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Introduction 

Linear recurring sequences (LRS) over fields are well-known subjects of research in applied algebra and 
discrete mathematics (see, e.g., [5, 18, 37, 52, 133]), dating back to Fibonacci. The foundations of the theory 
of linear recurring sequences were laid by Moivre, D. Bernoulli, L. Euler, and Lagrange [100, 106, 124]. Later 
on it was developed by Lucas [127], P. L. Chebyshev [72], and A. A. Markov [40]. The period of the 20s and 
30s was connected with R. D. Charmichael [86], M. Ward [166, 167], M. Hall [113], L. E. Dickson [100], and 
H. T. Engstrom [104, 105]. They began to study properties of linear recurrences which were used later in 
radar-location, coding theory, generation of pseudo-random numbers, etc. (see [4, 5, 37, 39]). 

The peculiarity of the modern stage of the theory of linear recurring sequences is connected with the 
consideration of multidimensional recurrences over rings and modules based on effective usage of commutative 
algebra. On the one hand, this offers new possibilities for advancement in the solution of applied problems. 
On the other hand, this theory now becomes useful in ring theory, in particular, in the theory of Qfi'-modules 
(Section 4) and in the theory of Hopf algebras (Section 14). 

Here we present some fundamental concept and results of the theory of linear recurring sequences over 
rings and modules and their applications. Of course, the authors give in more detail those results that 
are close to their mathematical interests. In particular, an attempt has been made to construct a general 
algebraic theory of k-LRS over modules, paying explicit attention to periodic k-sequences, to properties of 
linear recurrences over finite rings and especially over Galois rings, and also to methods of constructing codes 
based on such recurrences. 

The list of references is rather far from being complete in the whole theory of LR.S. We have deliberately 
not included many important papers on recurrences over fields and on Fibonacci sequences and their general- 
izations. However, our bibliography is rather complete as far as articles on recurrences over rings and k-linear 
recurring sequences are concerned. This text is not merely a review but mostly an exposition of the authors' 
points of view on the subject and on recent development of the theory "sur le motifs" of the given titles. 

The authors recall with great respect and warmth Professor Alexander Illarionovich Uzkow and devote 
this work to the 80th anniversary of his birth (8 August, 1913). His lectures, reports (in particular, on 
meetings of the Moscow Mathematical Society, on the seminar of O. Yu. Schmidt, and later on the seminars 
of the chair of higher algebra of Moscow University), and articles [64-68] were very inspiring and influenced the 
mathematical tastes of the authors for many years, and, to a considerable extent, stimulated the appearance 
of this text. 

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory. 
Vol. 10, Algebra-2, 1994. 
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Chapter 1. 

GENERAL PROPERTIES OF LINEAR RECURRING SEQUENCES OVER 
MODULES 

1. Main Definitions and Examples [37, 46, 49, 52, 81, 86, 91, 105, 136, 137, 139, 143, 145, 
146, 150, 151, 166, 167] 

In what follows, R is a commutative ring with identity e, M =R M is an R-module. If we define aa = aa 
for a E M,  a E R, then we may consider M as an R-bimodule. 

Let us define the usual linear recurring sequences over M (or 1-LRS, see, for example, [46]). Let N0 = 

{0, 1, 2 , . . .} .  Any function # : No -~ R is called a sequence over the module M.  The set of all such sequences 

is denoted by M0).  The product of a polynomial G(x) = ~8>og, x* e R[x] and a sequence # E M (1) is defined 

by 

G(x)# = v, v e M ('), v(i) = ~-~gs/~(i -{- s) for i e No. (1.1) 
8>__o 

Thus, on M (1) a module structure over the ring of polynomials 7~ = R[x] is given. 

1.1. Def in i t ion .  We say that a sequence # E M0)  is a linear recurring sequence (LP~S) of order m over 

M if there exists a monic polynomial F(x)  E R[x] (i.e., a polynomial with leaAing coefficient e) of degree m 

such that F(x)#  = 0. In this case, F(x)  is called a characteristic polynomial of the sequence #, and the row 

# ( ~ )  = (#(0) , . .  . ,# (m - 1)) is called the initial vector of the sequence # (with respect to F(x)).  A 
characteristic polynomial of # of the least degree is cMled a minimal polynomial, and its degree is called the 
rank (or the linear complexity) of the LRS #. Notation: rank #. Note that, generally speaking, a minimal 
polynomial of a sequence is not uniquely defined. 

For a subset A4 C M (~) the annihilator of A4 in 7 ) is defined as the ideal 

An~,(A4) = i f ( x )  e 7~ I f(x) ,A4 -- 0}. 

A sequence # E M (~) is an LRS if and only if An~,(#) is a monic ideal, i.e., ANT,(#) contains a monic 

polynomial. 
1.2. E x a m p l e :  g e o m e t r i c  p rog res s ion .  For any a E M, q E R, the sequence # = (a, q a , . . . ,  q la , . . . )  

is an LRS of order 1 over M with characteristic polynomial F(x) = x - q and initial vector #(0) = (a). 

Moreover, An 9(#)  = "P(z - q) + 7 ~. An R(a). 

1.3. E x a m p l e :  a r i t h m e t i c  p rogress ion .  For any a, 6 E M, the sequence L, E M0)  of the elements 

of v(i) = a + 6i is an LRS of second order with characteristic polynomial F(x)  = (x - e) 2 and initial vector 

( a , a + 6 ) .  If An R(6) = 0, then F(x) is a unique minimal polynomial of L,. If a e An R(6), then F ( x ) + a ( x - e )  
is another minimal polynomial of ~,. 

1.4. E x a m p l e :  c o n g r u e n t e  s equence .  The sequence ~ E M0) ,  defined for given c~, 6 E M, q E R by 

~(0) = a, ~(i + 1) = q~(i) + 6, i e No, 

is an LRS of second order with characteristic polynomial r ( x )  = (x - e)(x - q) and initial vector ~(0--~-) = 

(c~, qa + 6). Geometric and arithmetic progressions are special cases of the sequence ~, respectively, for 6 = 0 
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and q = e. The polynomial F(x) is the minimal polynomial of ~ if and only if either 5 ~ Ra or 5 = ca for 
some c E R and F(c + q)a # O. Such sequences over the residue rings Z~ ,  Zl0- are rather useful in modeling 
pseudorandom numbers in computers [18]. 

1.5. E x a m p l e :  a F i b o n a c c i  s e q u e n c e  is the LRS u E Z (1) with characteristic polynomial F(z) = 
x 2 - x -  1 and initial vector u (0 -~  = (0,1). Thus, u(i + 2) = u(i + 1) + u(i), i E No. This sequence was 
introduced by Leonardo of Pisa (Fibonacci) in Book of the Abacus (1202) in connection with the "problem of 
the reproduction of rabbits." 

1.6. E x a m p l e :  l i nea r  s e q u e n c e .  Let a M  = a  ( a ~ , . . . , a , , )  be a finitely generated R-module (f.g.- 

R-module), and let a E M,  qa E E n d n ( M ) ,  Then the sequence a~' = ( a , ~ ( a ) , . . .  , ~ i ( a ) , . . . )  is an LRS of 
order m with characteristic polynomial F(x) = X~,(x) = XA(x) = I zE  - AI, where A is a matrix over R, 
such that  (~ (a~) , . . . ,  ~v(am)) = ( a~ , . . . ,  a,,)A, i.e., A is one of the matrices of the endomorphism ~ in the 
generating system ( a ~ , . . . ,  a , , ) .  Moreover, the rank a ~' < 0(aM),  where O(nM) is the minimal cardinality of 
the generating set of the module aM.  

1.7. E x a m p l e .  The sequence (2, 3, 5, 7 , . . . )  of all prime numbers is not an LRS over Z. 

1.8. E x a m p l e .  Any sequence g E MO) of the form 

---- (/20, 0, #1, 0, 0, #2, 0, 0, 0, ]23, . . .), 

containing an infinite series of nonzero terms, is not an LRS over M. 
1.9. L i n e a r  sh i f t  r eg i s t e r :  Any LRS ~ with characteristic polynomial Fix  ) = x "~- f ,~_ lx '~ -x - . . . - fo  

can be obtained as an output  of the following linear sequential circuit, called the linear shift register (LSP~) 
with the characteristic polynomial F(x) over M: 

, + 

LSR F(x) over aM 
. +  

fo fl f -i , ( i+m) 

Here [ ~  is the storage location containing the element #(s) E M; 

f ,  is the block of multiplication on fs; 
+ is the block of addition in M. 

This register can be depicted in the following abbreviated form: 

i t i I 
[ g(i) I ' I g ( i + m - 1 )  [ ,  LRS F(x) over a M  

Note that  the content #(i, i + m - 1) of the register on the i-th step is connected with the initial content 

g ( ~  by t h e  following formula: 

g(i,i + m - 1) = g ( ~ ) S ( F )  i, (1.2) 
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where 

S(F) = 

o o . . . o  fo 
e 0 . . .  0 f l  

0 e . . .  0 f~ 
�9 . .  . * .  . . .  . . .  . . ,  

0 0 . . .  e fm-1 

is the accompanying matrix of the polynomial F(x). 
The simple technical and program realization of such a register was the main reason for the wide usage 

of linear recurrences in different applications (e.g., see [4, 5, 7]). 

1.10. P r o p o s i t i o n .  The set s  (1) of all linear recurrences over a module M is a submodule of the 
module ~,M (1). For any subset I C 7 ~ the set 

LM(I) = {~ ~ MO)[ I~ = O} 

is a 7P-submodule in ~,M (1). Moreover, LM(I) C f..MO) if and only if (I) is a monic ideal.[3 
1.11. Def in i t ion .  For any unitary ideal I of the ring 7 ~, we call the set of recurrences LM(I) an 

LRS-family over the module M. 
1.12. R e m a r k .  In Definition 1.1, the condition "F(x)  is a monic polynomial" may be changed to 

the condition "the leading coefficient of F(x) is invertible," but, in the general case, this condition is not 
equivalent to the condition "the leading coefficient of F(z) is a regular element." For example, let R = S/J ,  
where S = Z[y0, ya,. . .]  is the polynomial ring over Z in the infinite set of variables, J = (yo - 2yl, Ya - 2y2, �9 �9 .). 

Then the sequence/~ E R (~) of elements of the form #(i) = y~+J is annihilated by the polynomial  F(x)  = 2x-1 ,  
but it is not a linear recurrence. 

However, for example, for sequences over Z the situation is different. 
1.13. P r o p o s i t i o n .  Let I = (F~(x),. . . ,Ft(x)) be an ideal of the ring Z[x]. Then the condition 

LZ(I  ) ~ 0 is equivalent to the following condition: the polynomials F l ( x ) , . . . ,  Ft(x) have a common integer 

algebraic root in the algebraic closure Q of the field Q. Let a l , . . . , a r  be all integer algebraic roots of the 
polynomials F~(x) , . . . ,  Ft(x) in O, and k~,. . . ,  kr be the minimum of multiplicities of these roots for the above 
polynomials. Then 

LZ(I  ) = Lz(F(x))  , where F(x) = (x - a~)k'... (x - a,) ~'~. 

[] The polynomial F(x) is a monic polynomial of the maximal degree from Z[x], which divides polynomials 
Fl(z) , . . . ,  F,(x). Hence Lz(F(x))  C LZ( I  ). If L Z ( I  ) # O, then LZ(I  ) is a free abelian group and its rank 
k is less than or equal to the maximum of degrees of polynomials Fl(x) , . . . ,  F,(x). Let u l , . . . ,  uk be a free 
generating system of the group LZ(/ ) .  Then (xul , . . . ,xuk)  = (ul , . . . ,uk)A for some integer matrix A, 
and each of the sequences u l , . . . , u k  is annihilated by the characteristic polynomial XA(X) of the matrix A. 
Therefore, LZ(I  ) C LZ(XA(X)) and F(x)[xA(x ). On the other hand, the family L Z ( I  ) is not annihilated by 

any nonzero polynomial of degree less than k, hence Xa(x)]Fs(x), s E 1,"-t. Since all roots of XA(X) in (~ are 
integer algebraic numbers, we have Xa(x)[F(x). Therefore, L z ( F  ) = LZ( I  ) = LZ(XA ). [] 

An important  generalization of the above definitions is the concept of a k-LRS. For sequences over a 
field, this was studied, e.g., in [91], and for sequences over a module - -  in [49, 137]. We call a any function 

# : Nko ---* Mk-sequence over a module aM.  We write/~ =/~(z) ,  where z = ( z l , . . . ,  zk) is the row of free 

variables over No. The set M {k) of all k-sequences over M is an R-module relative to the usual operations 
over functions. 

Let ~P~ = R[x~,..., xk] = R[x] be polynomial ring of k variables. For any s = ( s a , . . . ,  sk) e No ~ denote the 
monomial  x~' . . .  x~ k by x s. Then any polynomial F (x )  E ~Pk can be represented in the form F (x )  = ~ s  fs x ' .  

We determine the structure of a P~-module on M (k) defining the multiplication of polynomial  F (x )  E :P~ on 
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the k-sequence # E M ~k) by 

F ix )#  = v, v e M (k), v(z) = ~ fsit(z + s). (1.3) 
8 

Let us consider the annihilator of a subset .hA C M (k) in the ring 7~k: 

A n ( M )  = An~,k(M ) = { f ( x )  E 7~kl f ( x ) M  = 0}. 

Evidently, An (A/I) is an ideal of Pk. 

1.14. Def in i t ion .  An ideal I of the ring 7~k = R[x l , . . . , z k ]  is called monic if there exist monic 

polynomials F l (X) , . . . ,  Fk(x) E R[x] (of one variable) such that 

F I ( x l ) , . . . ,  Fk(xk) e I. (1.4) 

Such a system of polynomials is called a system of elementary polynomials of the monic ideal I, and the ideal 
(F l ( z l ) , . . . ,  Fk(xk)) is called an elementary ideal. 

It is easy to see that if I is a monic ideal, then the factor-ring 79k/I is a finitely generated R-module. If 
R is a Noetherian ring, then the converse is also true (for the case where R is a field, see [91]). 

1.15. Def in i t ion .  We say that a sequence it E M (k) is a k-linear recurring sequence (k-LRS) over a 
module M if I = An (it) is a monic ideal. In this case, polynomials (1.4) are called elementary characteristic 
polynomials of the k-LRS #. 

1.16. P r o p o s i t i o n .  The set s of all k-LRS # E M (k) is a submodule of'Pk-module M (k). For any 
subset I C "Pk the set 

LM(I) = {it e M(k)l lit  = 0} 

is also a submodule of this module. Moreover, LM(I) C s (k) if and only if (I) is a monic ideal of 79k. [] 
1.17. Def in i t ion .  If I is a monic ideal of 79k, then the set LM(I) is called a k-LRS-family over the 

module aM.  
Note that the k-LRS-family LM(I) is annihilated by the ideal I, and hence the 79k-module LM(I) may 

be considered as a module over the ring S = 79k/I. 
1.18. Def in i t ion .  The ring S = "Pk/I = R[OI, . . . ,  Ok], where 0s = xs + I ,  will be called an operator's 

ring of the ideal I (of the family LM(I)). If I = An (it) for some # E M (k), then S is said to be an operator's 
ring of the k-sequence #. 

Consider,a few examples. 

1.19. ky :geome t r i c  progress ion .  Let a E M, q = (ql , . . .  ,qk) E R (k). Then the k-sequence # E M (k) 

of the form it(z) = q*a is a k-LRS, it e L M ( X l  - -  q l , . . .  , x t :  - -  qk). 
1.20. k - a r i t h m e t i c  progress ion .  Let ao, a l , . . . , a k  E M and it(z) = ao + ~1zl + . . .  + akzk. Then 

it e LM((Xl ~ e)2 , . . . , (xk  -- e)2). 
1.21. k - c o n g r u e n t  sequence .  Let ao, a~, . . .  ,ak E M,  q l , . . .  ,qk E R, 

(qs - e)at = (q~ - e)a~ for s, t E 1, k. (1.5) 

Let Es be the s-th row of the identity k x k-matrix E over Z. Define the sequence # E M (k) by 

it(0) = ao, it(z+ Es) = qsit(z) + as, s e 1, k. 

In view of (1.5), the sequence it is defined correctly and# e qk)). 
1.22. k- l inear  sequence .  Let n M  be a finitely generated R-module, ~ E M, ~1, . : .  ,~k E Endn(M) ,  

~s~pt = ~ o s  for s, t E i :k .  Then the sequence it E M <k) such that it(z) = ~ . . .~a?(a)  is a k-LRS over 
M, and the characteristic polynomials X~ (x~) , . . . ,  X~ (xk) of the endomorphisms ~ , . . . ,  ~k respectively (see 

Example 1.6) are elementary characteristic polynomials of it. 
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1.23. T h e  s u m  of  i n d e p e n d e n t  1-LRS.  Let F~(z) , . . .  ,Fk(x) be monic polynomials over R and 

p, e LM(Fs), s �9 1, k. Define the k-sequence p = pl q - . . . -~  pk �9 M (k) by p(z) = p l ( z l ) + . . .  +pk(zk) .  Then 

# �9 LM(GI(x l ) , . . . ,G~(x~)) ,  where Gs(x) = Fs(x), if F,(e) = 0, and Gs(x) = Fs(x)(x - e) in the opposite 
c a s e .  

1.24. T h e  d i r ec t  s u m  of  1-LRS.  Let F~(x) , . . . ,Fk(x)  be the same as in 1.23, M ~ , . . . , M k  be R- 

modules and ps �9 LM(Fs(x)), s �9 1, k. Let # be a k-sequence over the module M = M1 (9 . . .  (9 Mk given by 

/~(z) = (~l(Z~),.. .  ,~k(zk)). Then/~ �9 L M ( G I ( x l ) , . . . ,  Gk(zk)), where G1, . . . ,  Gk are the same as in 1.23. 
1.25. T h e  t e n s o r  p r o d u c t  of  1 -LRS over  t h e  r i ng  R. Let F l ( x ) , . . . , F k ( x )  be the same as in 

1.23, and u, �9 LR(Fs), s �9 1, k. Define the k-sequence u �9 R (k) by u(z) = u~(zl) . . .uk(zk) ,  Then u �9 

LR(FI ( z , ) , . . . ,  F~(x~)). Moreover, the R-module Ln(F~, . . . ,  F~) is generated by the set of all such sequences 

u (where us runs through Ln(Fs) for s �9 1---,k). For any R-module N, any R-multilinear map ~ : L~(F~) x 
. . .  x La(F~) --* N can be included in commutative diagram 

L n ( f l )  • . . .  • LR(F~) ~o L~(F~(Xl), . . . ,F~(xa)),  

N 

where ~o0((Ul,..., uk)) = u. Therefore, 

LR(FI (x l ) , . . . ,  Fk(xk)) = LR(F1) |  | LR(F~) 
R R 

is the tensor product of R-modules, and u = Ul |  | uk. 
1.26. T h e  t e n s o r  p r o d u c t  of  1-LRS over  m o d u l e s .  Let Fs(x), Ms, and #s be as in Example 1.23, 

and let M = M1 R@ . . .  ~ :Mk. Define the k-sequence/~ over M by p(z) = pl(zx) |  | Then 

I~ E LM(FI(Xl) , . . . ,  Fk(xk)), the set of all such k-Las  p (when Fs(x), Ms are fixed) generates the R-module 
LM(F1, . . . ,  F~) and 

LM(F1,. . .  ,Fk) = LM,|174 ,Fk) = LMI(F1) |  | Li~(Fk) .  
R R 

Consequently, p -- Pl | . . .  | Pk. 

1.27. 2- l inear  shift  r eg i s t e r .  Let F~(x), F2(x) �9 R[x] be monic polynomials of degrees ml and m2 
respectively. Then any 2-LRS tt �9 LM(Fx(x), F2(x)) can be realized by means of the following circuit. 

T 
#(J) tt(i + 1, j)  

#(j  + 1) tt(i + 1, j  + 1) 

�9 o o  . . ~  

t,(i  + m2 - 1) #(i + 1, j  + m2 - 1) 

LRS F2(x) over M (ml) 

LRS FI(X) over M ('~2) 

T 
. . .  p(i + ml - 1,j)  

�9 . .  t,(i  + m l  - 1 , j  + 1) 

. . ~  p(i + ml - 1, j  + m2 -- 1) 

Denote by/~( i , j )  the rnl x m r m a t r i x  described by the storage locations of the circuit on the ( i , j ) - th  
step. Then 

fL(i,j) = (S(F2)T) j �9 ~(0,0) .  S(F1)', 
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where S(F) is the accompanying matrix for F(x) (see 1.9). Such sequences over finite fields were studied in 
[115, 116, 128, 143-146, 153-159]. 

2. Generating Systems of LRS-Families 

A. 1-LRS-famil ies  [37, 46, 52, 105]. We fix a monic polynomial F(x) = x m - f,~_lX "~-1 - . . . -  fo E R[z] 
and consider the family LM(F). From (1.2), follows 

2.1. P r o p o s i t i o n .  Each recurrence It e LM(F) is uniquely determined by its initial vector It(O,-O-~--E--1-1). 
A system {it1,.. .  ,it,} C LM(F) of recurrences generates the R-module LM(F) if and only if the system o] 
their initial vectors generates the R-module M m of m-rows over M. [] 

Let e0F,..., e~_ 1 be recurrences from Ln(F) such that 

. . . .  E (2.1) 

(the identity matrix over R). As in [37, 127], we call e F = e,~_ 1 F  the impulse sequence. It follows from (2.1) 

eF(i , i+m--1) ] 
S(F)' . . . . .  

eF_x(i,i + m-- 1) ] 

and (1.2) that 

(2.2) 

Let M[x] be the 79-module of polynomials over M with natural multiplication of H(x) E 7 9 on ~(x) E M[x]. 
If M = Ral + . . .  + Ra~, then M[x] = 79al + . . .  + 79at. Considering M as an R-bimodule, define the product 

of a polynomial ~(x) = ~ ~vix i E M[x] on a sequence u E R (1) by 

~(x)u = It, It C M 0), It(z) = ~ ~iu(z + i). 

It is evident that M[x]Ln(F) C LM(F). 
2.2. P r o p o s i t i o n .  Let M = Ral + . . .  + Rat. Then 

rn- -1  r 

LM(F) E ~-, ReFa, Ln(F)a,  eFM -i- ; F = = = . . .  em_l i ,  
t=O s = l  s = l  

LM(F) = 792Fal + . . .  + 79aFar = M[x]e F = M[x]Ln(F). 

(2.3) 

(2..4) 

If M is a free R-module of rank r, then LM( F) is a free R-module of rank mr. If  R is an Artinian ring, then 
Op(LM(F)) = On(M), On(LM(F)) = mOrt(M) (see. 1.6). 

[3 (2.3) follows from (2.1) and 2.1. It also follows from 2.1 that e F, x e F , . . . ,  x m - l e  F is a basis of a free 

R-module Ln(F), and Ln(F) = 792 f .  This implies (2.4). The proof of the latter equalities is reduced to a 
local Artinian ring and to its residue field (see Section 15). r3 

Any polynomial ~(z)  e M[x] can be uniquely divided by a monic polynomial F(x) E 79; denote the 
remainder by Res ( r  

2.3. P r o p o s i t i o n .  (a) Any recurrence # E LM(F) is uniquely represented in the form 

tt = r F, ~(x) E M[x], deg ep(x) < m. (2.5) 

The polynomial •(x) -= ~ ( x )  in this representation is called the generator of the LRS It (relatively to the 
characteristic polynomial F(x)) [113], and has the following form: 

m--1 

= It(o)  + ( i t ( s ) -  f _ it(s - 1) - . . . -  f,~_sit(O))x . (2.6) 
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(b) The generator of a sequence v E LM(F) such that t, = H(x)l~, H(x)  e 7=' is given by 

r = R e s ( H ( z ) r  (2.7) 

In particular, #(i) is the coefficient of x "~'1 in the polynomial R e s ( x i r  

(c) A sequence u E La(F)  satisfies the condition LM(F)  = M[x]u if and only if F(x)M[x] + ~,,(z)M[x] = 
M[x], i.e., polynomials F(x)  and r are M[x]-comazimal. 

[] (a) Representation (2.5) stems from (2.4) and from the main property of the impulse sequence: 
Anv(e  F) = PF(x) .  To prove (2.6) it is sufficient to note t h a t g  = /~(0)e F + . . .  + / ~ ( m -  1)eF_l. Hence, 

~ , ( z )  = #(O)q~o(Z) + . . .  + / ~ ( r n -  1 ) ~ _ l ( x ) ,  where 

~s(X) = ~e~(x) = x m-s-1 -- fm-lX m-s-2 - - . . .  -- fs+2x -- fs+t. 

For other proofs of this equality and those of (b), (c), see [46, 113]. [] 
2.4. E x a m p l e .  Let tr (A) = axx + . . .  + amr~ be the trace of a matr ix A = (a~j),nxm over a ring R. Then 

for the sequence ~rf E R0) of elements ~rf(i) = tr (S(F)i),  i E 51o, we have (r E E La(F) ,  ~ ( x )  = F'(x) (the 
formal derivative with respect to x). 

We now describe a system of generators of the family LM(I), where I is a finitely generated monic ideal of 
the form I = (F(x),  G l ( x ) , . . . ,  G=(x)). Since LM(I) C LM(F), then, by Proposit ion 2.1, in order to describe 

LM([), it is sufficient to find conditions on the initial vector g ( ~ )  of # e LM(F) ,  which are equivalent 
to/.t E LM(I).  Let 

Res(Gj (x ) /F(x ) )  = g(o j) q - . . .  + g~}._,z m-l,  j e 1, n, 

Res ( z t /F(x ) )  = ~t) + . . .  + C(mtLlXm-1, 
Consider the following linear forms on M"~: 

l , (yo, . . . ,  ym-1) = c(o%o + . . .  + c Lly _ , 

t E 0, 2m - 2. 

t E 0, 2m - 2. 

2.5. P r o p o s i t i o n .  A sequence I~ E LM(F) belongs to LM(I) if and only if the row #(O,m - 1) is a 
solution of the system of linear equations 

rn--1 

E a(J)l' "" �9 =1 J" "+ [Yo, . . . ,  Y,n-1) = 0, (2.8) 

j E l ,n ,  l E O ,  m - 1 .  

This system can also be written in the form 

( y o , . . . , y , ~ - l ) ( G x ( S ( f ) ) , . . . , G , ( S ( f ) ) )  = ( 0 , . . . , 0 ) .  (2.9) 

[] I~ E LM(I) r v, = O, s E i'i n, where v, = Gs(x)~t r v s ( ~  = ( 0 , . . . ,  0), s E 1, n r (2.8). [] 
Thus, the construction of a system of generators of the R-module LM(I) is reduced to the construction 

of a system of generators of the R-module o f  solutions of the system of linear equations (2.8). Methods of 
solving such systems are described in [11, I2]. 

B. S y s t e m s  of  g e n e r a t o r s  of  k - L R S - f a m i l i e s  [12, 49, 67, 91, 128, 137, 143, 145, 146, 154-158]. Fix 

elementary polynomials Fs(xs) E 79k, s e 1, k. Let m~ = degF~(xs). Consider the family LM(F1, . . . ,Fk) .  

Denote by < the natural order on 510 and the induced partial order on 510 k. For m = ( m l , . . .  ,ink), 1 = 
( 1 , . . . ,  1), define a polyhedron 

H = n ( m ) =  {i  E 510~1 i < m -  1}.  

For a sequence # E M (k) we define the polyhedron of values by 

g(II)  = {~( i ) l  i ~ II}. 
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Let M n be the set of all such polyhedrons. Then M n is an R-module, isomorphic to the module nM m of 
rows of length m = ml . . . ink. 

Introduce a lexicographical linear ordering ~ on No k. We write i ~ j for i, j E No k, if in the sequence of 
integers 

(jl + . . .  + jk) - (il + . . .  Jr ik), j l  - i l , . . . ,  jk - i~ 

the first nonzero number  is positive. Then all points of the polyhedron II form a chain 

0 = io __ ii  _ . . .  __ ira-1. (2.10) 

The elements of the polyhedron of values p(II) are ordered in the same way. Thus, #(II) can be written as a 
vector (#(0) , t t ( i l ) , . . . ,# ( i ,~_l ) )  e M '~ of length m. 

For j E No k we set 

HJ(x) = f i  Res(xJ,'/F,(x,))= ~_, h~x i. (2.11) 
s = l  iEH 

2.6. L e m m a .  For any # E LM(F~,...,Fk), j E Nko, the value #(j) is uniquely determined by the 
polyhedron #(II) of initial values by the following formula: 

= (2.12) 
iEH 

[] #(j) = v(O), where v = xJ# = Hi(x)#.  [] 

For j E I I ,  let e; l'''''Fk = e~ be the recurrence u E Ln(FI, . . . ,Fk),  which has exactly one nonzero value 

u(j) = e in u(II). Obviously, e~'(z) = e F l ( z l ) . . . e F ; ( z k ) ,  i.e., in the notation of 1.24, 

= e2 |  | e ; :  (2.13) 

As for a 1-LRS, we call eF = em_lF the impulse recurrence from LR(F1, �9 ., Fk). 

Let Mix] = / [ X l , . . . ,  xk] be the :Pk-module of all polynomials over the module M of k variables with 
natural multiplication of polynomials from 7)k on the polynomials from Mix]. 

2.7. P r o p o s i t i o n .  If M = Ral Jr.. .  Jr Ra~, then 

r 

LM(F,,...,F~:) = E ~ Rein,  = E LR(F1,...,Fk)c~, = E ee~M, (2.14) 
jEl 'I  s = l  s = l  jEH 

LM(F1,... ,  Fk) = "PkeF(Xl J r . . .  Jr "PkeFOtr : M[x]e F = M[x]Ln(F1,...,  Fk). (2.15) 

If M is a free R-module of rank r, then LM(F1,... ,Fk) is a free R-module of rank mr, If R is an Artinian 
ring, then O~,(LM(F~,..., Fk)) = On(M), OR(LM(F1,..., Fk)) = mOR(M). 

[] The proof is analogous to the proof of 2.2. We take into account that  the system of sequences 

{xJeFI j II} = { e L x S l e F , . . .  

is a basis of the free R-module Ln(F~,... ,  F~)(see [49, 137]). [] 
Let aes  ( g ( x ) / F )  be the residue of the polynomial H(x)  E M[x] modulo ideal (F~(x~),..., Fk(xk)) (i.e., 

the result of k divisions with a remainder of g ( x )  on F~(x~),..., Fk(xk)). 
2.8, P r o p o s i t i o n .  (a) Any recurrence # e LM(F~,... ,  Fk) is uniquely represented in the form 

tt = O(x)e F, where (I)(x) �9 M[x], deg~o(I)(x) < m~, s �9 1, k. (2.16) 

The polynomial (I)(x) = Or(x ) in this representation, called the generator o f t ,  has the form 

(s ) (I)•(x) : E ' (t'a(1) �9 ~f)ik+l ~k ~] tl+il+l- .a x ~, 
iE l I  t <  - - 1  

(2.17) 
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where F,(x,) = Et>_.o a~ ")zt for s �9 1, k. 
(b) I f v  = H(x)#,  where H(x)  e Pk, then ~ ( x )  = Res ( H ( x ) ~ , ( x ) / F ) .  
(c) If  u �9 LR(Fx,. . . ,Fk),  then LM(Fx, . . . ,Fk) = M[x]u iff 

Ft(z,)M[x] + . . .  + Fk(zk)M[x] + ~ ( x ) M [ x ]  = M [ x ] ,  

i.e., the polynomials F1 , . . . ,  Fk, r are M[x]-comaximal. 
[] (2.16) follows from (2.15) and from the condition An (e r)  = (Fx(zt) , . . .  ,F~(xk)). Since # = ~iert #(i)ei r. 

we have ~ ( x )  = Elan #(i)~i(x),  where r  = q~,r(x). Now (2.17) follows from (2.6) and from the equality 

~i(x) = ~ i , ( x t ) . . .  ~ik(Xk), where r is a generator of ef], s �9 1, k. The last proposition is a consequence 
of Example 1.24 and of the relations 

e~ = e~' |  | el: = ~,~ (~1) . . .  ~,, (~)- (e ~' |  | e ~ )  

= r (~1) �9 . . .  �9 ~,,(~). e~.o 
Now we describe the system of generators of the R-module LM(I) for an arbitrary monic finitely generated 

ideal I ~ Pk, satisfying (1.4). We may suppose that I has a system of generators of the form 

Gl (x ) , : . . ,  G,(x) ,  (2.18) Fl(~,l),...,Fk(Xk), 

w h e r e  

iEII 

Consider the set Res ( I / F )  = {Res (H(x) /F(x)]  H(x)  �9 I}. 
2.9. L e m m a .  The set Res ( I / F )  is the R-module generated by 

G~(x) = aes  (xUG,(x)/F),  u �9 H, 

In the notations of (2.11), (2.19), 

r �9 1,n. (2.19) 

r �9 1,n. (2.20) 

= g~,ix, where g~,i = ~']~9,ah~ +i.O 
iErI jEII 

2.10. P ropos i t i on .  Let 
H i ( x ) , . . .  , H ~ ( x )  

be a system of generators of the R-module Res ( I /F ) ,  and 

(2.21) 

H ~ ( x )  = ~ h~,ix i, v �9 1, w.  
iErl 

Then a k-LRS Iz �9 LM(FI(Xl), . . . ,  Fk(xk)) belongs to LM(I) iff its polyhedron of initial values g(II) is a 
solution of the system of linear equations 

{Y]~ h,,ix(i) = 0, v �9 1, w, (2.22) 
ifiFl 

where {z(i)l i �9 II} is a system of independent indeterminates in M. 
O (2.22) is equivalent to 

gr,lx(1) = 0, u �9 1-/, r �9 1,n. (2.23) 
" iEl-I 

Let 5r = G,(x)/~. Then g �9 LM(I) iff 61 = . . .  = 6, = 0, i.e., 6~(H) = 0, r �9 1, n. This means that g(1-I) is a 
U * solution of (2.23), since 6,(u) = Eien g,,i~t0) �9 [] 

2802 



2.11. Coro l la ry .  Let #~, . . . ,#~  E M n be a system of generators of the R-module of solutions of the 
system of linear equations (2.22). Then the set { t q , . . - , # t }  C LM(FI , . . . ,Fk)  of recurrences with initial 

values #t(II) = #~, t E 1, l, generates the R-module LM(I). n 
2.12. P r o p o s i t i o n .  Let M be a finitely generated module over a Noetherian ring R. Then for any 

monic ideal I ,~ 79k the family LM([) is a finitely generated over R 79k-submodule of module EM (k). For any 

submodule M of the 79k-module M (k), the following conditions are equivalent: 
(a) M is a finitely generated R-module; 

(b) M is a finitely generated submodule of the 79k-module s 
(c) An(M) is  a m o n i c  ideal.  

