

Let 6 be a complete sublattice of ~(G,  M, I). Then C(G) = U A x B. 
(A.B)E~ 

T h e o r e m  2.3.1 ([81]). C is a bijection from the set of all complete sublattices of ~(G, M, [) onto the set 
of all closed relations of(G, M, I), in particular, C-~(J) = ~(G, M, J) for each closed relation J of(G, M, I). 

The following characterization of closed relations of a context was proposed by I3. Ganter. 
T h e o r e m  2.3.2 ([81]). J is a closed relation of a context (G, M, I) iff J C_ I and satisfies the following 

property: (9, rn) E I \ J  implies that there exists h E G such that {g}Z C_ {h} J and (h, rn) ~ [ and there exist 
n E M such that {rn} J C {n} z and (g,n) ~ J.  

Defini t ion  2.3.4 The disjunctive union of sets Xe, s E S, denoted by X1 O ... O Xis I is the set 

u,~sX, x {~}. 
Thus, the disjunctive union retains all exemplars of the element x E X1 , - . . ,  x E Xt by using indices of 

the sets Xs, s E S. 

Def in i t ion  2.3.5 ([81]). The sum of a family of contexts (Gt, Mr, It)teT is defined by 

~ - ~ ( G , M .  I t )=(Ot~TG, ,@,eTM.@t~TI ,  O L.J G e x M  0 "  
tET s,tET, n.Tlzt 

Defini t ion 2.a.6 ([81]). A bond from a context (G., Ms,/~) to a context (Gt, Mr, It) (denoted by Jst) is 

a set J C Ge • Mr, for which {g}J is an intent of (Gt, Mr, It) and m J is an extent of (Ge, Me, [e) for arbitrary 
g E G, and rn E M,, i.e., the extents of (G,, M~, J)  are extents of (Ge, M~, Is) and the intents of (G,, Mr, J) 
are intents of (Gt, Mr, It). In the sequel we will write X ~ instead of X J,' and ye instead of yJ..e. 

L e m m a  2.3.3 ([81]). Let J,e be a bond from (G. ,M, ,  I~) to (Ge, Ms, [~) and let Jet be a bond from 
(Ge, Ms, I,) to (Gt, Mr, It). Then J,e o ./st -- {(g, m) E G~ x Mtl{g} ~ G {m} e} is a bond from (G~, M~, [~) to 
(G.  M~, It). 

Corol lary .  If .]~t is a bond from (G~, :t.[~, [~) to (G~, Mr, [~), then the following conditions are equivalent: 
(1)J~t C_ J~e o J,,, 

(2){g}' C {g},e, for all g E G,, 
(3){m} ~ C (rn} ~s~ for all rn E Mr. 
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Propos i t ion  2.3.4 ([83]). Let K~ = ( G~ , Mr, I~ ), Ks = ( Gs i M:, 12) be contezts, and A, B be arbitrary 
sets such that A C G~, B C M~, and 

A s = {m E M~lglm for all g E A}, 

B s ~- {g E G~tgIm for all m E B}. 

Then for [ C Gt • M2 the following conditions coincide: 
(l) [ is a bond from (Gt ,Mt,[1)  to (G2, M~,I2), 
(2) the mapping ai: ( A, B) ~ ( A s2, A s) for all (A, B) E ~(K2) is a V-embeddin 9 of the lattice ~(  K1) into 

the lattice ~(K2) and {g} lt2 = {g} 2 for every g E G~, 
(3) the mapping at: (A, B) ~-~ (B t, B u)  is a A-embedding of the lattice ~(Ks)  into ~(KI)  for (A, B) E 

~(K2) and {m} TM = {m}' for any m E Ms. 
T h e o r e m  2.3.5 ([81]). Let (Gt, Mr, It)taT be a family of contexts and t be an isomorphism from 

• G ,  Mr, it) onto m(EteT(  Gt, M,, It)) given as ,((At, Bt)[t E T) = (Oter At, OteT Bt). Furthermore, let 

J C UteTGt • OtET Mt and J,t = J fq Gs • Mr. Then the following conditions are equivalent: 
(1) ,-~C-~(J) is a complete subdirect product of the ~(Gt,  Mr, It)taT, 
(2) J is a closed relation of y'~t~z(Gt, Mr, It) with Ju = It for t E T, 

(3) the Jst are bonds from (Gs, Ms, I,) to ( Gt, Mr, I,) with Jtt = It, and J~t C J~, o Jst for r, s, t E T. 
T h e o r e m  2.3.6 ([83]). Let (G x S , M  x S, U ITs) be the fusion of contexts Ks = (G,M, Is), s E S. 

r,aES 

Then for each s E S, (g, s)Iss(m, s) r g[~m and for every pair r ,s  E S the relation I~s is the least (by 
inclusion) bond from the context (G • {r}, M • {r}, Ir~) to the context (G • {s}, M • {s}, Iss) that satisfies 
the condition (g, r)I(m, s) iff gI~rn or glum. 

Defini t ion 2.3.7 ([83]). Let P be a partially ordered set and a be an isotone mapping from P to the 
complete lattice T, which preserves suprema and infima of P. If a P  is a set of generators of the lattice T, 
then the pair (T, a) is called a complete P-lattice. If P = {1,2 , . . . ,  n}, then the P-lattice is also called an 
n-lattice. 

Defini t ion  2.3.8 ([83]). Let (T~,al) and (T2, as) be complete P-lattices. A homomorphism ~ from Tt 
into T2 is a P-morphism if ~a~ = a2. The P-lattices (Tl,a~) and (Ts,~2) are called isomorphic if there exists 
a P-morphism from Tt into Ts that is an isomorphism. 

Defini t ion 2.3.9 ([81]). A P:lattice (L, a) is called a P-product of complete P-lattices (Ltat) if ap = 
(atpl t E T) E • for p E P and L is a complete lattice which is a subdirect product of lattices Lt, t E T, 
generated by oep, p E P. 

Defini t ion 2.3.10 ([83]). Let s be a class of complete lattices and Ev be a class of complete P-lattices 

from 12. Then (T~ a) is the class of P-lattices from f-., isomorphic to (T, ~), s is the set of all (T, c~) such 

that (T, a) E f-p. By definition, (T~, cq) >_ (T2, c~2) if there exists a P-embedding from (T~, a~) into (T2, c~2). 

It can be easily seen that > is a partial order on 12p. 
T h e o r e m  2.3.7 ([83]). Let 12 be the class of complete lattices closed with respect to the subdirect product 

of factors with indices from a set I. For (T, c~) and (T~, c~i)iel from 12p the following conditions are equivalent: 
(1) there exists an isomorphism qo from T onto the direct product of T~, i E I, such that ~pap = (a~p),ex 

for all p E P, 

(2) (T, ~) is the supremum of (T~, c~), i E I, in the partial order ( ~ ,  <). 
This theorem characterizes the subdirect product as the "minimal fusion" of the factors, but does not 

give an effective way for constructing this fusion. 
Def in i t ion  2.3.11 ([83]). Let T~ and T~ be two complete lattices and 7- be a surjective A-homomorphism 

from T~ into T~. Then _r is a mapping from T~ into T~ defined an 7- = AT-~y. 
[t is easy to show that 7- is an injective V-homomorphism from T~ into Tt. 
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Let Ti, i E I, be a complete lattice and ri~: Ti :--* Tj ( i , j  E I) be A-homomorphisms satisfying the 
following conditions: 

(1) vll is the identity mapping, 

(2) rkl > rkjrji for an arbitrary triple i , j ,  k E I. 
Propos i t ion  2.3.8 ([83]). The set G(rj,{i,j  E [) = {(rjlz)jet(z E Ti, i E I } \ {0}  is supremum-dense in 

the subdirect product of S(r j i l i , j  E [) of the complete lattices Ti, i 6 I. 

T h e o r e m  2.3.9 ([83}). Let r~: (T,c~) ~ (Ti,ai), i E I be P,morphisms of complete P-lattices. l f  (T ,a)  

is the supremum of (Ti, ai), then, for i , j  E [, rjri is the greatest V-homomorphism cr: Ti ~ T a such that 
craip < oejp for all p E P (i, j E I). 

Now, the process of generation of the subdirect product by means of supremum operation can only be 
represented in the following way [83]: Let (Ti,al)ist be complete P-lattices. 

t. For all i, j E I define rij as the greatest A-embeddings: Ti ~-~ Tj such that ~aip < nip for all p E P. 

2. Construct the set G(rjlfi, j E I) = {(rjiz)jetl x E T .  i E [}. 
3. Generate T := { V X I X  C_ G(rj~li,j E I} and define a: P ~-* T as ap = (a~p);ez for all p E P. 

Then (T, a) is a complete P-lattice and (T, cr) is the supremum of (T,, c~i), i E I, i.e., T is the subdirect 
product of Ti, i E I, generated by uP.  

Let Ks = (G, M, / , ) ,  s E S, be contexts. For arbitrary A, B such that A C G, B C M define 

A" = {m E MigI~m for all g E A}, 

B" = (g E al#s.  for all m E B}.  

Let P = GUM and a~g = ({g}S, {g}S), asrn = ({m}% {m} ss) fo rd  E O , m  E M , s  E S. Construct 
the fusion of the lattices ~(K~), a), where ~__([<,),es are concept lattices for contexts Ks. To this end, Wille 
[83] uses V-homomorphisms ~rs~ : ~(K~) ~-~ ~(Ks),  r, s E S, where ~ are the greatest homomorphi~ms from 
~(Kr) into N(K,) such that crs~a~p <_ asp for all p 6 P. For each pair r, s E S define the relation I ,  between 
G x {r} and M x {s} as (g, r)I~s(m, s) < ;. a, sc~g < a ,m .  [f r = s, then ~r,s is the identity homomorphism 
and (gs)Is,(m,s) r162 glum. 

Defini t ion 2.8.12 ([83I). The fusion of contexts K~, s E S, denoted by (9 is a triple (G • S ,M • 
S, U I,,), where for all g E G the object ag is a concept of the context q) with the extent {(g,s)is E S}", 

r,sES 

and-for all m E M the object am is a Concept of the context Q) with the intent {(m, s)ls E S}". 
T h e o r e m  2.8.10 ([83]). (N((3),e) is a complete P-lattice, which is a representative of the supremum 

of classes (~_(K~), as), s E S; if  r~ is a P-morphism of the lattice (%(Q), c,) into (~(K, ) ,  a,) and rr(A, B) = 
(C,D), then AC~(G x { r } ) =  C • {r} and BM (M • { r } ) =  D • {r}. 

Wille [83] points out that the use of concept lattices ~(K~) and ~(K~) in the definition of relation I~ 
of the fusion of contexts is rather inconvenient. In order to avoid this obstacle, the definition of a bond 
(Definition 2.3.6) is proposed in [831. 

T h e o r e m  2.3.11 ([811). Let (s be a P-product of lattices (~(Gt, Mt, I~), c~t)~ET and let ~ be an 
embedding of ~(y]teT(a~ , Mr, [~) ) given as 

e((A,, Bt))}teT) = (OteT At,@teT Bt)). 

Then C(~s is the relation J C (Uterat)  x (UteTMt), for which Ju = I~ and J~t is the least (by inclusion) 
bond from ( Gs, M~, Is) to ( Gt, Mr, It) that includes all pairs from A p, x B~t for every pair p E P such that c~p = 

4' B'~ and atp = (A~, B~t ), where s, t E T,  s 74- t. �9 $ I  $ 1  

Defini t ion 2.3.13 ([81]). A pair ((G. M, [), a) is called a P-context if (~(G, M, I), c~) is a complete 
P-lattice. 

Theorems 2.3.6 and 2.3.it allow one to define the P-fusion of contexts ((G,, Me, It), a)tE~ as a P-context 

( ( OtET Gt, UtET Mt, .] )a ) satisfying the following conditions: 
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(I) J , =  I, for t r T, 
(2) J,, is the least bond from (G,, M,, [,) and (G,, Mr, I,) that contains A~ x B~ v for all a,p = (A~, B~) 

and = (AL s, t T, s r t, 

(3) ap ( @teT ~ " = A~, U,eT B~) for all p ~ P. 

2.4. Tensor P r o d u c t s  o f  C o n c e p t  Latt ices  

[n this section we consider some results concerning the tensor product of concept lattices and the cor- 
responding product of contexts. These results are related mainly to establishing relations between concept 
lattices and some interesting objects, as well as to the decomposition of concept lattices into "primitives." In 
this section we will restrict our consideration mainly to the problems related to  products of concept lattices. 
Results of this kind concerning general lattices are found in [84] and in the papers cited therein. 

Defini t ion 2.4.1 ([84]). Let Lt and L2 be complete lattices. Then the tensor product of lattices L1 
and L2 is L1 | L2 ~- ~(L1 • L2, L1 • L2, V), where (xl,x2)~Z(yl, y2) ~ Xl ~ yl or x2 _< y2 for (xl,x2), 
(yl, y2) E L1 x L~. 

Def in i t ion  2.4.2 ([84]). The direct product of contexts I(~ = (Gt, Mr, I,) and K2 = (G2, /142, /'2) is 
the context Kt x / (2  = (Gt x G2, Mt • M2, V), where (gl,g2)V(mt, m2) = giItmt or g212m2 for (gt,g2) E 
G1 x G2, (ml,m2) E 3/1 x M2. 

T h e o r e m  2.4.1 ([84]). For arbitrary contezts K~ and K2 ~(Kt )  | ~(K2) = ~(K~ x/42). 
A corollary of this theorem asserts the independence of the lattice product of a particular form of contexts, 

i.e., each of the contexts Ka, /42 can be replaced by a context isomorphic to the concept lattice, e,g., the 
context (J(~(K,)), M(~(K~)), <), where J (~(K)) ,  M(~(K))  are the sets of A-irreducible or V-irreducible 
elements of the concept lattice ~(K~), i E {1,2}, respectively. 

Defini t ion 2.4.3 ([84]). Let K = (G,M,I)  be an arbitrary context, m,n E M, g,h E G, and (k,m) q~ [. 
Then m "% h if 7h is minimal in the set {Tklk E {g}" and (k,m) q~ [}, g / ~  n, iff #n is maximal in the set 

{ ,vip and p) [}. 
Def in i t ion  2.4.4 ([84]). A context K = (G, M, I) is called doubly founded if for arbitrary m ~ M and 

g ~ G s u c h t h a t  (g, m) ~ I there exist h ~ G a n d n E M :  m " % h a n d g z  2 n .  
The relations ~ and /z allow one to study the concept lattice ~ ( G , M , I )  in terms of the digraph 

(G 0 M, / z  U "%). The set of vertices of this graph (denoted by C) is called closed if g ~ G and g /z m 

imply m ~ C and m "% g and m ~ M imply g ~ C. The closed subsets of the digraph (G 0 M, ..2 U "~) form 

a complete sublattice of the complete lattice of all subsets of G @ M. To specify a correspondence between 
the concept lattice and the introduced digraph, we introduce the following sets for every complete congruence 
relation 0 of the concept lattice ~(G, M, I): 

G(O) = {.q ~ Gl~g is the smallest element of the 0-class}, 

M(O) = {m ~ Ml#m is the greatest element of the 0-class.} 

T h e o r e m  2.4.2 ([84]). The mapping 0 ~-~ G(O) @ M(O) gives an antiisomorphism of the lattice of 
all complete congruence relations of the lattice ~(G, M, [) to the lattice of all closed subsets of the digraph 

(G 0 M, /"  U `%). 
This ~esult generalizes the result of [81] that establishes an isomorphism from the lattice of all complete 

congruence relations onto the lattice of subcontexts of a reduced context (see Section 5.3) (G, M, I) closed with 
respect to relations similar to ,/~ and "%. The isomorphism established in Theorem 2.4.2 takes A-irreducible 

elements of the lattice ~(G, M, [) to U-irreducible closed subsets of vertices of the graph (G 0 M , / z ~ x  ), 
which are the iea~t closed subsets containing a given element g (these sets are denoted by (g}). The latter 
facts imply 

T h e o r e m  2.4.3 ([84]). The mapping (,4, B) ~ (A A (g), B N (g))g~a describes an isomorphism from 
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Fig. 3. The context N4 = ({1, 2, 3, 4}, {1, 2, 3, 4}, =) and the Hasse diagram of its concept lattice. 