[] (a) ~ (b) Any k-sequence # E M is an LRS. Actually, for any s E 1, k the R-submodule (/z, x~#, 
2 x~#, . . . )R of A/t is finitely generated. Therefore, x~~ E ( # , x , g , . . . , x ~ ' - ~ # )  for some m,  E N, i.e., # is 

annihilated by the elementary polynomial F,(x~) E 79k of degree m~. 

(b) ~ (c) By the condition, .Ad = 79~/q + .. + :Pk#t and An (#t) is a monic ideal for t E 1, I. Then 
An (A/l) contains the monic ideal An (#1) . . .  An (#,). 

(c) =~ (a) Suppose that  A n ( . ~ )  contains an elementary ideal (F l (x l ) , . . . ,Fk (xk) ) .  Then A~ C 
LM(An (.44)) C LM(F1,. . . ,  Fk). The last R-module is finitely generated by 2.7. [] 

C. G e n e r a t i n g  f u n c t i o n  of  a k-LRS.  

2.13. Def in i t i on .  The generating function of a k-sequence # E M Ik) is formal power series 

6~,(x) = ~ #( i )x  ~ 
�9 k 

~No 

from the 79k-module M[[x]] of all formal power series over M. 
A description of the generating function of an LRS is closely connected with its generator and charac- 

teristic polynomial�9 For LRS over a field, such a description was obtained in [91]�9 In the general case we 
h a v e  

2.14. P r o p o s i t i o n .  The generating function of a k-LRS tz E ff~M (k) with elementary characteristic 
polynomials Fl (Xl ) , . . . ,  Fk( xk ) is the rational function 

3;(• s , (x)  = 

 here = s i ,  k, and ( I ) ; ( x )  = xm-l(I),(l/xt,..., 
function of a k-sequence tz E M (k) has the form 

Gu(x ) = 
~ien(m) ~ xa 

k b~ ~)z~ I,(~) _~, ~" I]~=x(e + + . . .  + ~m,~ j 

then # is a k-LRS with elementary characteristic ideal 

Conversely, if the generating 

- i  

and with genef'ator 

 m_i_lX i. 
|El'I(m) 

[] In both cases, the proof consists in multiplying the series 6 , ( x )  by the denominator of the fraction 
from the right part. [] 

D. B i n o m i a l  basis  and  ana ly t i ca l  r e p r e s e n t a t i o n  of  r e c u r r e n c e s  [29, 37, 47, 70, 91]. Here we 
consider the situation where an LRS # E LM(FI(Xl) , . . . ,  Fk(xk)) can be represented as an explicit function of 
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i. A long list of papers on this problem starts with the Fibonacci sequence and is essentially a generalization 
of the properties of arithmetical and geometrical progressions (Examples 1.2, 1.3, 1.18, 1.19). 

2.15. Def in i t ion .  For a E R, l E No, the sequence a[~ E RO), defined by 

ate(O--3) = ( 0 , . . . ,  O, e), o' ' or >l 

is called the binomial sequence of order I + 1 with root a. In particular, 

0 [z] = ( 0 , . . . ,  0, e, 0, 0 , . . . ) ,  

"" l e , . . . ) .  

The b i , , o ~  ~den~y ('~') - (i) = (,-',) imp~o~ ~h~ ( ~ -  o/oE" = ot'-,J, ~ >_ ~, ~r~d, fu,:~her, wo h~vo ~ho 
following 

2.16. L e m m a .  The sequence a [~ is an impulse L R S  with minimal polynomial G(x)  = (x - a) t+;t, i.e., 

a [O = e a, and An(a  Ill) = 7~G(x), L R ( ( x - - a )  t+l) = 79a ti] = Ra [~ q - . . .  4 Ra [q. D 

2.17. Def in i t ion .  We say that a polynomial F ( x )  E 7 ~ has a canonical linear decomposition over R if 

F ( x )  = ( x - - a 1 )  h + l . . . ( x - a ' )  I'+1, (2.24) 

where x - a l , . . .  ,x - at E 7 ~ are pairwise comaximal (i.e., a, - aj E R* for i r j ) .  
2.18. T h e o r e m .  I ra  monic polynomial F (x )  E 7 ~ has a canonical linear decomposition (2.24), then the 

set of binomial sequences 

a~~ a~ hI, a~~ el ,d 

is a basis of the free R-module LR(F) ,  and every recurrence u E L n ( F )  can be uniquely represented in the 
form 

,40 = F_, F, c,, l a~-', i >_ O. (2.25) 
8=1 I=0 

Here the coefficients cst E R are the unique solution of the system of linear equations 

t Is 

E cs, a ! ' ] ( ~  = u(o,-:-.-.-.-.-.-.-.-~-~), 
a=l 1=0 

where rn = 11 + . . .  + It + t = degF(x) .  

[] Since x - ai, x - aj are relatively prime, LR(F)  = LR((z  - al) t1+1) + . . .  + LR((x  - a,) t'+l) (see Section 
4 below). By Lemma 2.16, u can be uniquely represented in the form 

t Is 
= x-" x'-" c a [~1 (2.26) u = ~ u ,  Z..,Z.., ,z 8 , c,t E R.  [] 

8=1 8=1 1=0 

As an example of decomposition (2.25), consider the Fibonacci sequence over Z (see 1.5): 

u(i) = 1___(1 + V~)i  '. 

Under conditions of Theorem 2.18, we call the decomposition (2.25) (or (2.26)) an analytical representa- 

tion of the LRS u. 
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2.19. P r o p o s i t i o n .  Let u have an analytical representation (2.26), and let c, E RO) be sequences of the 

form c, = (C,o,C,1,... ,c,,h,O,O,.. .),  s E 1,t.  Then 

An ( u s ) =  {H(z  i E 791H(z + as) 6 An(c,)},  (2.27) 

An(u)  = A n ( u , ) . . . . . A n ( u t ) .  

In particular, i f  x m" is a minimal polynomial of the L R S  cs, then rank u = ml  . . .  mr, and (x - al) 'm �9 . . .  �9 
(x - at) "~t is a minimal polynomial of the L R S  u. 

[] For G(z) e 79, by (2.26), G(x - a,)u,  = t, ~=o  v,(l)a~, where v, = G(z)c,.  Hence, G(x  - as)u, = 0 iff 
v,(O) . . . .  = v , ( l , -  1) = 0, i.e., if v, = G(z)c,  = 0. This implies (2.27). [] 

In the general case we have 
2.20. T h e o r e m .  Let Fl (xx) , . . . ,  Fk(xk) be monic polynomials over R with canonical linear decomposi- 

tions 
Fr(x) = (x - -  ar l ) t "+x . . . .  �9 (x - -  at.t,) l't'+l, r E 1, k. 

Let M = Ral  + . . .+Ra ,~ .  Then the R-module LM(FI (xx ) , . . . ,  Fk(xk)) is generated by the system of sequences 

air1] [t~] 
t s ~ @ . . . |  l < s < t ,  0 < I < Is = (11,1,..., lk,k), j e i ,  n. 

[] It follows from (2.14) and 1.24 that 

n 

LM(F~, . . . ,  Fk) = ~ LR(F~) |  | LR(Fk)c% 
j=l 

Now our theorem follows from 2.18. [] 
Thus, for any recurrence ~ E LM(F~, . . . ,Fk)  there exist coefficients {~,j} C R (with limitations to 

indexes as in 2.20) such that 

. . . . . . .  

j,s,l \ k/ 

2.21. Def in i t ion .  Decomposition (2.28) is called an analytical representation of  the k-LRS p over the 
module M. 

2.22. R e m a r k .  It is quite possible (see Section 15) that F1 , . . . ,  Fk have no canonical linear decomposi- 
tions over R, but there exists an extension S of R and monic polynomials G l ( x ) , . . . ,  Gk(x) E S[x] such that 

G,(x) has a canonical linear decomposition over S and F,(x)IG,(x ) for r E 1, k. In this case, any sequence 
u E L n ( F 1 , . . . ,  Fk) lies in L s ( G x , . . . ,  Gk) and has an analytical representation over S. 

Now let # E LM(F1 ,  . . . .  , Fk) be a sequence over an R-module M. Sometimes we can get an analytical 
representation of p. For example, suppose that the R-module homomorphism qo : M ~ S | M,  where 

R 

qa(a ) = e | a, is a monomorphism (for example, if M is a flat (projective, free) R-module [14, 16, 169], or 

if nR  is a direct summand of aS). Then any sequence iz E M {k) can be considered as a k-sequence over the 

S-module S | M if we identify M and ~(M).  ,In this situation, # has an analytical representation over the 
R 

S-module S | M. 
R 

3. G e n e r a t i n g  S y s t e m s  o f  L R S - A n n i h i l a t o r s  

In the general case, it is quite a difficult problem to obtain a description of the annihilator An (#) of a 

k-sequence p E M {k) (even for k = 1, M = R). For example, there exists no algorithm of verification of the 

equality An (/z) = 0 if we do not have some additional information about #. But if we know that p is an 
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LRS with elementary characteristic polynomials of degrees rex, . . . ,  ink, then we can reduce the description of 
An (#) to the solution of a system of linear equations over M. 

A. Desc r ip t ion  of t h e  ann ih i l a to r  of  a 1-LRS [12, 37, 46, 52, 91, 136]. 
3.1. Def ini t ion.  The matrix 

~,~(#) = # ( I )  . . .  #(rn)  = #(I---.-~) 
�9 ~  . ~ 1 7 6  

# ( m - l )  : : :  # ( 2 m - 2 )  # ( m - l , 2 m - 2 )  

is called the Hankel matrix of order m of the sequence # E M (1). 
3.2. P ropos i t ion .  A polynomial A(x) ,~-1 = ~j=o aJ xj E 79 annihilates a sequence # E MO) if and only i] 

(no, . . . ,  am-1)~m(xtlt) = (0 , . . . ,  0) for any t e N0. 

I f#  is an LRS of order m, then this condition holds if and only if (ao,... ,  am-i) is a solution in R ('~) of the 
system of linear equations 

(yo,.. ,Ym-1)~m(#) = (0,..  ,0). (31) 

Moreover, F(x) = x ~ -  fm_xx m-1 - . . . - f o  E 79 is a characteristic polynomial of# if and only / f ( f0 , . . . ,  f,~-,) 
is a solution of the system 

( fo , . . . ,  f,~-a)G~(#) = g(m, 2m - 1). (3.2) 

If the R-module K:(~m(#)) of all solutions of (3.1) in R (m) is generated by the system of rows As = 

(as0,...,as,,,-1), s E f~, then An(g) =7, (F(x),As(x),s  E f~), where As(x) = ~,~_~x asjxj. [] 

If we know a characteristic polynomial F(x) E 79 of # E s then we can describe An (#) in terms of 
the generator (I),(x) of #. 

3.3. L e m m a .  For any monic polynomial F(x) E 79 the annihilator AnMM(e F) of the impulse recurrence 

e F in the module M[x] is given by AnM[~:](e F) = F(x)M[x]. 

[] It is sufficient to note that AnM[~](e F) D F(x)M[x] and that e F is not annihilated by polynomials 
from M[x] of degree less than degF(x).  [] 

3.4. P ropos i t ion .  The annihilator of the recurrence # E LM(F) is given by 

An(#) = (F(z)M[z]: q)u(x)) = {H(x) e 791H(x)r e F(x)M[z]}. 

In particular, if F(x) and Cu(x) are M[x]-comaximal, i.e., 

F(x)M[z] + 79r M[z], (3.3) 

then 
An(#)  = 79F(z). (3.4) 

For any # E M (x) the condition (3.4) is equivalent to each of the following conditions: 
(a) # is an LRS with unique minimal polynomial F(x); 
(b) the system of rows of the matrix ~,,(#) is free over R and (fo, . . .  ,fro-l) is a solution of(3.2). [] 
3.5. Corollary.  If  R is a field, then any LRS u E LI~(F) has a unique minimal polynomial M,,(x) E 79, 

and 

F(z) (3.5) 
M=(x) = (F(x), ~ ( z ) ) "  

B. Ann ih i l a to r s  of k-LRS-famil ies  [12, 49, 91, 128, 137, 143, 146, 156, 158]. We are going to describe 
a system of generators of the annihilator An (.&4) of the family 

.M = 79kui + . . .  + 7:'kul (3.6) 
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mt g, ven u t , . . . ,  ut E/..M ~ .  buppose that we know the degrees m l , . . . ,  ml, of some elementary characteristic 
polynomials F~(x~),..., Fk(x}) of the family .s Then we can evaluate these polynomials. For example, the 

row (f00) , . . . , f~:_l)  of coefficients of the polynomial FI(Xl) = xr~ ' - f(ml~_l xm'-I - - . . . -  f(o x) e R[xl] is a 
solution of the following system of Ira1... mk linear equations over M: 

(yo, . . . ,  yr,-~)~,~ (#~ (Zl, i2 , . . . ,  ik)) = pt(m~, 2m~ -- 1, i2, . . . ,  ik), 

t 1,1, 

where, for a given t E 1,--7 and ( i2, . . . ,  ik) E II(m2, . . . ,  m~), the sequence #t(zx, i2, . . . ,  ik) is a 1-LRS, obtained 
from the k-LRS pt(z) by fixing of z2, . . . ,  z~. 

Suppose that we have already found polynomials 

Ft(x~),. . . ,  F~(x~) ~ An (.44). (3.7) 

Let R be Noetherian. Then the system of generators of An (M)  is the finite set of polynomials 

F~(x~),... ,  F~(x~), H~ (x) , . . . ,  H~(x) (3.8) 

wtiere H i (x ) , . . . ,  H~o(x) is the system of generators of the R-module Res (An (3d) /F)  (see Section 2B). Note 
that, by (3.6) and (3.7), A4 is an f.g.-R-module generated by 

and, by (3.7), (2.11), 

I1 u~ = xUu~, u e II = I I ( rn l , . . . ,  mk), s E 1,--7 (3.9) 

v•(j) = ~ v~(i)h~ +j, j e N0 ~, u e II, s e 1,i (3.10) 
IEH 

3.6. P ropos i t i on .  Let Vl,. . . ,  vt be a set of generators of 79k-module .s Then the polynomial H(x) = 
~ ienh ix  i ~ 79k belongs to A n ( M )  /f and only if the polyhedron Hn = {hil i E H) of its coefficients is a 
solution of the following system of linear equations over M: 

~ yl/~,(i) = 0, s e 1,---L (3.11) 
k iEFI 

where {Yi] i e II} is a system of independent variables in R. If H~n, . . . ,  H~,n is a system of generators of the 
module of solutions in R I] of system (3.11), then the system of polynomials (3.8) generates An (.~).  

[] Let 5s = H(x)us, s E 1,---1. Then H(x) E An (.s iff 5s(u) = 0 for u E H, s E 1,--'7. Since 5~(u) = 
Eieri hluy(i), the last condition is true iff Ifn is a solution of the system 

{~--~ yiu:(i) = 0, u e II, s e 1,--7. 
iEH 

which is equivalent to the system (3.11). [] 
Analogously to 3.4, the annihilator of any k-LRS # can be described in terms of the generator ~,(x).  
3.7. L e m m a .  For any set of elementary polynomials F~(xl), . . . ,Fk(xk) E T'k the annihilator of the 

impulse recurrence e r in M[x] is given by 

AnMM(e F) = Fl(xl)M[x] + . . .  + Fk(xk)M[x]. 

[] The definition of e F implies that e F is not annihilated by the polynomial O(x) E Mix] of the form 

O(x) = Eien alx i. [] 
3.8. P ropos i t i on .  The annihilator of LRS # E LM(Ft(xt) , . . .  ,Fk(xk)) in "Pk is given by 

An (#) = (F~(xx)M[x] + . . .  + Fk(xk)M[x] : r  
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I f  polynomials F~ ( z l ) , . . . ,  Fk(z~), (I),(x) are M[xl-comazimal , then An (#) = (/ ;~(x~), . . . ,  Fk(zk)). [] 
C. k-LRS w i t h  a g iven ann ih i l a t o r .  Note that  if R is a field, then any monic ideal I ,~ 79 is the 

annihilator of some LRS over R: if I = 79F(x), then I = An (eF). But if R is not a field, this is not true. 

For example, there is no sequence u E Z0) such that An (u) = (z, 2). Thus, we have the following problem: 

a system of generators of a monic ideal I ~ 79k, is given, and it is necessary to find a k-sequence u E s  (k) 
with An (u) = I,  or to prove that there exists no such u. This problem was solved only for Artinian rings of 

principal ideals [46] (see Section 16). An analogous problem can be formulated for linear recurrences over a 
module RM. We mention some results in this area in Section 4. Here we formulate 

3.9. P ropos i t i on .  Let I ,~ 79k be a monic ideal, S = 79k/I, O, = z ,  + I E S for  s E 1, k. Then the 

sequence i~ over the module a S  of the form g(z) = 0" = 0~ . . .  0~ ~ is a k-LRS,  and An (#) = I. 
[] Let g ( x )  ~ 79~ and u = g ( x ) # .  Then v(z) = H(O)OL Therefore, u = 0 r H(O) = 0 r H(x)  ~ I.  [] 

4. S o m e  R e l a t i o n s  b e t w e e n  LRS-Fami l i e s  and  T h e i r  A n n i h i l a t o r s  

A. T h e  1-LRS famil ies  over  a field. The relations which we consider below in this section are 
generalizations of the following well-known relations for 1-LRS families over a field P (see, for example, [36, 

46]). 
4.1. T h e o r e m .  For any monic polynomials F(x) ,  G(x) E 7 9 = P[x], the following equalities hold: 

Lp (F)  + Lp(G) = Lp([F, G]); (4.1) 

Lp(F)  N L p ( a )  = Lp((F,  G)). (4.2) 

Any 1-LRS family .h4 over the field P has the form .M = Le (F)  for some monic polynomial F(x)  E 79 and 

is a cyclic 79-module: M = 79e F. For any u, v E s  we have 

v E 79u r i , ( x ) [ M u ( x ) .  (4.3) 

Any monic (i.e., nonzero) ideal I of the ring 79 is an annihilator of some L R S  over the field P. [] 
Some generalization of these results for a k-LRS over a field are given in [91]. 
B. T h e  k-LRS famil ies  over  a N o e t h e r i a n  r ing  [49, 91,137, 145]. In what follows, R is a Noetherian 

ring and a M  is an f.g.-R-module. Let ~lk = 9.tk(R) be the set of all monic ideals of the ring 79k = R[Xl , . . . ,  xk] 

and ~ k  = ~ k ( M )  be the set of all 79k-submodules, finitely generated over R, of the module M (k). In this 

case, by 2.12, any element 3,4 E ~k  is a submodule of Z:M (k) and maps An and LM determine the pair of 
the Galois correspondences 

An : ~ k  --* ~tk, LM : 2tk --* Yak. (4.4) 

This means that for any .44 E ~k,  I E ~tk 

.~4 C LM(An (~4)), I C An (LM(I)).  (4.5) 

In some cases these inclusions may be strict. For example, let R = P[yl ,y2]/J,  where P is a field, J = 
2 2 ~_~ (Y~,Y2,Y~,Y2) (see [68]). Then R = P[a~,a2]', a ,  y, + J ,  R is a P-algebra of dimension 3 over P with 

the basis e, a~, a2, and fit(R) = Pax + Pa2 is the unique maximal ideal of R, fit(R) 2 = 0. For the ideal 
I = (z, ax) of R[z], the family Ln(I)  consists of all sequences u = (u(0), 0, 0 , . . . ) ,  where u(0) e fit(R). But then 

An(Ln( I ) )  = (z, al ,  a2) ~ I. Analogously we can construct a family ~,4 e ~1 such that  M ~ LM(An (A,l)). 
4.2. P r o p o s i t i o n .  For any ideals I1, I2 E ~k and modules ./~41, .A,42 E ~k ,  

An (.~41 + r An (A41) N An (A, t2); 

LM(I1 + I2) = LM(I1) n LM(I2); 

An (.MI N .M2) _D An ( .h~) + An (.M2); 

(4.6) 

(4.7) 
(4.8) 
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LM(I1 A h )  ~_ LM(It) + LM(I2). (4.9) 

I f  the maps An and LM are bijections, then the inclusions (4.5), (4.8), (4.9) are equalities. [] 
In the general case, the inclusions (4.8), (4.9) are strict. Examples can be constructed for the ring 

R = P[ax, a2] defined above. But we must note the following special case. 
4.3. P ropos i t i on .  I f  I1, I2 are comazimal ideals of Pk, then 

LM(I1 f'l 12) ~ LM(I1) "~ LM(I2) (4.10) 

is a direct sum. Moreover, in this case LM(I1 fq 12) is a cyclic Pk-module iff the modules LM(Is), s = 1, 2, are 
cyclic. [] 

C. T h e  c r i t e r i a  for t h e  Galois  c o r r e s p o n d e n c e s  b e t w e e n  LRS-fami l i e s  a n d  monie  ideals  to 
be b i jec t ive  [14, 16, 43, 49, 65, 66, 68, 69, 77, 134, 135, 137, 146, 169]. If M = R is a field and k = 1, 
then the correspondences (4.4) are bijections, and the inclusions (4.5), (4.8), (4.9) are equalities. Naturally 
the following question arises: which modules n M  satisfy the same conditions, i.e., for which modules is the 
theory of linear recurring sequences analogous to the theory of linear recurring sequences over a field? The 
problem is reduced to Artinian rings and modules. 

4.4. L e m m a .  I f  RM is an f.g.-R-module over a Noetherian ring R and the correspondence LM : 9.t ~ ~k  
is injective, then R is an Artinian ring. 

[] The R-module M = LM(Xl , . . . ,  xk):is isomorphic to aM.  If R has a strictly descending chain of ideals 
R D J1 D J2 D . . .  - -  then M has a strictly ascending chain of submodules - -  0 C J ~ l  C J ~ 2  C . . .  - -  

where M ,  = LM(Xl , . . . ,  xk, J,). But the last chain cannot be infinite. [] 
For any subsets J C R, N C M we define the following annihilators: 

AnM(J)  = {a e M I J a  = 0), AnR(N) = { r E  R[ r N  = 0}. 

4.5. Def in i t ion .  We say that n M  is a quasi-Frobenius module (QF-module) if for any ideal J C R and 
submodule N C RM 

AnR(AnM(J))  = J, AnM(AnR(N))  = g .  

A ring R is called quasi-Frobenius if RR is a QF-module. 
Examples of QF-rings are fields, Galois rings, and Artinian principal ideal rings. 
These definitions are compatible with the definitions from [77, 169]. From the results of these papers it 

follows that for any Artinian ring R there exists a unique (up to isomorphism) QF-module RQ. This module 
Q is the minimal injective cogenerator in the category of R-modules, and defines the Morita-duality in this 
category. If R is a local ring with maximal ideal 9I(R), then an faithful module RM is quasi-Frobenius iff any 
of the following Conditions hold: 

(a) AnM(9I(R)) is a minimal submodule of RM; 
(b) AnM(9I(R))is a cyclic R-module; 
(c) An M(~(R)) is a nonzero intersection of all submodules of RM. 
4.6. T h e o r e m .  For a finitely generated module R M  over an Artinian ring R, the following conditions 

are equivalent: 
(a) RM is a QF-module; 
(b) the Galois correspondences (4.4) are bijective; 
(c) for any monic ideal I of the ring 7='k the family LM(I) is a QF-module over the ring of operators 

S = T'k/I, and any module M E 9Jtk is a QF-module over the ring of operators S = 7>k/An (M) ;  
(d) the inclusions (4.8) and (4.9) are equalities; 
(e) for any recurrences #, v E s {k) the implications 

~' E ;ok# e* An (#) C An (v) 

are true. 
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[] (a) =~ (b) Suppose that the conditions of Proposition 2.10 and Corollary 2 . t l  hold. Then the R-module 
.M = Ln(I) is generated by the set of k-LRS # x , . . . ,  #t such that # , ( H ) , . . . ,  #~(H) is a generating set of the 

R-module of the solutions of the system (2.22) in M n. Since M is a QF-module, we may state [137] that 

the R-module of solutions in  R n of the dual system (3.11) is generated by the set of rows (polyhedrons) 
H m , . . . ,  H~n of the matrix of the system (2.22). Hence, according to 3.6, the system of polynomials (3.8) 
generates the ideal A n ( M )  = An(LM(I)), and, therefore, An(LM(I)) = I. The equality LM(An(M))  = M 
for .M ~ ~ k  is proved analogously. 

(b) =~ (c) Let M = LM(I). Then for any submodule K: C M the equalities An s(K:) = J = J / I  hold, 
where J = An (K:) D I and 

An~(Ans(K:) )  = A n ~ ( J ) =  LM(J)= LM(An (K:)) ~ E.  

The equality An s (An,~(J ) )  = Y for any ideal J of the ring S is proved analogously. 
(c) =~ (d) In order to prove that inclusions (4.9) are equalities, denote 3A = .4dl + A,/2, I = An (~t4). 

Then AA is a QF-module over the ring S = T'~/I. Since An s(A41 N 3A2) = An ( M I  V1.M2)/I and An s(.Mt) = 
An (.Mt)/I for t = 1,2, it is sufficient to prove that 

Ans (M1 VI M2) = Ans (M~)  + Ans(M2) .  

This follows from the equality 

An~(Ans( .M1)  + An s(.M2)) = An~(Ans( .M~))  gl A n ~ ( A n s ( M 2 ) )  

and from the definition of the QF-module sA4. The equality (4.8) is proved analogously. 
(d) =~ (a) It is sufficient to examine the case where R is a local Artinian ring. Let RM not be a 

QF-module. Then An~(9~(R)) is not a cyclic R-module, and there exist elements hi,a2 E M\O such 

that fft(R)al = oI(R)a2 = O, Ral f3 Ra2 = 0. Let .s s = 1, 2, be the family of all k-LRS # E s  (k) 
such that /~(0) E R a s  and g(i) = 0 for a l l i #  0. Then M 1 N M 2  = 0 and A n ( M 1 N A J 2 )  = Pk, but 
An(Mx)  = An (J~42)= (x~,. . . ,zk,  fft(R)). Therefore, (4.8) is a strict inclusion and (d) is not true. 

(a) =~ (e) The implication v E Pk# =~ An(/~) C An(v) is evident. Let An(/~) C An(v).  Then 
Lu(An(/z))  C LM(An(u)), and since (b) is true we have LM(An(/z)) = 79,#, LM(An(u)) = 7~ Hence 

(e) ==~ (a) We may assume that R is a local ring. Let RM not be a QF-modute and oq, a2 be the same as 

in the proof of the implication (d) =~ (a). Let us consider the sequences/~a,/~2 E s  (k) such that ~ ( 0 )  = a, ,  
/~(i) = 0 for i ~ 0, s = 1,2. Then An(#~) = An(#2), but "Pk/~l ~ ~k/~2 since R/~ ~ R/~2. This contradicts 
(e). [] 

Thus, the properties of linear recurrences over a module generalize the properties of LRS over a field iff 
this module is a QF-module. The following result gives an essential supplement of Proposition 1.7 and shows 
an interesting connection between cyclic LRS-families and QF-rings. 

4.7. T h e o r e m .  Let nQ be a quasi-Frobenius module. Then for any monic ideal I of the ring 79k the 
following conditions are equivalent: 

(a) I = An (/z) for some recurrence I~ E s 
(b) jl/[ = LQ(I) is a cyclic 7)k-module; 
(c) S = 79k/I is a quasi-Frobenius ring. 
[] (a) =~ (b) By Theorem 4.6(b), LQ(I) = LQ(An (~t)) = 7)kFt. 
(b) :=~ (c) According to Theorem 4.6(c), M is a QF-module over the ring S, and since s M  is a cyclic 

module, we have s.M ~ sS. 
(c) =~ (a) The modules sS and s M  are quasi-Frobenius. Therefore, sS  -~ s.M and 3A is a cyclic 

7~k-module. If .&4 = T'k/~, then by Theorem 4.6(b), I = An (#). [] 
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4.8. Coro l l a ry .  Let Fl(XX),. . . ,  Fk(xk) be monic polynomials from 79k and S = ~k/ (Fl (Xl ) , . . . ,  Fk(xk)). 
Then S is a QF-ring iff R is a QF-ring. 

[] The S-module .A,4 = LM(Fx(xl) , . . . ,  Fk(xk)) is cyclic: .~t = 7~ke r = Ser.  If R is a QF-ring, then by 
Theorem 4.6(c) s.A4 is a QF-module, and, by Theorem 4.7, S is a QF-ring. 

Let S be a QF-ring and R not be a QF-ring. We may suppose that  R is a local ring. Then there 
exist al, a2 E Ann(91(R)) such that  Ral n Ra2 = 0 (see, for example, [43]). Let us consider the submodules 

.hdt = ~kate r = Sate ~ (t = 1, 2) of the S-module A4. Then A41 ~ A4~, but An s(Jt41) = An s(,~/2) = 9I(R)S. 
Since sA4 is a QF-module (a cyclic module over a QF-ring), we have A4~ = A n ~ ( A n s ( A 4 1 ) )  = A42. We 
have come to a contradiction. [] 

Property (c) of Theorem 4.6 makes it possible to construct a QF-module over any Artinian commutative 
ring S as a k-LRS family over some principal ideal ring. In fact, it is known that  the ring S can be represented 
as S = R[Trl, . . . ,  7rk], where R is the subring of principal ideals of S. Then S = 7~k/I for some monic ideal I 
of :Pk = R[z~, . . . , xk] .  Since R is a QF-ring, Theorem 4.6(c) implies that  L R ( I ) i s  the required QF-module 
over S. 

5. P e r i o d i c  S e q u e n c e s  a n d  R e c u r r i n g  S e q u e n c e s  

A. P e r i o d  a n d  de fec t  of  a 1 - s e q u e n c e  [18, 24, 26, 37, 70, 79, 80, 86, 99, 102-104, 113, 123, 127, 
129, 136, 150, 151, 165-167]. The results stated below are, in some sense, a generalization of the well-known 
results about recurrences over fields and rings. 

Recall that  a sequence it E M (1) is called periodic if there exist d E No and t E N such that  

xd(x t -  e)it = O. (5.1) 

5.1. P r o p o s i t i o n .  For a periodic sequence it E U (1) there exist parameters D(it) E N0 (defect) and 

T(it) E N (period) such that for any d E No, t E N the condition (5.1) is equivalent to the condition 

d > D(it), § (5.2) 

Evidently, each periodic sequence is an LRS. The converse is not true. But we have the following 

5.2. P r o p o s i t i o n .  I f  n M  is a finite module, then each LRS  it E MO) is periodic. Moreover, i f  the 
ranklt  = m, then 

D(it) § T(#)  _< IM[ "~. (5.3) 

[] If n = [M[ '~, then the sequence it, x i t , . . . ,  xnit contains a repetition. [] 

5.3. P r o p o s i t i o n .  I f  it, u E M (1) are periodic sequences, then A = # § u is a periodic sequence and 

D(~) _< max {D(i t ) ,D(u)} ,  T(~)I[T(#),T(u)]. 

Moreover, 

(a) / fD(i t)  ~ D(u), then 

(b) if  (T(it), T(u)) = 1, then 

D(A) = max  {D(it) ,  D(v)};  

T(A) = 

(5.4) 

(5.5) 
(c) i f  the annihilators of the sequences it and u are comazimal, then the equalities (5.4), (5.5) are true. [] 

The set rM(1) of all periodic sequences over M is a submodule of the :P-module Z:M0). 
5.4. Def in i t i on .  We say that  a periodic sequence is reversible (purely periodic), if D(#) = 0, and 

degenerating if it(i) = 0 for all i > D(it). We denote the sets of all reversible and degenerating periodic 

sequences over M by ~ M 0 )  and 79MO) respectively. 

5.5. P r o p o s i t i o n .  The 79-module r M  (1) is a direct sum of the submodules: r M  (x) = 79M (1) -~ T~M (1). 
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[] In order to decompose a sequence It E ~rM0) into the sum It = It(d) -e It(r), where It(e) E :DM0), 

It(r) E g M 0 ) ,  it is sufficient to find k E lSl such that  kT(it) = 1 > D(it). Then It(r) = ztit. rn 
B.  M u l t i p l i e r s  a n d  t h e  r e d u c e d  p e r i o d .  These characteristics of periodic sequences over residue 

rings and finite principal ideal rings were introduced in [52, 86, 150, 151, 161]. 

5.6. Def in i t ion .  Define the support of a sequence It E M (1) as the R-submodule Supp (it) of the module 
aM,  generated by all elements It(i), i E No. We call the sequence It faithful if Supp (it) is a faithful R-module 
(i.e., if Ann(it) = An n(Supp (it)) = 0). An endomorphism ~o E Endn(Supp (it)) is called the multiplier of 
the sequence It if there exists t E N such that  the sequence ~o(it) = (q0(it(0)),~o(it(1)),...) has the form 

 (it) = x'it. (5.6) 

We denote the set of all multipliers of the sequence It by Mull (it). 
If the set Mull (it) is not empty, then it is a commutat ive subsemigroup of the semigroup of all endomor- 

phisms of the module Supp (it). The sequence It is degenerating iff 0 E Mull (it), and it is reversible iff the 
semigroup Mull (it) contains the identity endomorphism e. 

5.7. P r o p o s i t i o n .  I fSupp  (it) is an f.g.-R-module and Mull (it) ~ o,  then It is an LRS. 
[] Let ~ E Mull (it) and ~(it) = x*it . Our conditions imply that  there exists a monic polynomial 

F(x)  E R[x] such that  F(~)  = 0. Then It e LM(F(x*)). [] 

The example (0, 1, 2 , . . . )  E LZ((X - 1) 2) shows that  the converse of Proposition 5.7 is not true. 

5.8. T h e o r e m .  Let tt E M W be a faithful sequence. Then the following conditions are equivalent: 
(a) It is a reversible sequence; 

(b) Mull (it) 9 e; 
(c) Mull (it) is a subgroup of the group Aut (Supp (it)); 
(d) Mull (it) is a finite cyclic subgroup of the group Aut (Supp (it)). 
Under condition (a), the group Mull (it) is called the group of multipliers of the recurrence It. It satisfies 

the condition 
IMult (it) 1 divides T(it). (5.7) 

[] (b) =~ (c) In view of the condition (b), we have xtit = r = It for some t e N. Let ~ e Mull (it). 
Then qa*(it) = #. Since It is a faithful sequence, qa t = e. 

(c) ~ (d) Let to be the minimum of numbers t E t~1 such that  there exists ~ E Mull  (it) with the property 

(5.6), and let xt~ = qao(it), qo0 e Mull (#). Then for any ~ E Mutt (it) the condition (5.6) implies that  tolt 
and if t = los, then qa = qa]. Hence Mull (it) = (qa0). Now (5.7) is obvious. [] 

5.9. Def in i t ion .  For a reversible sequence It E M0)  the parameter  

Tr(#) = min {t E l~ll 3~ E Mull (it):  xtit = ~(it)} 

will be called the reduced period of the recurrence It. 
It is easy to see that  

T(it) = IMutt (it)l" Tr(it). (5.8) 

C. P e r i o d i c  k - sequences .  In special cases (where k = 2, 3 and M = R is a finite field) some of the 
definitions, introduced below, were considered in [t28, 144, 153, 154]. 

There are two approaches to the definition of a periodic k-sequence. The first of them is connected with 
the concepts of vector-period [154] and regular extract.  

5.10. Def in i t ion .  A nonzero vector t E No k is called a vector-period of the sequence It E M (k) if 

x~(x t - e)it = 0 for some 1 E No k. A subgroup ~3(it) of the group (Z k, +),  generated by all vector-periods of It, 
will be called its group of periods. If It has no vector-periods, then g~(it) = 0. 

5.11. L e m m a .  The set ~+(it) of all nonzero nonnegative vectors from ~(it) coincides with the set o] 
all vector-periods of the sequence It. [] 
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5.12. P r o p o s i t i o n .  For any subgroup ~ < Z k which is generated by the set G + of all of  its nonnegative 

vectors, there exists a k-sequence It E R (k) such that ~(p)  = 9. 
n # ( t ) = e i f t E ~ + , a n d i t ( t ) = 0 i f t r  [] 

5.13. Def in i t ion .  Let 1 e No k, d E N0k\0. We call a 1-sequence It[l'd](z) = I t ( l+dz)  a regular (1, d)-eztract 
(or an extract in the direction d) of the sequence It. We say that the sequence It is (1, d)-periodic (periodic in 

the direction d) if g~,d] is a periodic sequence for any 1 E No k. 

5.14. P r o p o s i t i o n .  For a k-sequence It E M {k) the following statements are equivalent: 
(a) the abelian group V(g) of periods of the sequence p has rank k; 

(b) the ideal An(it) contains polynomials xll(x t~ - e ) , . . . , x lk (x  t~ -- e) such that rank { t l , . . . , t k }  = k; 

(c) there exists a system d l , . . . ,  dk E Nko of rank k and a system l~ , . . . , l k  E Nko such that It is (Is, de)- 

periodic for s E 1, k; 
(d) for  any direction d E N0k\0 there exists 1 E Nko such that the sequence It is (1, d)-periodic. [] 
But it is possible that a sequence satisfying the conditions of Proposition 5.14, has nonperiodic regular 

extract. 
5.15. E x a m p l e .  The sequence It E Z (2) of the form 

1 2 3 4 . . .  
1 1 1 1 . . .  
1 1 1 1 . . .  

satisfies the condition x2(x~ - 1), x2(x2 - 1) E An (#), but its first row is a nonperiodic 1-sequence. 

5.16. E x a m p l e .  The sequence I t E M  (2) of the form 

a 0 a 0 0 a 0 0 
0 a 0 a 0 a . . .  
a 0 a 0 a 0 . . .  

0 

where a • 0, satisfies the condition x2(x~ - e), x2(x 2 - e) E An (#), but it is not an LRS. 

5.17. Def in i t ion .  A sequence g E M <k) satisfying the conditions (a)-(d) of Proposition 5.14 will be 
called a near-periodic sequence. We say that p is a periodic (reversible) sequence if any regular (1, d)-extract 

of this sequence is a periodic (reversible) 1-sequence. A nonreversible near-periodic sequence is called a defect 
sequence. 

5.18. P r o p o s i t i o n .  For a k-sequence tt E M (k) the following statements are equivalent: 
(a) # is a periodic (respectively reversible) sequence; 

form X 1 (X 1 - -  e ) , . . . ,  ;1; k i . x  k (b) the ideal An (it) contains a system of elementary polynomials of the 11 tl _lk,_tk _ e) 

(respectively of the form x~ 1 - e , . . . ,  x~ k - e) for some l, E N0, ts E N, s E 1, k; lr 
(c) the sequence g is periodic (respectively reversible) in each of the directions e l , . . . ,  ek, where es is the 

s-th row of the identity matrix. [] 
Examples 5.15 and 5.16 show that under the condition (c) the system e l , . . . ,  ek cannot be substituted 

by the arbitrary system d l , . . . ,  dk of rank k. The sequences in these examples are periodic in each direction 
except for el. 

5.19. Corol la ry .  Any periodic k-sequence is an LRS.  [] 
Example 5.15 shows that the converse of this corollary is not true. 

5.20. P r o p o s i t i o n .  The reversibility of the sequence It E M (k) is equivalent to the condition 

vi  e No 3j e No : xJ(xiit) = It. 

If  the sequence It is reversible, then for any i E Nko the sequence v = xi# is also reversible and V(v) = ~3(#); 

for any t E ~3(it), we have xtit = It. [] 

2813 



The second approach to the definition of a periodic k-sequence is connected with the following conception. 

5.21. Def in i t ion .  The set O(it) of all k-sequences v E M (k) of the form v = xlg,  i E No ~, is called a 
trajectory of #. 

5.22. P r o p o s i t i o n .  A sequence # 6 M (k) is periodic iff its trajectory O(p) is finite, and it is reversible 

i/~ o(it) = O(xiit) for any i ~ N~o. [] 
5.23. Def in i t ion .  For a periodic sequence It the set T(it)  of all reversible elements of its trajectory O(it) 

is called the cycle of the sequence It, and its cardinality T(it) = IT(it)] is called the period of the sequence It. 
The set of all defect elements of the t ra jectory O(it) is denoted by Z~(it), and its cardinali ty D(it) = 19(it)l 
is called the defect of the sequence It. The  sequence It is said to be degenerating if it is periodic and its cycle 
contains only the zero sequence, i.e., T (# )  = {0}. 

Thus, D(#) + T(#) = IO(#)h and a periodic sequence # is reversible if[ D(#) = 0, i.e., Y(it) = O(#). A 

periodic sequence is degenerating iff x i 6 An (it) for some i 6 No k. 

5.24. P r o p o s i t i o n .  I f  # 6 M (k) is a periodic sequence, then 

:r(it) = [zk: V(it)], (5.9) 

where the right-hand part is the index of the subgroup ~3(#) of the group (Z k, +).  [] 

5.25. P r o p o s i t i o n .  I f  a M  is a finite module and # is an LRS from s  (k), then # is a periodic sequence 
and 

lO(#)l _< I~'k/An (it)l. (5.10) 
[] If elementary characteristic 'polynomials have the degrees m l , . . . ,  rnk, then each recurrence xi# belongs 

to LM(An (it)) and is uniquely determined by its values on the polyhedron 17I = t I (m) .  The number  of all 

different recurrences of this form does not exceed I Mnl  = I MI'% where m = rnl . . .  ink. Therefore, I O(#)1 < oo. 
The inequality (5.10) follows from the definition of 0(#)  and from the fact that  the right-hand part of (5.10) 
is equal to the number of all different k-sequences of the form F(x)# ,  F (x )  6 79k. [] 

The following result gives us an interesting relation between the properties of reversible sequences and 
the properties of associated rings. 

5.26. T h e o r e m .  Let # 6 M (k), and let S = 7~k/An(it) be the operator ring of It (see t.18)), 8, = 

x, + An(#)  for s 6 1, k. Then the sequence It is reversible iff O~,...,Ok are the elements of finite order from 
the multiplicative group S* of the ring S. I f  # is a reversible sequence, then 

T(it) = 1(8x,...,Ok)l _< IS'I < I S I -  1, (5.1t) 

where (01, . . . ,  Ok) is a subgroup of the group S* generated by Ot, . . . ,  Ok. The equality 

holds iff 

T(p) = IS'l (5.12) 

S ' = ( 0 1 , . . . , o k ) .  (5.13) 

(5.14) 
I f  It is a faithful reversible sequence, then 

T(#) = ISI- 1 

if and only if the following three conditions hold: 
(a) R = GF(q) is a Galois field; 
(b) An (#) is a maximal ideal of the ring 79k = GF(q)[x l , . . . ,  xk] (i.e., S = GF(q") for some n 6 N); 
(c) the equality (5.13) is true. 

[] We may consider the 7~k-module 7~k# as an S-module if we define 0sit = z ,# ,  s 6 1, k. Then for any 
polynomial H(x)  6 79k the condition H(x )p  = 0 is equivalent to the condition H(8) = 0. By Proposition 

5.24, # is reversible iff for each i 6 No k there exists j 6 No k such that  8 i+j = e. This means that  8x, . . .  ,Sk are 
the elements of finite order in S ' .  
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ii # is ~ revermbie sequence, then the cardinality of its cycle T(/~) = O(#) is equal to the number of 

different elements of the form 0 = 0 I, . . .  0~ k. This implies the relations (5.11) and the equivalency of (5.12) 
and (5.13). Now it is clear that  (5.14) implies S* = S\0.  In this case, S is a field, and (a)-(c) are true. The 
converse is evident. [] 

We denote the Pk-modules of all periodic, reversible, and degenerating k-sequences over a M  by 7rM (k), 

T~M (k), and 79M (k) respectively. 
5.27. P r o p o s i t i o n .  

r M  (k) = 7~M (k) Jr D M  (k). (5.15) 

[3 In order to obtain the decomposition of a sequence/ t  E ~rM (k) into the sum of reversible #(r) and 

degenerating #(d) sequences, it is sufficient to find a vector-period t E ~(#) such that  x t#  is a reversible 

sequence. T h e n / t  (~) = xt#.  [] 
For a description of the cycles of a reversible LRS, we can use 

5.28. P r o p o s i t i o n .  Let # E A M  (k). Suppose that one of the following conditions holds: 

(a) i = Mx Jr M2 is a direct sum of R-modules and I~ = ~1 Jff ~z2, where #s E 7~i(k)  s = 1, 2; 
(b) An (#) = 512, where 11 + I2 = 79k, and tt = #1 + It2, #, e L M ( I s ) ,  s = 1, 2. 
Then g~(/~) = g~(/tl)M ~(/t2). In particular, i l k  = 1, then T(#) = [T(#x),T(#2)]. 
[3 In both cases the condition x t#  = # is equivalent to the condition xt#s = #s for s = 1, 2. [] 

6. P e r i o d i c  I d e a l s  a n d  P o l y n o m i a l s  

The problem of calculating the period and defect of a linear recurrence # can be solved as the problem 
of calculating the analogous parameters of the ideal An (#) (the usefulness of such an approach has already 
been noted in [113]). 

A. P e r i o d i c  idea ls  of  p o l y n o m i a l s  of  one  va r i ab l e  [21, 26, 37, 48, 113, 123]. 
6.1. Def in i t ion .  An ideai I of the ring 79 = :Px (respectively a polynomial F(x)  E P)  is called periodic 

if there exist numbers d E 510, t E 51 such that  

xd(x ' -- e) e I (respectively F(x)l  J(x' - e)). (6.1) 

The minimal d and t with the property (6.1) (if they exist) are called the defect and period of the ideal I 
(respectively of the polynomial F(x))  and are denoted b y  D(I)  and T(I)  (D(F) and T(F)) .  

6.2. L e m m a .  I f  I is a periodic ideal, then for any d E 510, t E 51 the condition (6.1) is equivalent to the 

conditions d > D(I) ,  T(I)lt. [] 
Evidently, each periodic ideal is monic, but the converse in the general case is not true. 
6.3. P r o p o s i t i o n .  A sequence # E M O) is periodic iff An (#) is a periodic ideal. In this case D(#) = 

D(An (#)) and T(I~) = T(An (#)). [] 
6.4. P r o p o s i t i o n .  Let I be an ideal of 79, S = P / I ,  and 0 = x + I E S. Then I is a periodic ideal iff 

the sequence u = (e, 0 , . . . ,  0 ' , . . . )  over the ring S is periodic. I f  u is a periodic sequence, then D(I)  = D(u), 

T ( I )  = T(u). [] 

6.5. P r o p o s i t i o n .  A monic polynomial F(x)  E 79 is periodic iff the recurrence e F E LR(F) is periodic. 

In this case D(F)  = D(e f ) ,  T(F)  = T(e f ) .  [] 
6.6. T h e o r e m .  Let R be a finite ring. Then for an ideal I of the ring 79 the following conditions are 

equivalent: 
(a) S = 79/1 is a finite ring; 
(b) I is a periodic ideal; 

(c) I is a monic ideal. 
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Under these conditions 

and if ISI > 2, then 

If lSI > 2, then the equality 

D(I)  + T(I )  < ISI, (6.2) 

D(I)  + T(I)  < IS l -  1. (6.3) 

D(I)  + T(I )  = ISl- 1 (6.4) 

holds iff either S = GF(2)[x]/(x 2) and D(I)  + T(I )  = 3 or S is a finite field and the ideal I has the form 

I = (F(z) ,  J), where J is the maximal ideal of R (i.e., fl  = R / J  = Gf (q ) )  and F ( z )  is a monic polynomial 

of degree rn over R such that its image ~'(x) under the canonical epimorphism R[x] --+ /~[x] satisfies the 

condition T(~') = qm _ 1. In the last case D(I)  = O, T( I )  = q'~ - 1. 
[] The proof of the equivalence of the conditions (a)-(c) is standard. Now let D(I)  + T( I )  = Y .  Then, in 

the notations of Proposition 6.4, N is the number of different elements in the sequence u, and these elements 

are e, 0 , . . . ,  0 N-1. This implies (6.2). If g > IS[ - 1, then N = IS] and S = {e, 0 , . . . ,  0~r-1}. This is possible 

only if N = 2, 0 = 0, and S = GF(2). This implies (6.3). 

Let (6.4) be true, i.e., N = ]SI - 1. If 0 t /S*,  then g <_ [OSI + 1 < (]S]/2) + 1, and since g = IS[ - 1, 

we have IS] = 4, N = 3 and S = GF(2)[x]/(z2). I f 0  E S*, then S* = { e , 0 , . . . , 0  N-l}  and S is a 

field. Let So : 79 --+ S = 79/I be the canonical epimorphism. Then ~o(R) = GF(q) is a subfield of S and 

qo(R) ~- k = R / J ,  where J = I fq R is the maximal ideal of R. Let r : R[x] --+ /~[x] be the natural 

homomorphism induced by the canonical epimorphism R --+/~, and let i = r  Then S ~- f l[x]/f  and ] is 

an ideal generated by an irreducible polynomial from/~[x]. Therefore, I contains a monic polynomial F(z)  

such that i = (~'(x)) and I;= (F(x) ,J ) .  Let d e g f ( x )  = m. Then IS] = [/~]" = qm, and the root 0 E S of 

the polynomial f ' (x)  is a primitive element of the field S, i.e., T(~') = qr~ __ 1. [] 

6.7. Corol la ry .  Any monic polynomial F(x)  over a finite ring R is periodic. / fdeg  F(x)  = m, ]RI m > 2, 
then D(F)  + T (F)  < ]R[ "~ - 1. [] 

6.8. P ropos i t i on .  For monic ideals Ix, 12 of the ring 7 9, the ideal I = I1 f3 I2 is periodic iff each of the 
ideals I1, I2 is periodic. In this case, D(I)  = max {D(I1),D(I=)}, T(I)  = [T(I1),T(I2)]. [] 

In this statement we cannot substitute the intersection of the ideals for their product. For example, the 
ideal I1 = (x - 1) C Z[z] is periodic, but the ideal I[ = ((x - 1) 5) is not. 

6.9. Corol lary .  Let Fl(x), F2(x) E R[x] be coprime monic polynomials. Then F(x)  = FI(x)F2(x) is 
a periodic polynomial iff FI(x), F2(x) are periodic polynomials. In this case D(F)  = max{D(F1),D(F2)} ,  
T ( F ) =  [T(Fa),T(F2)]. 

[] (F) = (F1) . (F2) = (El) Cl (F2). [] 
6.10. Def in i t ion .  We call a periodic ideal I (respectively a monic periodic polynomial F(x))  reversible 

if D(I)  = 0 (respectively D(F)  = 0), and we call I a degenerating ideal if x D(t) e I (respectively F(z)[xD(F)). 

6.11. P ropos i t i on .  Any periodic ideal I,a79 can be uniquely represented as the intersection I = I(r)NI (d) 

of a reversible ideal I (~) and a degenerating ideal I (d). 

[] If T(I)  = t, D(I)  = l, then I(') = I + (x t - e)79, I (~) = I + at79. [] 
6.12. R e m a r k .  In general, a monic periodic polynomial F(x)  cannot be represented as the product 

F(x)  = F(')(x)F(a)(z), where F(')(z) is a reversible and F(a)(x) a degenerating polynomial. For example, the 

polynomial F(z)  = x 2 - 4x - 3 over the ring Z0 has no such representation. But such a representation exists 

for polynomials over a local Artinian ring (see Section 16). 
6.13. P r o p o s i t i o n .  A monic polynomial over a finite ring R is reversible iff its constant term is 

invertible in R. [] 
Now we can make Proposition 5.5 more precise. 

6.14. P r o p o s i t i o n .  I f  I is a periodic ideal, then LM(I) = LM(I  (')) Jr LM(I(a)), where LM(I(d)) = 
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LM(I) M :DM 0~ is the family of all degenerating recurrences of LM(I) and LM(I(r)) = LM(I) n ~MO) is the 
family of all reversible recurrences of LM(I).  [] 

In general, the problem of calculating the period and defect of a monic ideal I ,~ 7 9 defined by a given 
generating system of polynomials is rather difficult. If there exists an algori thm of solving systems of linear 
equations over R (see [12]), then we can propose the following algorithm of calculation of D(I)  and T(I) .  Let 
I = (F(x),  G I ( x ) , . . . ,  G~(x)), where F ( x ) i s  a monic polynomial. 

6.15. L e m m a .  A polynomial H(x)  �9 79 belongs to the ideal I iff the system of linear equations 

(G~(S(F)),...,G,,(S(F))),= H(S(F) )  J.x 

is solvable. Here S(F)  is the accompanying matrix of the polynomial F(x)  (see 1.9), and H(S(F))  JA is the 
first column of the matrix H(S(F)) .  

[] If z = (ZoW, �9 . . ,  z~)l ,Zo (2), . - - ,  Z00m-1) ~ is a solution of our system, then H(x) = ZI(x)GI(x) + . . .  + 

2_ A*)~,m-1 [] Z,~(x)Gn(x) + Z(x)F(x) ,  where Z(x)  �9 7 9, Z,(x) = Z(o s) + z~')x + . . .  T "m-l" �9 

Now if 179/11 = N ,  then T(I)  can be calculated as the minimal t �9 N with the property 

Res (x t - e/ F) . Res (xN / F) �9 I, 

and D(I) can be calculated as the minimal l �9 51o such that  

Res ( x t /F ) .  Res (x T(O - e /F)  �9 I. 

B .  P e r i o d i c  idea ls  of  p o l y n o m i a l s  of  k var iables .  
6.15. Def in i t ion .  We call an ideal I ,a 79k periodic (reversible) if there exist parameters l l , . . . ,  Ik �9 No, 

t l , . . . ,  tk �9 51 such that 

(respectively 

t,, t, e) E l f o r  E l , k  X s ( X  s - -  S 

(x' d - e) �9 I for s �9 1, k). 

A periodic ideal is said to be degenerating if for some I �9 51ok\0 

x l � 9  

Let S 
Denote by 
the orbital 

6.17. 
( a ) ( i  
(h)(Z 
(c)(z 
[] The 

(6.5) 

(6.6) 

(6.7) 

= 79k/I = R[01, . . . ,  0k], where 0, = x, + I E S, is the operator ring of the ideal I (see 1.18). 
O(I) the subsemigroup [e, 0x, . . - ,  0k} of the semigroup (S,-) generated by e, 01, . . . ,  0k, and call it 
semigroup of the ideal I. 
P r o p o s i t i o n .  Let I be an ideal of 79k. Then 
is a periodic ideal) r (IO(1)1 < ~ ) ;  
is a reversible ideal) r (Io(Z)l < ~ ,  o(I)  < s*); 
is a degenerating ideal) r  (IO(I)1 < ~ ,  0 �9 o(I)). 
condit ions  (6.5)-(6.7) are equivalent respectively to the conditions 

s �9  

Or, ~ = e ,  s �9 1, k; 

o '  = . . .  = o . o  

Recall that ,  according to the Frobenius theorem [17, 37], some natural power of any element of a finite 

semigroup is an idempotent.  For a periodic ideal I ,  denote by cs = es(I),  s E 1, k, the idempotent of the 
semigroup [0,}. We denote the product of all idempotents of the semigroup (.9(1) by e = e(I) .  

6.18. L e m m a .  I f  I is a periodic ideal of 79k, then e = ca ' . . .  "~k and ~(9(I) = T ( I )  is a subgroup of the 
semigroup O(I)  with the unit r 
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[] Let ~ = 0~' . . .  0~ ~ and 0 b" = r s ~ 1, k. Then e = eh-~ = e x ' . . . "  ek. Obviously  ~ is the unit  of the 

group T(I) ,  and some natural  power of any element of T( I )  is equal to e. [] 

6 .19.  D e f i n i t i o n .  We call the group T( I )  the  cycle group of the  periodic ideal I ,  and we call its 

cardinality T(I)  = IT(I)I  the  period of I.  The  parameter  D(I)  = IO(/) l  - IT(I)I  is called the defect of the 
ideal I .  If D(I) > 0, then the ideal I will be  called defected. 

6.20.  P r o p o s i t i o n .  A periodic ideal Z is reversible iff T ( I )  = (9(1) (i.e., D(I)  = O) and it is degener- 
ating l i fT ( I )  = O. [] 

6.21.  D e f i n i t i o n .  We call a vector  t ~ No~\0 a vector-period of the  ideal Z if there  exists I ~ No~\0 with 

#+t  = 01 (i.e., x~(x t - e) ~ I) .  The subgroup ~ ( I )  of the  group (g ~, + )  generated by all vector-periods of the 
ideal I is called its group of periods. 

Note that  if I is a periodic ideal, then each element e0, of the group T( I )  has a finite order. For any 

vector t E Z ~ define 

5"0 t = (gO1) t l . . .  (~Ok) L~'. 

6.22.  P r o p o s i t i o n .  I f  I ~'p~ is a periodic ideal, then ~(I)  is a subgroup of rank k of the group (Zk ,+) ,  
and 

v(x) = {t e zkl = d ;  (6.8) 

T( I )  -~ Zk/V(Z); T(I)  = [Zk: V(I)] .  (6.9) 

[] Determine the group epimorphism T : Z ~ ---* T(I ) ,  qo(r) = e0 r. If t E ~ ( I ) ,  then sO l = r  for 

some 1 E N0k\0. Since ~ = 0~...tg~ for a sui table a E 51, we have r = ~0 ~l = ~0 ~l+t = r t, i.e., t E Kerqo. If 

t E Kerqa, then r t = ~, and t E ~ ( I )  since r = 0~. . .0~.  [] 

Recall that  we may  consider the family LM(I) as an S-module if we define F(O)# = F(x)/~ for any 

e e L (O. 
6.23.  P r o p o s i t i o n .  I f  i ~ e M (~) is a periodic (reversible) sequence, then I = An(/~) is a periodic 

(reversible) ideal. I f  I is a periodic ideal of 79~, then any sequence # ~ LM(I) is periodic. Moreover, # is 
reversible iff /* = r I f  l~ E LM(I), then 

D(#)  < D( I ) ;  

= (6.10) 

T(#) = T(Z)/z; (6.11) 

V(I)  < (6.12) 

T(#)IT(I). (6.13) 

If, in addition, I = An (#), then 

~(#)  = ~ ( I ) ;  D(#)  = D( I ) ;  T(#)  = T(I) .  (6.14) 

[] The first s ta tement  follows from 5.18 and 6.16. The  equali ty (6.10) follows from Definitions 5.21, 6.16, 

and from the equali ty xl/z = 0im.  

Any sequence v = $/~, where ~ E T ( I ) ,  is reversible, since for any i E No k we have 0i~ E T ( I )  and 

hence there exists j E N0 k such that  #(#6)  = & This means that  xJ(x~/~) = v, and by 5.20 v E T ( # ) ,  i.e., 

T( I )#  C. T(#).  Conversely, let u E T(# ) .  Then u = Otu for all t E V(#)  and we can choose t E ~(/*) such 

that  0 t = e. Therefore, u = eu and u E T( I )#  since u = 0~/~ for a suitable 1 E No k. Hence, (6.11) is true. 

If t e ~ ( I ) ,  then sO t = e, e0t# = e/~, and since ~ = # ,  we have t E ~(/~), i.e., (6.12) is true. 

If the  sequence xl# is not reversible, i.e., x l#  E O(Iz)\T(Iz), then ~01# # r Therefore,  01 • T(I ) ,  and 

< D(Z). 
Note that  /C(#) = {~ E T( I ) [  (5/z = /z} is a subgroup of T ( I )  and, by (6.11), ]T(/~)] = IT(I)/Y.(I~)I . 

Hence T(I)  = T(#)[K:(#)[, and (6.13) is true. 
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Under the condition I = An (#) for any i, j ~ N~ the equality xip = xJ# is equivalent to the equality 

0 i = 0J. Therefore, (6.14) is true. [] 
Now let R be a finite ring and I be a reversible ideal of 7~k with operator ring S. Then S is a finite ring 

and according to 6.17(b) 

7"(I) = (o~,...,ok) < S ' ,  T(/)l  IS*l 

(see also (5.11)). 
6.24. Def in i t ion .  We call a reversible ideal X ,~ 7~1, over a finite ring R full-cycle if I N R = O, LR(I) is 

a cyclic S-module, and T ( I )  = S*. A reversible recurrence u E LR(I)  with annihilator I = An (u) is called 
full-cycle if LR(I) = Su and I is a full-cycle ideal. 

6.25. P ropos i t i on .  Let R be a finite ring and I ,a "Pk be a reversible ideal such that 

Then 

and I is a full-cycle ideal iff 

I n R = 0, Ln(X) = Su.  (6.15) 

g~(u) = g~(I), (6.16) 

V v e LR(I) ((~ll(v) = ~3(I)) => (v E T(u))).  (6.17) 

[] The equality (6.16) follows from (6.i5). Let I be a full-cycle ideal. Then 

T ( I )  = (01,. . . ,  0k) = S*, T(u)  = S*u. (6.18) 

Let v ~ T(u) .  Then, by (6.18), v = au, where a E S*. We may suppose that S # GF(2). Then there exists 

6 E S*\e such that 8a = a. By (6.18), ~ = 0 t, t E N0k\~3(u). But t e qa(v) since 6v = 8au = au = v. 
Therefore, g~(v) r ~(u),  and (6.17) is true. 

Conversely, let (6.17) be true. If T ( I )  ~ S*, then there exists 6 E S* \T ( I ) .  Let v = $u. Then v q~ T(u),  

but g~(v) = V(u), since for any t e l~10 k we have 

t ~ ~ ( v )  r  0% = v r  Ot6u = ~u r Otu = u r  t e ~ ( u ) .  [] 

6.26. P ropos i t i on .  Let R, Q be finite quasi-Frobenius rings, R < Q. Then there ezists a full-cycle 
recurrence u over R such that the ring S of operators of u is isomorphic to Q. 

[] Let Q* - ( a l , . . . , ak} .  Then Q = R[ax , . . . ,ak] ,  and for some monic ideal I ~ 79k there exists an 
isomorphism 

o': Q --+ "Pk/I = S = R[O1,..., Ok], o'(ot,) = O~, s ~ 1, k. 

Since RR is a QF-module, we have, by 4.7 (for Q = R), LR(I) = Su is a cyclic S-module, and by 4.6, 

An (u) = I. Now it is sufficient to note that I is a full-cycle ideal by the definition of I.  [] 
The important special cases of full-cycle recurrences and k-maximal recurrences over Galois fields and 

rings will be investigated below in Sections 12 and 19. 

7. T h e  Cycl ic  T y p e  of  Rever s ib le  LRS-Fami l ies  over  a F i n i t e  M o d u l e  

A. D e c o m p o s i t i o n  of  a family to  t h e  cycles [37, 44, 70, 139, 150]. 
7.1. Def in i t ion .  A k-LRS-family LM(I) is called reversible if any sequence # E LM(I) is reversible. 

7.2. P ropos i t i on .  I f  I ,~ 79k is a reversible ideal, then LM(I) is a reversible family. I f  LM(I)  is a 
reversible family and I~M is a finitely generated module, then I' = An(LM(I ) )  is a reversible ideal of Pk and 

LM(I) = LM(I'). 
[] The first statement follows from 6.22. If LM(I) = 79k#1 + . . .  + T'kpt is a reversible family, then I' 

contains the reversible ideal An (/q) n . . .  N An (#t). [] 
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Define the relation --, on the k-LRS-family LM(I) by 

~ z, r 3 i e No k : xi# = ~, (#, v e LM(I)).  