~(G,  M, I) onto a subdirect product of the completely subdirectly irreducible concept lattices ~((g) N G, (g) n 
M, I n (g)2)gec. 

This result, as well as the following theorem, allows one to decompose complex concept lattices into 
products of elementary ones. 

T h e o r e m  2.4.4 ([84]). Let K, = (G1, M1, [1), /(2 = (G2, M~, [~) be irreducible doubly founded contezts. 
Then 

~_((gx,92)) NGt x Gz, ((g~,ge)) N M1 • V N ((ga,g2) 2) 

~((g~) n G1, (gl) h M~, I1 n <g,)2) | ~((g2) h G2, (g2) N Mz,/2 h (g2) z) 

for any (gl,g2) E G, x G2. 

2.5. Scal ing of C o n c e p t  La t t i ce s  

In a series of papers [80, 31, 33] on formal concept analysis, the authors considered the idea of the 
conceptual measurement of concept lattices. As opposed to quantitative measurements, the qualitative ones 
are based on the notion of order. Therefore, the main notion of conceptual measurement is the notion of 
an (ordered) scale. A scale is a standard context (see examples below) with a clear concept structure. An 
original context is interpreted in a scale by means of some measure. In [33] the following four examples of 
finite scales are considered. 

(1) Nominal scales N,~ = ({1 ,2 , . . . ,  n}, {1, 2 , . . . ,  n}, =). For n = 4, the corresponding contexts and Hasse 
diagram are given in Fig. 3, where a; b, c, d, e denote the concepts ({I ,2 ,3 ,4},  0), ({1}, {1}), ({2}, {2}), 
({3}, {3}), ({4}, {4}), (0, {1,2,3,4}), respectively. 

(2) Directed ordinal scales D, = ({1, 2 , . . . ,  n}, {1 ,2 , . . . ,  n}, <). For n = 4, the corresponding context 
and the Hasse diagram are given in Figl 4, where a, b, c, d, e denote the concepts ({1,2,3,4}, o), ({1,2,3}, 
{4}), ({1,2}, {3,4}), ({1}, {2}), (0, {1,2,3,4}), respectively. 

(3) Undirected ordinal scales lLr, = ({1, 2 , . . . , n } ,  {< 2 ,<  3 . . . .  , < n, > 1 ,>  2 , . . . ,  > n - l, } E), where 
< k denotes the set { 1 , . . . , k  - 1}, and > k denotes the set {k + 1 , . . . , n } .  For n = 4, the corresponding 
context and the Hasse diagram are given in Fig. 5, where a, b, c, d, e, f ,  g, h, i, j ,  k denote the concepts 
({1 ,2 ,3 ,4} ,e ) ,  ({1,2,3}, {< 4}), ({2,3,4}, {> 1}), ({1,2}, {< 3}), ({2,3}, {< 4 ,>  1}), ({3,4}, {> 2}), 
({1}, {< 2}), ({2}, {< 3 ,>  1}), ({3}, {< 4, > 2}), ({4}, {> 3}), (e, {< 2 ,>  3}), respectively. 

(4) Boolean scales I~,, = ( {1 ,2 , . . . , n} ,  {1,2,. .. , n } , # ) .  For n = 4, the corresponding context and 
the Hasse diagram are given in Fig. 6, where a, b, c, d, e, f ,  g, h, i, j ,  k, l, m, n, o, p denote the concepts 
({1,2,3,4}, o), ({1,2,3}, {4}), ({1,2,4}, {3}), ({t ,3,4},  {2}), ({2, 3,4}, {1}), ({1,2}, {3,4}), ({1,3}, {2,4}), 
({1,4}, {2,3}), ({9_, 3}, {i,4}), ({2,4}, {1,3}), ({3,4}, {1,2}), ({i}, {2, 3,4}), ({2}, {1,3,4}), ({3}, {1, 2,4}), 
({4}, {1.2, 3}), respectively. 

Other examples of scales are the real ordinal scale Eo : (R, Mo, E), wt ~re Mo = {(-oo,  r]lr E !~}, the 
interval real scale ~2f = (IR, Mt, E), where Mr = Mo U {{r - s , r , r  + s}Ir E a,~ E N +, the real ratio scale 
ER = (N, Mm E), where MR = M~ U { { r : s , r , r - s } { r  E R,s  E a +}, and their many-dimensional analogs. 
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Fig. 5. The context U4 = ({1,2,3,4},  {< 2, < 3, < 4, > 1, > 2, > 3}, E}) and the Hasse diagram of 
its concept lattice. 

Def in i t i on  2.5.1 ([80]). Let K = (G,M, I) be a context and S = (as ,  Ms ,  Is) be a scale. An (partial) 

S-measure of K is a (partial) map ~ from G into Gs such that  for any extent A of a context S cr-lA is an 

extent of the context K. A S-measure o- is called full if cr - i  defines an isomorphism between concept lattices 
~_(crG, Ms, Is Ncr X MS) and N(K). 

The following two problems are essential for a context K and a scale S: is a given (partial) map a 
(partial) S-measure of K,  and what (partial) S-measures are possible for a given context K and a scale S? 
We will deal these problems at first for a particular case of scaling, namely for directed ordinal scales. 

De f in i t i on  2.5.2 ([80]). Let (fit)leT be a family of complete chains, and fl = x tern,. Then f~< : (f/, fl, <_) 

is called an ordinal scale of dimension IT I. 
Since f~ is a complete lattice, the map x ~-~ ((z], Ix)) gives an isomorphism from f / o n t o  ~ by the Main 

Theorem of concept lattices (Theorem 2.1.1.). The following proposition allows one to s tudy ordinal scaling 
in terms of lattice theory. 

Proposit ion 2.5.1 ([80]). For a full a<_-measure ~ of a context (a ,  M,  I) ,  let -g(A, B)  = V o A  for all 

(A, B) E ~(G, M, I). Then the mapping given by # ~ -fi is a bijection from the set of all full fl<__-measures 
of (G, M, I) onto the set of all V-embeddings of ~(G, M, I) into fl; in particular, #g = g({g}", {g}') for all 
g E G .  

The following theorem allows us to obtain a criterion of existence of an ordinal measure of a context. 
T h e o r e m  2.5.2 ([80]). Let L be a finite lattice and X = {Ctl t E T} be a partition of the set M(L)  into 

chains. Then ~: L ~ xter (Ct  U {I t})  defined as r = (at)leT, where at ~- min{c E Ct U {IL}la <_ c}, is 
a V-embedding. If i: L ~-* fl is a V-embedding into a direct product of complete chains, then thero ezists a 
partition .~ = {Ctlt E T} of the set M( L ) into chains and a V-homomorphism ~ from a into XteT(Ct U {lc}) 
such that ~ maps M(f~) U {in} onto M(XteT(Ct U {lc})) U {t x Ct} and ~ = ~o  ~. 
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Fig. 6. The context ~4 = ({1, 2, 3, 4}, {1,2, 3, 4}, r  and the Hasse diagram of its concept lattice. 

Coro l la ry  1 ([80]). For a finite lattice L, V-dimension of L equals the width of M(L),  and V-rank of  L 
equals to the cardinality of M(L).  

Coro l la ry  2 ([80]). For a finite context (G, M, I) there exists a complete ~<-measure: f~ = XteTf~T iff 
there exists ezactly one partition {Ctlt E T} of the set M( L) into chains such that the length offer equals the 
cardinality of Ct for all t E T. In particular, the dimension and the length of the ordinal scale ft<_ are equal 
to the width and the cardinality of M (~( G, M, [)). 

Some properties of the tensor product allowed Wille [84] to prove the following theorem (which is close 
to Theorem 2.7.2 on dimension from [92]). 

T h e o r e m  2.5.3 ([84]). Let S = (C, C, <_) be a scale, where C is a finite chain, and cr be a complete S ~- 
measure of the context (G, M, I) (where S ~ is a direct product o fn  contexts S). Then the context (G, M, I) is 
isomorphic to (P, P, 2;) for a finite ordered set P and the lattice ~(G, M, I) is isomorphic to a finite distributive 
lattice of all order-preserving maps from P into a chain of length 2. 

Corol la ry  ([84]). For a finite partially ordered set P, the minimal number n such that there exists a 
complete S'~-measure of the context (P, P, <) coincides with the order dimension of P. 

A criterion for existence of an ,5"-measure for the scale S of an arbitrary form is given in [47]. 
P ropos i t ion  2.5.4 ([31]). Let K = (G, M, I) be a context with a scale S = (Gs, Ms, Is) and o" be a 

(partial) map from G into Gs, and K ~ = (G, M (_1 Ms, P'), where for g E G, g[~rn ~ rn E M and g[m or 
m E Ms and ag[srn. The map o" is a (partial) S-measure of the context K i f f for every rn E Ms there ezists 
a set t3 C_ M such that {rn}' = Nb~s{b}'. Moreover, the S-measure c~ of the context It" is full i f f for every 
n E M, there exists a set D C_ Ms such that {n}: = Nd~D{d}'. 

Using Proposition 2.5.4, we can show that the identity map is a measure of U4 in N4 and in D4, but not 
in 1B4. 

P ropos i t ion  2.5.5 ([31]). Let S be a scale of K such that {g}' 7~ {h}' for alI g, h E Gs : g # h. [f ~r is 
a (partial) S-measure of It', then a V-homomorphism -~ of (a principal ideal of) ~ ( K )  into ~(S)  is defined 
by ~(A,/3) = ((crA)",)crA)'). The mapping i7 ~ -~ is a bijection from the set of all (partial) S-measures 
of K onto the set of all V-homomorphisms o~ of (a principal) ideal 9~ of) ~ (K)  into ~(S)  with the property 
that for every ({g}", {g}') in (~N)~_(K) there exists an h E Gs with (a({g}", {g}') = ({h}", {h}') (c~0 7! 0 is 
admitted). Moreover, an S-measure o" of K is full iff-~ is injective. (From here on conditions that correspond 
to partial maps are given in bracket~.) 

It is obvious that the proposition dual to Proposition 2.5.5 (where c~ -1 specifies a V-homomorphism from 
~(S)  into ~ (K)  injective on the image of ~) is also valid. 

For finite contexts from the example above, the problem of the existence of corresponding scales can be 
solved by means of the following: 

P ropos i t i on  2.5.6 ([31]). The context It" admits a (partial) S-,~easure 
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(1) S = ~,, i [  the objects of (some extent of) K can be partitioned into n extents. 
(2) S = D,, i [  there ezists a chain of n+I extents of K including the empty set. 
(3) S = U,, i [  there ezists a chain of n non-empty eztents of K so that their complements (intersected 

with the largest extent of the chain) are again eztents. 
(4) S = IB,~ i [  there ezists an independent set of n eztents of K (these are extents A1,. . . ,A,~ with 

N'~=IA~ = o and A i ~ f3i#jAi for j = 1 , . . .  ,n),  whose union is the set of all objects of (some extent of) K. 
In [31] the scaling of many-valued contexts (see Sec. 2.2) is considered. For a many-valued a t t r ibute  m 

the scale S,,, = (G, M,~,/,~), where M,~ C W is the set of values of the a t t r ibute  rn, g[,~w 4--4- (g, m)Iw. 
Thus, the at tr ibute m E M corresponds to a (partial) measure rh with respect to the context for the scale 

S,~ = (G, M,,,, I,~). The product  operator  • S = • = (• N, J) is used for composition of scales, 
where the product can be a direct product  or a semiproduct,  defined in [33]. 

Def in i t i on  2.5.3 ([78]). Let K, = ( G ~ , M , h ) ,  i E { 1 , . . . , n } ,  be contexts. Then the context (Gt x 
. . .  x G~, M1 x {1} U . . .  U M~ • {n}, ~ ) ,  where (g l , - . .  ,g , , )V(m,j)  .'. '.- gj[jrn, is called a semiproduct of the 
contexts K1, . . . ,  K,, and is denoted by K1 o . . .  o K,~. 

The next definition is a trivial generalization of Definition 2.4.2. 
Def in i t i on  2.5.4.  Let Ki = (Gi, M~, Ii), i �9 {1 , . . . ,  n} be contexts. Then the context (G1 x . . .  x G,,, 

M1 x . . .  x M,~,~7), where (#1 , . . . , g~)~7(ml , . - - ,m, , )  i [  gjl jmj  for some j �9 { 1 , . . . , n } ,  is called a direct 
product of contexts K 1 , . . . ,  K,, and is denoted by K1 x . . .  x K,,. 

As shown in [80], the direct product  of lattices ~(G~, M~, I~) and ~(G2, M2, I2), where (G~, M~, /~), 
(G2, M2, I2), are contexts such that G1 n G2 = o, Mx n M~ = o, G~ = ~, M '  = o for i E {1,2}, is isomorphic 
to the lattice ~(G1 U G2, M1 t_J M2, /1 U [2 U G1 x M2 U G2 x MI). Definitions of other possible operations 
over contexts are found, for example, in [33]. 

A many-valued context with the scale S = 1-I,~eMS-~ is called a scaled context and is denoted by 

(K, l-I,~eM S,,~). Then its derived context (denoted by /~" = (G, N, J ) )  is a context with the set of objects 

K, the set of at tr ibutes that  coincides with the set of at tr ibutes of S and relation J defined as gJn = 
(m(g)),~eMJn for the context S. If the mapping re(g) (we will also write my) is defined not for all m and g, 

then gJn = hJn for all objects  h = (h,~),,~eM from $ such that h,~ = re(g) if re(g) is defined. 

We set, for example, /~ = (G, 0,,~eM Mr.,/:), where gin  if n E M,~ and mg[,,~n for some m �9 Mr.. For 
h �9 G we denote by 7,~h the concept ({h} ' ,  {h}') of the context S m =  (G, M,~, I~).  

P r o p o s i t i o n  2 .5 .7  ([31]). Let (G, N, J) be a context for which rh is a partial S,~-measure for all m �9 M. 

Then the identity map of G is a [(-measure of the context (G, N, J). 

The next proposition provides a means for constructing of ~( /~) .  

P r o p o s i t i o n  2 .5 .8  ([31]). There is an isomorphism ~ of ~(~.') onto the V-semiIattice of xmeM~(Sr.) 
generated by the elements 

with g �9 G. 
P r o p o s i t i o n  2 .5 .9  ([33]). Let cr be an S-measure of a context K = (G, M, I). Then the map 

(A, A') ~ (~r-l(A), cr-~(A) ') 

describes a A-homomorphism from the lattice ~(S)  into the lattice ~ (K) .  This homomorphism is injective if 
cr is surjective. 

P r o p o s i t i o n  2 .5 .10 ([33]). Let S be a scale in which v ~ w implies {v}' ~ {W}' for all v ,w �9 Gs. 
Then: for an S-measure cr of a context K = (G, M, [), 

(A, A') A') = 

describes a V-preserving map # from ~(  K) into ~(S);  in particular, ~( ,g )  = 7s(r(g) for all g �9 G. Conversely, 
if p is a V-homomorphism from ~ ( K )  into ~(S)  such that for each g �9 G there is a ~(g) �9 Gs with 
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~(Tg) = 7s~(g), then 0 is a S.measure of K.  There is a one-to-one correspondence between the S-measures 
cr (respectively ~) and the specific V-preserving maps cr (respectively ~). The map ~r is full iff # is injective. 

P r o p o s i t i o n  2.5.11 ([33]). Let K =  (G, M, [) be a finite contest. If  t: { 1 , . , . ,  n} ~ M is a bijection of 
the set of first n natural numbers onto the set M, then a full Bn-measure of K is given by 

~(g) = { 1 , . . . , n } \ , ( { g } ' )  

for g E G. 
D e f i n i t i o n  2.5.5 ([33]). A dichotomic scale is a context of the form ({0, 1}, {0, 1}, =).  A k-dimensional 

dichotomic scale is a semiproduct of k dichotomic scales: DI o .... o Dk. 
P r o p o s i t i o n  2.5.12 ([33]). A finite context K = (O, M, [) admits a full scale measure into the k- 

dimensional dichotomic scale iff K is atomistic (i.e., ({g}', {g}") is an atom of ~ ( K )  for any g E G). K 
admits a full scale measure into the k-dimensional dichotomic scale iff K is atomistic and there are at most 
k pairs of complementary eztents, to which all the extents of A-irreducible concepts o f ~ ( K )  belong. 