7.:]. P r o p o s i t i o n .  The relation ,,~ is an equivalence relation on  L M ( I )  iff  L M ( I )  is a reversible family 
(see 5.20). [] 

7.4. Coro l l a ry .  Let F l ( z l ) , . . . , F k ( z k )  G 79k be monic elementary polynomials, R M  be a 
faithful f.g.-module. Then ..~ is an equivalence relation on LM( F1, . . . , Fk ) iff  the polynomials FI ( z~ ), . . . , Fk( zk ) 
are reversible. [] 

7.5. P r o p o s i t i o n .  I f  I ,~ 79k is a reversible ideal, then the relation ,,~ decomposes LM(I)  into classes o] 
equivalent sequences, and the class o f #  G LM(I) is T (# )  = T ( I ) # ,  i.e., the cycle o f# .  [] 

In what follows in this section, a M  is a faithful Lg.-module over a finite ring R, I ,a Pk is a reversible 
ideal. In this case LM(I)  is a finite family. It can be characterized by the following parameters.  For t E 1~ 

define NIM(t) as the number  of recurrences # E LM(I) of the period T(#) = t; CM(t) - -  as the number  of 

cycles of cardinality t in LM(I).  Obviously, only a finite number  of these parameters is not equal to 0, and 
N M ( t ) = C M ( t ) t .  

B. T h e  cycl ic  t y p e  of  a r eve r s ib le  1 - L R S - f a m i l y  [48, 70, 150]. 
7.6. De f in i t i on .  Let I ,~ 7 9 = 79, be a reversible ideal. The polynomial 

Z~(y) = ~ c~'(t)y ~ 
t ~ l  

over Z is called the cyclic type of the finite reversible family LM(I).  

7.7. Def in i t i on .  Thecompos i t ion  of polynomials A(y) = ~'~i>, aiy i and B(y)  = ~~i>1 b~y i over Z is the 

polynomial C(y) = Et>l  crY t, where 

= ~ a, bs(i,j), t e N. 
i, j> ,, [id]=t 

Notation: C(y) = a(y) �9 B(y). 
It is easy to show that  y l ,  yj = (i,j)y[i,:l and 

C(y) = ~ ~ aibj(i,j)y['"] = y~ albiy' , yJ. 
i>1 1>1 i,j>__l 

7.8. P r o p o s i t i o n .  Let Zx[y] be the set of  all polynomials from Z[y] with zero constant term. Then 

(zl[y], +,,) is a commutative r~ng with unit y. g ~ r  E,_>I b~')y' e Z,[y] for s e 1,r, then 

B(1)(y) * . . .  * B(~)(y)= E �9 b~)...b~? -r 

7.9. Def in i t i on .  The ring (Zt[y], +,  *) is called the ring of cyclic types (for 1-LRS-families). 
The operation of composition of the cyclic types enables us to reduce the evaluation of cyclic types of 

reversible LRS-families to more simple families (see [48]). 

7.10. P r o p o s i t i o n .  I f  a M  is a direct sum of submodules M = Ms Jr . . .  Jr Mr, then 

z~'(y) = z~ ' (y )  , . . . ,  z~"(y). 

I f  an ideal I ,~ 79 is the product of comaximal ideals, I = 1112 = I, f3 I2, 11 + I2 = 79, then 

Z~(y) = z ~ ( y ) ,  zg (y ) .  
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[] In both cases LM(I) is a direct sum, LM(I) = LMI(I) 4 LM,(I) and LM(I) = LM(I~) 4 LM(h)  
respectively. Let # =/~1 +/z2 be the appropriate decomposition of a recurrence/~ E LM(I). Then, by 5.8, 
T(#) = [T(#I), T(#2)] and, depending on what case is considered, 

NM(t) E NM~(tl)NM2(t2), NM(t)  E M t M = = ( I)N  ( tz ) .  
[tl,t~]=t [tl,t2l=t 

Therefore, 

CIM(t) = NIM(t) / t= 

or, respectively, 

(t,, t2)cMl(h )cMz( t2) 
[tl,t2]=t 

= t )c, 1 ( t i ) c ,  2 (t2) [] 
[tl ,t2]=t 

In connection with these results, we formulate some open problems. 
1. Describe indecomposable cyclic types in the semigroup (Z+[y], .)  of cyclic types, where Z+[y] is the 

set of polynomials from Z1 [y] with nonnegative coefficients. 

2. Describe linear cyclic types in Z+[y], i.e., polynomials Z(y) e Z+[y] such that Z(y) = ZM(y) for some 
finite module RM and reversible ideal I ,~ 7 9. 

3. Describe linear cyclic types which cannot be represented as a nontrivial composition of cyclic types. 
These problems are connected with the investigation of the algebraic properties of the ring (Zl [y], +, *). 

The last problem is interesting by itself. 
The first result in this area can be formulated as follows. 
7.11. Proposi t ion .  A cyclic type A(y) = aoy + a~y t E Z+[y] is indecomposable in Zl[y] in the following 

cases. 
(a) if al < t q- 2Vr~; 

(b) if as is a simple number and a 1 < t + a 0 + 1. 
I f  ao = r 2 and al = t + 2r, r E N, then 

I f  al = t + as + 1, then 

[] If 

A(y) = (ry + yt) * (ry + yt). 

A(y) = (y + y') �9 (a0y + y'). 

A(y) = B(y)  �9 C(y), 

then B(y)  = boy + bly t, C(y) = coy + o y  t and 

(7.1) 

b0co = ao, (7.2) 

boca + baco + blclt = a l .  ( 7 . 3 )  

Thus, in the general case, the problem of the description of decompositions (7.1) of a cyclic type A(y) reduces 
to the description of all decompositions (7.2), where b0, co E N, and to the solution of the appropriate 
Diophantine equation (7.3) in two unknowns bl, ci E N. It remains to note that under the conditions (a), (b) 
the system (7.2), (7.3) has only a trivial solution. [] 

C. Revers ible  k-LRS-families. To obtain an analogue of 7.10 for k-LRS-families, we formulate the 
definition of the cyclic type in another way. 

Let 7-(k be the set of all subgroups G < Z k of rank k such that ~ is generated by the set G + of its 
nonnegative vectors. 

7".12. Lemma.  7"/k is a semigroup with respect to the operation fq of intersection of semigroups. 
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[] Let 61, 62 e ~k  and #, E M jk) be sequences such that  ~(# , )  = 6,,  s = 1, 2 (see 5.12). Then the 
sequence # = (#l, #2) over module M = Mx �9 M2 satisfies ~3(#) = 61 M 62 (Proposition 5.28). Therefore, 
61 r l  62 E ~k.  [] 

Denote Z[7-/k] to be the semigroup algebra of a semigroup ~k  over Z. 

7.13. Def in i t ion .  The cyclic type of a finite reversible k-LRS-family LM(I)  is the element Z M of the 
algebra Z[7-/k] of the form 

z ,  ~ =  E c ~ ( 6 ) 6 ,  

where CM(6) is the number of cycles T(# )  C_ LM(I) with ~1(#) = 6. 
In the case k = 1, Definition 7.13, coincides, essentially, with 7.6. In fact, each subgroup 6 �9 ~ t  is 

generated by the number t = [Z: 6], and the cyclic type Z M = Y~t>l CM({t))I t) from 7.13 is nothing else but 

the cyclic type ZM(y) = Et>_l cM(t)Y t from 7.6. 

7.14. Def in i t ion .  The composition of elements A = Eoeuk ao~ and B = EoeT~k bog of the ring Z[7-/k] 
is the element C = E0e~k ca6, where 

c~ = E [ z~:  6~ + 6~]a~,b~, = ~ [zk: 6,][Z": 62] 
O~n02=a 0~na,=r [Z k : 6] " arab~ 

7.15. P r o p o s i t i o n .  The algebra (Z[7-/k], +,  *) is a commutative ring with unit Z k. I f  B,  = ~oeuk b(a')6 �9 

Z[7-/~] for s �9 1, r, then 

z ( z ~ u ~  v ,~ . . .~ ,=o  [z k :6]  ""v~ " -  

7.16. Def in i t ion .  The ring (Z[7-/k], +,  *) is called the ring of cyclic types for k-LRS-families. 

7.17. P r o p o s i t i o n .  Let LM(I) be a finite reversible k-LRS-famiIy. I f  M = M1 Jr 1142 is the direct sum 

of submodules, then Z M = Z M' * Z M2 I f  I = IlI2 is the product of comaximal ideals, then ZI M = Z M * Z M 
�9 I1 12" 

[] 

8. E x t e n s i o n s  of  1 -Sequences  [46] 

8.1. Def in i t ion .  The sequence v E M (1) is called an eztension of the sequence # E M0) with the help 
of a polynomial F(x)  = x '~ - fro_ix ' '-x - . . .  - f o e  79 and an initial vector a = (a0 , . . . ,  a,~-x) E M m if 
u(O,---,-~- l) = a, F(z )u  = #, i.e., 

u ( ~ )  = a,  u(i + m)  = f ~ _ l u ( i  + m - 1) + . . .  + fou(i) + #(i), i 6 No. (8.1) 

We write u = (a~) .  If/z = (a ,a , . . . )  is a constant sequence, then the sequence u from (8.1) is called an affine 

recurrence of order m. 
In particular, the congruent sequence from Example 1.4 is an affine recurrence, namely, the extension of 

sequence (5, 5 , . . . ) b y  the polynomial x - q. 
The sequence r, from (8.1) is an output  of the following nonautonomous automaton:  

1 I 
u(i)  - . .  + - . .  I ~,(i + ,-,-,- 1) I 

LRS F(x)  over M 

8.2. P r o p o s i t i o n .  Under the condition (8.1) we have 

1 I 
�9 .. I ~(i) l . ~,(i) 

An(u)  = (An(#) : F(x));  (8.2) 
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F(x) .  An (/J) C An (~,) C_ An (/~). (8.3) 

If  G(x) E 7 p is a monic polynomial, then 

LM(FG) = {v e M0)[ F(x)~ e LM(G)}, (8.4) 

i.e., LM(FG) is the set of all extensions of sequences tt E LM(G) with help of the polynomial E(x). D 
8.3. Coro l la ry .  A sequence ~ of the form (8.1) is an LRS iff # is an LRS. An aJi~ne recurrence oJ 

order m is an LRS of order m + 1. If RM is a finite module, then v is a periodic sequence iff # is periodic, 
and D(v) >_ D(#), T(#)[T(~,). O 

8.4. R e m a r k .  Propositions 4.2 and 4.3 imply that the set of all output sequences of the sum of two 
LRS 

LRS F(x)over M L [ - I I 

LRS G(x)over M [-~[ [ ' 

+ 

is LM((F) M (G)) C LM(FG), and this set coincides with LM(FG) only if (F, G) = (e). At the same time, 
Proposition 8.2 implies that the set of all output sequences of the composition of the same LRS 

LRS F(x) over M 

L I  1 I I . §  

LRS G(x) over M 

I 
A 
1 

is an automaton with the set of output sequences LM(FG) independently of the properties of polynomials F 
and G. 

Extensions of k-sequences are considered in Section 14.I. 

9. R e g u l a r  E x t r a c t s  of a 1-LRS [7, 116, 138, 142] 

Recall that, by Definition 5.13, for l E No, d E N the regular (l, d)-eztract of the sequence # E MiX) is a 

sequence v = #[z,a] of the form 
v(z) = ~(l + dz). (9.1) 

We call ~ a d-extract of # (sometimes v is also called a decimated sequence [142]). Recall that S(F) is the 
accompanying matrix of a monic polynomial F(x) (see 1.9). 

9.1. P r o p o s i t i o n .  Let v be the regular (l,d)-extract from a recurrence # E LM(F), and B = S(F) d. 
Then v is an LRS of order rn = deg F(x) with characteristic polynomial XB(x). The annihilator of ~ consists 
of all polynomials H(x) E 7 ) satisfying the condition 

# ( ~ ) H ( B ) A ,  = 0, (9.2) 
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where A, = (SI ,BSt , . . . ,  B"-l,~t),  St is the first column of the matrix S(F)k 

[] Since/~(z) = g ( ~ S ,  (see (1.2)), from (9.1) we have 

v(z) - - / ~ ( ~ ) B ~ S t .  (9.3) 

Then, for any H(x) e P, the sequence = H(x)  has the form 

~(z) =/~(0, m - 1)H(B)BZSt. (9.4) 

This implies the equality XB(X)V = 0, and since degxB(z ) = m, we have (H(x) E An (/~)) ~ ( ~ ( ~ )  = 
0) #* (9.2). [] 

9.2. R e m a r k .  The equality (9.2), which describes the ideal An (v), cannot be substituted by the equality 

# ( ~ H ( B )  = 0 even if m = R is a field. For example, let R = Z3 and/~ = (0, 1, 2, 2, 0, 2,1,1, 0,1, 2 , . . . )  

be the LRS with minimal polynomial F(x) = x 2 - 2x - 1. Then v = /~[0,4] is a zero sequence; however 

B = S(F)4 = ( 2  0 2 ) '  and the minimal polynomial of the vector #(0-'~-) = (0, 1) with respect to the 
0 

matrix B is equal to x - 2. Therefore, the polynomial H(x) = 1 e An (v) does not satisfy the condition 

#(0, m - 1)H(B) = 0. 

Let us consider the set L(ff(F) of all regular d-extracts of recurrences of the family LM(F). For a square 
matrix B over the ring R, we define 

An (B) = {H(x) E P[ H(B) = 0}. 

If B = S(F) d, then, according to Proposition 9.1, 

L(~)(F) C LM(An(B)).  (9.4) 

This relation may be refined. 

9.3. P ropos i t i on .  (a) If RM is a finitely generated R-module, then L(ff(F) is a finitely generated (over 

the ring R) P-module, i.e., L(f f( f)  e ~ I ( M )  (see Section 4B), and 

An ( L ~ ) ( F ) ) =  An(B).  (9.6) 

(b) If  RM is a QF-module (see 4.5), then 

L~)(F) = LM(An(B)).  (9.7) 

( c ) / f  G(x) is the minimal polynomial of the matrix B and deg G(x) = n, then the equality 

L(~)(F) = LR(G) (9.8) 

holds iff the matrix A0 = ( /~ I ,B~ : I , . . . ,B" - IE1)  is invertible on the left side. Under this condition An(B)  = 

[] (a) L(~)(F) is a P-module, since for any recurrence/~ e LM(F) we have x/~ [l'~] =/~[,+d,d] e L~)(F). By 

2.2, LM(F) = R/~, + . . . .  + R/~, is an f.g.-R-module; hence L(ff(F) ~,=od-1 ~=1 Rl~[ t'~] is an f.g.-R-module. 

The family L(~)(F) is the set of all (0, d)-extracts from sequences of the family LM(F). Therefore, by 9.1, a 

polynomial g(x)  e P belongs to An (L(ff(F))iff  

V ~ E M "~ (~H(B)Ao = 0), (9.9) 

where Ao = (J~I ,BE1, . . . ,Bm-aE1) is the matrix of the first columns of the matrices E , B , . . . , B  '~-1. The 
condition (9.9) is equivalent to the condition 

H(B)EI = O. (9.10) 
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Since H(B) = H(S(F) a) is a linear combination of the powers of the accompanying matrix, (9.10) is equivalent 
to the equality H(B) = 0, i.e., (9.6) holds. 

(b) Since L(~}(F) e ~k ,  (9.7) follows from (9.6) and 4.6. 

(c) It follows from (9.3) (for l =  0) that  a sequence v e LM(G) belongs to L(~)(F) iff 

v ( ~  = / ~ ( ~ A ,  where # �9 LM(F). 

Hence (9.8) is equivalent to the condition R=A = R", which means that  the matrix A is invertible on the left 
side. In the last case, the system of columns of the matr ix A is linearly independent  over R, and therefore 
the matrix B is not annihilated by polynomials of degree less than n. Hence An (B) = T'G(z). [3 

9.4. R e m a r k .  In the genera~ case, the inclusion (9.5) is not an equality. For example, let R = 

Z2[Xl,X2]/I , where I = (x~,x~,xlx2), and a ,  = x, + I �9 R, s = 1,2. Let F(x) = x : - O l l X -  Ol 2 �9 ~) 

and d = 2. Then B = S(F) 2 = ( c~2 0 ) A n ( B )  = (x2, at,v~2), and the family LR(An(B))  consists 
O~I ~2  ' 

of all sequences of the form (fl0, ill, 0, 0 , . . . ) ,  where ~o,/31 �9 RWl -}- Rc~2. Then the inclusion (9.5), which 

has in the case under consideration the form C LR(An (B)), is strict. For example, the sequence 

v = (0, a2 ,0 ,0 , . . . )  �9 LR(An(B))  does not belong to L(~)(F). In fact, if v �9 L(~)(F), then, by (9.3), the 
system of linear equations 

e C~ 2 ) ,  
(0, Or2) = (Yl,Y2)( 0 al 

is solvable. But this is not true, since a2 ~ Ral. 
9.5. R e m a r k .  The equality (9.8) may not be true even if (in the notation of Proposition 9.3) the 

matrix B has a unique minimal polynomial. For example, if M = R = Z, F(x) = x 2 - 2x - 2, and d = 2, 

2 4 
then B = ( 2 6 ) and G(x) = Xs(z) = x ~ - 8x + 4 is the unique minimal polynomial of B. But the LRS 

e a �9 Lz(G ) does not belong to L(~)(F). 

9.6. Coro l la ry .  Let F(x) be a monic polynomial over the field P and G(x) be the minimal polynomial 
of the matrix B = S(F) a. Then 

L(~)(F) = Lp(G). (9.11) 

[] The matrix B is not annihilated by polynomials of degrees less than n = deg G(x). Therefore, the 

system of columns of the matrix A = (J~, B /~ I , . . . ,  B'~-a/~) is linearly independent and A is invertible on 
the left side. Now (9.11) follows from Proposition 9.3(c). [] 
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Chapter 2. 

LINEAR RECURRING SEQUENCES OVER FIELDS 

Here we state some results on the properties of an LRS over a field P.  We keep the notations 7 ~ = 791 = 
P[x], 79k = P [ x l , . . . ,  xk]. Since the field P is a quasi-Frobenius ring, by Theorem 4.6, for any monic ideals 

I1,/2 < Pk and for finitely generated :Pk-submodules A/I1, .s E p(k), the following equalities hold: 

An (Lp(I1)) = 11, 

Lp(I1 N 12) = Lp(I1) + Lp(I2), 

An (.A~ 1 N -;~2) = An (.;~1) ~- An (M2) ,  

L p ( A n ( M 1 ) ) = M 1 ,  

Lp(I1 + 12) = Lp(I1) fq Lp(I2), 

An (,s + M2) = An (M1) f3 An (Ms) .  

Note that  monic ideals of the ring :Pk are exactly its ideals of zero dimension [13]. 
10. Bases  of  L R S - F a m i l i e s  a n d  G e n e r a t i n g  S y s t e m s  of  T h e i r  A n n i h i l a t o r s  

A. M o n i c  a n d  m a x i m a l  ideals .  As was noted in Section 1, an ideal I ~ 7~k is monic iff the ring 

S = 7:'k/I = P[Ox,. . . ,  0k], where 0, = xs + I ,  (10.1) 

associated with this ideal, is a finite-dimensional P-algebra; moreover, 

Z = {H(x) E ~kl H(O) = 0}. (10.2) 

10.1. D e f in i t i on .  The number 
deg I = d im 'Pk / I  (10.3) 

is called the degree of a monic ideal I ~ 7)k. 
10.2. P r o p o s i t i o n .  For a monic ideal I ,~ 79k there exists a finite subset .7: C Nko such that 

(a) i f j  E .7:, i E Nko, i < j, then i E .7:; 
(b) the set B = {0i[ i E ~'} is a base of the vector space Sp. [] 

10.3. De f in i t i on .  Under the notation of Proposition 10.2, the set .T" C No k is called the Ferre diagram 
of the ideal I [71], and the base B is called the Ferre base of the ring S. 

In general, the Ferre diagram of the ideal I is not unique. But if I = ( f l ( z l ) , . . . ,  fk(zk)) is an elementary 

ideal, deg fs(x,)  = ms, s E 1, k, then deg I = r a l . . ,  mk and the unique Ferre diagram of I is 3: = H(m) (see 
Section 2.B). 

10.4. P r o p o s i t i o n .  Any monic ideal I contains a unique elementary ideal E(I),  which contains all 
elementary ideals belonging to I. 

We call E(I) the elementary ideal of the ideal I.  
r7 E(I) is the sum of all elementary ideals belonging to I .  [] 
In what  follows, we shall concentrate mainly on maximal ideals of the ring Pk. The following results are 

based on [13]. 
10.5. P r o p o s i t i o n .  Each maximal ideal of the ring 79k is monic. For a monic ideal I ,~ Pk of degree n, 

the following conditions are equivalent: 
(a) the ring S = 7:'k/I associated with the ideal I (see (10.1)), is a field; 
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(b) I is a maximal idea# 

(c) I is a prime idea# 
(d) there exists an extension Q = P [ a a , . . . ,  ~k] of degree n of the field P such that 

I = {H(x) E 5~ H(a )  = 0}. (10.4) 

Under the condition (d) the following equality holds: 

~(1) = ( f l (X l ) , . . . , f k ( xk ) ) ,  

where .f,(z) = #~,,p(x) is the minimal polynomial of  the element a,  over the field P. [] 
10.6. Corol la ry .  A maximal ideal I ,~ 79k of  degree n has a generating system 

gl (Xl), g2(Xl, z2 ) , . . . ,  gk(Z l , . . . ,  Xk) (10.5) 

such that each polynomial gs (X l , . . . ,  x,) is irreducible over P and is a monic (with respect to x~) polynomial 
of degree n,,  where nl . . .  nk = n and II(n) is a Ferre diagram of the ideal I. 

[] Suppose that the conditions of Proposition 10.5(d) are fulfilled. Let 

P0 = P, P, = P [ O t l , . . . ,  ors], ns = [P,:  Ps-1], S E 1, k. (10.6) 

The polynomial #~,,P,-1 (x) has the form 

#,,,p,_~ (x) = gs (cq , . . . ,  c~,-1, x), (10.7) 

where gs (x l , . . . ,  x~) E 7~k is a polynomial of the form 

ns--1 

gs(Xl , . . . ,Xs)  = x n" - Z g! i )(Xl ' '" ,xs-1)X~ �9 
i=0  

It is evident that under the condition (10.7) the system (10.5) generates the ideal I. [] 
Note that the generating system (10.5) is a Groebner base of the ideal I [10, 36]. 
10.7. Coro l la ry .  I f  P is a finite field, then for  any n E N there exists a maximal ideal of the ring Pk 

of degree n. [] 
10.8. Def in i t ion .  Under the condition (10.4), we call the row a = ( a l , - . .  ,c~k) a common root of the 

prime ideal I ~ 7~k in the field Q [13], and we say that Q is the field of the root ~ of the ideal I. 
B.  B a s e s  o f  L R S - f a m i l i e s .  
10.9. P r o p o s i t i o n .  Let I be a monic ideal of  the ring 79k with the Ferre diagram .Y" = { j t , . . . , j d} .  

Then the family Lp( I )  is a space of dimension deg I  = I~] over P, and each L R S  u E Lp(I )  is uniquely 
defined by the polyhedron of values u(9 v) = (u ( j l ) , . . .  ,u(jd)). A system of recurrences u l , . . .  ,Ud E Lp( I )  is a 

base of  the space Lp( I )  iff the matrix 

ud(jl,... ,jd) ) 
is invertible. I f Q  is an extension of the field P, then any base of  the family Le( I )  is also a base of the family 

( 
(J) .i [] According to Proposition 10.2, for each j E No k there exists a unique polynomial h(J)(x) = ~ i ~ "  hi ~- 

79k such that # = h(J)(0). Then, for each k-LRS u E Lp(I ) ,  we have u(j) = ~i~-h~J)u(i) �9 [] 
Recall that by Theorem 2.20 and Definition 2.21 each k-LRS over the field P has an analytical represen- 

tation over some finite algebraic extension of P (see also [90, 91]). Consider the following important special 
c a s e s .  

10.10. P r o p o s i t i o n .  Let I = ( f l ( x l ) , . . . ,  fk(xk)) be an elementary ideal and degf , (x , )  = m,,  r E 1, k. 
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(a) I f  fr(x) = (x - aro).. .  (x - ar,~,-x) is a separable polynomial over P for any r E 1, k, then the system 

of k-LRS 
,,[o1 i {a~~ ]' |  | "k,~, s �9 I I (m)}  (see 1.24) 

is a base of the family Lp( I )  . Moreover, i f  all roots at ,  are nonzero, then each recurrence u e Lp(I )  can be 
uniquely represented in the form 

u ( z ) =  ~ ~' .. cgal, , . a~k, c~ �9 P. (10.8) 
sen(m) 

(b) I f  f , ( x )  = ( x - e ) m %  r �9 1, k, then 

(et.,l |  | et.,J I s e rI(m)} 

is a base of the family L~,(I) . Each recurrence u �9 Lp(I)  has the unique representation 

(::) u ( z ) =  ~ c~ . . .  , c , � 9  
sen(m) sk 

10.11. Def in i t ion .  If, for a sequence u �9 p(k), there exists a finite algebraic extension Q of the field P 

such that for some m �9 hi0 k the sequence u has the representation (10.8), where c~ �9 Q and a ,0, . . ,  a~m,-1 �9 Q* 

are distinct elements for any r E 1, k, then we say that u is an exponentially represented sequence [78]. The 

set of all such sequences is denoted by EP  (k). 

Obviously, u �9 s iff u �9 Lp ( f~ (x l ) , . . . , f k ( xk ) ) ,  where f ~ , . . . ,  fk are separable polynomials with 
invertible constant coefficients. 

Under the conditions of Proposition 10.10(b), we can construct another basis of the family Lp(I) .  Let 
~ ,  s �9 No, be the following sequence over P: 

if char P = 0, then e,(i) = i~e, i �9 No; 

if char P = p > O, then ~,(i) = e-I-It>oil*, i �9 No, where i = ~ i t p  t, s = ~ s t p  t are t hep -a ry  

decompositions of i and s. 
10.12. P r o p o s i t i o n .  The system of sequences {e,1 |  | e,kl s �9 II(m)} is a basis of the family 

L p (  ( x l  - . . . , ( x k  - e ) ' k  ) .  

[] For k = 1, this was proved in [174]. For k > 1, this follows from the equality Lp( f l ( zX ) , . . . ,  A(xk))  = 

Lp( f l ( z l ) )  |  | Lp(fk(xk))  (Example 1.25). [] 
The following proposition reduces the problem of the construction of a basis of the family Lp(I)  to the 

case where I is a primary ideal. 
10.13. P r o p o s i t i o n .  Any monic ideal I ~ Pk is the intersection I = I1 M . . . fl Ir of pairwise comazimal 

primary ideals, and 

L~(I )  = t ~ ( I , )  $ . . .  q- L~(I,).  

[] The first statement is the Lasker-Noether theorem [13]; the second follows from Proposition 4.3. [] 

C. T h e  famil ies  o f  k-LRS w i t h  p r i m a r y  ann i h i l a t o r s  over  f in i te  fields.  Let P = GF(q), I .~ Pk 
be a maximal ideal of degree n, which satisfies the conditions of Proposition 10.5(d) and the conditions 

(10.6). Then Q = P [ a l , . . . , a k ]  = GF(q"). Let tr  = t r~  be the trace from the field Q into the field P,  

tr (x) = x + x~ + . . .  + x q"-~. The following result refines proposition 10.9(a) and generalizes the known 

description [37, 173] of a 1-LRS with irreducible characteristic polynomial. 
10.14. T h e o r e m .  For any recurrence u �9 Lp(I )  there exists a unique constant ~ �9 Q such that 

u(~.) = tr  (~(~'). (10.9) 

Any  sequence of the form (10.9) belongs to Lp(I) ,  and (f ~ ~t O, then 

Lp( l )  = 7~ku = Su 
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(here S is the ring from (10.1), associated with I).  Any  recurrence u E Lp( I )  is uniquely determined by the 
polyhedron of the initial values u(II(n)), where n = (nx , . . . ,  nk) is the vector defined from (10.6). 

[] Let u be a sequence of the form (10.9). Since tr is a linear map from Qp onto Pp, for any polynomial 

H(x) E Pk we get 
H(x)u  = v, where v(z) = tr (~g(a)az) ,  (10.10) 

and, by (10.4), u e Lp(I) .  If ~ r 0, then u r 0 (since tr (~H(a)) ~ 0 for some g ( a )  E Q, and then v ~ 0). 

Therefore, the number of different recurrences of the form (10.9) is equal to IQ] = q'~ = [PI degl = ILp(I)[ �9 [] 

10.15. Corol la ry .  I f  P = GF(q) and I is the maximal ideal of  Pk of degree n, then for any nonzero 
recurrence u E Lp(I )  we have g~(u) = g~(I), T(u) = T(I )  <_ q" - 1. [] 

For 1-LRS, Theorem 10.14 makes it possible to consider the case of an arbitrary primary ideal. 
10.16. T h e o r e m .  Let g(x) be an irreducible polynomial of degree m over P,  Q = P[a] = GF(q "~) be 

the splitting field of  g(x), g(a) = O. Then for any L R S  u E Lp(g(z)  l) there exists a unique set of constants 
~0,...,~t-x E Q such that 

(z) (:) 
u ( z ) = t r ( ~ o a " ) +  1 t r ( ( x a z ) + ' " +  l 1 tr(~l_la").  (10.11) 

Any sequence (10.11) belongs to 
[] Let C~o = ~, ~1 = c~q,..., am-x = c~ u Then any sequence u of the form (10.11) can be written as 

/ - 1  m - 1  

u = E E o.r4 rl, 
r = 0  s = 0  

qs r' where ~!d is a binomial sequence (Definition 2.15) and a,~ = r a,. By Theorem 2.18, u E Le(g(x) ') ,  and 
different sets of the coefficients ~0,. . . ,  ~1-1 give different recurrences u. It remains to note that the number 

of such sets is equal to qrm = ILp(g(x)')l. [] 
This theorem, together with Proposition 10.13, gives an appropriate method of investigating an arbitrary 

reversible 1-LRS over a finite field. It is interesting to obtain a generalization of Theorem 10.16 for k-LRS 
with the primary annihilator. 

10.17. Corol la ry .  Under the condition (10.11), i f  u ~ O, then M,,(z) = g(x) p, where p = max{r  E 

0, l - i I  ~ # 0}. [] 
D. T h e  B e r l e k a m p - M a s s e y  a l g o r i t h m  [4, 37, 108, 112, 115, 117, 131, 159]. As was noted in Section 

3.B, in order to construct the annihilator An (u)' of a k-LRS u E p(k) we must first construct the elementary 
ideal g(An (u)). The last problem can be reduced to construction of the minimal polynomial M~,(x) of some 

1-LRS u E p(1). If the rank of u is known, then we can use the method of Section 3.A. But if the rank u is 
unknown, this method is manipulated with the Hankel matrix Gn(u) for increasing n. The Berlekamp-Massey 
algorithm [4, 131] has no such deficiency. With the help of this algorithm, we find the minimal polynomial 
of an LRS of rank m and obtain a method of solving a Hankel system of linear equations with complexity 

O(m2). We describe our version of the algorithm for 1-LRS. 

10.18. Def in i t ion .  We say that the monic polynomial g(x) = x r~ - c,,~_lX m-1 - . . .  - Co E 7 ~ generates 

the segment u(O, l - 1) of the sequence u of length l, if either l _< m or l > m and 

u(i + m) = c~_~u(i + m - 1) + . . .  + cou(i) for i e 0, l - m - 1. 

The algorithm, starting with a given u(0, l -  1), constructs the polynomial of least degree which generates 
this segment. 

For an arbitrary monic polynomial g(x) E 7 9, denote by k,,(g) the number of zero elements in the 
beginning of the sequence v = g(x)u, and define l,,(g) = k,,(g) + degg(x). Then l,,(g) is the maximal length 
of the initial segment of the sequence u generated by the polynomial g(x), i.e., by the register 
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I I u(m I 1) I ' ] LRS g(x)  P. . . . .  over 

10.19.  D e f i n i t i o n .  The  rank of  the segment u(O, I - 1) of the sequence u is the  minimum m,,(1) of the 
degrees of monic polynomials  tha t  generate  this segment:  

m,,(1) = min {degg(z )  : g(x) e 79, l,,(g) > l}. 

For a given u E pO),  1E  N, the  Ber lekamp-Massey  algorithm constructs  a monic  polynomial  g(z) E 
such that  

l,,(g) >_ I, degg(z )  = m,,(1). ( t0 . t2)  

10 .20 .  D e s c r i p t i o n  o f  t h e  a l g o r i t h m .  For given u E pO) and I G N, we construct  the  sequence of 

monic polynomials go(Z), gx (z ) , . . .  , g s ( z ) , . . .  from 79 of degrees m0 = 0 < m~ < m2 _< . . .  <_ mt _< . . .  by the 
following algorithm. 

S t e p  0. Let go(x) = e, m0 = 0. E v a l u a t e l - m o  = l terms of the sequence u0 = g 0 ( z ) u  = u. If 

u0(0, l - 1) = 0, then l,,(go) > I and g(x) = go(x), m,,(l) = m0 = 0. Otherwise,  we have 

Uo = ( 0 , . . . ,  0, uo(ko) , . . . ) ,  uo(ko) # O, ko = k=(go) < l - mo. 

S t e p  1. Let 

g l ( = )  = x k ~  - -  't-zo(ko -'~ 1)tto(ko)-lack~ ml = ko + 1. 

Evaluate l - m l  terms of the sequence Ul = ga(z)u. If u,(0,  l -  m,  - 1) = 0, then l~(gx) > l a n d  g(=) = gl(=), 
m~,(1) = ml.  Otherwise,  

~,, = (o,.  , o ,~ , , ( k , ) , . . . ) ,  u , ( k , )  r O, k, = k,,(gO < l - - - , , .  

Suppose that  we have already cons t ruc ted  the polynomials go(x) , . . .  ,g~(x) of degrees mo = 0 < m~ _< 

. . .  _< mt, and that  for j E 0, t 

gj(=)u = uj = ( 0 , . . . ,  0, ~ j ( k j ) , . . . ) ,  ~j(kj) # 0, k~ = k~(gj) < l -  m~. 

S t e p  t + l .  Define the  parameter  s = s(t) such that  

m~ = m~-x . . . .  = ms+l > ms (10.13) 

(since m0 < ml ,  there  exists such s). Let 

g , + l ( = )  = g,(=) - =k'-k'~,,(k,)~,s(ks)- '  g,(=) ,  

m t + l  = m ,  if  ks < ks; 

gs+:t(z) -- zk~ -- us(ks)us(ks)- 'gs(x), (10.14) 
m t + l  = m~ + kt - k , ,  i f  kt > k , .  

Evaluate  l - m~+l terms of the sequence Ut+l = gt+~(z)u. If ut+l(O, l - mt+~ - 1) = 0, then g(x) = gt+l(Z), 

m~,(1) = ms+l. Otherwise,  

~,,+, = ( O , . . . , O , u , + , ( k , + , ) , . . . ) ,  

us+l(kt+l) • 0, kt+l = k~,(gt+l) < l - ms+l, 

and we go to the  next step. 
The  proof of convergence of the algori thm is based  on the following proposit ions.  
10 .21 .  L e m m a .  I f  kt + It < l, then 

1,,(gt+,) = mt+t + k,+l > l~,(gt) = ms + k,. (10.15) 

2830 



[] If t = 0, then (10.15) is obvious. By (10.14), m,+l >_ m,,  and (m,+l = mr) * (k, < k,). 

If m,+l = m,, i.e., k, G k,, then u,+ 1 = U t - -  V, where v = x " - k ' u t ( k t ) u , ( k , ) - l u ,  and v(0, kt) = 

(0 , . . . ,O ,u , ( k t ) )  = u(O, kt). Hence ut+,(O, kt) = 0, i.e., kt+, > kt and (10.15) holds. 

If m,+l > mr, i.e., kt > k,,  then ut+~ is the difference of the sequences xk ' -k 'u t  and u t (ks )u , ( k , ) - lu ,  with 
coincident initial vectors of length k, + 1. Therefore,  kt > k, + 1 and m,+x + kt+l = mt  + ks - k, + ks+l > 
mt + k~ + l > mt + kt. [] 

10.22.  L e m m a .  I f  ks + It < l, then 

ms+l = max {mr, ks + 1}. (10.16) 

[] Induct ion on t. For t = 0, (10.16) is obvious. If t > 0, then for the  pa ramete r  s f rom (10.13), by the 

induction assumption,  m,+l  = m a x { m , ,  k, + 1}. Since mt = m,+l  > m, ,  we have m t =  k, + 1 > m,.  

If ks < k,, then mt+l = m t  = ks -F 1 > kt -I- 1. If kt > k,, then mt+l = ms -q- ks ks > ms and 
mt+l = ks -F l q- ks - k, = kt q-1. [] 

10.23.  L e m m a .  Let t E N, m = m~()~), and f ( z )  E 79 be a monic polynomial  such that 

l~,(f) > 1, deg f ( z )  = m. 

Let h(x) E 79 be a monic polynomial of  degeee ,~ such that l~,(h) > l~,(f). Then n >__ max {m, k~,(f) + 1}. 

[] Since l~,(f) > )~, we have n > m~(,~) = m. It remains to show that  n > k~,(f) + 1. Suppose that  
n < k~,(f). Then the sequence w = h ( x ) f ( x ) u  begins with the series of exact ly k~,(f) - n zero elements. On 
the other  hand,  since w = f ( x ) h ( x ) u ,  the length of this series is equal to k ~ ( h ) - m .  Hence l~(h) = n+k~(h) = 
m + k, ,( f)  = l, ,(f).  This contradicts the condition of our lemma. [] 

10.24.  P r o p o s i t i o n .  In the notation o./10.20, i f  t >_ 0 and ks < l - mt~ then 
(a) l~,(gs+x) > l~,(gs) + 1 = Is + 1; 

(b) gs+~(x) is a polynomial of  the least degree which generates the segment u(0, 4), i.e., 

m~(It + 1) = ms+l. 

I f  r = min{ t  E 1% I ms + ks > l}, then the polynomial g(z)  g~(x) satisfies the conditions (10.12). 
[] Induct ion on t with the use of Lemmas 10.21-10.23. [] 
In the general case, the polynomial g(x) with properties (10.12) is not uniquely determined,  but we can 

formulate 
10.25.  P r o p o s i t i o n .  l f  l E N is such that the rank of  the segment u ( O , l -  1) satisfies the condition 

m~(1) = m <__ I/2, (10.17) 

then there ezists a unique monic polynomial g(x) E 79 such that 

degg(x)  = m, l,,(g) > I. (10.18) 

[] Let v E Lp(g)  be the LRS with the initial vector v(0, m---,-,-,-,-,-,-,~- 1 = u(0, m - 1). Then  

v(0, l - 1) = u(0, l - 1) (10.19) 

and g(x) = M , ( x )  (otherwise, the segment u(0, l - 1) is generated by a polynomial  of degree less than m.) If 

f ( x )  is another  monic polynomial satisfying (10.18), then by (10.19) and (10.17), we have f ( z ) v  = 0. Hence 

g(x)lf(x) and f(x)  = g(x). [] 
10.26.  T h e o r e m .  I f  u E pO) is an L R S  of  rank m,  then the Ber lekamp-Massey  algorithm, described 

in 10.11, with not more than 
r = m i n { t E N 0 l m t + k t > 2 m }  

steps, produces the minimal  polynomial of  the L R S  u, i.e., gr(x)  = M~,(x). Moreover, r < 2m - ko - 1. 
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[] By Proposition 10.24(b), g~(x) is the polynomial of the least degree which generates u(0, 2m - 1). By 
Proposition 10.25, it coincides with M~(x). O 

Under the conditions of Theorem 10.26, the Berlekamp-Massey algorithm produces the solution of the 
Hankel system of linear equations 

-~ g , , (u )  = u(m,2m - 1). 

The complexity Np(m) of the algorithm is estimated by the following number of the arithmetic operations of 
the field P: 

Np(m) < 8m 2 - (4m + 3)ko + x < 10m2(1 + 0(1)), 

where x = ko + k~ + . . .  + k~. Thus, Np(m) = 0(m2). Other modifications of the Berlekarnp-Massey algorithm, 
in particular with the complexity 0(m log m), and also the k-dimensional Berlekamp-Massey algorithms, can 
be found in [108, 112, 115, 117, 159]. 

11. Per iod ic  Recurring Sequences over Fields 

A. G e n e r a l  c r i t e r ion  of  t he  p e r i o d i c i t y  of  a 1-LRS [37, 70, 100]. By 6.3 and 3.4, 3.5, it is sufficient 

to give a criterion of the periodicity of the minimal polynomial f (x)  = M~(x) of a recurrence u E ~:p(x). 
11.1. T h e o r e m .  Let f (x )  E P[x] be a monic polynomial with canonical decomposition over splitting 

field Q: 
f ( x )  = xt (x  - ~) '~  . . . (x - a,) t , .  ( i i . I )  

Then f (x )  is a periodic polynomial if and only if the multiplicative orders of the roots o f f ( x )  in Q are finite, 

ord c~, = ts E N, s E 1, r, 

and if char P = 0, then, in addition, all roots are simple, 

ll . . . . .  Ir = 1. 

(11.2) 

(11.3) 

/ fchar  P = 0, then, under the conditions (11.1)-(11.3), 

D(f )  = 1, T ( f )  = [ta,. . . , t~]. 

I f  char P = p > 0, then, under the conditions (11.1), (11.2), 

(11.4) 

D(f)  = l, T ( f )  = [ t l , . . . ,  t,]- pX, (11.5) 

where 
=]logp(max{l l , . . . , l~})[ .  [] (11.6) 

11.2. Corol lary .  I f  g(x) is an irreducible reversible polynomial over P = GF(q) of degree m, then the 
period of g(x) is equal to the order of its arbitrary root ~ E Q = GF(q"), and 

T(g)lq "~- 1, T(g)Xq" - 1 for n < m. [] 

11.3. Corol lary .  Let f ( x )  = xtgl(x)h. . .g , (x)  t" be the canonical decomposition of a monic polynomial 

f ( z )  over P = GF(q). Then D( f )  = 1, T ( f )  = [T(gx),.. .  ,T(gr)].  p~, where A is defined by (11.6). I::l 
B. The cyclic t y p e  of  a r eve r s ib le  1 -LRS- fami ly  over  a f ini te  field [37, 70, 139]. Let f (x)  

be a reversible polynomial over P = GF(q) with canonical decomposition f ( x )  = gl (x) ! l . . .g r (x)  '~. By 
7.10, the cyclic type ZT(y ) of the family Lp( f )  is the composition of the cyclic types of the families 

Lp(g~(x)t'),... ,Lp(g~(x)t'). Thus, it is necessary to describe the cyclic types of reversible families with 
primary characteristic polynomials. 
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11.4. T h e o r e m .  Let f ( x )  = g(x) t, where g(x) E 7 ~ is an irreducible polynomial of  degree m and period 

T(g) = r, and p~-a < k < p~. Then 

�9 ~ - 1  q m p  ~ q m l  - 

qm _ 1 y~ _ q,~p,-1 . Y~'P~ + _ q,~p~ 1 . Y~P~ (11.7) ZT(y)  = y + - - .  + E " 
T 8=1 

[] L p ( f )  is the  set of all sequences u of the form (10.11). If u • 0 and, in the  notat ion of (10.11), 

~,-1 # 0, ~, = . . . =  ~,-1 = 0, (11.8) 

then, by 10.17, M,(x )  = g(x)", and, by 10.17, T(u) = rp s, where pS-, < p _< pS. Thus, T(u) = rp 8 if and 
only if ~p.-~, ~p.-~+l,. . .  ,~z-1 are not all equal to 0 and ~t = 0 for t k p*. It  now follows that  the number 

N~(rp  s) of recurrences u e L p ( f )  of the  period rp s is given by 

{q ,a  _ q,,,p*-:, if s = ~, 
N~ ' ( rp  8) = , ~ 

q'~P -q'~P , i f s < ~ .  [] 

12. M a x i m a l  Linear Recurring Sequences over Galois Fields 

Let P = GF(q), u be a reversible k-LRS over P ,  I = An (u), and S = 7~k/I = P[O1,...,Ok] be the 

operator ring of u (see 1.18). Then,  by 5.26, T(u) < ]S*] ~ IS[ - 1. 
12.1. D e f i n i t i o n .  A reversible k-LRS u over a Galois field P is called a k-maximal recurrence (k-max- 

LRS) if the operator ring S of u is a Galois field and 

T(u) = IS" I = ISI- 1. (12.1) 

If S = GF(q'~), then we say that  u is a k-max-LRS of rank m. In the  case k = 1, we also say that  u is an 
LRS  of maximal period. 

In view of Definition 6.24, a k-max-LRS over P is a full-cycle LRS such tha t  its operator ring is a field. 
Note that,  by Theorem 5.26, condition (12.1) is equivalent to 

S = GF(qm), ,.q* ----- (01,. . .  , Ok). (12.2) 

The following description of k-maximal recurrences generalize the  well-known characterization of 1-LRS 
of maximal period over a finite field [37, 70, 133], and make it possible to unify the  special cases examined in 

[128, 144, 153, 154]. 
12.2. T h e o r e m .  Let Q = GF(q ~) be an extension of P of degree m, and elements a l , . . . , a k  E Q* 

satisfy 
Q" = (h i , . . . ,  ak>. (12.3) 

Then, for any ~ E Q*, the k-sequence u E .p(k) defined by 

u(z) = tr ( w) (12.4) 

is a k-max-LRS of rank m.  Conversely, for  any k-maximal recurrence u E .p(k) of  rank m there exist elements 
~, a ~ , . . . ,  ak E Q* such that (12.3) and (12.4) hold. 

[] By 10.14, under  conditions (12.3), (12.4), the ideal I = An (u) is a maximal  ideal of the form (10.4). 

The operator  ring S is isomorphic to Q, and there exists an isomorphism over P which maps 08 to as, s E 1, k. 
Hence, (12.3) holds. 

If u is a k-max-LRS of rank m over P ,  then, by Definition 12.1, the  operator  ring S satisfies (12.2). There 

exists a field isomorphism cr : S ~ Q over P.  If a(08) = as, s E 1, k, then (12.3) and (10.4) hold. Therefore, 

by 10.14, (12.4) holds for a suitable ~ E Q*. [] 
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12.3. Def in i t i on .  A maximal ideal I ~ 79k is called an ideal of maximat period over P = GF(q) if its 
operator ring S satisfies (12.2) for some m �9 N. 

12.4. T h e o r e m .  Let I ~ 79k be an ideal of maximal period over P = GF(q),  and suppose that (12.2) 

holds. Then the group of periods of I has the form V(I)  = {t �9 Zk[ 0 t = e}, and T ( I )  = qr, _ 1. The factor 

group Zk/V(I) is a cyclic group of order q'* - 1. The cyclic type of the family Lp( I )  (see 7.13) is given by 

Z/P = 1- Z k + 1 . ~ ( I ) .  (12.5) 

[] The first part of the theorem follows from 6.21 and 6.22. By 10.14, for any u �9 Lp(I)\O we have 
np(I)  = Su. Hence, by (12.2), all nonzero recurrences from Lp(I)  belong to the cycle T(u)  = S*u of u, i.e., 
(12.5) is true. [] 

12.5. P r o p o s i t i o n .  Let u be a 1-LRS of maximal period q'~ - 1 over P = GF(q).  Then the group o] 
multipliers and the reduced period of u are given by 

Mult (u) = P*, T,.(u) = (q~ - 1)/(q - 1).• 

If u is a 1-LRS of maximal period r = q'~ - 1 over P = GF(q) and f ( z )  is the minimal  polynomial of u, 
then the root a of f ( z )  in the extension Q = G F ( q ' )  of P is a primitive element of Q. We now obtain some 

properties of regular extracts of u. For k �9 1, r ,  we set 

re(k) = [p(ak) : p] ,  fk(z) =/~,k,v(z).  

Then fk(x) is an irreducible polynomial over P of degree re(k), and rn(k)[rn. The following theorem refines 
some results of Section 9. 

12.6. T h e o r e m  [58, 70]. In the previous notations, the following statements hold. 

(a) Any (l, k)-extract v belongs to Lp(f,). 
(b) Any nonzero sequence v �9 L p ( h )  is an (l, k)-extract of u exactly for qm-m(k) different integers 

l �9 O, r - 1, and the zero sequence - -  exactly for qm-,~(k) _ 1 different l �9 O, r - 1. 
(c) Let g(x) �9 P[x] be a reversible irreducible polynomial of degree n, aim, and let v �9 np(g), v ~ O. 

Then exactly nq rn-n regular extracts of u are equal to v. [] 
The statistical characteristics of k-maximal recurrences will be considered in Section 26. 

13. T h e  A l g e b r a  of  L i n e a r  R e c u r r i n g  S e q u e n c e s  over  a F i e l d  

The space p(k) of k-sequences over a field P is an associative commutative algebra, in which the sequences 

are multiplied as functions, i.e., if u, v E p(k), then uv = w, where w(z) = u(z)v(z).  Subalgebras of (p(k), + , . )  

are the farnifies Lp(z~l(x[ 1 - e ) , . . .  ,z~*(x~ k - e)), where l l , . . . , l~  E No, t l , . . . , t ~  E N, and the sets ~rP (k), 

T~P (k), ~DP (k) of periodic, reversible, and degenerating k-sequences respectively. Moreover, DP(k) is an ideal 

of Pq'). If P is finite, then the set s of all k-linear recurrences over P coincides with ~rP (k) and, therefore, 

is a subalgebra in p(k). It will be shown below that  s is a subalgebra in p(k) for arbitrary P.  
A.  M u l t i p l i c a t i o n  of  k -LRS- fami l i e s  [37, 82, 83, 93, 109, 119, 152, 174]. Here we generalize some 

results of [174, 37] for the case of k-recurrences. 

13.1. Def in i t i on .  Multiplication of subspaces M ,  ./V" Cp P(~) is defined as the subspace M.A/', generated 
(over P)  by uv for all u E M ,  v E ./V', i.e., M./V" =p {uv[ u E M ,  v E .N'}. 

13.2. P r o p o s i t i o n .  The multiplication on the set ~(k) of all subspaces of p(k) is associative, commuta- 

tive, and distributive with respect to addition. I f  M ,  E/5(k), d i m p M ,  = ms, s E 1,t, then 

d i m v M 1  . . . M r  < m l . . . m r .  (13.1) 

The algebra (/5(k),+,.) is a commutative semiring with unit L p ( x l -  e , . . . , x k -  e) and zero 

= O. [] 
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13.3. T h e o r e m .  For any monic ideals Ix , . . . ,  h "~ 79k, there exists a unique ideal I ,~ 7~k such that 

Lt,(Ia).. .  Le ( I  0 = Lp(I). (13.2) 

In addition, 
deg I <_ deg I1 �9 . . .  �9 deg It. (13.3) 

[] By 13.1 and 13.2, the set .h4 = Lp(I~). . .  Lp(It) is a finite-dimensional subspace in p(k). Since 

zi.44 C_ .A4 for i E 1, k', .h4 is a T'k-submodule in P(~). Therefore, by 2.12, r < s Since a field is a 
QF-ring, we have, by 4.6, .h4 = Lp(I),  where I = An (.A4). The inequality (13.3) follows from (13.1) and 
10.9. [] 

13.4. Def in i t ion .  The monic ideal from (13.2) is called the disjunction of ideals I1, . . . ,  It and is denoted 
by 

I =/1 V . . .  V I,. (13.4) 

A monic polynomial f (x )  E P[x] is called the disjunction of monic polynomials f~(x) , . . . ,  ft(x) E P[x] of one 
indeterminate z if 

L e ( f , ) . . .  Lp(ft) = Lp(f) .  (13.5) 

We denote it by 
f = fl V . . . V  ft. (13.6) 

Associativity of the multiplication implies nssociativity of the disjunction. 
13.5. Corol lary.  The set LP (k) of a k-LRS over P is a subalgebra of the algebra (p(k), +, .). [] 
B. P r o p e r t i e s  of  t he  d i s junc t ion .  Definition (13.6) of the disjunction of polynomials depends on the 

field P (see (13.5)). Indeed, there is no dependence on P, and we have 
13.6. P ropos i t i on .  Under the conditions of Theorem 13.3, let Q be an extension of P. Then, along 

with (13.2), 
LQ(I,) . . .  LQ(I 0 = LQ(I). (13.7) 

[] By 13.3, 
LQ(Ix)...  LQ(I 0 = LQ(J), (13.8) 

where J,~ Q[x] is a monic ideal. Since Lp(I,) C_ LQ(Is), s E 1,-'-{, (13.2) and (13.8) imply that Le(I )  C LQ(J) 
and LQ(I) = Q. Lp(I) c LQ(J). 

Any basis {u~S),. ,u~!} of the family Lp(Is) is also a basis of LQ(Is) (Proposition 10.9). Hence, the 

system of sequences {u(k11)... U(kt,)[ ks e 1,m~, s e 1--,7} generates Lp(I) over P and LQ(J) over Q. Therefore, 

LO(J) is annihilated by each polynomial from I, and LQ(J) c_ LQ(I). [] 
The disjunction of arbitrary monic ideals has not been described yet. For monic ideals the problem 

reduces to a description of the disjunction of polynomials of one indeterminate. 
13.7. P ropos i t i on .  Let I = ( f l (x l ) , . . . , fk (xk) ) ,  J = (gx(xx),... ,gk(Xk)) be elementary ideals of T)k. 

Then 
I V  J = ( f l  V g l , . . .  ,fk Vgk). 

[] By 1.25, the subspaces Lp(I), Lp(J) are generated over P by sequences of the form 

U = Ul  | . . . | Uk ,  U s E  

V = V l | 1 7 4  VsE 

respectively. Then Lp(I  V J) is generated by sequences 

Lp(fs), s e 11"k, 

Lp(gs),  s e i ,  k 

of the form uv = ulvl | . . .  | ukvk. Here usvs E 
Le(fs V gs), and Lp(fs V gs) are generated by all possible products usvs. o 

The disjunction of polynomials of one indeterminate is described by the following propositions. 
13.8. L e m m a .  For any t, s E No, 

x t V z s = z" ,  where m = min {t, s}. 
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If f(x)  E P[x] is a monic polynomial and f(O) ~ O, then 

x t v f ( x ) = x  t. [] 

13.9. L e m m a  [174]. If  g(z) is a separable polynomial over P, degg > 0, then for any a E 51 

g ( x )  v (x  - e)  ~ = g(x)".[] 

13.10. D e f i n i t i o n .  Let char P = p. Define the  disjunction a V b of natural numbers a, b [174]. If p = 0, 
t h e n a V b = a + b - 1 .  I f p > 0 a n d  

a -  l = ~-~asp ~, b -  l = ~'~b,p s, 0_<as,  bs < p, 
s>_O s>o 

are the p-ary expansions of a - 1 and b - 1, then 

a V b = p~ + ~'-~(a, + b,)p', 
s>~ 

where $ = m i n { r  _> Of at + bt < p for t _> r}. 
13.11. L e m m a  [174]. For any a, b E51, 

(~ - e)  ~ V (~  - ~)~ = (~  - e)  ~ .  [] 

13.12. L e m m a  [174]. Let f(x),  g(x) be monic separable polynomials over P, Q be their splitting field 
over P, and let the decompositions of f(x),  g(x) over Q be given by 

f (x)  = (x - a~)...  (x - c~,,,), g(x) ----- (X - - /~1 ) . . .  (x - -  /~n)- 

Then 
f V g =  1.c.m.[z-a,flt, s E l , m ,  tE l ,n ] ,  

f ~  v gb = ( f  v g)OVb, a,  b e 51. [] 

13.13. T h e o r e m  [174]. Let f(x),  g(x) be monic polynomials of positive degrees over P, and let Q be a 
purely nonseparable extension of P such that in the canonical decompositions of f (x) ,  g(x) over Q, 

f =  f ~ , . . . f ~ . ,  g=g~X...gb% 

the polynomials fs, gt, s E 1,m,  tE 1,n,  are separable. Then 

f V g  = 1.c.m.[f~" Vgt b', a E 1 ,m,  t E 1, nJ. [] 

C. S u b a l g e b r a s  o f  t h e  a l g e b r a  o f  l i n e a r  r e c u r r e n c e s .  
Let 

LP(fa)  = LP(fl(xl)al, '", fk(xk)~k),  LP(f~176 = U LP(fa)  �9 

13.14.  L e m m a .  A subspace Lp(f ') ,  where a x , . . . , a k  E 51U {oo}, is a subalgebra of LP (k) if and only 

if Lv(f~(z)") are subalgebras in LpO) for any s E 1, k. 
[] It is sufficient to use the relation (see 1.25) 

L v ( f ' )  = Lv(f l (z)  ~') |  | Lp(h(x)~k). [] 

13.15.  P r o p o s i t i o n .  The set L e ( ( x  - e) ~176 is a subalgebra in s The family Lp((X - e) a) is a 

subalgebra in f_.p(k) if and only if 
a = ( 1 , . . . , 1 ) ,  if c h a r P  = O; 

a = (p~l , . . . ,pXk),  if c h a r P  = p > O. 
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[] This follows from 13.14 and 13.11. Cl 
13.16. R e m a r k .  It is interesting to describe subalgebras in s which are also Pk-submodules. From 

Proposition 14.20 it follows that such subalgebras coincide with bialgebras in the bialgebra s defined 

in Section 14. For k = 1 subbialgebras of s are completely described in 14.36, 14.35. These results 

and Lemma 13.14 make it possible to enumerate some subbialgebras in s for k > 1, but their complete 
description is an open problem. 

Define T~Pi(:r) as the set of all recurrences u e s such that u �9 L~, ( f l (xx) , . . . , f k (xk) ) ,  where 

f l ( x ) , . . . ,  fk(x) are irreducible reversible polynomials over P.  

13.17. T h e o r e m .  The algebra s of k-linear recurrences can be represented in the form 

s = T)p(k) ~_ 7~p.(k). L p ( ( x _  e)~) .  lrr 

[] By 13.9, 13.7, for any monic polynomials f l ( x ) , . . . , h ( x )  we have Lp( f ) -  Lp( (x  - e) r = Lp(f~) .  

Hence, 7~P. (k) �9 Lp((x - e) ~ )  = Ti.P (k) and our result follows from 5.27. [] lrr 
Recall that P is called a perfect field if any irreducible polynomial over P is separable. If (and only if) P 

is perfect the subspace T~P(k)irr is a subalgebra of s In this situation, T~P. {k)lrr coincides with the set EP (k) 

of exponentially representable sequences (see 10.11), and the following result holds. 
13.18. Corol la ry .  [f P is perfect, then 

s = Vp(k) jr $p(k).  Lp((xl  - e)r (xk - e)~). [] 

14. H o p f  A lgeb ra s  of  L inea r  R e c u r r i n g  S e q u e n c e s  

All linear spaces in this section are considered over a fixed field P.  Let Horn (A, B) be the set of all linear 
mappings from the vector space A into B, A* = Horn (A, P).  If a E Horn (A, B), then ~* denotes the dual 

mapping cr* : B* ~ A*, cr*(qo) = ~vcr. References: [3, 31, 32, 90, 91, 147, 163]; see also V. A. Artamonov 
Structure of Hopf Algebras, Itogi Nauki i Tekhn. Algebra. Topologiya. Geometriya, 29, 3-63 VINITI (1991). 

A. H o p f  a lgebras .  An algebra over the field P is a vector space A with a multiplication map m : 
A | A --* A and a unit map # : P ~ A, such that the following diagrams are commutative: 

rn| lA 
A | 1 7 4  " A |  

1 A |  

m 

A |  " A 

m 

# |  1A|  
P |  " A |  " A |  

A is commutative if m T =  m, where T : A | A ~ A | A, T(a | b) = b @ a. We write m(a | b) = ab. The 

element 1 = #(e) is the unit of the algebra A, where e is the unit of P.  To define a coalgebra, we reverse the 

arrows in these diagrams. 
14.1. Def in i t ion .  A coalgebra is a vector space A with a comultiplication (or diagonalization) A : A --+ 

A | A and a counit ~ : A ~ P,  such that the following diagrams are commutative: 
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A 

A 

A 
" A |  

A |  

1 A |  
A |  ' A | 1 7 4  P |  

A 

' A |  ' A |  

Thus, if a 6 A and Aa = E ai | a~, then E(Aal )  | a~ = E ai | (Aa~) and E g(ai)a~ = a = E aig(a~). This 
property expresses the coassociativity of A. A is cocommutative if TA = A. A subspace B is a subcoalgebra of 
A if A(B) C_ B |  A homomorphism ofcoalgebras is a linear mapping ~r : A -+ A' such that ( g |  = A'a  
a n d  g ' a  --" g .  

If A is an algebra and a coalgebra and A, g are homomorphisms of algebras, i.e., Am(a  | b) = mA(a) | 
mA(b), em(a | b) = g(a)g(b), then A is called a bialgebra. A subalgebra B is called a subbialgebra if B is 
also a subcoalgebra. A Hopf algebra is a bialgebra A with an antipode map S : A ~ A such that if a 6 A 
and Aa = ~ a, | a~, then ~ S(ai)a! = e(a)l  = E a,S(a~). A subbialgebra B is called a Hopf subalgebra if 
S(B) C B. A homomorphism of Hopf algebras is an algebra and coalgebra homomorphism ~r : A -~ A' such 
that S 'a  = ~rS. 

14.2. E x a m p l e .  The polynomial algebra P[xx , . . . ,  xk] is a Hopf algebra with comultiplication 

A f  = f ( x  | 1 § 1 | x) = f ( x l  | 1 + 1 | 11, . . .  , X k | 1 q- 1 | xk), 

counit e ( f )  = f (0) ,  and antipode S( f )  = f ( - x ) .  We denote this Hopf algebra by P[x]. 

14.3. E x a m p l e .  The polynomial algebra P [ x l , . . . ,  xk] is a bialgebra with A f  = f ( x  | x), ~(f) = f(1).  
We denote it by Bk. 

An element a ~ 0 of a coalgebra A such that Aa = a | a is called a group-like element. The set G(A) 
of group-like elements of a Hopf algebra A is a group, a -1 = S(a) for a 6 G(A) [163]. Since the element 

Xl E G(Bk) is not invertible in Bk, then there does not exist an antipode in the bialgebra Bk. 
B. T h e  con t i nuous  dua l  of  t h e  H o p f  a lgebra .  If (C, A, e) is a coalgebra, then C* is an algebra with 

the unit g. The multiplication * in C* is called the convolution and is defined by ( u .  v)(c) = (u | v)Ac, where 

u, v E C*, c E C, i.e., if Ac = ~ c i  | d/, then (u * v)(c) = ~.u(ci)v(c'i). Thus, the multiplication �9 in C* is 
obtained by dualization of A, i.e., by putting together A* : (C | C)* --* C* with the natural map 

, , :  C* | C* --* (C | C)*, ( , ( u  | v))(c | d) = u(c)v(d). 

The associativity of * follows from the coassociativity of A. The algebra C* is called the dual of the coalgebra 
C. 

Now we define the coalgebra which is dual to the algebra (A, m,/z). Note that  the dualization of the 
multiplication m is the map m* : A* ---+ (A | A)*, the image may not lie in A* | A* (if d imA = oo). But 

there exist subspaces A ~ in A* such that m*(A ~ C A ~ | A ~ and our coalgebra is the largest of them (see 

[1631). 
A subspace J in A is called cofinite if d i m p ( A / J )  < c~. Denote 

A ~ = {u E A*] Keru  contains a cofinite ideal of A}. 

Then the restriction of the injection A* | A* -* (A | A)* on A ~ | A ~ appears to be an isomorphism between 
�9 0 A~174 ~ and (A| ~ [163], and A ~ = m [A is a comultiplication in A ~ It is easy to check that A~ = E ui| 

(where u, ul, u i 6 A ~ if and only if u(ab) = Eui(a)u~(b) for any a, b E A. The map go /~.[AO : A 0 ,* 

P* = P (dual to the unit # of algebra A) is a count of the coalgebra A ~ We have gO(u) = u(1). The coaigebra 

A ~ is called the continuous dual of the algebra A, or the C-dual of A. 
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If (A, m,/~, A, s) is a bialgebra, then A ~ is a coalgebra and A* is an algebra, and A ~ is a subaigebra of 
A*. It can be shown that  A ~ is a bialgebra [163], called the C-dual of the bialgebra A. If A is a Hopf algebra 

with antipode S, then A ~ is a Hopf algebra with antipode 

SO = S.[AO : A o s "  A o, (S~ = u(S(a)). 

14.4. De f in i t i on .  A ~ is called the continuous dual ofa Hopfalgebra A, or the C-dual of A. 
C. H o p f  a l g e b r a s  of  k - l inea r  r e c u r r i n g  s e q u e n c e s .  Let us turn  to  Examples 14.2, 14.3. Any linear 

map u E P[x]* is determined by its values u(xl), i E No k. We identify u with the k-sequence, denoted also by u, 

put t ing u(i) = u(xl), i E No k. Then u E P[x] ~ if and only if An (u) contains a cofinite ideal, i.e., if u is a k-LRS. 