2.6. T o l e r a n c e  a n d  C o n g r u e n c e  on  C o n c e p t  L a t t i c e s  

Another way of representing concept lattices as compositions of smaller lattices is based on the use of a 
tolerance relation defined on lattice elements. 

D e f i n i t i o n  2.6.1.  A binary relation 0 on elements of a complete  lattice L is called a complete tolerance 
relation if 8 is reflexive, symmetric,  and agrees with the lattice operations A and V, i.e., XtOyt for all t of a set 
T, where xt, yt �9 L for all t �9 T implies that  (AteTXt)O(At~Tyt) and (Vt~TXt)O(Vteryt). 

A complete tolerance relation is called complete congruence relation if it is transitive (i.e., is an equivalence 
relation). 

Complete congruence relations were studied in detail for general complete lattices (see, for example, [8]). 

Results concerr_ing complete tolerance relations for general complete  lattices are found, e.g., in [84]. In this 
section, we present only the results on general lattices that  will be used in the discussion of tolerances and 
congruences on concept lattices. Using Lemma 2 from [84], we give a simple definition of a block of tolerance 
relation. 

D e f i n i t i o n  2.6.2 ([84]). Let L be a complete lattice. A s e t  S of elements of L is called a block of 
tolerance relation 8 if it is maximal by inclusion among subsets of L such that for any pair of elements x, y of 
this subset soy. The set of all blocks of 8 is denoted by L/8. 

The blocks of a tolerance relation can also be defined as intervals of the form [a]e = [as' (a0) e] or [hi ~ = 

[(ba)e, be], where ae = A{x �9 LIaOx} and a e = V{z e LIaOx} and a ,b  are arbi t rary elements of L. The 
equivalence of the two definitions is proved, e.g., in [86]' 

T h e o r e m  2.6.1 ([86]). The set L/8 of all blocks of 8 becomes a complete lattice (called the complete 
factor lattice of L with respect to O) by defining 

B~ _< B2 = AB~ _< AB2(= VB, < VB2) for S,, B2 �9 L/O; 

in particular, 

and 

tET tET 

= IV for < t .  
tET tET 

By Theorem 2.6.1, complete tolerance allows one to decompose a lattice L into a set of intervals, which 
is itself a lattice. Objects  of this kind are studied, for example, in [86] as Q-atlases. 

D e f i n i t i o n  2 .6 .3  ([86]). Let Q and Lq (q E L~) be complete lattices. The family (Lq)qeQ, together with 

the V-morphism ~ :  Lq ---* Lr (in part icular,  ~2~0t = 0~) and a A-morphism 0~ : L, ~ Lq (in particular, 

0~1~ = lq) for each q < r in Q is called a Q-atlas if the following conditions are satisfied: 
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(1) Lq N L, is a filter of L~ and an ideal of Lr for all q < r in Q. 

(2) { q E Q I x E  Lq} is an interval [x min, x m a x ] i n Q  for a l l x E  U Lq. 
qEQ 

(3) r and 0~ are the identities of Lq. 

( 4 )  < y i f f  x < 

( 5 )  �9 r ' and ;6 " = " 

( 6 )  = , v ,  ~qv~X for all x E Lq M Lqw and ~b]y = _._t^~ vz~^~y for all y ELt  M Lt^~. 
ymin The pair ( U  Lq E ) , w h e r e x ~ y = z m i n _ ~ x m a x a n d ~ m ~ , ~ x  < y  for a l lx ,  y E  U Lq, is called a sum 

qEQ qEQ 

of a Q-atlas. 
As shown in Theorem 6 from [86], the sum of the Q-atlas is a complete lattice with blocks of complete 

tolerance isomorphic to the lattices of Lq. 

Thus, the construction of a Q-atlas allows one to represent a lattice diagram as the sum of parts with a 
nonempty intersection in the same way as a geographic map is represented by an atlas. 

In [86], for an arbitrary context K = (G, M, 1) a relation between complete tolerance of the lattice ~ (K)  
and the so-called block relations of the context K, i.e., the relations J: I C J C G x M, for which {g} is 

an intent of the context K, and {m}' is an extent of the context K for an arbitrary g ~ G,m E M, is 
established. Thus, every extent and every intent of the context (G, M, J)  is, respectively, an extent and an 
intent of the context (G, M, [). The set of all block relations of a context is a complete lattice with respect 
to the set-theoretic intersection. 

T h e o r e m  2.6.2 ([86]). For a context K = (G, M, [), there exists an isomorphism/3 from the lattice of 
all complete tolerance relations of the lattice fs( K) onto the lattice of all block relations K given by 

g3(O)m ~ ?gO(q,g h ~m)(v=::~ (Tg v #m)O~m). 

Furthermore, (A ,B) /3- ' (J ) (C,D)  ~ A x VU B • C C J. 
As noted in [86], the blocks of a complete tolerance of a context (G, M, [) correspond to the concepts of 

the context given by the block relation, i.e., (G, M, J).  If the concept lattice of a context (G, M, [) can be 
represented by a 0-1 matrix, where every concept corresponds to a unit submatrix maximal by inclusion, then 
for a block relation J ,  every concept (H, N) of the context (G, M, J)  corresponds to the set of all maximal 
unit submatrices of the matrix I M H x N. 

A particular case of Q-atlases and Q-sums are the so-called Q-tied atlases and Q-tied sums [86] encoun- 
tered in the case where 0 is a congruence relation. It is interesting that in this case every congruence is also 
associated with a context. To describe this result in detail, we present some auxiliary results that allow one 
to understand the meaning of subcontexts. 

Def ini t ion 2.6.4 ([29]). Let (G ,M, I )  b e a c o n t e x t  and H_C G, N_C M. Then (h,M, I N H  x N) is 

called a subcontext of (G, M, [). 
In the general case, the concept lattice of a subcontext of the context (G, M, [) is not a sublattice of the 

lattice ~(G, M, I). We can only expect that ~(G, M, I) contains ~ (H,  N, [ (~ H • N) as a suborder. 
T h e o r e m  2.6.3 ([29]). For arbitrary N C M the mapping 

~(G,  M, I M G x N) ~ ~(G, M, I) 

given by (A, B) ~-* (A", A') is an order-embedding and so is the mapping given by (A, B) ~-* (B', 13"). 
T h e o r e m  2.6.4 ([29]). For arbitrary N C_ M, the mapping 

~_(G, N, [ n G • N) ~ ~_(G, M, I) 

given by 

( A,  B) ~ (.4, A') 

is an infimum-preserving order-embedding. Dually, for any N C M the mapping 

~ ( H , N ,  I n H • N) ~ ~ ( G , M , I )  
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given by 

(A, B) ~ (B', B) 

is a supremum-preserving order-embedding. 
Def in i t ion  2.6.5 ([29]). A subcontext (H, N, I n H • N) of a context (G, M, I) is called compatible if 

( A n  H, B o N) is a concept of (H, N, [ n H • N) whenever (A, B) is a concept of (G, M, I). 
P r o p o s i t i o n  2.6.5 ([80]). Let (G,M,I )  be a context, {GjIj E J} be a partition of G, and {Mklk E K} 

be a partition of M. Then the A-embedding of the lattice ~(G, M, I) into the direct product of lattices o] 
subcontezts ~(Gj, M, I N Gj • M) is given by the mapping (A, B) ~ (A N Gj, ( A n  Gj)')jej, and the V- 
embedding of the lattice ~(G,  M, [) into the direct product of subcontezts ~(G,  Mk, I n G • Mk) is given by 
the mapping (A, B) ~-* ((B n Mk)', B O Mk)keg- 

T h e o r e m  2.6.6 ([29]). If (H, N, I n H • N) is a compatible subcontext of(G, M, [), then the mapping 

IIH,N : ~(G,  M, I) ~ ~(H,  N, I O H • N) 

given by 

(A,B) ~-+ (AN H, BO N) 

is a surjective complete lattice homomorphism. If (G,M, I) is finite, then, conversely, for every complete 
congruence relation 8 of ~(G, M, [) there exists a complete subcontext (H, N, [ n H • N) such that 8 is the 
kernel of the homomorphism HtI,N. 

Consider another special type of Q-atlases, where B1 n B2 # g holds for every covering pair of blocks 
Bt -~ B2 of the tolerance 0 (i.e., blocks such that B1 _< B~ and there is no B': Bt < B' < t32) The 
corresponding tolerance relation is called a glued tolerance. An L/0-atlas of a glued tolerance is completely 
determined by the blocks of 0 and their intersections. Thus, the definition of the mappings qv and O from the 
definition of a Q-atlas (Definition 2.6.3) is not needed. 

T h e o r e m  2.6.7 ([86]). Let L be a lattice of finite length and let E(L) be the smallest tolerance relation 
containing all covering pairs of elements in L. Then E(L) is the smallest glued tolerance relation of L. 

T h e o r e m  2.6.8 ([86]). Let (O,M,[)  be a context such that ~ ( G , M , [ )  has finite length. Then J = 
fl(E(n) (where E(L) is defined in the preceding theorem} is the smallest block relation of(G, M, I) containing 
all pairs (g,m) such that {g}' is maximal in {{h}'lh E G and (h ,m)  ~ I} or {m}' is mazimal in {{n}'ln E 
M and (g, n) ~ [}; especially, an isomorphism from ~(G,  M, I) onto LIE is given by (H, N) ~ {(A, B) E 
LIA C H and B C_ N}. 

Def in i t ion  2.6.6 ([93]). Let L(E) be the least glued complete tolerance relation of a lattice L. Then the 
complete lattice S(L) = L/E(L) is the skeleton of L. This construction may be iterated as follows: So(L) =- L 
and ST(L) = S(S~_I(L)) for R = 1 ,2 ,3 , . . .  ; S,(L) is called the r th  skeleton of L. 

[n [92], the notion of skeleton is used in the study of free complete distributive lattices. 
Def in i t ion  2.6.7 ([6]). A lattice L is (oh/3) A-distributive if it satisfies the following condition D: 
If (xst)~es.teT is a family of elements in L satisfying the conditions 

(1) o < ISt <_ ,~, o < ITI < #, 
(2) V~eT x~ exists for each s E S, 

(3) /~ses VteT x,t exists, 
(4) A,es  x~(~} exists for each function ~ E T s (the set of functions from S into T), 

then V~eTs/~,r  x~(,) exists and As~s VteT :Cst = V~ET s flsE$ Xs~(s)" 

Def in i t ion  2.6.8 ([6]). A lattice L is (a, Z) v-distributive if it satisfies the condition dual to D (i.e., the 
condition where the sums and products are interchanged). 

Def in i t ion  2.6.9 ([6]). A lattice L is completely A-distributive if it is (a,/3) A-distributive for all c~ and 
(the same for complete V-distributivity). 

Def in i t ion  2.6.10 ([6]). A lattice L is completely distributive if it is completely A- and V-distributive. 
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Thus, the join and meet operations of a completely distributive lattice (in contrast  to complete distributive 
lattices) are defined for countable subsets only. 

T h e o r e m  2.6 .9  ([84]). A concept lattice ~ ( G , M , I )  is completely distributive iff for any g E G and 
m E i such that (g, m) ~ I there exists h E G and n E i such that (g, n) ~ I, (h, m) ~ I, and h E {k}" for 
aZl k E a \ { ~ } ' .  

A free completely distributive lattice FCD(S)  generated by a set S is specified up to an isomorphism by 
the fact that every mapping ~ from S into a completely distributive complete lattice L can be extended up 
to the complete homomorphism from FCD(S)  into L. 

D e f i n i t i o n  2.6.11 ([93]). Let "P(S) denote the power set of S and X, Y C_ S. Then 

X A Y = X N Y ~ o  

and for r E N 

E ~  Y = [S \ (X  U Y)[ _< r -  1, X 

8 where ~-~o = A. 

T h e o r e m  2.6 .10 ([93]). For an arbitrary FCD(S)  

F C D ( S )  ~ ~_(P(S), P(S), A), 
s 

S , ( F C D ( S )  ~ ~_(V(S), P(S), ~ u ~ ) .  
r 

D e f i n i t i o n  2.6.12 ([93]). Let S be a finite set; then 

X~-~'~IY = IX[ + [YI > Isl + 1 - r 

Definit ion 2.6.13 ({931). Let X, Y, T be sets; then 

X A r Y  = X n Y C~ T ~ ~. 

T h e o r e m  2.6 .11 ([93]). For a finite set S and T C S the lattice ~_(79(S), 7)(S), A T U ~ : )  is a complete 

sublattice of the lattice ~__(TP(S), ~(S) ,  A tO ~ : ) .  

T h e o r e m  2.6 .12 ([93]). For a -finite set S and any T, U C_ S the following equation holds: 

r 

D e f i n i t i o n  2 .6 .14 ([93]). For a finite set S a bicover of degree r with bound K is a pair (X, ~2) with 

X , Y  E P(S)  such that,  for every R C S with [R I = r, there are XR E X and YR E Y with XR M Yn _C R and 
[XRI + ]~'h[ _< k and for X E ,12 and Y E 3;, X M Y r ~ or [X I + [Y] > k. Let bic~(S) be the smallest number 
k for which S admits a bicover of degree r with bound k. 

T h e o r e m  2.6 .13 ([93]). For a non-emptyfinite set S and f o r t  = 1 ,2 ,3 , . . . ,  ISI, ~_('P(S), 7:'(S), A r A b :  

with IT[ = [St - r i f f[S I - r < bic~(S). 
A tolerance relation defined only on the set of objects G of a context (G, M, 1) is studied in [37-39]. 

Thus, the lattice nature of the set of all concepts is not taken into account. Therefore, we consider results 
f rom [37-39] in a separate section (Sec. 5.4.) 

2.7. D e c o m p o s i t i o n  of  C o n c e p t  L a t t i c e s  a nd  A u t o m a t i c  D r a w i n g  of  T h e i r  D i a g r a m s  

Various techniques based on the results of formal concept analysis were proposed in the paper [92] as a 
means for the automat ic  drawing of Hasse diagrams of lattices. 
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By finding chains in a concept  lattice, we can determine a minimal grid, where the lattice can be em- 
bedded: if there are n independent  chains, the diagram can be embedded  in an n-dimensional grid that  is 
the product  of the chains. To determine the minimal number  of chains that allows embedding of a concept 
lattice in their product,  Wille [92] proposed the use of the notion of Ferrers dimension. 

D e f i n i t i o n  2.7.1.  Let G and M be finite sets. Then a relation F C_ G • M is called a Ferrers relation 
if ~ (G ,  M, F)  is a chain. The Ferrets dimension of a context (G, M, [)  is the smallest number  of Ferrers 
relations on G x M whose intersection is I (or the minimal number  of Ferrers relations on (7 x M whose union 
is G x M \ I ) .  

T h e o r e m  2.7.1 (Dimension Theorem [92]). The Ferrets dimension of a contezt (G, M, I) is equal to 
the order dimension of ~ ( G , M , I ) ,  i.e., the smallest number of chains which admits an order-embedding of 
~(G, M, I) into their direct product. 

Since the order dimension of a partially ordered set (P, _<) is equal to the order dimension of its Dedekind-  
MacNeille closure (i.e., ~ (P ,  P, _<), see See. 2.1) the order dimension of an ordered set (P, _ )  is equal to the 
Ferrers dimension of (P, P, _<). 

Another way to embed a lattice ~ ( G ,  M, I) into a product  of chains is to use the V-dimension of the 
lattice, i.e., the smallest number of chains whose product  admits the embedding of the lattice N(G, M, I). 

T h e o r e m  2.7.2 (on V-dimension [80]). The V-dimension of a finite lattice L is equal to the width of the 
set of all A-irreducible elements of L. 

A computer  program based on the theorem on V-dimension is reported in [92] to construct concept 
lattices. First, the program finds all at t r ibutes m E M such that {m}' are not intersections of other extents 
{n}', n E M. Then the at t r ibutes  are ordered in the following way: ml _< m2 -: .~ {mr}'  C_ {m2}'. Thus, a 
partially ordered set isomorphic to M(~(G,  M, I)) is constructed. The partially ordered set obtained inthis 
way is decomposed into the smallest number of chains by a specialization of the Ford-Fulkerson algorithm, 
and thus the dimension of the grid is established. Then the operator  can choose a basis of the grid. Thereafter 
the program locates the elements of the lattice in the nodes of the grid and joins them by line segments. Then 
the projection of the grid that  ensures the best appearance of the diagram is sought interactively [55]. A 
diagram of a lattice constructed by a computer  program is usually quite acceptable if the lattice does not 
differ much from a distributive one ([92]). 