Thus, P[x] ~ is the space of all k-LRS over the field P.  Since we consider elements of P[x] ~ as sequences, but 

not as mappings, some relations of i tem 14.B are writ ten in another form. For example, the rule s~ = u(1) 
of evaluation of the counit in the C-dual coalgebra is written in the form s~ = u(1) = u(x ~ = u(0), where 

i e P[x] ,  0 e No 
14.5. P r o p o s i t i o n  [91,147]. The C-duaI P[x] ~ of the Hopf algebra from Example 14.2, is a Hopf algebra 

of all k-LRS with the following operations: 

(u �9 v)(i)  -- u(j)v( i  - j),  where - - -  . . .  

is the convolution (multiplication of sequences in P[x]~ 

is the unit sequence, 

e x (where eX(0) = 1p, eX(i) = 0, 

where u, v e P[x] ~ i, j E N0 ~. [] 

14.6. P r o p o s i t i o n  [32]. 

i e No \O, see (2.13)) 

A~ |  = u(i + j )  is the comultiplication, 

s~ = u(O) is the counit, 

S~ = (-1)ia+'"+iku(i) is the antipode, 

The C-dual s of the bialgebra from Ezample 14.3 is the bialgebra of all 

k-LRS with componentwise multiplication of sequences, unit sequence e x-1 (where e x - l ( i )  = 1p, i E Nok), and 
coalgebra operations A ~ s ~ as in P[x] ~ [] 

This bialgebra is denoted by/ :p(k)  (but not B~ because the algebra of all k-LRS with componentwise 

multiplication of sequences was already denoted by s in Section 13 (see 13.5), The Hopf algebra P[x] ~ 

and the bialgebra s are commutat ive and cocommutative. They are left Pk-modules relative to the usual 
multiplication of a polynomial on a sequence (see (1.3)). 

14.7. R e m a r k .  Let u E Lp(f) ,  v E Le(g), d e g f  = m, degg = n, and M(0) be the ( m x  n)-matrix 

with the elements i (O) , j  = u(i)v(j), i E O, m - 1, j E 0, n - 1. Let 

M(s  + 1) = S ( f ) T i ( s )  + U(s)S(g), s > O. 

Then (u * v)(s) = M(s)oo, s >_ O. Thus, the terms (u * v)(s) of the convolution of the sequences u and v can 
be evaluated recursively. Thus, it is enough to keep in memory the matr ix M(s)  of fixed size m x n instead 

of the segments u(0,-'~, v(0,--~ of the sequences u, v. 

Now we point out one of subbialgebras in EP (k) which is a Hopf algebra. 
14.8. De f in i t i on .  A function p : Z ~ ~ M is called a k-bisequence over a module  aM.  Define the 

multiplication of a polynomial on a k-bisequence by the rule (1.3). Then the set of all k-bisequences is the 
left R[x]-module. The  annihilator of a k-bisequence p is the ideal An (p) = {F(x)  E R[x][ F (x )#  = 0}. A 
k-bisequence # is called a k-linear recurring bisequence (k-LRB) if An (#) contains a monic ideal. 
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14.9. Def in i t ion .  A k-bisequence v is called a reverse of the k-sequence p if v[No k = p and An (v) = 
An (#). 

14.10. E x a m p l e s .  The reverse of the k-arithmetical progression p(i) = ao + al i i  + . . .  + akik, i E Nko, 

where aO, a l , . . . , a s  E M (see 1.19), is the k-hisequence v(i) = ao + al i l  + . . .  + akik, i E Zo k. The unit e x 

of the algebra P[x] ~ (see 14.5) has no reverses. Let R = Z[yl, y2 , . . . ,  z~, z2 , . . . ] / J ,  where J = (yi - 2y2, y2 - 

2y3, y3 - 2 y , , . . . ,  yl - 2z2, z2 - 2z3, z3 - 2z4,.. .).  Then the sequence p = (yl, 2yl, 4y l , , . . )  has two reverses 

( . . . ,y3,y2, yl ,2yx, . . . )  and ( . . .  ,z3, z2 ,y l ,2y l , . . . ) .  

14.11. P r o p o s i t i o n .  (a) I f  there exist elementary polynomials Fl(Xl),...,Fk(xk) of a k-LRS p E U (k) 

such that the elements Fs(O), s E 1, k, are invertible in R, then # has a reverse. 
(b) I f  R is an Artinian ring, then the converse of proposition (a) is true. 
(c) I f  the condition (a) is satisfied, then the reverse of the k -LRS  p is uniquely determined. 

[] (a) Let k = 1, p e LM(F),  m = deg F,  F*(x) = F(O)-~z'~F(1/x). Consider the sequence ~, e LM(F*) 
with initial vector x ( ~  = ( # ( m -  1) , . . . ,p (0) ) .  Then the k-bisequence v defined by vll% = /z, 
v ( - i )  = x(i + m + 1), i >_ 1, is a reverse of p. For k > 1, the proof is analogous. 

(b) A commutative Artinian ring is the direct sum of local rings, and it is sufficient to consider the case 
where R is a local Artinian ring with maximal ideal 91. Let v be a reverse of the k-LRS # and G,(x,)  E An (v), 

s e 1, k. For s E 1, k choose a monic polynomial F,(z) E R[x] such that  F,(x) =_ G,(x) (mod91[x]) and any 
nonzero coefficient of F,(x) is invertible. Then G,(x) divides F,(x) ~, where n is the index of nilpotency of the 

ideal 91, and, therefore, F,(x,)  ~ E An (v). The polynomial F,(z)  ~ can be writ ten in the form F,(x) ~ = xtHs(z),  
where H~(0) e R*. Then H,(x~) E An (v) = An (#). [] 

14.12. R e m a r k .  If R i s  not an Artinian ring, then the converse of Proposition 14.11(a) is not true. For 
example, let R = Z[yx, y2,. :.]/J, where J = (yl - 2y2, y2 - 2y3,.. .).  Then the sequence p = (y~, 2y~, 4y~,...) 
has the reverse ( . . . ,  y3, y2, y~, 2y~,...),  but # does not satisfy the conditions 14.11(a) because An (#) = ( x - 2 ) .  

14.13. Corol la ry .  A periodic k-LRS over a module R M  has a reverse if and only if it is reversible in 
the sense of Definition 5.17. 

[] This follows from 5.18(5) and 14.11(a). [] 
By Corollary 14.13, we can extend Definition 5.17 of a reversible sequence on the class of nonperiodic 

sequences. 
14.14. Def in i t ion .  A k-LRS V over a module RM is said to be reversible if there exists a reverse of #. 

14.15. P r o p o s i t i o n  [32]. The sets 79P (k) of degenerating and Tipq') of reversible k-LRS are subbialge- 

bras in the bialgebra s of all k -LRS over the field P,  and (see also (5.15)) 

f-.P(~) = 7)P (k) Jr TOP (k). 

Moreover, ~p(k) is a Hopf algebra with antipode S~ = v ( - i ) ,  i E No k, where v is the reverse of the k-LRS 
u . [ ]  

D. C o m u l t i p l i c a t i o n  in t h e  coa lgebras  s a n d  P[x] ~ 

Let u E/:p(k).  By definition, A~ is an element of/:p(k) |  AOu = ~ u t  | u~, such that 

ut(i)u't(j) = u(i + j) for i,j  e No k. (14.1) 

Proposition 14.5 does not give an explicit description of the sequences ut, u~. Now we give one such description. 

14.16. P r o p o s i t i o n .  Let u E s be a k-LRS with elementary characteristic polynomials fl(XX),..., 
h(x ) of degrees m l , . . . ,  mk . Then 

zx%= ]E (xt )| 
t_<m-1 

where m = ( m l , . . . , m k )  and err is defined in (2.13). 
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n We show that (14.1) holds. For i, j E No k we have 

u(i + j ) =  (x iu ) ( j )=  ( < ~  l (Xi~)(t)  �9 e ~ ) ( j ) =  E (x tu)( i )  " e : ( J )  "1"-I 
t -- t~m-1 

14.17. E x a m p l e .  Let k = 1, f ( x )  = z 2 - z - 1, u = (0, 1,1, 2 , . . . )  E L p ( f )  be the Fibonacci sequence 

over P (see 1.5). Then e~ = e S = u, e0 / = x u  - u; hence A~ = u | ( xu )  + (xu)  | u - u | u. 

14.18. E x a m p l e .  Let u(i) = a i, where a E P~\0  (a k-geometric progression, see 1.19), or let u = e x be 

the unit of the algebra P[x] ~ (a k-geometric progression for a = 0). Then A~ = u | u, i.e., u E G(EPik ) ) .  

It is easy to see that we have enumerated all group-like elements of the coalgebras L P  (k) and P[x] ~ . Since 

(a i) �9 (b i) = ((ab)i), the group-like elements of the bialgebra s form a semigroup, isomorphic to the 

semigroup (P,-), and the group-like elements of the Hopf algebra gp(k)  form a group, isomorphic to the 

multiplicative group of the field P. Since (a i) * (b ~) = ((a + b)~), the group-like elements of the Hopf algebra 
P[x] ~ form a group, isomorphic to the additive group of the field P. Thus, 

( G ( C e ( k ) ) ,  .) ~- (p ,  "), 

(G(TZp(k)), .) -~ (p . , . ) ,  

(a(P[x]~ *) ~ (P, +). 

In Proposition 14.16, A~ is expressed through the shifts of the sequence u and the sequences e~. We 
can express A~ only through theshifts of u (as in Example 14.17) or only through e~. In the more general 
case where B is a subcoalgebra of a coalgebra (C ,A,e )  and {br] r E f~} is a basis of the vector space 
pB, the coefficients A,st E P,  defined by A b ,  = ~s,t~fl Arstbs | bt, are called the s tructure  constants  of the 

comultiplication A with respect to the basis {b, I r E fl}. The structure constants of the subcoalgebras 

L p ( f l , . . . , f ~ )  C s  with respect to different bases are obtained in [91, 147]. Note that the simplest 
constants are obtained with respect to the binomial basis (see Section 2.D): 

A~ = ~--~ a[i] | a [|-j], where a~](i) = ( i )  ai- '  , i E l~lo k. 
j_<l 

E. Subcoa lgeb ra s  in s  (k) and  P[x] ~ 

For a k - L R S  u E s define C ( u )  as a minimal subcoalgebra in L P  (k) such that u E C(u ) .  

14.10. P ropos i t i on .  C ( u )  is equal to the cyclic 79k-raodule generated by u, i.e.,  C ( u )  = 79kU. 

= ' ' C (u ) .  By (14.1), x'u ~ u t ( i ) u '  t E ~ P u ' ,  C_ C(u), i E No k. Hence E3LetA~ ~ ut | ut ,  where  ut, ut E �9 = 

p~u c_ C(u). 
Conversely, since u is a k-LRS, the space Pku is finite-dimensional over P. Let { v l , . . . ,  vn} be its basis. 

We can find polynomials g l (x ) , . . . , g , , (x )  e 79k such that (g,(x)vt)(0) = 5,t (5,t is the Kronecker delta). 
Denote Ct(i) as a coefficient on vt in the decomposition of x~u with respect to the basis {v~, . . . ,  v,~}: 

xlu = ~ et(i)vt, i e No k. (14.2) 
t=l 

Then es is a k-sequence, and 

n 

(g,(x)u)(i) = (g,(x)xiu)(0) = ~ r = r 
t----1 

Hence r  = g,(x)u E :Pku. By (14.2), 
I'L 

u(i + j )  = (xiu)(j) = ~ r 
t=l 
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It follows that A~ = E Ct | v, E 79ku | T'ku. Therefore, 7~ku is a subcoalgebra and C(u) C 7~ku. [] 
Another proof is given in [91]. 

14.20. P r o p o s i t i o n .  A subspace in s is a subcoaIgebra if and only if  it is a Pk-submodule. 
[] B is a subcoalgebra r V u E S (C(u) C_ B) r V u e B (79ku C B) r B is a 7~k-submodule. [] 

14.21. Coro l la ry .  Finite-dimensional (over P) subcoalgebras in s are exactly k-LRS-families 
Lp(I) ,  where I is a monic ideal in 79k. [] 

Since P[x] ~ = L P  {k) as coalgebras, all results of this section are also true for the coalgebra P[x] ~ 
F. T h e  convo lu t i on  of  LRS-fami l ies .  
In Section 13.B, we described the product of LRS-farnilies in the algebra ( L P  (1), +, .). Here we consider 

an analogous problem for the algebra (Fix] ~ + , . ) .  

14.22. Def in i t ion .  For subsets 

u .  v, where u G U, v G V, i.e., U*  V 
Since 

Xs(~ * 

U, V C P[x] ~ define the convolution U * V as a subspace spanned by 

= p  u e u ,  e v } .  

v ) = C z , u ) , v + u , ( x , v ) ,  s E l ,  k, (14.3) 

the convolution of k-LRS-families is a finite-dimensional 7~k-module and, therefore, it is a k-LRS-family (see 
the proof of Theorem 13.3). For k = 1, this means that for arbitrary monic polynomials f ( z ) ,  g(x) G P[z] 
there exists a monic polynomial h(x) E P[x] such that L p ( f )  �9 Lp(g) = Lp(h).  Our purpose is to describe 

the form of h(x). Let a V b be the disjunction of natural numbers a and b, defined in 13.10. 
14.23. Def in i t ion .  Let f ,  g be irreducible separable polynomials over the field P,  a l , . . .  ,a,~ and 

131,..., fin be the roots of these polynomials in the splitting field. Denote 

f �9 g = t.c.m. [x - (a~ + fit)[ 1 < s < m, 1 < t < n], (14.4) 

gb = ( I ,  g)ov L 

If char P = p > 0, then polynomials f ,  g, irreducible over P,  may be not separable. Then there exists a purely 
separable extension Q of P such that f = ~ ,  g = ~s, where ~, k~ are irreducible over Q and separable, r, s 
are powers of p. Define f~ * gb = r  qjbs. Finally, if f ,  g are arbitrary polynomials over P with canonical 

~ r n  decompositions f f~l . . .  f,~ , g = g~l bn . . . .  g~ , then we define 

f * g  = 1.c.m.[/:" ,g~'[ i < s < m, I < t < hi. 

We call f * g the convolution of polynomials f and g. It is easy to see that f �9 g is a polynomial over P.  
Note that if in (14.4) we find an 1.c.m. of the polynomials x - a,13t instead of x - (a,  + 13~), and keep 

without changes the rest of Definition 14.23, then we get exactly the disjunction f V g of the polynomials f 
and g (see 13.12, 13.13). Thus, the convolution of polynomials may be considered as an additive analogue of 
the disjunction. 

Recall that a It] denotes a binomial sequence of order l + 1 with root a (see Section 2.D). 
14.24. L e m m a .  Ira ,  13 E P, a, b > O, then 

~[~l *13[bl = (a + b) (~ +13)[~+b1" 

14.25. L e m m a .  I f  ~, 13 G P, a, b >_ 1, then 

L p ( ( x  - �9 L p ( ( x  - 13)b) = L p ( ( x  - - 13)ovb). 

[] Let U and V be the left and right parts of the last equality. In the case char P = 0, our lemma follows 
from 14.24. Let char P = p > O, r = ~.rlp i < a, s = E slp i < b, where 0 < rl, si < p. To prove the inclusion 

U C V, it is sufficient to check that aIr]* fit'] G V. By Lemma 14.24, ate]* 13[s1 = (r+') ( a +  13)['+s]. If (~+~) - 0 
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(modp),  then everything is clear. Otherwise, by the Lucas theorem [4, Corollary 4.72], r~ + s~ < p, i > 0. 
Therefore, we have 

E r,p' < X a,p', X s,p' < E b,p', X(r,  + s,)v' < p~, 
i>_~ i>~ i>~ i>~ i<~ 

where A is taken from Definition 13.10 of the disjunction of a and b. By summing these three inequalities, we 

get r + s < a V b. Therefore, by Lemma 2.16, (c~ + fl)[r+d E V. 

Conversely, let m = ~ mlp ~ < a V b. The definition of a V b implies that  there exist integers r < a, s < b 

such that  r + s = m and r, + si = m, for i > 0. Then,  by Lemma 14.24, ( : ) ( a  + fl)['~] = a i d ,  fl[d, and, by 

the Lur theorem, ( : )  ~ 0 (modp). Therefore, ( ,  + z)t~l e V for any m < a V b, and by Lemma 2.16 we 

see that  V C U. [2 
14.26. L e m m a .  I f  a polynomial f (x )  e R i d  is sepa~ble, then L p ( f f )  = L p ( f )  * Lp(x~ 
[] Let a l , . . . ,  a,~ be the roots of f ( x )  in the splitting field Q. Then, by 13.6, 

L p ( f f  ) = poo N LQ(f f  ) = po~ N ~ (gLo((x - ai) ~) = 

poo f~ ~ @(LQ(x - ai) * LQ(xa)) = poo N (LQ(f) * LQ(Xa)) = Lp( f )  * Lp(x~).[:] 

14.27.  T h e o r e m  [31]. For arbitrary polynomials f ( x ) ,  g(x) over the field P,  we have Lp ( f )  * ip (g )  = 

L p ( f  * g). 
[] Lemmas 14.24-14.26 enable us to prove Theorem 14.27 analogously to the proof of Theorem 13.13 (see 

[174]). [] 
14.28.  R e m a r k .  If P is a finite field and f ,  g are irreducible polynomials over P of coprime degrees 

m, n, then Definition 14.23 and Theorem 13.13 show that  f * g and f V g are irreducible polynomials over 
P of degrees ran. Thus, we can use Theorems 13.13 and 14.27 to construct irreducible polynomials of large 
degrees over finite fields. Indeed, if u E Lv( f ) \O,  v E Lp(g)\O, then f �9 g (correspondingly f V g) is the 
minimal polynomial of LRS u �9 v (correspondingly uv), which can be found by means of the Berlekamp- 
Massey algorithm (see Section 10.C). Note that  the polynomial f V g is not primitive, but f * g may be 
primitive (for example, when P = F2, f ( x )  = x 2 + x + 1, g(x) = x 3 + x + 1). Therefore, Theorem 14.27 makes 
it possible to construct primitive polynomials of large degrees. 

14.29.  Coro l la ry .  Let I = ( f l ( x l ) , . . . ,  fk(xk)) and J = (g~(xl), . . .  ,gk(xk)) be elementary ideals of the 
ring 7)~. Then 

L p ( I ) *  Lp(J)  = Lp( f l  * g l , . . . , f k * g k ) '  [] 

The open problems are as follows: give descriptions of the convolution, the product  (see Section 13), and 
the E-convolution (see section 14.G below) of arbitrary k-LRS-families Lp(I) ,  Lp(J)  for k > 1. 

G. T h e  e x p o n e n t i a l  c o n v o l u t i o n  of  k - sequences .  
14.30.  Def in i t i on .  The exponential convolution (E-convolution) of k-sequences u, v is a k-sequence 

u ~7 v such that  

(u xz v)(i) = ~ u(j)v(i - j). 
j<i 

The E-convolution of subsets U, V C p(k) is the subspace U V V =p {u ~ v[ u E U, v E V}.  The set p(k) 
of all k-sequences is an algebra with operations +,  V,  isomorphic to the algebra of formal power series P[[x]] 
over the field P.  The isomorphism is given by 

~ :  (P(k), +,  ~7) -+ (P[[x]], +,  .), u -+ ~ ( x ) ,  

where O~(x) is the generating function of u (see Section 2.C). 
14.31.  P r o p o s i t i o n  [114]. I f  f (x), g(x) E P[x] are monic polynomials, then L p ( f )  ~7 Lp(g) C L~,(fg). 
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[] By Proposition 2.14, the generating functions of the sequences u E Lp( f ) ,  v E Lp(g) have the form 

q~(x) = M(x) / f ' ( x ) ,  | = N(z)lg*(z),  

where deg M(z) < m = deg f (x) ,  deg N(z) < n = degg(x).  Therefore, 

~ w  = ~ , ( x ) ~ ( x )  = M(x)g(x) / ( fg)*(x) ,  

and, by 2.14, u ~7 v E Lp(fg).  [] 
In this proposition the inclusion is proper: the proof implies that  

Lp(f )  ~7 Lp(g) = P . xe lg + P . x2e lg + . . .  + P . x'~+'~-~e/g, 

and we know that  Lp(fg) =- P e  Sg Jr P .  xe Is -b. . .  -b P .  Xm+n-le "fg. 

14.32. Coro l l a ry .  Under the conditions of Corollary 14.29, we have 

Lp(I) V Lp(J) C Lp(fl  V g l , . . . ,  fk V gk).D 

It follows from 14.32 that  the E-convolution of k-recurrences is a k-LRS. Therefore, (s +, ~7) is a 

subalgebra in the algebra (p(k), +,  V).  Let Prat [[x]] be the subalgebra in P[[x]] consisting of all rational 

functions, described in Proposition 2.14. Then the restriction of the isomorphism a : p(k) -o P[[x]] on s 

is an algebra isomorphism between (s +, V) and (Prat [[x]], +,-) .  
H.  T h e  s t r u c t u r e  of  a l g e b r a s  of  l i nea r  r e c u r r i n g  s e q u e n c e s .  

Let p = char P (p is arbitrary), fl be the set of all irreducible polynomials from P[x], t3 be the algebraic 
closure of P, e(f) be the multiplicity of the roots of polynomial f (x)  E ft. For a subset ~ C_ fl denote 

K(9) = {a E P[ f (a)  = 0 for some f (x)  E ~}. We define 0 ~ = p0 = 1, 0 ~ = pOO = co. We say %o divides 
n" if n = co. As in Section 13, a V b is the disjunction of integers a and b and Lp( f f  ~ = U,>ILp(f" ) .  

14.33.  T h e o r e m  [32]. (a) Any nonzero subcoalgebra of the Hopf algebra e[x]  0 has the form 

C = ~ @Lp(g"'), where ~ C_ ~, ng E Y U {co). 
9E~ 

(b) C is a subbialgebra if and only if K(G) is a submonoid in (P, 4-) and 

v f ,  g e v .  e g( f )  c g(g) ( he(h) >_ rise(f) V 

where h(x) -- #p,,+~(x) is the minimal polynomial of the element ~ + ~ over the field P.  In particular, it 
follows that there exists s E N U {0, co} such that n~ = p" and p~ divides n a for any g E ~. 

(c) C is a Hopf subalgebra if and only if K(~)  is a subgroup in (P, +) and there ezists s E N U {0, co} 
such that n a = p" for any g E ~. 

[] (a) follows from 14.19. Let P be algebraically closed. Then each subcoalgebra in P[x] 0 is of the form 

C = ~ ene((z - a)"a), where g C P, n~ E N U {co}. 
aEK 

(b) Let C be a subbialgebra. Then C possesses the unit  sequence e ~ = (1, 0, 0 , . . . ) ;  hence Le(x) C C 
and 0 E K. Since 

Lp((z -a)"")*ne((z -b)"~)=Le((z -a-b)  "*w~) (a, b e g ) ,  

K is a submonoid in (P,  +)  and n~ V n~ <_ n~+b. Conversely, if these conditions hold, then the coalgebra C 
possesses the unit  sequence and C is closed under the convolution of sequences, i.e., C is a subbialgebra. 

Since Le(xn~ Lp(x ~)  = Lp(x ~ v ~ )  C C, we have n0Vno _~ no; hence no = pS. Since Lp(x'~~ Lp((z - 
a) ~') = Lp((x - a) ~~ C C, we have no V n~ = p'  V n ,  <_ n, .  Therefore, p '  divides n~ for all a E K. 
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(c) Let subbialgebra C be a Hopf subalgebra. For U C p[xl 0 denote S~ = {S~ u �9 U}. Obviously, 

S~ - a)n")) = Lp((x + a)""). Hence, if a �9 K,  then - a  �9 K,  i.e., g is a subgroup of (P, +), and 
n-a = n~. Further, 

Lp((x - a)"') * Lp((z + a) " - ' )  = Lp(x " 'v ' -~  C_ C. 

Therefore, n~ V n~ _< no = pS, and since n~ is divided by p' by (b), we have that n~ = p* for any a �9 K. 

Conversely, if K is a subgroup in (/5, +) and n~ = p* for any a �9 K,  then C is a subbialgebra and S~ C_ C, 
i.e., C is a Hopf subalgebra. 

The case where P is not algebrMcally closed is reduced to the case where P is algebraically closed. [] 
Theorem 14.33 implies that 79P (1) = Lp(x ~176 is a Hopf subalgebra in P[x] ~ . Therefore, the set :DP (k) = 

L/,(x ~176 of degenerating k-recurrences is a Hopf subalgebra in P[x] ~ . Define EPi(rk~ as the subspace of k- 

recurrences u such that Ann (u) contains an elementary ideal ( f l ( z l ) , . . . ,  fk(xk)), where f , ( x ) i s  a product of 

distinct polynomials irreducible over P, s �9 1, k. Then the following analogue of Theorem 13.17 holds. 
14.34. T h e o r e m  (V. Surakin, 1993). The Hopf algebra P[x] ~ of all k-recurrences is the convolution oJ 

the subcoalgebra EPi(rk~ and the Hopf subalgebra 7~P(k) of all degenerating k-recurrences: 

p[x]O = Ep.(k) �9 7:)p(k). 
l r r  

p(k) is a Hop] The subcoalgebra EP(:~ is a subbialgebra if and only if P is a perfect field, and in this case E irr 

subalgebra. [] 
14.35. T h e o r e m  [32]. (a) Any nonzero subcoalgebra of the Hopf algebra 7ZP (k) has the form 

c = E where X C f l \ {x} ,  
gE'H 

(b) C is a subbialgebra if and only if K(7-l) is a submonoid in (P*, .) and 

V f ,  g E 7-{ V a  �9 K ( f )  Vfl �9 K(g) (nhe(h) >_ rife(f) V nge(g)) ,  

where h(x) = #p,,~(x). In particular, there ezists s E N U {0, oo} such that nz-1 = pS and pS divides ng for 
any g E 7-[. 

(c) C is a Hopf subalgebra if and only if If(T/) is a subgroup in (/5*, .) and there ezists s E N U {0, c~} 
such that ng = pS for any g E 7"[. 

[] By 13.9-13.12, 
Lp((x - a)'~Q �9 Lp((x - b) '~b) = Lp((x - ab)'~~ 

In all other respects the proof repeats the proof of 14.33. [] 
14.36. T h e o r e m  [32]. Any subcoalgebra (subbialgebra) of the bialgebra EP(1) is of the form Lp(x ~) @ C, 

where n E 51U {0, oo} and C is a subcoalgebra (correspondingly subbialgebra) of T~P (1). [] 
Consider the decomposition from Theorem 13.17: 

Ep(k) = Op(k) ~_ Rp(k), 

where 

:Dp(k) = Lp(x~176 7~p(k) = UPi(:~. L e ( ( x -  e)~176 

Theorems 14.35, 14.36 imply that the set 79P (k) = Lp(x ~176 of degenerating k-recurrences and the set 7ZP (k) of 

reversible k-recurrences are subbialgebras of the bialgebra E P  (k), Lp((x - e) ~176 is a Hopf subalgebra of T~P (k), 

P (k) is a subcoalgebra of T~P (a), and 7~Pi(:~ is a Hopf subalgebra of T~P (k) if and only if P is a perfect field. R irr 
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I.  E x t e n s i o n s  of  k - r e c u r r e n c e s  as s o l u t i o n s  o f  t h e  C a u c h y  p r o b l e m .  By (14.3), the multiplication 

of k-sequences on the polynomial xs, s E 1, k, is a derivation of the algebra P[x] ~ Therefore, the relation 

f ( x ) u  - v (14.5) 

is s linear partial differential equation. The set of all solutions of (14.5) is the set of all extensions of the 
sequence v by the polynomial f (x )  (see Section 8), The  condition u ( i ) =  c~, where c~ E P,  is equivalent to 

the condition (xlu)(0) = a,  which may be interpreted as the initial condition for a solution of the differential 
equation (14.5). In this terminology, the extension (ct~) of a 1-LRS v by a polynomial f (x )  of degree m and 

a vector a = ( s 0 , . . . ,  c~,,-1) is a solution of the Cauchy problem 

f (x)u  = v, (u(0), (xu)(O),. . . ,  (xm-tu)(O)) = or, 

and the set of all extensions of LR.S v by the polynomial f ( x )  is the integral of the sequence v [136]. 
14.37. Def in i t ion .  Let P be a field of characteristic 0. The ezponential generating function of a 

k-sequence u E p(k) is defined as the formal power series 

u(i) 
E~,(z)= ~ - ~ .  -z' ,  w h e r e z = ( z l , . . . , Z k ) .  

i~No ~ 

The multiplication of sequences u on xs corresponds to the derivation of ~ ( z )  with respect to z~. There- 
fore, for f(x)  e Fix] we have 

O ,..., Oz O ) = f w h e r e  = 

and the equality (14.5) may be written in the form 

f ( ~ z )  E~(z) = E~(z). (14.6) 

Thus, if char P = 0, then all extensions of a k-LP~S v by polynomial f (x )  are exactly all k-recurrences u such 
that  g~(z) satisfies the linear differential equation (14.6), 

It is straightforward to check that  the mapping x : u --+ ~ ( z )  is an algebra isomorphism from (p(k), +,  , )  
0 onto (P[[z]], +,-) .  Let Pder [[z]] < P[[z]] be the subalgebra of all series G(z) = E g l z  ~ such that  fa (~)G = 

0 . . .  = fk(b-Tff) G = 0 for some monic polynomials f l ( z ) , . . . , f k ( z )  E P[x]. Define the comultiplication, counit, 

and antipode on the algebra Pder [[z]] by 

A G = ~  ( i + J )  i .. i gi+iz | z i, e(G) = G(0), S(G) = G ( - z ) .  
ld  

14.38. P r o p o s i t i o n .  Let P be a field of characteristic Oi Then the map x : u ~ E=(z) is an 
isomorphism of the Hopf algebras P[x] ~ and Pder [[z]]. [] 

J .  k - R e c u r r e n c e s  as t h e  H o p f  a l g e b r a  of  t h e  r e p r e s e n t a t i v e  f u n c t i o n s .  Let (G, +)  be a commu- 

tative monoid, p a  be the algebra of all functions u : G --* P with pointwise operations. For g E G, u E p a  
define gu to be the function from p a  such that  

(gu)(h) = u(g + h), h e G. 

14.39. De f in i t i on .  A function u E p a  is called a representative function if the subspace of pG spanned 
by {gu I g e G} is finite-dimensional over P.  The set R(G) of all representative functions is a P-subalgebra 

of pa [3, 147 I. 
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Define the comultiplication A and the counit ~ in R(G) by 

Au ~ _ u , |  ) ~ t(9)ut(h)foranyg, h e G ,  

= 

Then R(G) is a bialgebra [3]. If G is a group, then the map S :  R(G) ~ R(G), (S(u))(g) = u(-g) ,  is an 
antipode, and R(G) is a Hopf algebra [3]. 

Let G = (No ~, +). Then pa is exactly the set P(~) of all k-sequences. A sequence (i.e., a function) u E pa 
is representative if and only if the subspace p{xlul i E No k} is finite-dimensional, i.e., if u is a k-LRS. It can 
be readily shown that the above-introduced operations in the bialgebra R(No k) are identical to the operations 

in the bialgebra s introduced in 14.6. Therefore, we have 
14.40. P ropos i t ion .  The bialgebra R(N0 k) of representative functions on the monoid (No k, +) coincides 

with the bialgebra f~p{k) of k-linear recurring sequences over P (see Proposition 14.6). [] 
If G = (Z k, +), then pa is the set of all k-bisequences over P, and R(Z k) coincides with the set of all 

k-linear recurring bisequences over P. 
14.41. P ropos i t ion .  The Hopf algebra R(Z k) of representative functions on the group (Z k, +) is 

isomorphic to the Hopf algebra ~p{k) of all reversible k-LRS (see Proposition 14.15). 
[] The isomorphism R(Z k) ~ 7~P (k) is given by u ~ u]N0 k. [] 
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Chapter 3. 

LINEAR R E C U R R I N G  S E Q U E N C E S  OVER A R T I N I A N  A N D  FINITE 
RINGS 

In this chapter, except for Section 15.A and Section 19.D, we study the properties of 1-recurrences and 
of polynomials of one variable. 

15. R e d u c t i o n  to  Loca l  R i n g s  a n d  P r i m a r y  A n n i h i l a t o r s  

A. C o m p o n e n t w i s e  p r o p e r t i e s  of  idea ls  a n d  m o d u l e s .  Recall that  a (commutat ive)  ring R is called 
local if it has a unique maximal ideal, which we denote in this case by ~(R) .  An Artinian ring R is local iff 
the set of all of its zero divisors is a subgroup of the additive group (R, +).  This subgroup for a local Artinian 
ring coincides with fit(R), and ~I(R) ~ = 0 for some n E N. The least n with such property is called the index 
of nilpotency of the ideal fit(R) and is denoted by ind fit(R). The maximal ideal fit(R) of a local Artinian ring 
is equal to the Jacobson radical or to the nilradical of this ring [2]. We call it the radical of the ring R. 