A standard way of automat ic  drawing of lattices in formal concept analysis is based on the decomposition 
of lattices into products of simpler lattices. Products  of this kind include the tensor product  [86] (see Sec. 

2.4) as well as the subst i tut ion product,  which corresponds to the subst i tut ion sum of contexts (see [56, 84]). 
D e f i n i t i o n  2.7.2 ([56]). Let K1 = (Gx, Mr, It),  It'2 = (G2, M2, I2) be contexts. Let for any X C Gj 

and Y C_ Mj (j E (1,2}),  X j ~- {m E MjlgI jm for every g E X} ,  YJ = {g E Cjlgljra for all m E Y}. 

Let (g,m) E Gt x MI\I I .  Then a,(g)a2 = ( a x \ { g } ) u  as,  Mt(. )Ms = ( M l \ { m } ) u  Ms, and I I ( g , m ) h  = 
{(h, n) E Ixlh r g or n r m} U G2 x {g} 1 U {h~} 1 x Ms U h .  The context (Gt(g)a2, Mr(re)Ms, It(g, re)h) is 
called the substitution sum of K2 with K1 over (9, r'a) and is denoted by K!(g, m)K~. 

This construction can be unders tood as substi tut ing Ks into fi t  at the spot (g ,m) .  For lattices, the 
counterpart  of the substi tut ion sum is the subst i tut ion product.  

D e f i n i t i o n  2.7.3 ([56]). Let L be a lattice and M be a bounded lattice (with 0 and 1) and let a ~ b 
in L. Then (a] * [b) = {(u, v) E ( a ] x  [b)lu = a m v and u V b = v} is an order-isomorphism between a A [b) 
and (a] V b. An element (u, v,y) from ((a] * [b)) (M\{0 ,  1}) is denoted by u[y]v. Furthermore,  u[0]v = u 

and u[1]v = v for (u,v) E ( a ] * [ b ) ,  where 0 and 1 are the bounds of M (always assume 0 < 1). On 
(a] * M * [b) ~- {u[y]vl(u,v ) E (a] * [b) and y E M} we define the relation of partial order by means of the 
relation u[y]v <_ w[z]x = u <_ w, y <_ z, v < z. It is obvious that  the partially ordered set (a] * M * [b) is 

isomorphic to (a A [b)) x M and to M x ((a] V b). L U (a] * M * [b) together with the transit ive ciosure of the 
order relation on L and on (a] * M * [b) is a lattice called the substitution product of L with M over (a, b) and 
is denoted by L(a, b)M. 
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(Substi tut ion)Theorem 2.7.3 ([56]). Let {h} L r M2 and {n} z r G2 for all h E G2 and n E M2. Then 
~( K,(g, re)K2) ~ ~( K,) (ttxm, 7,g)~(K2). 

The program [55] that uses the substitution theorem decomposes sequentially the lattice ~(G, M, I) into 
substitution sums of indecomposable lattices with diagrams from some library. When the program construct 
the diagrams of all indecomposable factor lattices, it constructs the diagram of their product. The following 
theorem establishes the independence of the result of substitution decomposition of the decomposition order. 

(Decomposition) T h e o r e m  2.7.4 ([56]). Two substitution decompositions of a complete lattice into 
substitutionally indecomposable factors have the same length and pairwise isomorphic factors. 

Diagrams of large lattices often become illegible when various vertices and edges fuse. The idea of using a 
nested line diagram [81] consists in distinguishing a part of the diagram and substituting it by a vertex, where 
the vertex in the new diagram is connected to all vertices from the neighborhood of the removed part of the 
diagram. The removed parts of the diagram correspond to the vertices of the resulting diagram. Formally, the 
decomposition of a lattice diagram corresponds to the decomposition of a concept lattice into direct products 
according to theorems from [801 (Sec. 2.3). 

Finally, a representation of lattice diagrams by means of smaller diagrams can be carried out by using 
the properties of congruence and tolerance relations, as well as their atlases (see Sec. 2.7). 

In various studies, different conditions for embedding diagrams in grids are used (see [9I]). These condi- 
tions, for example, can take into account the rank function (an example of the insufficiency of this condition 
is presented in [91]) or the minimality of the number of intersections of the resulting diagram. In the studies 
on automatic drawing of lattice diagrams based on formal concept analysis, it is required (see [91]) that 
the lines of the diagram which correspond to the ("covering") relation ~ be straight and as steep as possi- 
ble. In [71], a method of drawing diagrams is studied where every 4-tuple of elements (a, b,c, d) such that 
a -< b, a -< c, b -< d, c -< d is depicted as a parallelogram. It was shown that a local-distributive lattice 
can be represented by such a diagram (a lattice L is called locally distributive if, for an arbitrary a E L, the 

distributive law holds for the interval [a,V{b ELla  -4 b}]). 

3. Concepts  and  D e p e n d e n c e s  of A t t r i b u t e s  

3.1. Main  Def ini t ion 

The search for dependences in data is a frequently encountered problem of computer science. This problem 
was studied within the framework of formal concept analysis, starting from [85, 15], where the definition of 
dependence in data was given. A similar definition of dependence was introduced earlier in the JSM-method 
[19, 20] and in [25, 26], but the definitions were given there in other terms. For the sake of uniformity, in this 
section we will also speak in terms of formal concept analysis. The following definition of dependence was 
given in [31, 16] (in French and German papers the term implication (Impfikation) is used, but we prefer to 
use the term dependence in line with the English and Russian terminology). 

Defini t ion 3.1. Let ff  = (G, M, [) be a context and A C M, /3 C_ M be arbitrary subsets of attributes. 
The set of attributes B depends on the set of attributes A (denoted by A ~ B) if all objects from G that 
possess the set of attributes A also possess the set of attributes B, i.e., A ~ C B t (or B" D A"). 

Thus, the dependence of the set of attributes t3 on the set of attributes A corresponds to the fact that 
in the Hasse diagram of the lattice ~(G, M, [) the concept (A", A') lies below the concept (B", B'). 

3.2. Search for D e p e n d e n c e s  in the  J S M - M e t h o d  

The first version of the JSM-method of automatic hypothesis generation (named so after John Stuart 
Mill) was proposed in [19]. In this method, hypotheses concerning the causes of properties are sought among 
the concepts of the context determined by a set of objects and a set of structural and functional properties 
(or attributes) of these objects (see the recent papers [22-24] and reviews [48, 50], where a complete list of 
published papers about the JSM-method is found, including papers about applied studies in pharmacology 
and technical diagnostics). 
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Assume that W is a property of objects from a domain under study. Then the input data for the JSM- 
method can be represented by the sets of positive, negative, and undefined examples. Positive examples are 
objects that are known to possess the property W, and negative examples are objects that are known not 
to possess this property. Undefined examples are those that are neither known to possess the property nor 
known not to possess the property. 

In terms of formal concept analysis, this means that three contexts are considered: the positive context 
K+ = (G+,M+,I+), the negative context K_ = (G_,M_,I_), and the undefined one K, ~ ( G.:, M,., L: ). 
Here G+, G_, and G, are the sets of positive, negative, and undefined examples, respectively; M is the set of 
"structural" attributes (that does not contain the "functional" property W); Ij C_ Gj x M, j E {+, - ,  r}, are 
relations that specify the structural attributes of positive, negative, and undefined examples. In what follows, 
we will use X'  instead of X 4 ,  X t-,  X t* when it does not cause ambiguity. 

Now, the JSM-hypotheses can be defined in the following way. If the intent i+ of a positive concept 
(e+, i+), i.e., of a concept of a positive context, does not coincide with the intent of a negative concept, then 
the concept (e_,i_) is called a positive hypothesis with respect to the property W. Negative hypotheses are 
defined dually. 

Further requirements (called conditions or empirical dependences) on the form of the hypotheses are pro- 
posed in the JSM-method. These requirements are lattice-ordered with respect to their logical strength. The 
stronger the condition satisfied, the more plausible the hypothesis. For example, a positive "counterexample 
forbidding" condition requires for a positive hypothesis (e+, i+) that no negative example possess all properties 
from i+, i.e., Vg e G-,  i+ ~ {g}' (analogously for negative hypotheses). The "counterexample forbidding" 
condition is quite natural and is used in various systems of machine learning and pattern recognition (see, for 
example, [60]). This condition can be formulated as the requirement that "generalization of positive examples 
should not cover any negative example." Note that if (e+, i+) is a positive JSM-hypothesis that satisfies the 
"counterexample forbidding" condition with respect to the property W, then i+ ~ W is the dependence in 
the sense of Definition 3.1 for the context K+_ = (G+ U G_, M t3 {W}, I+ U I_ t) G+ x {W}). 

Whereas a graph-theoretic interpretation of a concept for the context ( G , M , I )  is the maximal-by- 
inclusion complete bipartite subgraph of a bipartite graph, the interpretation of a hypothesis requires a 
tripartite graph. The vertices of the first and third parts of this graph (we denote it by T) correspond to the 
positive and negative examples from the sets G+ and G_, and the vertices of the second part correspond to 
the attributes of the set M U {W} [50, 51]. The vertex that corresponds to the object g+ E G+ is connected 
with all vertices that correspond to the attributes from {g+}' and only with them. For negative examples 
the converse holds: the vertex that corresponds to the object g_ E G_ is adjacent only to the vertices that 
correspond to the attributes not included in {g_}'. Then, a hypothesis that satisfies the "counterexample 
forbidding" condition corresponds to the tripartite subgraph of T, where the vertices of the third and second 
parts constitute a maximal bipartite subgraph (say, the subgraph D), and the vertices of the second part of 
this subgraph dominate the vertices of the first part (i.e., every vertex of the third part is adjacent to a vertex 
of the second part of D). 

Example .  Consider the graph T in Fig. 7, where the vertices of the second (middle) part are labeled 
A, B,C, D, E, F,G. Then the sets of positive and negative examples of the corresponding problem On hy- 
potheses will be G+ = {X1, X2, X3, )(4, Xs}, G_ = {I/1, !el, lea, Y4}, where X[ = {A, B,C}, X; = {A,B,D}, 
X; = {A,E,F} ,  X~t = {A,C,G}, X'5 = {A,C,G}; II[ = {A,F,G}, Y2' = {A ,D,F} ,  Y~ = {B,E,F,G},  
Y4 '={B,D,F}.  

Positive concepts (i.e., concepts of the positive context (G+, M, I+)) are ({X1, X2, Ks, X4, Xs}, {A}), 
({X1,X2}, {A,B}), ({Xt,X4, Xs}, {A,C}), ({X4, Xs}, {A,C,G}). The second, third, and fourth pairs 
correspond to the hypotheses satisfying the "counterexample forbidding" condition, i.e., conditions of the 
form X --+ W for the context K+ =" (G+ U G_, M U {W}, I+ U I_ U G+ x {W}). In the case of the first pair, 
the vertex of the middle part that has the label A is not adjacent to the first and second vertices of the right 
(third) part. Therefore, {A} --+ W is not a positive hypothesis that satisfies the "counterexample forbidding 

1672 



x . /  . . . .  - - y .  

Fig. 7. Tripartite graph corresponding to the problem of hypothesis generation. 

condition." 
We can propose another description of hypotheses that satisfy the "counterexample forbidding" condition. 

This condition is especially convenient when we study not a single property W, but a subset of properties 
of a set of properties MR. Consider two contexts: Ks = (G, M,, I,) and K] = (G, MI, Ii), where Ms and 
M f are interpreted as the sets of "structural" and "functional" properties of objects from G, respectively (for 
example, the structural properties of a molecule and the biological properties of the corresponding chemical 
compound). Then a hypothesis that satisfies the "counterexample forbidding" condition and is about the 
dependence of the set of functional properties F C 34/ on the set of seructural properties S C Ms (i.e., the 

dependence S ~ F) corresponds to the triple (S I*, (S[') I~, (SI') 1', where (Sr ' )b = F. 

Hypotheses can be used for classification of undefined examples from G, (i.e., for establishing whether 
they possess the property W or not). If an undefined example g, E G, possesses all attributes from the intent 
i+ of a positive hypothesis (e+, i+) (i.e., {g,}' D. i+) and does not possess all attributes from the intent of any 
negative hypothesis, then we can infer that {g,} is likely to possess the property W. The pair (e+,/+)is called 
a hypothesis in favor of a positive forecast for gr. If an undefined example g, E GT possesses all attributes 
from the intent i_ of a negative hypothesis (e_, i_) (i.e., {g,}' D i_) and does not possess all attributes from 
the intent of any positive hypothesis, then we infer that {g,} is likely not to possess the property W. The 
pair (e_,i_) is called a hypothesis in favor of a negative forecast for g,. If {g,} does not include an intent 
of any negative or positive hypothesis, or includes intents of hypotheses of different signs, then no forecast is 
produced. 

The following graph-theoretic interpretation of a forecast was proposed in [51]. 
Defini t ion 3.2.1. The following problem is called the problem on "domination by the parts of complete 

bipartite graphs" (DPCBG): 

INSTANCE. Tetrapartite graph G = (l/)U 1/2 U Va U V4, E), E C (V~ x V2) O (V2 x l/a) U (Va x V~). The 
graphs Bt,/72, Ba are the subgraphs of the graph G induced by the sets of vertices (V1UV2), (�89 (VaUV4), 
respectively. 

QUESTION. Does there exist a complete bipartite subgraph C = (W2 U Wa, W2 x Wa) of the graph B2 
such that it is maximal by inclusion, W2 C V2, !d/h C_ Va, the set of vertices W2 dominates V1, and the set of 
vertices Wa dominates V4? 

Defini t ion 3.2.2. The following problem is called the "problem on a hypothesis in favor of a positive 
forecast" (HFPF): 

INSTANCE. Input data: contexts h'+_ = (G,  tO G_, M tO {W}, I+ U I_ O G+ • {W}), It', = (G~, M, L),  

and the objectsg~ EGT. where M =  I<IUL';.G+ = ~ , ' i , t + =  U {v~} x {v~ . . . .  ,v~},and {v~ . . . .  ,v~}is the  

union of the set of all vertices of Va adjacent to the vertex t,~ E 14 and the set of all vertices of VI not adjacent 
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Fig. 8. Tetrapartite graph corresponding to the problem of a forecast from the example. 

to the vertex v? E �89 G_ = V4, I_ = [.J {v~} • {wl, . . . ,wq},  where v~ E V4 and {wl, . . . ,wq} is the set of 

all vertices of V3 not adjacent to the vertex vk E V4. 
QUESTION. Does there exist a hypothesis (e+,i+) with respect to the property W that satisfies the 

"counterexample forbidding" condition and is a hypothesis in favor of a positive forecast for g+, i.e,, i+ --* W 
is the dependence for the context K+_ = (G+ U G_, M t.J {W}, I+ U I_ t_J G+ • {W}) and i+ C {g,}'? 

L e m m a  3.2.1 ([51]). The problem DPCBG for the tetrapartite graph G given in Definition 3.1 has a 
solution iff ~he corresponding problem of HFPF has a solution. 

Example .  Consider the graph in Fig. 8, where the vertices of the first part are labeled C, F, G, and the 
vertices of the t~'ird part are labeled A, B, D, E. Then the sets of positive and negative examples in the corre- 
sponding HFPF problem for the undefined example g,: {g~}' = {A, B, D, E} will be G+ = {Xt, X2, .u X4}, 
G_ = {YI, !e~, Y3, Y4}, where X[ = {A ,B ,C} ,  X~ = { A , B , D } ,  X~ = {A ,E ,F} ,  X~ = (A,C,G}; Y[ = {A}, 
Y~ = {d,D},  Y~ = {B,E} ,  Y~ = {B,D}.  The pairs ({X, ,X2,  X3,X4},.{A}), ({X1,X2}, {A,B}) ,  ({X1,X4} , 
{A, C}) are the concepts for the positive context K+ = (G+, M, I+). Only the second pair is in favor of a 
positive forecast for g~, since in the case of the first pair the first and second vertices of the fourth part are 
not dominated and in the case of the third pair the vertex with label C does not lie in the third part. 