An arbitrary Artinian ring R can be uniquely (up to a permutat ion of summands)  represented as a direct 
s u m  

R = R (1) $ . . .  4 R('), (15.1) 

where R(8) is a local Artinian ring with unit  es, s E 1,--7. Moreover, R (~) = Re,,  e = el + . . .  + e~, and the ring 
V~ = R[x], any R-module M, and any ideal I ~ Vk satisfy the following equalities: 

vk = v l  1) 4 . . .  4 v l  '), v i e ) =  e,Vk = R(')[x,, . . . ,=~]; (15.2) 

M = M (1) + . . .  5r M (0, M (~) = e ,M is an R(~)-module; (15.3) 

I = I(1) 4 . . .  + I% I(~)= e,I ~ v~ ~. (15.4) 

We say that  some property of the ideal I (of the module M) is componentwise if it is fulfilled for each 
component of the decomposition (15.4) (respectively (15.3)). 

15.1. P r o p o s i t i o n .  Under the above conditions for the ideal I ,~ Vk, the following properties are 
componentwise: being a monic ideal; periodicity; reversibility; being a principal ideal. I f  I is a monic ideal, 
then 

LM(I) = LM(1)(I 0)) ~- . . .  5r LM(,)(I(O), (15.5) 

where LM(,)(IO) ) = esLM(I), s E 1,t. If  I is a periodic ideal, then its group of periods satisfies the equality 

vp(I) = g~(i(1)) FI . . .  f'l V(I(O), (15.6) 

Its orbital semigroup 0 ( I )  and its cyclic group T( I )  are subdirect products of semigroups 0 ( I  (~)) = e,O(I) 

and of groups T(I( ' ) )  = e.7"(I) respectively. The family LM(I) is finite and reversible iff all of its components 
in (15.5) have the same properties, and in this case the cyclic types satisfy 

Z I  M ~ 5"]M (1) ~M(t) 
Z.Jl(a) * . . .  * Z.Jl(t ) ., , 
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15.2. Corollary.  Under the conditions (15.1), (15.4) if k = 1 and I ,~ 7 9 is a periodic ideal, then 

D(I) = max {D(I(1)),...,D(I(t))}, T(I) = [T(I(X)),...,T(I(t))].D 

B. P r i m a r y  decomposi t ions  of polynomial  ideals over local Ar t in ian  rings. Let R be an Artinian 
ring and ~ = ~I(R) be its radical. Then R = R/91 is a field, and the canonical epimorphism R -+ R has a 

natural extension up to the epimorphism 79 = R[x] --* ~ = R[x], which maps the polynomial F(x) = E f~ xl 

into the polynomial F(x) = • f~x i. The kernel of the last epimorphism is the nilpotent ideal 91[x]. It follows 
that the multiplicative group of the ring 79 has the form 7 9* = R* + x~[x]. 

15.3. T h e o r e m  (W. Krull). Any polynomial H(x) E 79 such that -ti(x) # 0 can be uniquely represented 
as a product H(x) = Y(x)F(x)  where U(z) e 79" and F(x) is a monic polynomial. 

[] W. Krull, "Algebraische theorie der tinge. II," Math. Ann., 91, 1-46 (1923). [] 

15.4. Propos i t ion .  Polynomials F(x), G(x) E 79 are comazimal iff (-F,-G) = -& [] 
The reduction to the polynomial ring 79 over the field R is one of the main methods of studying the 

properties of polynomials and ideals of 79 and of linear recurrences over the ring R. 
15.5. T h e o r e m  (Hensel lemma, [13, 135]). Let F(x), Go(z), Ho(x) E 79 be monic polynomials such 

that -l~(x) = -Go(X)-I~ro(X), (G0(z),H0(x)) = E. Then there exists a unique pair of monic polynomials G(x), 

H(x) E 79 such that F(x) = G(x)H(x), G(x) = G0(z), H(z) = H0(x). [] 

15.6. Defini t ion.  We call a polynomial F(x) E 79 primary if F(x) = g(x) k, where g(x) E ~ is an 
irreducible polynomial. 

15.7. Corollary.  Any monic polynomial F(x) E 79 can be represented as the product 

F(x) = E l ( Z ) . . .  El(z ) (15.7) 

of monic pairwise comazimal primary polynomials. Such a representation is unique up to permutation oJ 
factors. [] 

15.8. Defini t ion.  We call the decomposition (15.7) the canonical decomposition of the polynomial F(x) 
over the ring R. 

15.9. Propos i t ion .  Let I,~ 79 be a monic ideal and F(x) be a monic polynomial of least degree from the 
ideal I. Then 

I = 79F(x) + 9l(I), where 9I(I) = I O 9"t[x]. (15.8) 

The ideal I is primary (principa 0 ig F(x) is a primary polynomial (iff l = 79F(z)). [] 
15.10. Definit ion.  A monic polynomial F(z) from (15.8) will be called the main generator of the monic 

ideal I. 
15.11. Propos i t ion .  Any monic ideal I,~ 79 can be represented as the intersection of primary pairwise 

comazimal ideals. Such a representation is unique up to permutation of components. If  the main generator 
F(x) of I has the canonical decomposition (15.7), then this representation has the form 

I = 1 (1) n . . .  n I (0, I (') = 79F,(x) + ~t(I), s C 1, I. (15.9) 

15.12. Definit ion.  Under the conditions of Proposition 15.11, we call the decomposition (15.9) the 
canonical primary decomposition of the ideal I. 

As in 15.2, we may state that the consideration of periodic properties of a monic ideal I is reduced to 

the study of periodic properties of its primary components I0) from (15.9), and if LM(I) is a finite reversible 
LRS-family, then 

= Zr(M) , . . . ,  ZI(M,). 
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16. Canonical Systems of Generators of Monic Ideals and I-LRS-Families over Local 
Principal Ideal Rings 

A. Canon ica l  g e n e r a t i n g  system of an ideal .  Let R be a local Artinia~ principal ideal ring. Then 
the lattice of its ideals is a chain of length n = i n d . ( R ) :  

R ~ ~ (R)  ~ . . .  v ~ ( R ) " - '  v ~ (R)  n = 0, 

and for any ~ e ~ ( R ) \ ~ ( R )  ~ we have ~(R)" = ~ ' ~ ( R ) ,  s e 0 ,n  [2]. 
16.1. Def in i t ion .  The norms of an element r E R, a polynomial G = G(x) = g o + g l x + . . . + g , ~ x  '~ E 79, 

and a subset S C 79 are defined by 

Ilrll = max{i  E 0-'--,~l r E r 'R} ,  Ilall = ~n{l lg j l l  : J E 0--,-,~}, 

IiSll = min {llall : a e s t .  

We say that a polynomial G(x) is correct if IIg~ll = Ilall. 
16.2. L e m m a .  A correct polynomial G G(x) ,~ i = = ~ i = o  gix divides a polynomial F = F(x)  = ~ f i x  i 

with a remainder iff IlfJll >- IIg~ll for all j >__ m. Moreover, the remainder Res (F/G)  is uniquely defined. [] 

From the Krull theorem (see 15.3) we have 
16.3. L e m m a .  A polynomial F(x)  E 79\0 can be represented as a product of an invertible (in the ring 

79) polynomial and a correct polynomial G(x). The latter is defined uniquely up to a factor from R" and 

satisfies the relations Ilall = IIFII, d e g a  _< degF.  
16.4. Def in i t ion .  We say that G(x) divides F(x)  modulo 7r d, if F = QG + r a i l  for some Q, H E 79. 
The initial version of the following theorem (for ideals of Z[x]) belongs essentially to Kronecker [122]. 
16.5. T h e o r e m .  Let [,~79 be a nonzero ideal and I[111 = no. Then I contains a system of t  + 1 < n -  ao 

correct polynomials 

Go(x) , . . . ,  Gt(x), IIGsll = as, deg Gs = m,,  s 6 0, t (16.1) 

with the following properties: 

(Cl) 11111 = ao < al < . . .  < at < n .= at+a; 
(C2) m o > m l > . . . > m t > _ 0 ;  
(C3) if F E I and degF(x)  < ms, s > O, then F(x)  = 0 for s = t and IlF(x)ll >_ as+l for s < t. 
Any such system of polynomials also has the following properties: 

(C4) i f  F e I and IIFI1 > a,, then 

a,(z) lF(z)mod~r ~'+' and F E ( a , , . . . ,  at); 

(c5) z = (ao, a ~ , . . . , c , ) ;  
(C6) if a, < a < as+~, then I a 7r"79 = (Tr G,, G,+~,.. Gt), 

( I :  r ~) = (F,(x) ,r" '+'-~F,+~(z) , . . . ,~r"-~Ft(x) ,r"-~),  

where Fo , . . . ,  Ft are polynomials with invertible leading coe]ficients such that 

Gs(x) = ~r~~ s E 0,'--7; (16.2) 

(C7) under the conditions (16.2), any polynomial H(x)  e 79 is uniquely represented in the form 

H(z)  = g(x)Fo(z)  + . . .  + g , ( x ) f t ( x )  + Ht+~(z), 

where deg H,F,  < m,_~ for s e 1, t, degH,+~ < mr, and g e I if and only if IlHsll k as for s e O, t + 1. 
[] The polynomial Go(x) is the polynomial of the least degree m0 from I with norm a0 = IIill . If 

I = (Go(x)), then the proof is completed. Otherwise, the ideal/x generated by the set Res (I/Go) has the 
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,~o~,, -1 -> a0 (al < n). Choose a polynomial G~(x) E 11 with norm al of the least degree rex. It is clear 
that m~ < m0. I f /1  = (G1), then I = (Go, G1) and the proof is complete. Otherwise, we consider the ideal 
/2 = (Res (I1/Gx)), etc.. For a more detailed proof, see in [46]. I::l 

16.6. Def in i t ion .  The system (16.1) of generators of the ideal I with properties (C1)-(C3) will be 
called a canonical generating system (CGS) of the ideal I.  

Note that  a CGS is an analogue of a standard base (Groebner base) of polynomial  rings over a field [10, 

36]. 
16.7. Coro l la ry .  A monic ideal I of the ring 79 has a CGS of the form 

Fo(x), r"~F1 ( x ) , . . . ,  r~'F,(x), (16.3) 

where F,(x) is a monic polynomial of degree ms, s e ~,t, mo > m x >  . . .  > mt >__ O, 0 < al < . . .  < at < n, 
and 

r~~ E (r~'+iFs+l,... , r~ 'Ft)  for s E 0, t - 1. (16.4) 

Moreover, if-R = R/92(R) = GF(q) then S = 79/I is a finite ring and 

ISI = q~, where r = (too - ml)al + . . .  + (me-1 - mr)at + me. (16.5) 

[] The proof of the last equality is reduced to the calculation of [7 ~ : I] with the help of the property 
(c7): 

t 

[79: z] = : Inl  [] 

If we have some CGS of a monic ideal I,  we can construct the primary decomposition of I and the CGS 
of each of the primary components of I.  

16.8. P r o p o s i t i o n .  An ideal I479 with the CGS (6.3) is primary iff Fo(x) is a primary polynomial. I] 

the polynomial Fo(z) E ~ is a product of two coprime polynomials over the field R, 

F0(x) = k(x)h(x), (k(x), h(x)) = E, (16.6) 

then for each s E 0, t the polynomial F,(x) from (16.3) can be uniquely represented as the product 

F,(x) = Ks(z)Hs(x) (16.7) 

of monic polynomials Ks(x),  H~(x) E 79 such that 

Ks(x)l&(x), -g~(x)lh(x). (16.8) 

Moreover, 
I = /C  n 7/, (16.9) 

where 
IC = (Ko, r : l K 1 , . . . ,  r~'I(,) ,  7-[ = (H0, TrY'H1,...,Tr~'Ht). (16.10) 

The canonical generating system of the ideal IC can be obtained from the generating system Ko(x), 
7r~lKl(X),.. . ,  7r~'Kt(x) by deletion of all polynomials r~'Ks such that s > 1, deg K~ = deg Ks-1. 

t3 Since F , [Fo,  we have from (16.6) that  Fs(x)  = (Fs (x ) ,k (x ) ) .  (Ts(x) ,h(x)) .  Using the Hansel 
lemma (see 15.5), we obtain (16.7) and (16.8). Proposition 15.11 implies the equality (16.9), where K: = 
79Ko(x) + 92(1) = (Ko, Tr~'F1,...,r~'Ft), 7"[ = 79Ho(x) + 92(1) = (Ho, Tr~F1,...,Tr~'Ft). Furthermore, 
since (Ko(z),H~(x)) = (e), we have r~ 'K ,  E K:, because for suitable polynomials U, V E 7 9 we have 
~r~I(, = r~K~UKo + 7r~'K~VH~ = (Tr~'If~U)Ko + Vrr~'F~. To prove the last s tatement it is sufficient 
to note that  

r~'I(s_l E (r~ 'K, , . . . ,Tr~'Ke) for s E 1 ~  (see [46]). [] 
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16.9. Corol lary .  Let an ideal I ,~ 79 have the CGS (16.3), and let the canonical decomposition of the 

polynomial Fo(z) have the form Fo(z) = F00}(z)... F0(k}(z). Then each of the polynomials Fs(z) can be repre- 

sented as the product F,(z)  = F(~l)(z)...F(,k}(z), where F(~i)(z)lF(oi)(z ) for i  �9 1, k, and I is the intersection o] 

the following primary pairwise comazimal ideals: I = I0) f3. . .  f3 1 (k), where I (j} = (Fo (j}, r~F~(J) , . . . ,  7r~'Ft(J)), 

j � 9  

B. G e n e r a t i n g  sy s t ems  of  LRS-fami l ies .  Here we fix a monic ideal I ~ 7 9 with CGS (16.3). By 
Proposition 2.5, the elementary method of describing the family LR(I) is connected with the solution of the 
system of linear equations 

(Zo,. . . ,x, ,_,)(Tr='F~(S(Fo)), . . . ,r='Ft(S(Fo))) = 0. (16.11) 

Methods of solution of such systems over a principal ideal ring are wellknown (see Section 18 below). 
Thus, we can obtain a generating system of the family LR(I) over the ring R. 

Now we give a description of some "more economical" systems of generators of the family La(I)  over the 

ring 79. In view of condition (16.4), we state that for any i �9 0,t - 1, j �9 i + 1,t, 

F,(x) = Q,.i+l(x)Fi+,(x) - ~r ''+2-:'+' Qi,i+2(z)Fi+2(z) - . . . -  r =i-='+i Qij(x)Fj(x) - ze ~i+'-~'+' S,j(x) ,  

where deg Qis(x)F,(x) < me-x, deg Bij(x) < mj.  Then 

-G,~+~ (~) = -F,(~)IL+I (x), 

16.10. T h e o r e m  [46]. 

W ~ U t "J~ ~ - - t l tUI__  1 ~- . . . "Jr 71"n--al?.LO, 

such that u0 , . . . ,  u~ are sequences with the properties 

Ftut = O, Fiui = Bi , i+ lUi+l  + . . .  + Bitut, 

H e r e  

The family LR( I) contains a system of recurrences 

Olt, ~n- -a t  o~t_l~ . . . , 7r n - a l  ol 0 

such that An (~,) = (-f ~), s �9 ~,t,  and every such system generates LR(I) over P .  
I f  the family LR(I) contains a sequence w of the form (16.14) such that 

An (~,) = ( E ) ,  An (~,) = (F:F,+x),  

then L~(I) = P w  is a cyclic 79-module. [] 
16.11. T h e o r e m  [46]. Let I be a primary ideal. Then LR(I) 

(16.12) satisfy the conditions 

~aT+l-ai§ B i j (  x ) ---- R e s  ( F i  l F i + l ,  . . . , F j  ) ,  

-Bi.i+l(z) = Qi.i+2(x)Fi+2(z) for i �9 0, t - 2. 

The family LR(I) is the set of all sequences w �9 R (1) of the form 

(16.12) 

(16.13) 

i �9 0 , t - 1 .  (16.14) 

(16.15) 

(i6.i6) 

s �9 0,t  - 1, (16.17) 

is a cyclic P-module iff polynomials 

(~,_,,,(x),T0(~)) = e, (G,,+2(~),~0(~)) = ~, i �9 o , t  - 2. (16.18) 

16.12. Corol lary .  Let I be a primary ideal. Then the ring 79/I is quasi-Frobenius iff condition (16.18) 
holds. 

[] Since R is a quasi-Frobenius ring, this result follows from Theorems 4.7 and 16.11. [] 
It is interesting to extend Theorem 16.11 on arbitrary monic ideals and to obtain analogues of Theorems 

16.5, 16.10 and 16.11 for an arbitrary local QF-ring. 
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17. P e r i o d s  o f  M o n i c  P o l y n o m i a l s  and  Ideals  over  Local  F i n i t e  R i n g s  

Here R is a finite (commutative) local ring, R = R/fi(R) = aF(q), p = chaxR, q = f ,  n = indgl(R). 
We keep the notations of Sections 6 and 15. 

A. Genera l  e s t i m a t i o n s  of  p e r i o d s  and de fec t s  [52, 53, 79, 80, 103, 104, 113, 118, 129, 167, 168]. 
All monic polynomials F(x) E 79 and ideals I of the ring 79 axe periodic. Moreover, in contrast to the general 
case (Remark 6.12), we have 

17.1. P ropos i t i on .  A monic polynomial F(x) E 79 can be uniquely represented as the product 

F(x) = Fdeg(x)Frev(X ) (17.1) 

of some degenerating and reversible polynomials. If I is a monic ideal with the main generator F(x), then its 
degenerating and reversible components (see 6.11) are 

/(leg = 79Fdeg + fi(I) ,  Irev = 79Frev + fit(I). 

[] The decomposition (17.1) is obtained from 

F(x) = xkfl(x), where fl(0) E R-*, (17.2) 

with the help of the Hensel lemma (see 15.5). [] 
17.2. P ropos i t i on .  The period and defect of a monic ideal I with the main generator F(x) satisfy the 

relations 
D(-F) <_ D(I) < D(F) <_ nD(-f) < n .  degF(z) ,  (17.3) 

T(-F)IT(I), T(I)IT(F ). (17.4) 

[] By 17.1 and 6.8, it is sufficient to prove (17.3) for a degenerating ideal and to prove (17.4) for a 
reversible ideal. The first two inequalities in (17:3) follow from the implications 

x ~ E I =~ F ( x ) [ ~ ;  F(z)[x ~ =~ x ~ e I. 

If ~(z) [~  x, then z x = ~(z) (mod F(x)),  where ~(z) e ~(R)[x]. Therefore, ~(z) ~ = 0, F(z)Ix ~ ,  and the third 
inequality in (17.3) is proved. Finally, (17.4) follows from the implications 

x' - e E I => T ( x ) l x '  - e ;  F ( x ) l x '  - e - e e I .  [ ]  

Further estimation of the parameter T(I) is connected with the following characterization of the ring 

R. Let u =] logp n[ be the minimal integer which is greater than or equal to log e n, char (92(R) p') = pa, for 

s E O, u, and 
w(R) = max {s + do[ s E O--.ff}. (17.5) 

17.3. P ropos i t i on .  The period of a reversible ideal I with main generator F(x) is given by 

T(I) = T(F)p '~(I), (17.6) 

where 
a(I) < w(R) < do + u - 1. (17.7) 

[] Let S = 79/ I=  R[O],t9 = x + I .  By Propositions 6.17(b) and 6.4, 0 E S* a n d T ( I )  = ord0. Let 

T(F)  = t. Then, by (17.4), fiord0 and 0' = e + a, where a E ~(R)S. For l E No denote 

J, = ~ ( n )  p' + p~t(n) p'-' + . . .  + ptfi(n). 

Induction on l gives (see [48]) 

(e + a) pz = e + at, where at E JtS. 
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Since Jt = 0 for l > w(n) ,  we have (e + a) p'(") = e. Hence ordSltp~(n), i.e., "I'(I)IT(-F)p ~(n). This implies 

(17.6) and (17.7). [] 
We can give the exact value of the parameter  w(R) if R satisfies the following additional condition. 
17.4. Def in i t ion .  We say that  a local ring R is balanced if pR = ~(R)  ~ for some e 6 N. The minimal 

with this property is called the ramification index of the ring R. Notation: e = e(R). 
The class of balanced rings is rather large. It includes all finite local rings of characteristic p (for such 

rings e(R) = n) and local principal ideal rings [42, 132]. 
17.5. P r o p o s i t i o n  [48]. I f  R is a balanced ring with ramification index e, then 

] n - pb [ + b, where b =] logp e w(R) = - V -  1 ['[] 

It follows from (17.6) that  the evaluation of the period of the reversible ideal I can be reduced to the 

evaluation of the period T (F )  of the polynomial F ( z )  over the ring R and to the evaluation of the parameter 
a(I) as the minimal a 6 N with the property 

Res S. 

Below we propose a more suitable method for evaluation of a(I). 
B. D i s t i n g u i s h e d  p o l y n o m i a l s  [21, 48]. 

17.6. Def in i t ion .  We call a reversible polynomial D(x) 6 79 distinguished if T(D) = T(D).  We say that  

D(x) is a distinguished polynomial corresponding to the polynomial G(x) E 79 (or to the polynomial g(x) 6 ~)  

if D(z)  = G(x) (respectively D(z)  g(x)). A polynomial G(x) 6 79 is called separable if (G(z), G(x)') = (e) 
(i.e., (-G(x),-G(z)')= (e); here the bar denotes the derivative). 

17.7. P r o p o s i t i o n .  For any reversible separable polynomial G(z) 6 79, there exists a unique distin- 
guished polynomial G.(x) 6 79 corresponding to G(x). The product of coprime distinguished polynomials is a 
distinguished polynomial. 

[] Let T(G) = r.  Then (r ,p) = 1 and K(x) = z ~ - e is a separable polynomial. Since G(x)[K(z),  
according to the Hensel lemma there exists a unique monic polynomial G.(x) E 79 such that  G.IK and 

G . = G .  n 
The Hensel lemma gives us an algorithm of constructing of a distinguished polynomial corresponding to 

a given separable polynomial, but this algorithm is rather complicated, since the degree of polynomial x" - e 
is large. We propose a simpler algorithm. 

There exists an extension R[~] of the ring R such that  

x p -  e = ( x -  e ) ( x -  ~) . . .  ( x -  r (17.8) 

For example, if p = 2, then ~ = - 1  and R[~] = R. Note that  R[~] is a local ring, since zP - ~ = (z - ~)P is a 
primary polynomial. 

17.8. L e m m a .  For any separable reversible polynomial G(x) E 79 of the degree m, we have 

p--1 

( -1 )  m("-x) " H G(~ iz) = G['](x"), (17.9) 
i=0  

where G[1](x) is a monic polynomial from 79 with the property 

= 

[] There exists a Galois extension S [132] of the ring R such that  G(z) = l I~ '= l (x -~) ,  where a ~ , . . . ,  a,,, E 

S. Then = and the left part of the equality (17.9) is equal to (zP-axP). . .  (z ~ -  
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a~). 'I'he last polynomial has the required form and belongs to R[x], since the set of its roots is invariant 
under any automorphism of the ring S over R. [] 

17.9. P ropos i t i on .  Let G(x) be a separable reversible polynomial of degree m and let the polynomials 

Gt~ GN(x) , . . .  E 7 ) be defined by 
ct~ = c (x ) ,  

G[k+l](x) = ( -1 )  '~('-1) 17[ atk](~ix), k e 5Io. (17.10) 
i = O  

m 

Let R = GF(q), q = p~, x =]w(R)/r[. Then 

and G(z) is a distinguished polynomial iff 

G. (x )=GDd(x) ,  (17.11) 

Gtd(z) = G(x). (17.12) 

[] In the notations from the proof of Lemma 17.8, we have 

q k  cc-,l(~) = (~ _ ~ f ) . . .  (x _ ~ ) .  

Moreover, ~ii k = Hi and orda~ k = ord~i.  Hence, ~[,,d = ~ and T(G "b'd) = T(G), i.e., (17.11) is true. The 
q polynomial G(x) is distinguished iff ~i = cq, i E 1, m. The last condition is equivalent to (17.12), since 

c[,1(~) = (~ - ~1~)... (~ _ ~ ) .  [ ]  
In the important special case where p = 2 and q = 2 ~, formulas (17.10) can be substantially simplified. 

�9 "7-[k] rx 2' + xG{kl~(X =) and calculated in the The polynomials G[k](x) can be represented in the form G[k](x) '-'(0)t J 

following way. 
17.10. L e m m a .  I f  p = 2, q = 2", then under the conditions 17.9 

Moreover, 

where 

G [k+l] (z 2) = ( -  1)"G tkl (z)Gtkl(-z), 

Gtk+l](x) (_l)~(Glko~(X)2 ,qkl, ,2, ~_ - -  X { J ( 1 ) [ X  ) ) "  

(-1)~at~J(-x) = atkl(x) + 2 ~ 1 ( x ) ,  

Zx'[~I(x) = ~(o)tX ) - x~@l(x) , (modG[kl(z)).rq 

C. Ca lcu la t ion  of  pe r iods  of  revers ib le  ideals  w i th  the  he lp  of d i s t i n g u i s h e d  po lynomia l s .  
17.11. Def in i t ion .  The radical of the reversible polynomial F(x) E 7 9 is the distinguished polynomial 

tad F(x) corresponding to the product of all monic factors, irreducible over R, of the polynomial F (z )  E ~.  
This definition is concordant with the definition of the radical of an ideal. Namely, if / is an ideal of P 

with main generator F(x), then its radical tad / is an ideal with main generator rad F(z).  
Note that tad F(x) is a separable polynomial. To construct it, it is sufficient to know only the polynomial 

rad F(z) .  The last polynomial can be calculated with the help of the operations of differentiation, evaluation of 

g.c.d., and arithmetical operations over polynomials, but without the decomposition of F(x)  into irreductible 

factors over the field R. 
17.12. T h e o r e m .  Let I be a reversible ideal with main generator F(x),  G(x) = radF(x) ,  k be the 

maximum of multiplicities of the irreductible factors of-if(x) over -R, and p~-I < k < p~. Then 

T( I) = T(-G)p ~+~(0 = T(G)/fl (0, (17.13) 
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where 13(1) is the minimal b E No such that 

Gtbl(z p~) e I. (17.14) 

[] Let v = T(G----). Then T (F )  = vp ~ (see Theorem 11.1), and (17.13) follows from (17.6). The parameter 

13(1) is the least b �9 51o such that  x "pb - e �9 I.  The last condition is equivalent to (17.14), since 

z " " -  e = Gtbt(zP")H(zr 

where G[b](xP~) = G(x) p', and hence (H(xPb)) + I = 79. [] 
This algorithm of calculation of the parameter  a(I)  in (17.6) has the simplest form in the case where R 

is a Galois ring, i.e., it is a local principal ideal ring with 9I(R) = pR. Such a ring is uniquely defined (up to 
isomorphism) by its cardinality and characteristic. In the above notations, these parameters have the form 
IRI = q~, charR = ion [42, 132]. We denote such a ring by R = GR(q'~,p '~) = G R ( p ~ , p  '~) (another notation 
GR(r,p") [132]). In particular, GF(q) = GR(q,p), Zpn = GR(p", p"). 

If R = GR(q'~,p"), then by Corollary 16.7 a reversible ideal I ~ 7 ~ has a CGS of the form 

F(x)  = Fo(z) ,p~lFl(z) , . . .  ,p~'F,(z). (17.15) 

Let G(x) = rad F0(x) and let parameters r ,  k, a be the same as in Theorem 17.11. For any b �9 510, we denote 

Ub(z) = Res (G[b](xPb)/F(z)) (17.16) 

and suppose that  the decomposition of Ub(x) in the system of radices F I ( x ) , . . . ,  Ft(x) has the form 

Ub(x) ---- Vb l ( x )F l (x )  q- . . . -q-  Ubt(x)Ft(x) + Ub,t+l(x), (17.17) 

degUbi(x)Fi(x) < degFi_x(x), i �9 1,t + 1. Let 

= IIUbdx)ll, i �9 1, t q- 1; nb = min {Ttbl,... , nb,,q.1}; 

db(I) = max {al - rib,, . . . ,  at -- rib,t, n -- nb,t+,}. (17.18) 

17.13. T h e o r e m  (A. Nechaev, 1982). Under the above suppositions, T ( I )  = T(-F)p ~(0, where 

f d~(I), if p"" > 2, or p"" = 2, d~(I) < 1; or(I) 
d , + l ( I )  + 1, i f p  TM = 2, d~(I) >_ 1. 

[] From (17.17) and (17.18), by Theorem 16.5 we get nb= IIUb(~)lt- Hence 

Ub(z) = p'~bVb(z), n b � 9  O, n, Vb(z) # 0. (17.19) 

By Theorem 17.12, a ( I )  is the least d �9 51o such that  

z ~p'+d - e �9 I .  (17.20) 

Since F(x)IG(z)  p~ and -G(x) v`' = ~=](xP~ we have 

z "p~ - e + f = V ~ ( z ) W o ( z )  ( m o d I ) ,  where n= >_ 1; (17.21) 

moreover PWo(x) q- I = ~ .  If p'*= > 2, then for any d �9 51o 

Z ~'pa+d ~-- e -~- pna+dVa(Z)Wd(z ) (mod I) ,  

where Wd(z)  = Wo(z),  and hence the condition (17.20) is equivalent to the condition p"*+~V~(z) E I, i.e., to 
the condition 

pdU~(z) �9 I. (17.22) 
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By Theorem 16.5(C7), it follows from (17.17) and (17.18) that  (17.22) is equivalent to the system of inequalities 

d + nbo > a~ for s E 1,t  +-i- (at+l = n). 

Therefore, the minimal d with the property (17.20) is d = d, ( I ) ,  i.e., a ( I )  = d~(I). 

If p=" = 2, then p = 2, n~ = 1, and, squaring both parts of (17.21), we get 

x "2~ = e + 2""+'V~+I(x)WI(x) ( m o d I ) ,  

where n,+l > 1 and 79Wl(x) + I = 79. Now the proof is completed analogously to the case p"* > 2. [] 
The following results generalize the results of [113, 166], where the case R = Zp. was considered. 
17.14. Coro l l a ry .  Let F ( x )  be a reversible polynomial of  degree m over the ring R = GR(q",p") ,  

n > 1, G(x) = rad F ( x )  and r ,  k, a are the same as above. Then 

(a) for  some n: E 1, n 

Res = 

and if  p TM > 2, or if  p TM = 2, n = 2, or i f  p"" = 2, n > 2 and 

then 

V,(x)  # O, (17.23) 

Va(z) (V, , (x )  + (x-G(x)') 2") ~ 0 (mod F(x) ) ,  

T ( F )  = T(ff)p~-=~; 

(b) i f  p n" = 2, n > 2, and (17.24) does not hold, then for  some n~+l E 3,n 

R e s  (Gta+l](x2"+a)/F) = 2 ""+~ V~+I(x), V~+I(z) r O, 

and then we have 

Moreover, 

T ( F )  = T(F)p  '~-''+1+1 < T( f f )p  '~-'~". 

(17.24) 

(17.25) 

(17.26) 

T ( F )  <_ (qm _ 1)p,-~. 

(17.27) 

(17.28) 

[] Let I = 79F(x). Then T ( F )  = T ( I ) ,  and (17.23) follows from (17.16), (17.19), (17.21). In the case 
considered, d , ( I )  = n - n~, and if p"" > 2 or p"" = n = 2, then, by Theorem 17.13, a ( I )  = d~(I), and (17.25) 
is true. 

I f p  ~* = 2, n > 2, then for some n~+l E 2, n the relation (17.26) holds. In this case, d~+l(I) = n - n~+~, 
and, by Theorem 17.13, we get a ( I )  = d~+~(I) + 1, i.e., the equality in (17.27) is true. In this case, (17.25) is 

true iff n~+l = 2. By 17.10, the polynomial U~+l(X) = Res (Gb+l](x2*+l)/F) has the form 

U,+,(x) - U~,(x) . Res ( G N ( - x 2 " ) / F )  - 4 W ( x ) ( m o d F ( x ) ) ,  

where 
W(z) - W.(z)(Vo(z) + (zO(z)') 2~ (mod F(z)).  

Now it follows from (17.26) that  the equality n~+~ = 2 is equivalent to W ( x )  ~ 0, i.e., to (17.24). 

The inequality (17.28) follows from the inequality T (F )  < q'* - 1 (see Proposition 6.7). O 

Note that  in the case R = Zp. the conditions (17.23), (17.26) are substantially simplified, since G[~+ll(x) = 

Gbl(x) = G(x),  and Corollary 17.14 gives an algorithm for the calculation of the period of the polynomial 
F(x)  which is simpler than the algorithms from [113,166]. 