Finn [22] proposed the so-called "generalized JSM-method." Each "generalized" hypothesis concerning 
the property W is a triple of the form ((e+, i+), B, W), where (e+, i+) is the concept of the positive context 
K+ = (G+, M, I+), W is the property under study, and B is the family of all "specific obstacles" (different 
from (-)-hypotheses): the sets of form H', where H _C G_ and H' is minimal by inclusion among all sets 
of the form {Y'[Y C G_, i+ C Y'}, i.e., among intersections of the attributes of negative examples that 
possess properties from i+). The generalized hypothesis ((e+, i+), B, W) means that "W depends on i+ in 
the absence of the sets of attributes from the family B." Contrary to the case of hypotheses that satisfy 
the "counterexample forbidding" condition, i+ can coincide with an intent i_ of the negative context K_ = 
(G_,M, I_). Many applications can justify the introduction of generalized hypotheses, for example, the 
pharmacological one, where the "structural causes" of a biological activity of a chemical compound, i.e., some 
parts of the corresponding molecule, can be suppressed by specific parts of the same molecule. 

The JSM-method was defined above in terms of formal concept analysis. It  Can also be formulated 
for a more general case, namely, for the case where a semi-lattice operation Yl is used instead of the set- 
theoretic intersection cl in the definition of ' and " operations (and therefore, for the generation of concepts 
and hypotheses). In [50] a semi-lattice operation was defined for sets of graphs and numerical intervals and 
in [97] for data with numerical parameters. The description of a special logical language used for formulation 
of the JSM-theory can be found in [2-5]. Section 5.4 contains some results concerning the relation of concepts 
to tolerance relations. In See. 3.6 we present results concerning the stability of hypotheses, and in Sec. 4.6 
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we consider algorithmic complexity issues of hypothesis generation. 

3.3. Bases of Dependences  

The problem of generation of a minimal set of dependences that can reproduce the whole set of depen- 
dences is considered in [85, 16] (dependences are called implications there). 

Defini t ion 3.3.1 ([16]). A dependence A ---, B is called informative dependence (ID) if B r A. 
Defini t ion 3.3.2 ([16]). A dependence A ---+ B is called a maximal informative dependence (MID) if for 

all X and Y such that X, Y C G, the conditions (X C A), (B C Y), (X ~ Y) imply ( X =  A) and (Y = B). 

P ropos i t i on  3.3.1 ([16]). Let A C M. The dependence A --* A" is a maximal informative one iff 
X" C A holds for an arbitrary X C A. 

Defini t ion 3.3.3 ([16]). A set A C M is called a gap (lacune) if A ~ A", i.e., the set A is not closed. 
The gap A is called irreducible if the dependence A ~ A" is maximal. 

Note that if A is an irreducible gap, then the whole interval (A, A") consists of reducible gaps. Proposition 
3.3.1 allows one to establish a one-to-one correspondence between irreducible gaps and maximal dependences. 

As noted in [15, 16], the following relations hold for dependences (as well as for ID from [16]). 
(1) I f A ~ B a n d C - - - * D ,  t h e n A t A C ~ B U D ,  

(2) If A ~ B and B ~ C, then A --* C, 
(3) If A --* B, then AU C --+ B, where A O C ~ B can be not an ID. 
In [16], relations (1)-(3) are called inference rules. The set if '  of ID is said to be deduced from ,7 (denoted 

by ff I- ,:7') if ,7' can be obtained from ff  by a sequence of applications of rules (1)-(3). 
Defini t ion 3.3.4 ([16]). Let ,7 be a set of ID. A dependence i E ,7 is called redundant if f l \ { i }  ~- {i}. 

The following notion was introduced in [16] as a means of distinguishing minimal non-redundant subsets 
of ID that can generate the whole set of ID. 

Defini t ion 3.3.5 ([16]). Let A C M; then the set A = A U {B"IB C A, B E ,7, B" r A '}  is called the 
presaturation (prd-sature') of A with respect to the set of gaps J .  

It can be easily seen that the IDA ~ A is redundant with respect to the set of ID {B ~ B"IB C A, B E 

,7}. 
Duquenne and Guigues [16] showed that the presaturation operation (taking A to A) has the following 

properties: 

(4) the inclusions A C A C A" hold for arbitrary A C_ G, 

(5) if [ is the set of irreducible gaps, then A = A U {B"[B C A, B E I, B" ~ A"} holds for an arbitrary 
AC_G, 

(6) the operator A ~ A is a monotonic one, i.e., B C C implies (A U B) C (A U C), 

(7) if A = A', then A ~ A" is a f l -redundant  dependence, where ,7 is the set of all MID. The converse 
does not hold, in general, 

(8) if A E [ and A = A, then the dependence A ~ A" is not ,7-redundant (where ,7 is the set of all 
MID). 

Defini t ion 3.3.6 ([t61). Let A C G. We define a sequence of the form Ao = A, Ak+l = Ak, k E N. Ther~ 

.~t = U{Aklk �9 I~} is called fl-saturation of A. 
It is easy to see that the tilde ( - )  denotes a closure operation and that property (9) (see [16]) holds: 

(9) [f/k = .4, then the dependence A --* A" is redundant with respect to the set of all MID. 

Defini t ion 3.3.7 ([16]). A set A C M is called a node of non-redundancy (NR) if A = / i  and A r A". 

P ropos i t i on  3.3.2 ([16])..4 set .4 C M is an NR iff ,4 = A and A r A". 

Defini t ion 3.3.8 ([161). A set A C_ J,[ is called a minimal NR (MNR) if (C" = A") and (C = C) imply 
C = A for an arbitrary C C_ A. 

Note that if A is a MNR and B C_ A C B", then A = /~. Denote by N the set of all NR and by No the 
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set of all MNR. For sets X , Y  by IX, Y] denote the set { Z I X  C_ Z C Y} .  

P r o p o s i t i o n  3.3.3 ([16]). Let B be a gap and f f  be a family of dependences; then 

(1) the dependence B ~ B"  is J - redundan t  if [B, B"] n N = o ;  

(2) the dependence B ---* B" is ff\`Ta-irredundant if B E fin, where A E No and ,7a = {B C_ MIB  C_ 

A C_ B"} = {B C_ M[[3 = m}. 

Define the equivalence relation -,- for objects from M: A. B C_ M, A "~ B ~- A] = /~. Proposition 3.3.3 
implies the following: 

T h e o r e m  3.3.4 ([16]). Let K = (G, M, I) be a context and ,.7" be a family of lD of this context. Then an 

arbitrary minimal subfamily `7"~, such that one can deduce ,7 from it, has the form fir. = {A "--" A"IA E R}, 
where R is a representation system of equivalence classes of MNR. 

Wille [85] proposed a different means of deriving a minimal subset of the set of dependences. 
Def in i t ion  3.3.9 ([85]). Let K = (G, M, I) be a context. A set of attributes A _C M is called a proper 

premise (echte Pr~misse) if A ~ A" ~ U{(A\{n}"ln E A}. A dependence A ~ B is called proper if A is a 

proper premise and B = A"\ U {(A\{n})"ln E A}. 
If we have a list L of all proper dependences of the context K = (G, M, I), then the set of all concepts 

of B(K)  can be obtained by the use of the fact that A" = A LJ { Y I ( X  ~ Y)  E L, X C A}. 
The following recursive definition of a dependence base was proposed in [77]. 
Def in i t ion  3.3.10. Let K = (G, M, [) be a context. A set P C M is called a pseudointent if P" = P 

and Q" c_ P for all pseudointents Q such that Q c P. 
Then the set of all base dependences is {P ---, ( P " \ P ) I P  is a pseudointent}. 

3.4. D e p e n d e n c e s  in M a n y - V a l u e d  c o n t e x t s  

In [31, 80, 94] various types of dependences in many-valued contexts are considered. It can be -asily 
shown that certain 0-1 contexts can be introduced such that dependences therein are naturally related to 
dependences in initial many-valued contexts. 

Def in i t ion  3.4.1. Let K = (G, M, W, [) be a many-valued context (see $ec. 2.2). For ]I, Z C_ M, Z is 

called functionally dependent on Y if, for all g, h E G, y(g) = y(h) for all y E Y, implies z(g) = z(h) for all 

z E Z, i.e,, there is a function f :  W Y ~ W z such that f (y(g))y~y = (z(g)) ,~z for all g E G. 

Def in i t ion  3.4.2. Let K = (G, M, W, [) be a many-valued context, then Ky = (G x G, M, If) is a 

context such that (g, h ) [ fm  r re(g) = re(h) for g, h E G, rn E M. 
P r o p o s i i t i o n  3.4.1 ([94]). For a many-valued context K = (G, M, W, I) Y, Z C M, Z is functionally 

dependent on Y in K iff Y ---* Z is a dependence in K], i.e., Y'  C_ Z' for K S. 
Defin i t ion  3.4.3. Let K = (G, M, W, I) be a many-valued context, Y, Z C_ M, 5 E R, 5 > 0. Z is called 

5-dependent on Y if for all g, h E G, lY(g) - Y(H)I < 5, for all y E Y, implies Iz(g) - z(h)I <_ 5 for all z E Z. 
Def in i t ion  3.4.4. Let It" = (G, M, W, [) be a many-valued context, then K6 = (G x G, M, [~), where 

for g, h E G, rn E M (g, h)f6rn iff [rn(g) - rn(h)l _< 5. 
P r o p o s i t i o n  3.4.2 ([94]). For a many-valued context 1"( = (G, M, W, [), ]I, Z C_ M, Z is 5-dependent 

on Y i f f Y  ~ Z is a dependence in KI,  i.e., Y '  C Z' in Ks. 
Defin i t ion  3.4.5. Let K = (G, M, ~V, I) be a many-valued context and _< be a relation of partial order 

on W. For Y, Z C_ M, Z is called ordinally dependent on Y if, for all g, h E G, y(g) < y(h) implies z(g) < z(h) 

for a l l z E  Z. 
Def in i t ion  3.4.6 Let K = (G, M, W~ I) be a many-valued context. Then Ko = (G x G, M, Io), where, 

for g,h E G, rn E M, (g ,h) Iom r re(g) < re(h). 
P r o p o s i t i o n  3.4.3 ([94]). Z functionally depends on Y in [,[ = (G, M, W, [) for Y, Z C_ M iff Y -~ Z 

is a dependence in h" l, i.e., Y'  C_ Z' in 1(o. 

3.5. D e p e n d e n c e s  and  Scal ing 

1676 



In papers [88, 33] the relationships between dependences in contexts and dependences in their scales are 

studied. 
Def in i t i on  3.5.1 ([88]). Let (K, rI,~eM Sr~) be a scaled context,  where K = (G, M, [) and R C M be a 

subset of attributes. Then the context (G, NR, JR) is called the derived context for the set R, where Nn is the 

set of all attributes n E N such that (g,~),~eMJ,~ r (h,,,)m~MJn for all elements of X,~M such that gT = hr 

for all r E R (thus, NR is the set of at tr ibutes determined by components  from R), ]R = J M G • NR. 

Several definitions of dependences in scaled contexts were considered in [88]. 
Def in i t i on  3.5.2 ([88]). Let (K,I-[meMS,~) be a scaled context. A set of a t t r ibutes  Y C M depends 

on a set of at tr ibutes X C M ,  if every intent of the derived context for (K, I'I,~exor" $,,,) is an intent of the 

derived context for (K, 1-I,,~ex s,,~). 

D e f i n i t i o n  3 .5 .3  ([88]). A set of at tr ibutes of a scaled context (K, rImEM Srn) weakly depends on the set 

attributes X if every intent of the context (K, 1--[,~eY S,~) is an intent of the context  (K, I-I,~ex s,,~). 

P r o p o s i t i o n  3.5.1 ([88]). Let (K, 1-I,~eM Bin) be a Boolean-scaled context of a complete many-valued 
context K, where K is a direct product of scales. Then, for every X , Y  C M, the following conditions are 
equivalent: 

(1) Y depends on X in ( K, 1-Imam Bin), 

(2) Y weakly depends on X in (K, l-I,~eM Bin), 

(3) r functionally depends on X in (K, I-'[,~eM B,,). 

Def in i t i on  3 .5 .4  ([88]). Let K be a field. Then the relation 3- of the context (K, K, 3_) is defined as 

h 3_ k = hk = 0. The fusion of such contexts is defined as 1-I,~eM Sr, = (K  IMI, K IMI, 3_), where ff 3- b =- ab = O. 
This context is called a linearly scaled context. 

P r o p o s i t i o n  3.5.2 ([88]). Let (G, M, rI)  be a linearly scaled context with respect to the field K of a 
complete many-valued context. For arbitrary X, Y C M the set Y depends on X in (G, M, l-I) iff every tuple 

(Y(g))g~c, where y E Y,  linearly depends on {(x(g)geai x �9 X}  in K [el. 

D e f i n i t i o n  3.5.5 ([33]). Let P be a partially ordered set with the order relation >; then the context 
(P, P, >)  is called an ordinal scale and is denoted bv Op. 

Def in i t i on  3 .5 .6  ([33]). Let K = (G, M, IV, [) be a complete many-valued context with partial order _< 
on W • W. Then [x,y,z] denotes that x < y < z or x > y > z, i.e., y lies between x and z. A set Y C_ M 
weakly depends on X C_ M if, for all g, h �9 G the fact [x(g),x(h),x(k)] for all x �9 X implies [y(g),y(h),y(k)] 
for all y �9 Y. 

P r o p o s i t i o n  3 .5 .3  ([33]). Let K = (G, M, W, I) be a complete many-valued context scaled by the direct 
product X,~eMOp so that the values of each attribute m �9 K comprise the partially ordered set Pro. Then for 
X, Y C M the following conditions are equivalent: 

(1) Y ordinaIly depends on X in K, 
(2) Y depends on X in (K; • 
(3) Y weakly depends on X in (K; • 
P r o p o s i t i o n  3 .5 .4  ([33]). Let K = (G, M, [) be a complete many-valued context with partially ordered 

set of attribute values M. Let Ko = (G • G, M, [o) be a context such that (g, h)[orn = re(g) < re(h) and let 
Kio = (G • G x G, M, 1~o) be a context such that (g, h, k)Iiom ~ [rn(g), rn(h), rn(k)]. Then for X, Y C M: 

(1) Y ordinally depends on X iff X '  C Y' for the context Ko; 
(2) Y interordinally depends on X iff X'  C Y' for the contezt K~o. 
Def in i t i on  3 .5 .7  ([33]). Let K1 and Kz be contexts: K1 = (G, ml ,  I1), K2 = (G, m2, I2). The context 

(G. MI (2 M.z, [1 (2 [2) is denoted by /x'l IK2. 
P r o p o s i t i o n  3.5.5 ([:33]). Let K be a complete many-valued context (G, M, ~t\ [) scaled bg the apposition 

x ~e~,~Oe,,, I x ~ e M  Oe~  

so that the values of each attribute rn �9 K constitute the ordered set Pro. The following conditions are 

1677 



equivalent for X, Y C_ M: 
(1) Y interordinally depends on X in K,  
(2) Y depends on X in (K;  X~MOp. .  I • Op.,), 
(3) Y weakly depends on X in(K;  • •  Op..). 

3.6. Stability of Dependences 

Definition 3.1 of the dependence on attributes of the form X ---+ W assumes that the property W is 
caused by common properties of objects from X'  that have the property W. All attributes that do not hold 
for these objects are considered implicitly inessential for the dependence X --+ W. It is reasonable to consider 
that the greater the set of examples X ', the more plausible the dependence X ~ W. However, in a case of, 
say, the dependence X1 ~ WI, the examples can be "too similar" as obtained, for instance, in a single series 
of experiments. In another case, say of the dependence Xz --* W2, the examples can be "more independent" 
and, therefore, can vary from each other considerably, except for the at t r ibutes  from X. This means, in 
particular, that the second dependence can be obtained starting from a lesser number of examples, i.e., for a 
subcontext (G__, M , I )  of the initial context (G, M, I), ___G c G, _/= I A G • M, since the independence of data 
allows one to separate faster and more reliably the essential data from the inessential data. This means, in 
turn, that the second dependence holds for a greater number of subcontexts of the context (G, M, [) induced 
by subsets of the set of objects G, i.e., this dependence is more "sizable" with respect to the randomness of 
selecting data that correspond to the context (G, M, I). The fewer the number of hypotheses, the greater the 
aver'age stability of the hypotheses. 

The idea of stability was used for analysis of the plausibility of dependences of different nature, for 
example, in methods of nonparametric statistics, namely, in that of the jackknife and bootstrap methods [17]. 
[a [491, the notion of the stabil~ty of JSM-hypotheses was introduced. Here we present the main results from 

[49] in terms of formal concept analysis. 
Let K = (G, M, [) be a context and H : (X ~ W) be a dependence over the attributes of this context. 

We introduce the following notation: 

(H)j -- {Z _C GIY C X',IYI = ~: ,Y'= X}, 

= U ( H ) j ,  
j = 2  

"7(j, H) = I(H)jl, 7(Z, H) = I (H)~I ,  n = IX'f- 

In the cases where a fixed dependence is treated, we will omit the arguments j and H of the function 7, 
i.e., we will simply write 3'/or 7z- 

Definition 3.6.1 ([49]). Let K = (G, M, [) be a context. Then for a dependence X ---, W of the context 
K stability indices are defined as follows: 

(1) the stability index of the j t h  level (2 < j _< r~ - 1) has the form 

(2) the integral stability index has the form 

J~ - ~ 

2 ~ - n - 2 '  

(3) the averaged stability index has the form 

- -  . 

r ~ - - ' 2  . 

The stability indices of the dependence X ~ W are related to X in the same way as the sample variance 
(computed by the jackknife method, see [tT]) is related to the sample mean in statistics. 
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The following property of stability indices follows from a simple property of monotone Boolean functions: 
the relative amount of units of a monotone Boolean function in the (j + 1)st layer of a Boolean hypercube is 
greater than that in the j t h  layer. 

L e m m a  3.6.1 ([491). Let K = (G, M, I) be a context. Then for a dependence X --* W of the context K,  

the following inequalities hold: J2 < . . .  <_ J , - l .  
We will see now how the stability indices change as the set of objects G is updated by new objects. 
After the arrival of k new objects the stability indices of dependences after will be supplied by the 

superscript k, e.g., J~. We also set, for the sake of convenience, 

& = t ,  

Jj  = 0  f o r j  E Z \ { 2 , . . . , n } .  

T h e o r e m  3.6.2 ([49]). Let K = (G, M, I) be a context. Let the set G be updated with k new objects, 
then the stability indices are within the following bounds: 

where 

--k 

- -k  
J~ _< J~ _< J~, 

1 ( ( k )  ( k )  ) 
J ~ -  - J('~7-k)- 7 J +  1 7 j - 1 + . . . +  k - 1  7 i -k+ l+Tj -k  , 

J) = ~ 7 j  + + " ' "  + , 
, i ,  j 1 j - 1  

2k "7~ + 2~ - l 
2 '~+~ - (n + k + 2)' 

-k  7~ + 2"(n k - 1) - k 
J 2  = . . . . . . . . .  

Consider now the limits of the upper and lower bounds of stability indices as k --~ oo. The behavior of 
the lower bounds of the layered indices differs, namely, the indices of the higher levels tend to l, while the 
indices of the lower levels tend to 0. In fact, by Theorem 3.6.2, we have 

,~+k-1 - ( ,~+k-----~ ")',~-t + and lim jk  = 1. 
\ n + k - t )  ~ -  1 k~c,~ r~+k-1 

On the other hand, 

,~+k " 72  and lira J~ = 0. 
(2) 

The question concerning behavior of the lower bounds of the middle layer indices and of the averaged 
index remains open. The limit of the lower bound of the integral stability index is strictly positive and less 
than 1: 

lim J~(k) - 7~ + l  > 0. 
k ~ o o  2 n - -  

The upper bounds of the stability indices behave uniformly: they increase monotonically and tend to 1 
aS ~ ---+ CXg. 

The analysis of the asymptotic behavior allows one to advance conjectures only about the integral index 
J~: most likely, it will grow since it has small "decreasing reserve." Now, if we consider a set of objects X' 
that %upport" the dependence X ---, W as having arisen from updating an initial set of size r < IX'I, then 
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we can conclude that dependences with greater {z'[ are likely to have greater J~ than dependences with lesser 

IX']. A "soft" dependence of J~. on the number of examples allows one to prefer the integral stability index 
as the most informative one. On the one hand, it reflects explicitly the stability of a dependence and, on the 
other hand, it reflects implicitly the number of objects that "support" the dependence, i.e., [X'I, 

The idea of stability can be realized in different Stability indices. In certain situations some of them 
are preferable to others. Consider the index JF based on the stability of forecast. Let K+ = (G+, M, I+), 
K_ = ( G _ , M ,  I_), K~- = (K, ,  M, Iv) be a positive, a negative, and an undefined context, relative to the 

property W ~ M, respectively (see Sec. 3.2). Let F+, F_ be sets of all positive and negative forecasts 
obtained on the basis of dependences for h'+ and K_. Then JF is defined as the fraction of all subsets of the 
set G+ U G_ for which the sets of all forecasts coincide with the forecasts generated from the whole set of 
objects G+ U G_. Examples of other definitions can be found in [49 t. 

3.7.  Par t i a l  D e p e n d e n c e s  on A t t r i b u t e s  

The notion of partial dependence was introduced in [59] (under the name of implication partielle). On 
the one hand, this notion generalizes the notion of dependence; on the other hand, i t  "inverts" the latter. 

since a dependence A ---+ B corresponds to the partial dependence B P ~ A, where p is a measure of partial 
dependence. 

Let K = ( G , M , I )  be a context, B C M, and [B[ denote the number of objects that have the set of 

attributes B. Then the "probability" of B is defined as P(B)  = ~Cl and the "conditional probability" of the 

set of properties B2 with respect to the set of attributes B1 is defined as 

{ la,~ml iflB~lr IBm{ 
P(B~tBt) = 1 otherwise. 

Def in i t ion  3.7.1 ([59]). A partial aepe,~aence (PO) 8~ ~, B~ is a triple of the form (B~, B2,p), where 
B1, B~ C_ M,  and p = P(B~IB1). 

Defini t ion 3.7.2 ([59]). The set J(~_(K)) = {A ", BIA, B _C M,p = P(BIA)} is the set of PD for the 
lattice generated by the context K = (G, M, I). 

T h e o r e m  3.7.1 ([59]). Let M~, M2, M3, M4 C M be some intents, where Mt C_ M2 C_ M4, Mt C_ Ms C 
M4. Then 

F(M2]Mt)F(M4[M2) = P(M3[Mt)P(M4[M3) = P(M4[M,). 

The transitivity of a partial dependence (i.e., A P, B, B P. ~ C =~ A pq~ C) does not hold for intents 
that are not contained in each other as in Theorem 3.7.t. 

Def in i t ion  3.7.3 ([59]). Let ,.7 C_ {A P- , BIA C B C M, p ~ Q n [0, 1]} (where q is the set of rational 

numbers) be a set of partial dependences. Then ~he context K = (G, M, I) such that ,7 C J(~3(K))  (i.e, 

(A P) B) E ,7 implies P(B[A) = p for the context K) is called a realization of ft .  
Def in i t ion  3.7.4 ([59]). Two realizations (G, M, [) and (H, M, J)  of the set of partial dependences are 

called equivalent 

i{g e alg~b for all b e B}I 
~--- C o A s t  

1{9 ~ HIgJb for all b e B}l 

if for an arbitrary B C_ M. 
The following theorem from [59] establishes a criterion of realization of sets of PD, 

T h e o r e m  3.7.2. ,4 set ofPD :f C_ {A ~ B!A < B c M, p ~ qn[0, t]} ca,~ be reali-~ed iff the following 
system is solvable for variables pA E Q ~ [0, 1], ,4 C B C M: 

p ~ ( - t )  ~\~l _> 0 for ~.ll s c M, ( t )  
{,VCMl,~2q} 
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p ~ = 0  ~ P~r= l ' f o r a l i A C _ B _ C N C M ,  

p S = p S . p A  for a I 1 S _ C A C B C M ,  

p~ = p i f ( a  " ,  B) E J ,  

where p is the variable that corresponds to P( B[K). 

(2) 
(3) 
(4) 

The problem of the search for a minimal set of partial dependences that allows one to reconstruct the 
whole set of PD (in a way similar to that in the case of dependences, see [16, 77, 85] and Sec. 3.3) is stated 
in [59]. 

Defini t ion 3.7.5 ([59]). A partial dependence A p * B is derived from the set of PD ff (denoted by 

ff f- A P * B) iff the system of equations from Theorem 3.7.2 for the set ,.7 has a unique solution such that 
pA =p .  

Def ini t ion 3.7.6 ([59]). The set J < I N ( K )  = {A ' ,  BIA C B},  where A is a set of intents of the 
concepts from ~(K) ,  is called a set of proper PD (PPD). 

Defini t ion 3.7.7 ([59]). A set of PPD 57" C_ J < I ( ~ ( K ) )  is called a set of generating elements for 

f f<l (~(K))  iff/7 1- f f< l (~(K)) .  A minimal-by-inclusion set of generating elements is called a base. 
The following theorem on the size of a base holds. 
Theorem 3.7.3 ([59]). If  J C_ J < I ( ~ ( K ) ) i s  a base of f f (N(K)) ,  then Iff[ <- I ~ ( K ) I -  1. 
The following theorem establishes the type of lattices, where the upper bound from Theorem 3.7.3 is 

sharp. Therefore, the construction of a minimal base does not always lead to the result desired, i.e., to a 
considerable reduction of the size of PPD. 

Theorem 3.7.4 ([59]). Let E be a finite lattice with the set J(E) of A-irreducible elements such that 
IZ;I- IJ(Z;)ll _< 2. Then the relation tJI = Iz ; I -  t holds for an arbitrary base 

j c 

and an arbitrary context K such that fs( K) ~ s 

4. Algor i thmic  P r o b l e m s  of Concept  Generation 

4.1. Crucial Problems.  Main Algori thms for Concept  Generat ion 

In this section we dwell upon the problems of the algorithmic generation of concepts. These problems 
are essential for applications, where algorithmic efficiency is one of the main issues. 

[t is easy to show that for some contexts the number of all concepts can be exponential with respect to 
the size of the context. Consider, e.g., the context K = (G, G, #),  where IGI = n (i.e., the Boolean scale of 
dimension n, see Sec. 2.5.). The number of all concepts is 2 '~ - 1. An additional difficulty is the intractability 
of the problem of determining the number of all concepts (Theorem 4.1.1.). Knowledge of this number could 
be helpful in effective resources allocation. In [74] the following definitions were introduce to capture the 
notion of a "hard" enumeration problem. 

Defini t ion 4.1.1 ([74]). Let a counting Turing machine (CTM) be a nondeterministic Turing machine 
(TM) (for the definition of TM see [34]) with an auxiliary output device that prints the number of accepting 
computations induced by the input in binary notation on a special tape. A CTM has polynomial-time 
complexity if the longest accepting computation induced by the set of all inputs of size n takes pol(n) steps, 
where pol(n) is some polynomial of n. # P  is the class of functions that can be computed by counting Turing 
machines of polynomial-time complexity. A problem [I1 from # P  is #P-complete  if an arbitrary problem 
172 from # P  can be polynomially reduced by Turing to FIn (i.e., if there is a polynomial-time algorithm that 
solves Ha using an oracle that outputs solutions for instances of [I~ in unit time). 

In the cases known so far, the counting problems that correspond to NP-complete problems are #P -  
complete. Some examples of #P-complete problems that correspond to polynomial-time decision problems 
are found in [75]. 
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Theorem 4.1.1 ([47]). The following problem "number of all concepts" is #P-complete: 
INPUT. Context K = (G, M, I). 
OUTPUT. The number of all concepts from ~ (K) .  
The theorem makes us either use the most effective algorithms for the generation of concepts or generate 

the sets of the "most interesting,' concepts. The second way is considered in more detail in Sees. 4.3 and 4.4. 
In this section we consider some algorithms for concept generation. 

An estimate of the time and spwce complexities of algorithms that generate the set of all concepts must, 
of course, be a function of IGI = n and IMI  = n. Moreover, since the size of ~ ( K )  can be exponential in [GI 

and IMI, and the problem of determining I (K)I is #P,complete, I (K)t = n should be taken as a parameter 
of an algorithmic complexity estimate. 

A review of several algorithms for the generation of the set of all concept lattices for a given context can 
be found in [36]. A comparative study of four algorithms presented there shows that the upper complexity 
bound of all algorithms is quadratic in the number of concepts generated, except for the algorithm of B. 
Ganter [27]. For the algorithm of Ganter this bound is linear. In [36] the results of an experimental study 

are presented (unfortunately, the author of [36] did not give a description of the input data used therein). 
The algorithm of Norris [62] proved to be the fastest in the experiments of the author of [36]; the algorithm 
of Ganter was a bit slower. The algorithm of Bordat [33] was two times slower than that of Norris, and the 
algorithm of Chein [12] was two times slower than that of Bordat. Below, we present two of the algorithms 
from [50] and the CbO algorithm from [52] similar to that of Ganter. 
The A l g o r i t h m  of  Che in  ([12]). 

Supoose we are given a context K = (G ,M, I ) .  The input of the algorithm is the set of all pairs 
of the form ({g}, {g}'), g E G. This set is called the set of objects of the first level or Lx. Let the set 
Lk = {(X~, Y~),...,(X,~, Y,,)} of the kth level be generated; then the set L~+~ can be generated in the 
following way. Fur all i < j the set Y/j = Yi f'l Yj is computed. 

If Y~j is not contained in a pair (X, Y~j) from Lk+l, then (X~ A Yj, leij) is put in L~+I. 

If Yij = Yi, then (Xi, Y~) is removed from Lk. 
If Hi = Yj, then (X, Xj) is removed from Lk. 
The process is iterated until ILKI < 2 at a step K. The union of Lk for all k: 1 < k < K comprises the 

set of all concepts. 
The  A l g o r i t h m  of Nor r i s  ([62]). 

Let the objects from G be numbered, i.e., G = {gt,. . . ,g,~}. Suppose that L~ = {({g~}, {g~}')} and 
the sets L~, . . . ,  Lk, k < m are already constructed. Then the set Lk+l is constructed in the following way. 
Consider a pair ({gk+~ }, {g~,+~ }) and all objects from Lk+l of the form (X,, Y/). If Yi C {gk+l }', then (Xi, Y~) is 

replaced by (Xi t3 {gk+l}', Y~). If Y, ~ {gk+~ }', but ]ei (q {g~+~ }' ~ o, then the object (Xi U {g~+l }, Y~ N {gk+t }') 
is added to nk. Nowl if {gk}' C_ Yi, then the pair ({gk+~}, {gk+,}') is also added to LB. The resulting set 
comprises Lk+l. The set L(K) is obtained as L,,~ for m = IGI. 
C lose -by-One  A l g o r i t h m  ([52]) 

The algorithm called "Close-by-One" (CbO), which seems to be quite close to the algorithm of Ganter, 
was proposed in [52]. An analog of the CbO algorithm, which did not make use of lexicographical ordering, 

was proposed in [96] for the top-down strategy. 
We assume that all objects from G are numbered, and therefore a set X C G can be represented by a 

respectively ordered tuple. The numbering of objects from G induces lexicographical ordering of sets from 
P(G). For the sake of convenience, we can represent the process of constructing intersections as a top-down 
one, which generates some tree whose vertices correspond to concepts. During this process, the objects from 
G can be labeled or remain unlabeled in each vertex independently. The following procedure is based upon 
the "depth-first" strategy', though other strategies are possible as well. }" denotes the extent of a current 
concept. 

S tep  O. There is only one root vertex where all objects are unlabeled, Y := o. 
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Step  1. The current vertex corresponds to the concept with the extent Y. The first unlabeled element 
of G, say X~, is taken, (Y U {Xi})' and (Y U {X~})" are computed. (In doing so we say that Y is closed by 

Xi.) Thus, a new vertex that corresponds to (Y  to {Xi })" is gcnerated and connected to the vertex associated 
with Y. 

S tep  2. If (Y U {X~})' contains objects with numbers less than those of the objects from Y or the 

number of X~, then the concept With the extent (Y U {X~})" has already been generated. All elements of G 
are labeled at the vertex (Y U {X~})" (thus, the branch will not be extended). If (Y O {Xi})" has not yet 
been generated, we label additionally the element X~ at the vertex Y and all elements of (Y U {X,})" at the 
vertex ( r  u (x,})". 

Step  3. If all elements of G are labeled at (Y U {X~})", we go to Step 4. Otherwise, Y: = (Y to {X~})", 
and we return to Step 1 

S tep  4, We backtrack the tree upwards to the nearest vertex with unlabeled elements of G If such a 
vertex exists and corresponds, say, to the object Z, then Y: = Z and we have to go to step 1 If such a vertex 
does not exist, then this means that all concepts have been generated and the algorithm halts  

Consider the top-down strategy in the case where M = {al, . . . ,a,~},  G = {X1,...,X,~,X,~+~}, and 
X[ = M\{ai},  1 < i < n, X~+~ = {a,~} (recall that the top-down and the bottom-up directions are specified 

with respect tO the order on concepts). In the case of the top-down strategy, the process begins with the 
generation of the concept (h, Par(h)) with the greatest (by inclusion) intent and proceeds then to concepts 
with smaller intents. Then the intent ({a,~}, {X1,. . . ,X,~-I ,Xn+I}) can be generated from an arbitrarily 
greater concept (h, Par(h)) as the closure (h t,I {Xn+l})'. Since there are 2 '~ - 1 concepts of this kind, the 
number of ways in which ({a,~}, { X , , . . . ,  X,~}) can be generated is the same. 

Notwithstanding the pessimistic implications of the consideration above, we can state that the number of 
concepts generated exponentially many times and the number of all concept generations are not really great. 
This is substantiated by the following theorem, which is a particular case of the theorem from [52] on the 
algorithm generating all elements of a semilattice from a given set of generators. 

T h e o r e m  4.1.2. Let K = (G, M, I) be a context. Then the set of all elements of the lattice fs(K) can 
be generated with the use of O(mnH) of space and O((m + n)nH) of time. 

The MI algorithm from [96] can be obtained from the CbO algorithm by changing the provisions of Step 
1, so that at each vertex only those X~ are chosen for which (Y tO {X~})" are maximal by inclusion among all 
(Y U {Xj })". These are the only vertices, where the tree is generated further. The MI algorithm was proposed 

by O. M. Anshakov and K. P. Khazanovskii in [96] for the bottom-up strategy as the "Minimal Intersection" 
algorithm. 

The upper bound of the memory needed for the MI algorithm is also linear with respect to the number 
of concepts. In fact, the space required is less than that required by the CbO algorithm because only minimal 
(maximal) intersections are stored. The time complexity of the MI algorithm is worse because testing the 

uniqueness of a concept generation (i.e., verifying whether it was not generated before) cannot be accomplished 

in the way it was done in the CbO algorithm (Step 2). The uniqueness of a concept generation is tested with 
the use of the MI algorithm by comparing the concept generated to all concepts generated earlier. This leads 
to O(K 2) time complexity of the MI algorithm. 

The algorithm of Bordat [9] is similar to the MI algorithm in computing at each step for a concept 
constructed the least concept that majorizes it (in the sense of partial order on concepts). The advantage of 
the algorithm of Bordat consists in the quick test for uniqueness of a current intersection (i.e., in veryifying 
whether it corresponds to a concept already generated). This test is accomplished by means of the "trie" 
data structure, which allows a logarithmic-time uniqueness test and/or insertion of a new concept in the 
data structure. Thus, the time complexity of the algorithm of Bordat is linear with respect to the size of 
the concept lattice generated, as in the case of the Ganter algorithm and that of CbO. Moreover, the "trie" 
structure allows the algorithm from [9] to obtain the Hasse diagram of a concept lattice as a by-product. 
However, the creation of the "trie" structure is essentially a serial one (since it demands the solution of hard 
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sequencing problems in realizing the evolution of the "trie" for parallel processors), unlike the algorithms from 
[52, 531] and [27], where tests for uniqueness can be accomplished locally for every new intersection generated. 

In [96, 25], other algorithms can be found that construct the set of all concepts of a given context. 

However, unlike the algorithms from [52, 53, 9, 27], these algorithms have complexity estimates worse than 
linear (with respect to the size of the set of concepts generated). 

4.2. Complex i t y  of  S o m e  P r o b l e m s  of  E n u m e r a t i o n  and  Decis ion C o n c e r n i n g  Concep t s  

In the case where dependences are sought for sets of attributes, the pessimistic result of Theorem 4.1.1 
warrants a statement of the problem of generating a subset of the most interesting dependences. 

Assume that we study dependences of the form Y ~ W with respect to a fixed property W, which does 
not contain the set of attributes M, and all objects from G are partitioned into sets of positive G+, negative 
G_ and undefined G, examples with respect to the property W (see Sec. 3.2.) Thus, dependences of the type 
Y ~ W, Y C_ M are sought for the context (G+ O G_, M U {W}, I+ O [_ O G x {W}). Then dependences 
of the form X ~ W such that X is minimal by inclusion among all Y such that Y ~ W (these dependences 
are called minimal) can be considered the most interesting ones, since they are "supported" by a greater 
number of examples than dependences with greater antecedents (X' is maximal among those Y': Y' ~ W). 
At the same time, minimal dependences are more "decisive" or more informative, since they can Iead to more 
forecasts (see See. 3.2). 

In the case where there are no negative examples, there can be no more than ]M] minimal dependences, 
and they can be generated in time which is no more than cubic in IMI (see [95, 96]). However, in the general 
case, where G+ # 0, G_ # o, Theorem 4.2.1 leaves us no hope for fast generation of all minimal dependences 
(unless P = #P) .  

T h e o r e m  4.2.1. The following problem is #P-complete. 
INPUT. Contexts K+ = (G+, M, I+), K_ = (G_, M, I_), K+_ = (G+UG_, MU{W}, [+U[_uG+ • {W}. 
OUTPUT. The number of minimal dependences of the context K+_. 
The #P-completeness of the problem of generation of minimal dependences in the particular case of the 

context K+_ imphes the #P-completeness of the problem concerning the number of minimal dependences 
with W: tW I > 1. 

When W is fixed, the following functionals, depending on the sizes of the intent and extent of a dependence 
X --~ W, can be proposed as measures of the "quality" of a hypothesis: 

(I) IXl, 
(2) IX'l, 
(3) IxI + Ix'l, 
(4) qlXI + IX'l, 0 < q < l, 
(5) IX[ + qlX'l,  o < q < 1, 

(6) [Xl. Ix'I.  
Generation of dependences satisfying conditions with the above functionals is similar to the inductive 

biases proposed in various settings of machine learning (e.g., in the INDUCE system [60] or in the GUHA- 
method [66]). 

Obviously, Theorem 4.1.1 implies that the problems of determining the numbers of dependences such 
that f _< C, f >_ C (where f is one of the functionals above and C is a parameter) are #P-complete. At 
the same time, the results concerning the corresponding decision problems are not always NP-complete, even 
when sets of positive and negative examples are both not empty. 

In Table 2, we present results from [47, 51, 53, 54, 95] on the complexity of decision problems concerning 
concepts with restrictions on the sizes of the intents and extents. 
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Table  2 

lil P NP 
lel P NP 
lel+lil NP NP 

> 

P 
P 
P 

Here, i and e denote the intent and the extent of a concept, respectively; P symbolizes that there exists a 
polynomial algorithm, and NP denotes NP-completeness of the problem. For instance, the upper left element 
of the table means that the problem "does there exist a concept such that Iil < C?" can be solved by a 
polynomial algorithm. The element in the bottom line and the middte column is indicative of the fact that 
the problem "does there exist a concept such that lel +I i l  = C" is an NP-complete one. 

Results from [51] on decision problems concerning dependences of the form X ~ W for a context 
K+_ = (G+ U G_, M U {W}, I+ U I_ U G+ x {W} are presented in Table 3. 

Table  3 

tXl NP NP 
IX' I P NP 
IXl+lX'l NP NP 

> 

P 
NP 
NP 

For example, the element in the third column and the third row of the table denotes that the decision 
problem concerning dependence of the form X ~ W, where IXI + IX'[ = C, is NP-complete. It is obvious 
that the NP-completeness of a problem from Table 2 implies NP-completeness of the corresponding problem 
from Table 3 (since a context of the form K+_ degenerates into a context of the form K+ when G_ = 0). 

The lower row of Table 2 may seem paradoxical; in fact, for positive examples only the problem of 
generating a minimal hypothesis is very unlikely to be polynomial-time solvable, whereas there exists a 
polynomial algorithm for the search for a maximal hypothesis. Graph interpretation of hypotheses may 
clarify such a situation: as shown in [47, 54] a hypothesis maximal in an IXI + IX't functional corresponds to 
a maximal-size complete bipartite subgraph of a bipartite graph. Such a subgraph can be found in polynomial 
time, e.g., after reducing it to the maximal matching problem [54]. The NP-completeness of the problem of 

the minimal (with respect to the functional IXI + IX'I) hypothesis was proved [50] by reducing it to the 
problem of the inclusion-maximM matching of minimal size [34]. 

4.3. C o m p l e x i t y  of  the  Forecas t  (Class i f icat ion)  P r o b l e m s  

Here, we present some results concerning computational problems of generating forecasts (classification) 

for objects from G~ of a context K = (G~, M, IT) in the sense of the definitions from Sec. 3.2. In the general 
case, the problem of the existence of a hypothesis in favor of a positive forecast is intractable. To be more 
exact, the following theorem holds. 

T h e o r e m  4.3.1 ([51]). The following problem is NP-complete: 
INSTANCE. Input data: contexts K+_ = (G+ U G_, M U {W}, I+ U I_ U I+{W}), IG = (G~, M, [~), 

and an object g, E G,. 
QUESTION. Does there exist a hypothesis (e+, i+) concerning the property W and satisfying the "coun- 

terexample forbidding" condition in favor of a positive forecast for g,, i.e., i+ --+ W is a dependence for the 
context (G+ U G_, M U {W}, [+ U I_ U G+{W}) and i+ C_ {g~}'. 

In the case whe-e G_ = o, the problem has a trivial algorithm running in time polynomial with respect 

to the input size. This algorithm computes {rn} ~+ for every m E M. If there exists m E M such that 

{rn}~+x+ C_ {g,}Z. then the forecast for g, will be positive; otherwise it will be undefined. 
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A forecast problem can be solved in polynomial time for one of the following cases: 

M = {g,}' (V~ = o), 

a+ = {g~}' (v~ = v~), 

G _  = o ( � 8 8  = ~), 

(where V1, V2, V3, V4 are sets of vertices of the graph from Definition 3.2.2), i.e., when the tetrapartite graph 
from Definition 3.2.1 degenerates into a tripartite one. The problem is polynomial-time solvable also in the 

case where I{g-Yl is constant (see [51]). 

4.4. A lgor i thmic  C o m p l e x i t y  of  t he  P r o b l e m  of C o m p u t i n g  S t ab i l i t y  I nd i ce s  

T h e o r e m  4.4.1 ([49]). Let K = (G, M,  I)  be a context. Then the problem of  determining the stability 

indez ,Is of a dependence X ~ W of the context K (see Sec. 3.6) as well as the problem of determining Jj 

(where 2 <_ j <_ Ix'l) is (r 

T h e o r e m  4,4.2 ([49]). The stability indices Jj = ~ for  1 <_ k < n - 1 of a dependence X --* W can 
w 

be computed in time linear with respect to max i~/i. The integral stability index Jr. = ~ of a dependence 2 r ~ - - n - 2  2<i<j 

X --* W can be computed in time linear with respect to 7z (where n = IX'l). 
This result, together with the result concerning the #P-completeness of the determination of stability 

indices, means that the algorithm presented in [49] for the proof of Theorem 4.6.2 is optimal modulo some 
polynomial of n (see [75]). 

We can propose computation of the upper and lower bounds of the integral Jr. and average J:  stability 
indices on the basis of the following: 

T h e o r e m  4.4.3 ([49]). The following inequalities hold for the integral and average stability indices of a 

dependence x --, w (where n = I X l ,  2 <_ k,  r <_ n - 1 ) :  

7 1 + . . - + 7 k  < Js  < %-~ + ' ' "  +'7"-1 t t  ? (D + + (D - - (, , :0 + . - .  + (,,-,) 

+ + < J ~  + ' " +  
( & ) )  

Thus, these algorithms for approximate computation of Js  and J~ have polynomial time complexity with 
respect to the numbers of the levels up to which the summation is carried out (i.e., k and r). 

5. Misce l laneous  

5.1. The  Origin of C o n t e x t s  

In [73] the following model of the context origin was studied. Let there be given a set V, whose elements 
are called preconcepts. Some objects from V are interpreted as objects (the set of objects is denoted by ~), 

other objects from V are interpreted as attributes (the set of objects is denoted by Ad). Now, the relation 
& C_ G x 3r is defined in the following way: for any X E ~, g E Ad, X A Y  ~- X F~ Y 7~ o. Then the context 
is defined as a triple (G, ,4A, A). 

By way of example, Stahl and Wille [73] describe a study of the use of the conjunction "et" ("and", 
French) in the book Le Petit Prince by A. de Saint-Exup6ry. A list consisting of 206 occurrences of "et" was 
considered as the set V of preconcepts. 38 subsets of V are formed as a result of finding out which occurrences 
of :'et" can be replaced by paraphrases such as "alors," "de mfime que," "c'est pourquoi," etc.; these subsets 
are interpreted as objects. Meanings of the conjunctions are grasped by 14 2roperties such as "additive," 
"comparative," "temporal," etc., whereby subsets of V come into existence, which represent attributes. 

Stahl and Wille [73] explore how a given context can be derived from an appropriate set of preconcepts. 
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Defin i t ion  5.1.1 ([73]). Let there be given a context K = (G, M, 1) and a set V. A pair of injective 
mappings a: G ~ P(V)  and j3: M ~ 7:'(V) is called a representation of a context K on the set V if gIm iff 

ag n tim ~ o (i.e., g is isomorphic to (aG,/3M, A). 
Defini t ion  5.1.2 ([73]). A pair (A, B) is called a preconcept of a context K = (G, M, I) if A C G, B C_ 

M,A C_ B ' , B  C_ W. 
Def in i t ion  5.1.3 ([73]). A predomain of a context K = (G, M, I) is a set "H of preconcepts of K that 

satisfies the following conditions: 
(1) for g, h �9 G, g ~ h, there exists a pair (A, 13) �9 7"[ such that 

I{g,h} N A = 1, 

(2) for m, n E M, m ~ n, there exists a pair (A, 13) �9 7-/such that 

l{m, n} n BI = 1, 

(3) for gIm there exists a pair (A, B) such that 

g E A a n d m E B .  

The following theorem establishes a relationship between the predomains and representations of a context. 
T h e o r e m  5.1.1 ([73]). Let 7J be a predomain of a contezt K = (G, M, [). For g �9 G and m �9 M, 

7-/g = {(A, B) �9 ~ lg  �9 A}, 

- {(A, B) e 74m E B}. 

Then the mappings g ~ 7-~g and m v--+ ~,,~ yield a representation of K on 7"i. Conversely, let (cq t3) be any 
representation of K on the set V. For v E V, A,  ~ {g E Giv E ag} and B, = {m E M I r  E j3m}. Then 

= {(A.,B,)Iv E V} 

is a predomain of K such that 

7-/,~ = {(A,, B,)I ,  �9 ~m}. 

An example of a predomain is the set {({g},{g}')lg E G} U {({m},{m}')lm E M} and the set 
{({g}, {m})lg[m}, where {g}' :~ g and {m}' = ~ for all g �9 G, m �9 M. It is natural that the set of 
all concepts of a context is also a predomain. 

It is useful to have a means for finding a predomain of the least size for a context. However, there are no 
hopes for finding a fast algorithm for computing such a predomain, since the problem is NP-complete even in 
the case where preconcepts are sought among the set of concepts. 

The following example of a search for the least predomain is considered in [73]. Let the digit descriptions 

be objects, and the seven line segments of the figure 

o. 

be attributes (with labels standing at the corresponding segments). The relation I between objects from the 
set G and attributes from the set M are given in a natural way: for g E G and m E M, g[m iff the description 
of the object g has the attribute m. K has a natural representation on the set of seven line segments. The 
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question as to whether K canhave  representations of less size is answered positively. In fact, consider the 
predomain which consists of the following six concepts: 

A = ( {0 ,2 ,3 ,7 ,8 ,9 } ,  {a, f } ) ,  
C = ({0,2 ,6 ,  S} , {c , e } ) ,  
E=({O,4,5,6,8,9},{d,g}), 

B = ({0, 2, a, 5, S}, {a ,c}) ,  
D = ({2,3, 4, 5, 6, 8,9},  {b}), 
F=({O,l,a,4,7,9},{f,g}). 

The intents of these concepts correspond to the following six figures: 

1 _ L _ I I  l 
A B C D E F 

which can give all ten digits. 

5.2. Concept Analysis of Paired Comparisons 

In [57] the means of formal concept analysis were used in the study of preference relations. Let A be a 
set of alternatives and R C_ A • A a preference relation: iRj  means that the subject prefers alternative j to 
alternative i. A pair (A, R) is called a tournament if for any pair i , j  E A either iRj  or jRi .  Luksch and Wille 
[59] studied subsets of A, whose elements are in the same preference relation with any alternative not in the 
set. These subsets can be interpreted as clusters given by the relation R. Here are precise definitions. 

Definition 5.2.1 ([57]). A set S : S C A is called a superalternative of a tournament (A, R) if for every 
a E A \ S  either aRs for nil s E S or sRa for all s E S. 

Proposition 5.2.1 ([57]). A nonempty subset S of a tournament (A, R) is a superalternative i# 

S =  {aE A ] A # S A V T S < T a  V T S } =  

= { a E  AIA.s _< #a < A,uSV V'/,...q} 
and 

A \ S  = {a E AlTa <_ A#S or #a > VTS }. 

Here, A f S  stays for A,e s#S ,  analogously for V and 7. For the definitions of # and 7 see Sac. Z1. 
P ropos i t i on  5.2.2 ([57]). Let Sx , . . . ,  S,~ be pairwise disjoint alternatives of a tournament (A, R) and 

let (A,R) be the tournament with A = {S! , . - . ,  S,~} U {{a}la E A\(U~=ISi) and for S, T E A, SRT  iff sRt for 
all s E S and t E T. Then ~( A, A, R_R_) is isomorphic to the sublattice of ~( A, A, R) consisting of all concepts 
(X ,Y)  with Si C X or Si M X = 0 for each i. 

Proposition 5.2.3 ([57]). Let S be a superalternative of a tournament (A, R). Then the mapping 
(X ,Y )  ~ (X M S , Y  M S) defines an isomorphism from each of the intervals [A#S A VTSIVTS] and 
[A#S,/~ #S v V 7S] of ~(A,  A, R) onto the concept lattice N(S, S, R N S x S). 

Propos i t i on  5.2.4 ([57]). Let S and T be superalternatives of a tournament ( A, R) for which S~T,  S \T ,  
and T \ S  are not empty. Then S U T, S M T, S \T ,  and T \ S  are superalternatives of (A, R) and either sRt 
for all s E S and t E T, or tRs for all t E T ands E S. 

In [57], a sketch of an algorithm for computing superalternatives of a given tournament is considered. 
Suppose that a superalternative S has been found; then other superalternatives are sought for the tournaments 
(S, R N S  x S) and ( A / S , R / S ) ,  where d / S  = A \ S u  {S}, R / S  = { R N ( A \ S )  x (A \S) )U {(a,S)[aRs for 
s E S} u {(S,a)[sRa for s E S}. Since the set A is finite, the algorithm terminates after finitely many steps 
and yields a sequence $1 , . . . ,  S~ of indecomposable superalternatives, which is called a decomposition into 
indecomposables of the underlying tournament. 

P ropos i t i on  5.2.5 ([57]). Two arbitrary decompositions into indecomposable of a tournament have equal 
lengths and consist of pairwise isomorphic superaIternatives. 
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A decomposition of a tournament  (A, R) can be used for construction of the Hasse diagram of the lattice 
~ ( A ,  A, R). The program mentioned in [57] has a library of standard diagrams of indecomposable tournaments  
of sizes not exceeding a certain value. Having constructed a decomposit ion of a tournament ,  the program 
constructs the diagram of ~(A,  A, R) in the inverse order. 

5.3. C h a r a c t e r i z a t i o n  of  " G o o d "  C o n t e x t s  

Novotn3~ and Pawlak [63-65] introduced the notion of a "good" context whose definition was based on 
the notions of a "black box" and a "rough top equality." Since we will not deal with these two notions in 
our paper, we will present a definition of a good context that was given in [14] on the basis of Theorem 4.6 
from [64]. The "goodness" of a context means that each at t r ibute  corresponds to a certain set of objects,  
and, therefore, the representation by the context is adequate.  

Def in i t i on  5.3.1 ([14]). Let K = (G, M, I) be a context and 

0 = { ( x , y ) l ( z , y ) E  M • M : { x } ' =  {y}'} 

be an equivalence relation defined on pairs of attributes.  Then for x E M,  [x]o ~- {y[(x ,y)  E 0} and 

[X]o =- U~ex[x]o for X C_ M. The context h" = (G, M, I) is called good if X '  = Y' implies [X]o = [Y]o for any 
X,  Y C _ M .  

It was shown in [14] that the relation 0 from Definition 5.3.1 is a congruence on the semilattice ( P ( M ) ,  U). 
A context such that (x ,y)  E 0 iff x = y is called reduced in [14]. Thus, a reduced good context is a 

context where each at t r ibute  is in one-to-one correspondence with a set of objects.  
T h e o r e m  5.3.1 ([14]). Let Is = (G, M, I) be a context; then the following conditions are equivalent: 
(1) K is a reduced good context, 

(2) the mapping t: 7~(M) ~ 79(G) taking an arbitrary set Y C M into Y '  is injective, 

(3) {m}' ~ (M\{rn}) '  holds for  an arbitrary rn E M.  
(4) A set of attributes X C_ M depends on a set of attributes Y C M (i.e., Y ---+ X )  iff X C_ Y.  
Coro l l a ry .  Let K = ( G , M , I )  be a reduced good context. Then for  any sets H D_ G, N C_ M, N # o, 

the following assertions hold: 
(1) the subcontext (G, M, I M G • N)  of the context (G, M, I) is a good reduced context; 
(2) supercontext (H, M, J) ,  where I M G • M = J,  is a good reduced context. 

Def in i t i on  5.3.2 ([14]). Let S be a nonempty set and k a natural number. A family of sets X~ _C S, i = 

1 , . . . ,  k, is an irredundant subset system in S whenever X~ ~ Uj=l ,k  jr for every i = 1,. . . ,  k. 

It is easy to see that  for every irredundant subset system we can introduce a representative set, i.e., a 
subset {xi, i<_ k} of S s u c h  that x i E X j  i f f i = j  f o r i , j  E { 1 ,  . ,k} .  

T h e o r e m  5.3.2 ([14]). Let P[ = (G, M, [) be a reduced good context, {X,, i <_ n} an irredundant subset 

system in M, and {y, , i  <_ n} an arbitrary n-element set. Then the context C = (G, {yi, i <_ n}, J)  defined by 
the relation tc({y~}) = t~,-(X~), i = 1 , . . . ,  n, is a reduced good context. 

T h e o r e m  5.3 .3  ([14]). Let K = ( G , M ,  I) be a reduced good context. Then there exists a uniquelg 

determined irredundant subset system {X,~, rn E M }  in G such that G \ M  = {rn}' for  any m E M.  

Coro l l a ry .  For a context K = (G, M, I) we have 

(1) if IGI < [M], then K is not a reduced good context, 

(2) if IGI = IM[, then K is a reduced good context iff K -~ (G, G, # ) .  
T h e o r e m  5.3.4 ([14]). Let K = (G, M, [) be a context. Then the following assertions are equivalent: 

(1) If  is a reduced good context, 
(2) the mapping s: P (G)  ~ P ( M )  taking a set X C G to X '  is surjective, 

(3) there is a subset H C_ G such that (H. M, [ N H x M) = ( M , M ,  5) .  
It is obvious that  the dual assertion holds too. 
Coro l l a ry .  Let If = (G. M, I) be a context. Then the following assertions are equivalent: 

(1) the mappings s, t are injective. 
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(2) the mappings s, t are surjective, 

(3) the mapping s is bijective, 

(4) the mapping t is bijective, 

(5) [G[ = [M[ and ~ ( K )  -~ 2 lal (~  21MI), 

(6) IGI -- [M[ and g "~ (G, G, :~) (~  (M, M, r  
(7) the mappings s and t are mutually inverse, i.e., s o t = lp(a) and t o s = lp(M ). 

We present one more similar result from [14]. 

T h e o r e m  5.3.5 ([14]). Let K = (G ,M,  I) be a context and n a positive integer. Then the following 
conditions are equivalent: 

(t) ~_(K) ~- 2 ~, 
(2) there is a set N C_ M such that 

(a) [gl  -- n, 
(b) (G, N, I M G x N)  is a reduced good context, 

(c) {h}' = g'  for any h E M \ N ,  where P is a uniquely determined subset of N,  
(2') there is a set H C G such that 

(a) IHI = n, 
(b) (M, H, I (1 M x H) is a reduced good context, 

(c) {f} '  = F' for any f E G \H ,  where F is a uniquely determined subset of G, 
(3) there exist sets N C M and H C_ G such that 

(a)  I g l  --  [HI = n,  
(b) (H ,N,  I M H  • N) = (N, N, r  

(c) for any h E M \ N ,  f E G \ H  there are uniquely determined sets M C_ N,  F C_ H such that 

{ h } ' =  M', { f } ' =  F' .  

5.4. T o l e r a n c e  on t h e  Se t  o f  O b j e c t s  (G)  

The tolerance relation defined on objects from the set G of a context K = (G, M, I) was studied in 

[37-39]. For X, Y C G the tolerance was defined as X O Y  = X ' O Y '  ~ 0. In particular,  the following problem 
was studied: what sets M allow one to define tolerance in such a way. Various generalizations of tolerance 
were studied. Contrary to [86], the tolerance is not extended to the set of concepts of the context K.  A 
condition of coincidence of the sets of all intents with the family of blocks of tolerance on G was obtained. 
This condition is shown in the following theorem from [39]. 

T h e o r e m  5.4.1. Let K = ( G , M , I )  be a context, and C = {(e1 , i l ) , . . . ,  (e~,i~)} be the set of all 

concepts for K.  The set of all intents E = { e l , . . . ,  e~} coincides with the set of blocks of 0 iff the following 
two conditions are satisfied: 

(1) el ~= ej for all ei, ej E E. 

(2) Let ~ C G and g ~ E. Then the existence of eh,. . . ,  e~ E E such that ~ C U~=~ei, implies the existence 

of z t , . . . , x ,~  E G such that { x l , . . . , x ~ }  C_ g and for all ei~(1 < 1 < k) either {x l , . . . , x ,~}  f[= % orN~=le~ , C_ ~. 

Theorem 5.4.1 is valid not only for a binary tolerance, but for n-ary tolerance as well (in this case it is 

defined as O ( X ~ , . . . ,  X,~) = X'~ C3 . . .  C~ X" 7~ e).  If the set of all intents of the context is represented by an 

n-ary tolerance (in the sense of Theorem 5.4.1), it can be also represented by an rn-ary tolerance defined in 

the same way on G for an arb i t ra ry  m: min [ei[> n > m. 
eiEE 

5.5. T h e  Z a r a n k i e w i c z  P r o b l e m  

The Zarankiewicz problem consists in determination of the number k(a, b,m, n) such that  an arbitrary 

binary m x n matrix (i.e., a context ( G , M , / )  such that IGI = m, IMI -- ,~) with k (a ,b ,m ,n )  units (i.e.. 

I I [ =  k(a, b, m, n)) contains an identity submatrix of the size a x b. where 2 < a < m, 2 < b < n (Zarankiewicz 
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himself stated the problem for a = b = 2 [95]). The problem was extensively studied in the fifties and sixties. 
We present the main results concerning the est imates of k (k(a, a) denotes k(a, a, n, n)). 

In [46] it was proved that 

k(2, 2,p2 +p, p2) = p3 +p2 + 1 

for the case where p is prime. 
Har tmaa et al. [43] proved that 

Cln 4/3 < k(2, n) < C2n 3/2, 

where C1 and C2 are constants. The following result was obtained in [13] for 1 < b < m and n _> (a - 1)(~): 

k ( a , b , m , n ) = ( b - 1 ) n +  ( a - 1 ) ( 7 )  +1 

The following upper bound was obtained in [67]: 

1 
k(2,2, m,n)  < -~(n + nx/n  + 4mn(m - 1)) + 1. 

When n = m, the latter inequality gives 
1 

k(2, n) < ~(n + n v ~ -  3) + 1. 

This bound is sharper than the bound 

given in [46]. The above inequality from [67] was shown there to turn into the equali ty in infinitely many 
cases. Moreover, 

k(2 ,2 ,p  2 + p + l , p 2 + p + l )  = p 3 + 2 p 2 + 2 p + 2 ,  

where p is a power of a prime. 
The following results were proved in [44, 40, 41]: 

lira k(2, 3, n, n)n -3/2 = 2, 

[b/2] 1/2 < lim inf k(2, b ,n ,n )n  -3/2 < lim sup k(2, b ,n ,n )n  -3/2 <_ (k - 1) 1/2 [44]; 

for 

( b - 1 ) l m l  + l > n > g(m,a,b), 

where g(rn, a, b) equals approximately 

(exact values of g(m, a, b) for small a are given in [40]); 

k(a,b,m,n)  <__[+[nu], f o r 3 < a < m ,  3 < b < n ,  n < < m  ~ 

and 
1 

= + - t ) ,  

(a 2 - -  [) (a 2 -- l ) (a  2 -- 9) 
v = z + - - +  

24z 1920z 3 41472z s 

nz ~ = ( b -  1)-~(-~ - I ) . . . ( - ~  - a  + 1) [41]. 

- 1 ) ( a  - - 2 5 )  
+ 
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The results of [99] were improved in [100] as follows: 

k(a,n) < [ll2n(a - 1) + (a - 1)l/=(n - 3/8(a  - 1) ' - ' /~ ,  

k ( a , n )  < [ n (a  - 1)/e - t - (a  - l ) ' l < ' n 2 - ' l ~ ] ,  

where 

e = ( 2 ( n ( a -  1)) ~/~ - 1)/((n/(a - 1)) 1/~ - 1). 

The second est imate is bet ter  than the first only in the case where a = 2 or a = 3, as well as for 
considerably small n when a _~ 4. 

ErdSs and Spenser [18] consider the function B(a, b, m, n, e) defined as the least number of concepts of 
the size a • b of a context (G, M, I) with IGI = m, IMI = n, and [[ l = e. It is obvious that  B(a,b ,m,n ,e)  > 
0 ~ k(a, b, re,n) ~_ e. The following est imate of B(a, b, m, n, e) was obtained in [18]: 

This estimates of B(a, b, m, n, e) allowed Erd5s and Spenser [18] to obtain the following bounds for k(a, n): 

(a!)el~2n:-21<~(1 --  o(1)) ~ k (a ,  n )  <_ (a - 1 ) l l < ' n 2 - i l : ( 1  -f- o(1)). 

In [69] the upper bound 

b - 1  ( m a ) ( p +  I ) ( a -  1) 
k(a,b,m,n)  < ~ JR a n -t- 1 

was proved for all integers p > a - 1. 
Let T~+l,,~.b-1 be the maximal number of subsets of size a - 1 that  can be packed in a set of size m in a 

way such that no subset of the size a is in more than b - 1 subsets. In [69] it was proved that 

k(a,b ,m,n)  = k[b- l \ a /  -t- a2--a l'n] + 1  

for 

max [ a ~ l ( r ~ ) , ( b  - 1 ) ( a m ) -  T~+i,,~,b_l] < n < _ ( b - 1 ) ( : ) .  

The paper [61] generalizes the result from [44]: the author proved that 

lim k(2, b, n, n)n -a12 = (b - 1) 1/2 
r ~ o o  

for an arbitrary b > 2. 
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