D. P o l y n o m i a l s  of  m a x i m a l  p e r i o d  over  t h e  Galo is  r ing  [21, 48]. In connection with (17.28) we 
formulate 

17.15. De f in i t i on .  A reversible polynomial F(x )  of degree m over a Galois ring R = GR(q'~,p ~) is said 

to be a polynomial of maximal period (MP-p01ynomial) if 

T ( F )  = (qm _ 1)p,,-1. (17.29) 
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17.16. Theorem (A. Nechaev, 1982, see [48]). A reversible polynomial F[x) of  degree m over the ring 

R = GR(qn,p ~) is a polynomial of maximal period iff the following conditions hold: 

(a) -i(x) is a polynomial of maximal period over the field -R; 
(b) i f  F.(x) is the distinguished polynomial corresponding to F(x) ,  then 

where 

and if  p = 2 < n, then, in addition, 

F(x)  = F.(x)  + pV(x) ,  (17.30) 

V(x) # O, (17.31) 

V(x) ~ x-i(z)'  (mod F(x)).  (17.32) 

Under the condition (a), the condition (b) is equivalent to the condition 

(c) if  r = qm _ 1, then 

x ~ -- e + p#9(x) (mod F(z)) ,  deg q'(x) < m, ~(x) ~ 0, (17.33) 

and in the case p = 2 < n, in addition, 
�9 (x) ~ E. (17.34) 

[] The equality (17.29) is equivalent to the pair of equalities T(F) = qm _ 1, T ( F )  = T(- i )p  ~-1. The 
first of these equalities is equivalent to the condition (a), and the second one, in view of Corollary 17.14, is 
equivalent to (b). Now we prove the second part of the theorem. Under the notations of Theorem 17.13 and 
Corollary 17.14 we have G(x) = F.(z) ,  r = q" - 1, k = 1, a = O, V, = Vo = Y(x) .  Therefore, by (17.21), the 
relation (17.33) is equivalent to (17.31). Further, let p = 2 < n. In this case, (17.29) is equivalent to (17.33) 
with the additional condition 

x 2~ - e + 22ff2(x) (mod F(z)) ,  deg ~2(x) < m, ~2(x) # 0. (17.35) 

Since ~z(x) - ~I,(x)(~(x) + e) (modE(x)), then (17.35) is equivalent to (17.33) and (17.34). Thus, 
(b) (c). [] 

17.17. Corollary. An MR-polynomial of degree m over the ring R = GR(q'~,p '~) exists if f  q'~ > 2 

or q,n = 2 = n. Under these conditions for any MR-polynomial f ( x )  @ R[x] of degree m there exists an 

MR-polynomial E(x)  e R[x] with -i(x) = f ( x ) ,  and the number of such polynomials is equal to 

( q "  - 1)q (~-2)m, if  p > 2 or p = 2 = n; 
(q'~ - 2)q ("-2)'~, /.fp = 2 < n. 

[] The set of all MP-polynomials F(x)  6 79 with T = f coincides with the set of all polynomials of the 
form (17.30) with the properties (17.31), (17.32), where E.(x) is the distinguished polynomial corresponding 
to f ( x ) .  A unique case, where in (17.30) we cannot choose V(x) with the properties (17.31), (17.32), is the 
c a s e m = l , R = Z 2 , , n > 2 .  [] 

17.18. Corollary. A reversible polynomial F(x) of degree m over a Galois ring R = GR(q",p~),  q = p~, 

is an MR-polynomial iff T(- i)  = q" - 1 and the polynomial W(x)  defined from the relation E(x)  - E[rl(x) = 
pW(x)  satisfies the conditions 

W(x )  ~ -0, and if  p = 2 < n, W ( x )  ~ x-i(x) '  (mod-i(x)). (17.36) 

[] By 17.9, Ftr](x) -= F.(x) (modp2). Therefore, W ( x )  = V(x), where V(x)  is the polynomial from 
(17.30). [] 

The above results make it possible to simplify the algorithm of construction of MP-polynomials over Zp. 
with the help of the table of MP-polynomials over Zp and some combinatorical conditions on the coefficients 
of polynomials. 
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17.19. Coro l l a ry  (A. Kuzmin, 1986, see [21]). Let F(x)  = x"  + arn_l xm-1 Jl-... 3 t- ao be a reversible 

polynomial over Zv. , p > 2, such that T(-F) = p" - 1. Then F(x)  is an MP-polynomial iff 

P! H ( a , x , ) j ,  ~ F(x  p) (modpZ), 
AJo v .jm-a! J0,...,J.~-i E " " " s=O 

where am = e, A is the set of all rows ( j0 , . . .  , j , , )  of the numbers from 0,p - 1 such that 

j 0 + j l  + - . . + j ~  = p ,  

In particular, F(z )  is an MP-polynomial when 

j l  + 2j2 + . . .  + mj,~ = 0 (mod p). 

o r  when 

17.20. 

over Z2- such that T(-ff) = 2 m - 1. 

(a) m is even, a0 - - ,  (rood 4); 
(b) m is odd and 

a~ ~ a0 (modp2), 

F(x)=x mq-akx kq-ao, m>_p.2 .  [] 

Coro l l a ry  (A. Nechaev, 1982). Let F(x)  = x m + a m _ l  x m - 1  -~-... -~- a 0 be a reversible polynomial 

Then F(x)  is an MP-polynomial in the following cases: 

e + 2aoa2 if ~t = 3; 
al =4 2(e + aoa2) if gl = O; 

(c) F(x)  = x m q- akx k + do, ak, ao C {--e,e}, (m, ao) • (2k, e). [] 

18. T h e  Cycl ic  T y p e  of  a F in i t e  Rever s ib l e  L R S - F a m i l y  

A. LRS-fami l ies  over  a f ini te  m o d u l e  [48, 53, 79, 80, 103]. Let R be a finite (commutative) ring, M 
be a faithful f.g.-R-module, I be a reversible ideal of the ring 79 = R[x]. According to the results of Section 
15, the description of the cyclic type of the family LM(I) is reduced to the case where R is a local ring and I 
is a primary ideal; we suppose this in what follows. 

Let I be a primary ideal with the main generator F(x)  and with the generating system F(x) ,  
e l ( X ) , . . . ,  at(27 ). Let deg F(x)  = m and 

F(x)  = g(x) k, (18.1) 

where g(x) is an irreducible polynomial over the field R, 

T(g(z))  = r, f - 1  < k < f .  (18.2) 

Then rad F(x)  = G(x) is a distinguished polynomial corresponding to g(x), and by 17.12, T(I )  = TF e(O. 

For an (m x/) -matr ix  S over R, let EM(B) be the R-module of all solutions ( P l , . . . ,  #,~) E M m of the 
system of linear equations (Xl , . . . ,  z,~)B = (0, . . . ,  0). Denote 

B .  = s > o, 

where G[S](x) is the polynomial defined in (17.10), and S = S(F)  is the accompanying matrix of the polynomial 
F(x).  

18.1. P r o p o s i t i o n  [48]. Under the above assumptions, the cyclic type of the family LM(I) is given by 

Z~(y) = y + )C cV(rP')Y ~p', (18.3) 
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where 

cM(r) = I(IK:M(Bo)I- 1), 

cM(rF) =  (I M(Bs)I- 

(18.4) 

s e 1 , # ( I ) .  (18.5) 

I f  RM is a QF-module or I = 79F(x) is a principal ideal, then c~41(rg e(t)) r O, i.e., there exists a recurrence 
# e LM(I) such that T ( t t )=  T(I) .  

[] The period of any recurrence # E LM(I) is equal to the minimal T e 51 with #(O,----~-I)(S(F)T-E) = O. 
As was shown in [48], if t t r  0, then T = rp  s for some s E No. Therefore, the cyclic type of the family 
LM(I) C_ I~M(F) is given by (18.3). By Proposition 2.5, if t t e  LM(F), then 

I~ e LM(I) ~ p ( ~ ( G I ( S ) ,  . . ,  G,(S))  -- O. 

Hence, for each s E 0,/~(I) the number K(vp ~) of recurrences tt E LM(I) with T(tt)]rp" is equal to the number 
of solutions in M m of the system of linear equations 

( x l , . . . , x , , ) ( S ( F )  ~ v ' -  E , G , ( S ) , . . . , G t ( S ) )  = O. (18.6) 

Since S(F) "v" - E = G[4(Sv')Us, where Us is an invertible matrix (see the proof of Theorem 17.12), the 
system (18.6) is equivalent to the system (x l , . . . ,x ,~)Bs  = O, and g ( r p Q  = ]K:M(B~)[. Now (18.4), (18.5) 
follow from the equalities 

C/M(T) = ~ ( K ( T ) -  1), 

cM(Tp ") = r ~ ( K ( r p ' ) -  K(rpS-1)) for s E 1, f~(I). 

Let b E 0,/~(I) be the maximal number such that  cM(rp b) # 0. Then the period of any recurrence 
g E LM(I) divides Tp b, hence 

x "vb-  e e An (LM(I)). (18.7) 

If U is a QF-module, then An (LM(I)) = I, and it follows from (18.7) that  T(I)[vp b, i.e., b = ~(I) .  If I = 

PF(x )  is a principal ideal, then (18.7) means that  (~I , . . . ,g , , , ) (S(F)  "~vb - E) = 0 for all (#1, .... ,# , , )  E i m .  

Since i is a faithful R-module, S(F) ,vb = E. Therefore, T(F)[rp b, i.e., T(I)lrp b and b = f~(I). [] 
18.2. Coro l l a ry .  Let M be a faithful finite R-module over a finite ring R and I be a reversible ideal 

of 7 ~. Then the length of any cycle of the family LM(I) divides the maximum of the lengths of cycles of this 
family. I f  M is a QF-module or I is a principal ideal, then there exists an LRS g E LM(I) with T(#) = T(I).  

[] In view of results of Section 15, this s tatement  follows from 18.1 and from the properties of the operation 
of composition of the cyclic types. [] 

Conjecture: there always exists an LRS/~ E LM(I) with T(g) = T(I) .  
B. L R S - f a m i l i e s  ove r  a local  p r i n c i p a l  idea l  r ing .  The usage of formulas (18.4), (18.5) is not 

convenient because do not have a good theory which makes it possible to evaluate the number of solutions of 
a system of linear equations over an arbitrary local ring R [11, 12]. But  such a theory exists for a principal 
ideal ring R, and it substantially simplifies the calculations. In what follows, we assume that  R is a finite local 
principal ideal (commutative) ring, satisfying the conditions formulated at the beginning of Section 16.A, and 
such that  

-R = R/fit(R) = GF(q), q = p ' ,  p = charR,  p n  = fit(R) ~. 

In this case, if m < l, then each (m x / ) -mat r ix  B over R is equivalent to the unique diagonal matr ix (see [8]) 

S ,,- D = diag (rdl , . .  ,,rd'~), 0 < d~ < . . .  < d,~ < n. (18.8) 
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18.3. Def ini t ion.  We say that the matrix D from (18.8) is the canonical form of the matrix B, the 
vector sign B = [dr, . . . ,  din] is the signature of B, and defB = dl + . . .  + d,~ is the defect of B. 

Under the condition (18.8) the module K:a(B) of the solutions in R m of the system of linear equations 
(x l , . . . ,  x,~)B = 0 satisfies the condition 

Ea(B)  ~- R/(~rdl) ~ . . . $  R/(rd=), ]ER(B)I = q defB. 

18.4. P ropos i t ion .  Let R be a principal ideal ring, 1 ,~ 79 be a primary reversible ideal with the main 
generator satisfying the conditions (18.1), (18.2), and let matrices 138 be the same as in Proposition 18.1. Let 

d e f B ,  = d(s) for s > O. 

Then the cyclic type of the family Ln(I)  is given by 

Z f ( y )  = y + E cT(rP')Y "p', (18.9) 
0----0 

where 

Cnt(r) = l(qd(~ -- 1), (18.10) 
T- 

CT(TpS) = l ( q d ( . ) -  qd(.-1)), S e 1,•(I); (18.11) 
Tp s 

moreover, @(vF ~ # 0. 
12 This follows from 18.1. [] 

If I is a principal ideal, we obtain some simplifications in the cMculation of the cyclic type of LR(I). 
18.5. T h e o r e m  (A. Nechaev, 1982, see [48]). Let R be a finite local principal ideal ring with ramification 

index r and with the index of nilpotency of its radical n. Let F(x) be a primary reversible polynomial over R 
satisfying the conditions (18.1), (18.2), G(x) = tad F(x),  and for s > 0 

sign G[~](S p') = [dx(s) , . . . ,  d,,(s)l, 

d(s) = dl(s) + . . .  + din(s). (18.12) 

Let s1 be the least s 6 No such that 

Then 

da(s) > 2' if p > 2; 

dl(s) > e, if p = 2, n > ~; 

d l ( s ) = n ,  i f p = 2 ,  n = ~ .  

T(F)  = rp ~, where ~ = 81 + ]n --dl(31)[, 
6 

and the family LR(F) has the cyclic type 

Z (y) = y + E 4 ( rp ' )y" ' ,  

(18.13) 

(18.14) 

8=0 

where the coefficients C~F(rp ~) are defined by (18.10), (18.11). Moreover, for each s > 81 the parameters d(s) 
in (18.11) can be expressed with the help of [dl(Sl), . . . ,  d~(sl)] in the form 

dj(s) = v(dj(Sl) + (s - Sl)e), j e 1, m, (18.15) 

where v(x) = min {n, x}. The parameter sx satisfies the inequality 

sl < b(dl(a)) + a + 1, (18.16) 
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where a is defined in (1812), b(x) = max {0, log v ~(v~_l)}. 

[] The form of the polynomial Zn(y) is described in Propositions 18.1 and 18.4. The simplifications 

connected with the parameter  sl are based on the following properties. Since pR = 9I(R) ~, under the 

condition (18.8) we have sign pB = [v(dl + e ) , . . .  ,v(d,, + e)]. Therefore, by (18.12), in order to prove (18.15) 
it is sufficient to show that  if s > sl, then 

G[~+I](S "'+~) ~ pG['I(s"), where S = S(F). 

Since GN(S v') .., S "~v~ - E, it is sufficient to prove that 

S "p'+' - Z ~ p ( S  r p ' -  E). (18.17) 

Let S ~p, = Y. Then Y = E + ~rdC, where d = d, (s), and S ,p'+~ - E = V p - E = ( Y -  E) (V  p-1 + . . .  + Y + E), 
where 

(yv-1 + . . .  + V + E) = pE + P(P-  l-------~) TraC (mod 91(R)2a). (18.18) 
2 

Since s > s~, the number d = d~(s) satisfies (18.13), and hence 

p(p - 1) c = c 

Now it follows from (18.18) that V v-1 + . . .  + V + E = pW, where W is an invertible matrix, because W = E. 
Therefore, V ~' - E ,--, p(V - E), i.e., we get (18.17). For the proof of (18.16), see [48]. [] 

19. L i n e a r  R e c u r r i n g  Sequences  over  Galois  R ings  

Here R = GR(q '~, p") is a Galois ring (see Section 17C), q = p', F(x) is a monic polynomial from P = R[x] 
of degree m. 

A. L inea r  r e c u r r e n c e s  of  m a x i m a l  p e r i o d  a n d  famil ies  of  t h e m  [8, 15, 45, 47, 48, 52, 53, 77, 102, 

103, 113, 118, 166]. It follows from 6.3 and 17.3 that if u E R0) is an LRS of rank m, then T(u) <_ (q'~- 1)p "-~. 

19.1. Def in i t ion .  We say that a sequence u E R0) is a linear recurring sequence of maximal period 
(MP.recurrence) over a Galois ring R if for some m E N 

rang u = m  and T(u)= ( q ~ -  1)p "-1. (19.1) 

Denote by ~ the image of a sequence u E R (1) under the natural homomorphism R --* R : 3 =  

(3(0), 3(1) , . . . )  e ~0) .  

19.2. P r o p o s i t i o n .  An LRS u E R O) with minimal polynomial F(x) is an MP-recurrence iff F(x) is 
an MP-polynomial over R and ~ 7~ -0. 

rn The necessity of the condition T(F) = (q'~ - 1)p "-1 is obvious. The condition ~ ~ 0 is equivalent to 
the condition ( ~ ( x ) ,  F(x)) = e, which is equivalent to the equality T(u) = T(F). O 

The following results can be found in [26, 42, 45, 132, 148]. 

If F(x) is an MP-polynomial over R, then its operator ring S = 7~/(F(x)) is a Galois ring: S = 
GR(q'~,p~). Let Q = GR(qm",p ") be a Galois extension of R. The polynomial F(x) has exactly m roots 

in Q and has the form f ( x )  = (x - a(~ (z - a(m-1)), where r (~) E Q*, ord aO) = T(F) = (q" - 1)p "-~ 

and Q = R[a( ~}] for s e 0, m - 1. The group Aut (Q/R) of automorphisms of S over R is a cycnc group 

of order m: Aut(Q/R)  = (P/ = {e ,P , ' - ' , P '~ ' l }  �9 The roots of F(x) can be enumerated in such a way that 

a(') = p'(a(~ for s E 0, m - 1, i.e., 

F ( x )  = ( x _  ( x _  (19.2) 
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The trace Tr : RQ ---+ RR, Tr (z) = Tr ~(x) from Q into R, defined by 

Wr On(x ) = z + p(x) + . . .  + p"~-'(x), (19.3) 

is an epimorphism of modules. 
19.3. T h e o r e m  [45, 47]. Let F(x) be an MR-polynomial. Then, keeping the previous notations, for any 

u E LR(F) there exists a unique constant ~ E Q such that 

u(z) = Wr On(~aZ). (19.4) 

Moreover, u is an MR-recurrence iff ( E Q', i.e., ~ ~ "0. Any sequence (19.4) belongs to LR(F).  
[] The proof is analogous to the proof of 10.14, 10.15 (see [45]). [] 
This result easily implies 
19.4. T h e o r e m .  Under the assumptions of 19.3, if u ~ O, then 

T(u) = rp "- I - ' ,  (19.5) 

where r = qm _ 1, s = II ll --- max {i e 0---~ I ~ e piQ}. The cyclic type of the family LR(F) is given by 

n--1 

ZF(y) = y + p<rm-1),y,. .  [] (19.6) 
s ~ 0  

We suppose in what follows that  F(x) is a fixed MR-polynomial with the parameters defined above. The 

set of all MR-recurrences from LR(F) is denoted by L*R(F). By 19.4, L*R(F) is the union of N = p(r,~-l)(n-1) 
cycles of length vp n-1. 

19.5. Def in i t i on .  The  system of polynomials 

CF = {C,(x)l i E 1 - ~ }  (19.7) 

is called an enumerator of cycles for the MR-polynomial F(z) if for any MP-recurrence u E L*a(F ) the set 

{Ci(z)u I i E 1---,','~} is a system of representatives of all cycles of maximal length in LR(F). 
19.6. T h e o r e m  (A. Nechaev, 1982, see [48]). For any MR-polynomial F(x), there exists an enumerator 

of cycles. 
[] Let ~(x) be a polynomial from (17.33). Since R is an r-dimensional space over dR(p), there exist 

polynomials <Ih(x) = ~(x),  <I>2(x),..., @~m(x) of degrees less than m and such that  the system of polynomials 

{~i(x)l i E 1,rm} is linearly independent over GF(p) and for p = 2, in addition, @~,,~(x) = ~ (see (17.34)). If 

p = 2, then there exists a polynomial B(z) e R[x] such that  there are no solutions in R[z] of the comparison 

y2 + y _ B(x)  (modF(x ) ) .  Denote 

Ui(x) = e + pggi(x) for i E 1, rm, V(x) = e + 4B(x).  

Then the following system is an enumerator of cycles (19.7) for F(x):  if p > 2 or p = 2 = n, then this system 
consists of the polynomials 

V2(x)k2... U~r~(X) ~ ,  0 < kl <_ p"-~ - I, i E 2, rm; (19.8) 

if p = 2 < n, then this system consist of the polynomials 

U2(x)k~... U~,,,-I (x) k~'-' V(x)k(- 1) t, (19.9) 

where0_<ki~2 "-I fo r iE l , rm- l ,  0<k<2 "-2-I,1E0,I. 
This s ta tement  follows from the fact that,  by [148] (see also [132]), under these conditions, the set 

Cf(c~) = {Ci(~)l i E 1, N} is a subgroup of the group Q' ,  belonging to its congruence subgroup e + pQ 
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and such that Q* = (a) x CF(a).  If u is an MP-recurrence of the form (19..~), then Ci(x)u = u,, where 
ui(z) = Wr (~C/(a)a *) e L'R(F). Moreover, if Cj(z) ~ C,(x), then the sequences u, and uj belong to different 

cycles, since Cj(a)Ci(a) -1 f~ (a). 0 

B. T h e  c o o r d i n a t e  s e q u e n c e s  of  M P - r e c u r r e n c e s  [18, 25, 26, 45, 47, 95, 123]. 

19.7. Def in i t ion .  A subset B = {bo = 0, b l , . . . ,bq-1} of a Galois ring R is called a coordinate set of R 

if the mapping v : /3 ---r ~ ,  v(~) = 3, is a bijection. 
Any element a E R is uniqueiy represented in the form 

a = a o + p a l + . . . + p " - l a , - 1 ,  a s E B ,  s E O ,  n - 1 ,  (19.10) 

called the decomposition of a in the coordinate set B. We say that the n functions 

7 f :  R ~ B, 3'Y(a) = as, s e 0, n - 1, (19.11) 

are the coordinate functions in the coordinate set B. If u is a sequence over R, then the sequences ws = 7~(u) 

over B, defined by ws(i) = 7~(u(i)),  i E No, are called the coordinate sequences of u in the coordinate set B. 

Examples of coordinate sets are the p-adic coordinate set F(R) = {Z E RI = of a Galois ring R 

and the p-ary coordinate set Bp = {0, e, 2e, .... , ( p -  1)e} of Zp.. The decompositions of elements of R in these 

sets are called p-adic and p-ary decompositions respectively. Coordinate functions in the p-adic and p-ary (for 

R = Zp.) coordinate sets are denoted by % and 68: 

~,r(n) 68 = 7~ p, s E 0,n 1. (19.12) 

Note that 78 = 68 for s E 0, n - 1 iff R -- Z2-. 
Define the operations ~ ,  | on the coordinate set B by the rule a E) b = "),on(a + b), a | b = 7Bo(ab), a, 

b E B. Then (/~, ~ ,  | = GF(q), and the bijection u : B ~ R is a field isomorphism. If we define the 

multiplication of an element b e / 3  on element E E R by Eb = "),0B(cb), then B becomes an R-algebra. Thus, we 

may investigate any sequence w E B (x) as a sequence over the field R. 
For an MP-recurrence u E L~(F) ,  denote 

us = %(u), vs = 6s(u), ws = "),y(u), s e O,n - 1. (19.13) 

We would like to study the period T(ws) of ws, its minimal polynomial M~, (x) over R,  and the rank of ws. 
Sometimes it is appropriate to study the p-ary and p-adic coordinate sequences us and vs. 

19.8. T h e o r e m  (A. Nechaev, 1982; A. Kuzmin, 1986 [26, 123]). Let F(x)  be an MP-polynomial and 

f ( z )  = F (x )  e ~ = R[x]. Then 
M~ o(z) = f (x) ,  (19.14) 

and for each s E 1 , n -  1 

_ .  . ps--l+l - - . p , l - 1  M,o,(x) = f(x) fs!(x) ...fsk(X) ps-l-k+l . .fs,p,-l(T), (19.15) 

where f ,k(x) is a separable polynomial over-R, degfsk(z) >__ O, and 

f(x)fsx (z)... fsm'-' (x ) Ix  ~" - e, r = q'~ - 1. (19.16) 

Moreover, T(wo) = v, rankw0 = m, and for s E 1, n - 1 

T(ws) = rp s, rankws >_ m ( f  - I  + 1). (19.17) 

I f  R = Zp,, then the polynomials f sx , . . .  ,fs,p, for t < s -  2 are uniquely determined by the sequences 

v0, �9 �9 �9 vt+i, and 
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(a) / fp  = 2, then 

f , j  = f4j for s > 4, j E1 ,2;  f , j  = flj for s > I > 5 , 1 <  j < 2t-2 - 2; 

(b) if  p > 2, then 

f~j = ftj for  s > l > 3, 1 < j <_ (p--  l)pt-2 -- 2. 

The proof is based on the following results. Let 

7t = vp t = (qm _ 1)pt. 

19.9. L e m m a .  For t E 0, n - 1, there ezists a polynomial ~(t+l)(x) over R such that 

X "r' - -  e ~ p f ; + l  (I)(t+I)(x) ( m o d F ( x ) ) ,  where degO(t+x)(x) < m, ~(t+l)(z)  r 0. 

I f  p = 2, t h e n  

if p > 2, then 

�9 2(x) = ~-(x)(x)+ ~-(')(x) 2 (modG(x) ) ,  

(I)(t+l)(x) -= (I)(t)(x) (mod2  '-1) for  t >__ 2; 

O(t+l)(x) -- O(t)(x) ( m o d p  t) for t _> 1. [] 

The sequence u (t) = q~(t)(x)u is called the t-th derivative sequence of the sequence u. Denote 

u! t) = %(u(t)), v! t) = 6~(u(t)), w! t) = 7~(u(t)), s , t  E 0, n - 1. 

Then u (t) E L*a(F ) and by (19.19), (19.20), 

if p = 2, then W(o t) = W(o 2) for t >_ 2, 

if p > 2, then W(o t) = W(o ~) for t _> 1, 

w~ ') = w~ 3) for t > 3; 

w~t)= w~ 2) for t > 2. 

(19.18) 

(19.19) 

(19.20) 

(19.21) 

(19.22) 

(19.23) 

The function A : 13 x B ~ 13, defined by A(x, y) = 7~(x + y), will be called the carry function into the 
first digit in the case of summation of elements of the coordinate set /3.  Let 

X~(X) = z ( x -  b l ) . . . ( z -  b,-1) 

be the characteristic polynomial of  the coordinate set 13 and X*(x) be a polynomial  of degree < q - 1 such 
that  

X~(X) = xq - x + p x ' ( x ) .  

19.10.  L e m m a .  For any a, b E/3 

7~(70(a)) - X*(f0(a)) (modp) ,  a e R, 

~ ( - ! ) i a f - U b f - a ( P - i )  - x*(a + b) + x*(a) + x*(b).[] (19.24) 

In the case R = Zp., for s _> 2, t E 0, s --2,  define 

v , , ,  = - 

19.11.  L e m m a .  The following relations hold: 

(x "-1 - g ) w ,  = w g  ) for  s > 1, (19.25) 
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(X 1"s-2 --~)Ws ~-- W~ s) "1- h ( W s - l , W  (s- l ) )  f o r  s ~ 2. (19.26) 

/ f R  = Z2-, then for t  > 1 

If  R = Zp., p > 3, then 

and for s > 2, t E O , s -  2, 

where 

(2) _ . ( t+a)  i f s  t + 2 ,  UO U t + l ~ O  1 ~ = 
Vs,t = (2), ~ (t+l), 

vo ( v t+~v~  ), i f s > t + 2 ;  

{ ,0 (% r v~ 1), 

. (~),,,(,. ~ , (=) ,o ( , ) ,  ~.,' = ~o ~ o ~1 E~ v~ 1)) E) 

. (2), 0) .  v~ a) 

i f  s = 2 ,  
~jiCs = 3, 

/ f s  > 4. 

1 vO ) (~o/~ + e),,, = _,,~-~ e ~ o , 

1 [[v(1)~p_l 
Un,'-~-(UO(1))p--Iut+I(~) 2~,1, 0 ] t~)?')0(1)) (~)Zs#, 

(.o(1)) ~-~. (~ ' (~ ) : , o ) ,  
r 
0 

i f p = 3 ,  t = 0 ,  s > 2 ,  

if p = 3 ,  t=O,  s = 2 ,  
otherwise. [] 

(19.27) 

(19.28) 

(19.29) 

(19.30) 

(19.31) 

Now, Theorem 19.8 is proved according to the following scheme. Since F(x)u = 0, then F(x)wo 0, and 
(19.14) is true. It follows from (19.25) that 

M~,(x)/(M~,o(x), x ~~ - -6) = f(x) .  (t9.32) 

Also taking into account the relation x ~'-' - e = (x ~ - e) p~ we get (19.15), (19.16), and (19.17). The 
definition of v~,, and (19.15) imply that 

M~,.,(x) = M,~~ (x" - E) v~ = f(x)v'+lf,  l(x)P'. . ,  f,,v,(x). 

Moreover, by (19.22), (19.23) and (19.27)-(19.31), if s > t + 2, then v,,t = vt+2,t. This implies statements (a) 
and (b). [] 

C. T h e  s t u d y  of t h e  c o o r d i n a t e  s equences  w i t h  t h e  he lp  of  t h e  t r a c e  func t ion .  The representa- 
tion (19.4) makes it possible to get some interesting results about the properties of the coordinate sequences 

wt by means of studying the coordinate functions 7t(Tr ~(x)). For M, N E N we denote 

I ( M , N )  = {(k0, . . . ,kM-i)  e NM: ko,. . . ,kM-1 E O,p -  1, ko + . . . +  kM-~ = N}.  

For r = logpq and t < logp(m(p-  1)) define the polynomial q~')(z) over the field F(R) = GF(q) by 

*~')(~) = E 1 =p~-l(k0+~+...+~._l~--~). (19.33) 
(ko,...,k,~_l)ett,~,f) ~/Co!... k,~-a ! 

If r = 1 (i.e., if q = p), then q/~)(x) is denoted by ~,(x).  
For a natural number k = ~ k , f  , 0 < k, < p, define the p-ary weight w(k) = ~ k,. The indez o] 

nonlinearity of the polynomial 

A(xa , . . . , x , )  ) - ' ] . .  ,1 ..x~' atl ...tt Xl . 

is defined by 
O(A) = max {w(il) + . . .  + w(it)l a,,...,, # 0}. 

2866 



I(Q~ 
Then 0($i  ~)) = f .  Let t r(x)  = trr(n)(x ) = x @ x* @. . .  @ x q~'-' be the trace from the field F(Q) into the 
field r(R),  where Q = aR(qm",p"). 

19.12. T h e o r e m  (A. Nechaev, 1982; A. Kuzmin, 1986 [26, 45, 47, 123]). Let R = GR(q~,p"),  q = f ,  

R < Q = a n ( : , , : )  andTr(x )  = T r y ( x )  Then 

7o(Tr (x)) = tr (7o(x)), (19.34) 

"h(Tr (x)) = ~*)(')'o(X)) @ tr (71(x)). (19.35) 

I f  R = Zp. (i.e., q = p, r -- 1), then for i < t < logp(m(p-  1)) there exists a polynomial h t ( xo , . . . ,  xt-1) over 

R such that O(ht) < pt and 

~t(Tr (x)) ~ ~t(7o(X)) + ht(7o(x) , . . .  ,T t - l ( x ) )+  tr (Tt(x)) (19.36) 

[] The equality (19.34) follows from the fact that the group Aut (Q/R)  is generated by the following 
automorphism: 

p(x) = 7o(X) q + pTx(x) q + . . .  + p"-aT,,_l(x)q (19.37) 

(see [42,45]). Since the proof of (19.36) is rather long (see [123]), we only illustrate its idea, proving (19.35). 
It follows from (19.37) that 

"h(Tr(x)) = 0'l(Tr(')'o(X))) @ tr( 'h(x)).  

For an arbitrary/3 E F(Q) denote 

~s = ]~qS, S E O , m  - 1; 

~ =  (/30, . -- , /3m--1) ,  

b = fl0 + . . .  +/3m-1, 

---*t 
/3 ( g , . . .  , = ,/3r,-1). 

Then Tr (/3) = b, and, by (19.38), in order to prove (19.35), it is sufficient to prove that 

~l(b) = ~r)(/3) .  

Consider the following polynomials over R: 

0 3 0 ( X O , . . . , X m - - 1 )  = X 0 - [ - . . .  3 V X m _ l ,  

1 ..ko ..kl km_~ 
~ M I ( x O ' ' ' ' ' x m - 1 )  = Z ]gO ! . k i n _ l !  "'*'o "1 " ' ' X m - - 1  " 

(ko,...,k,~_~)~z(,,,,p) "" 

Then b = "-'o(fl), and (19.40) is equivalent to 

7a(b) -- w1(/3 ) (modp). 

To prove it, let us raise the equality b = Wo(fl) to the p-th power. 
step-by-step raising to the p-th power, we get 

b p2 _..p _~p2 ...~p - ~o(/3 )~ - ~o(/3 ) +p!~1(/3 ) (modp~), 

_.~pr _.~pr--1 

~ - ~o(/3 ) + p!~1(/3 ) (rood f ) .  
The last relation with the relations 

(19.38) 

(19.39) 

/yr = bq = "to(b) (modp2), 

(19.40) 

,.,.,p 
We get b v = Wo(/3 ) + p!wl(fl). By 

...pr--I --* 
Wl(/3 ) ---~ 031(/3 ) -~-- b, 
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mean that  "to(b) - b + p!w~(/3 ) (modp2),  and since b -  't0(b) = p'tl (b), we have 

..~pt--1 _.,It--1 
'tl(b) - - ( p  - 1)!w,(fl ) --- w,(fl ) (mod p) .n  

Applying Theorem 19.12 to the relation (19.4), we can describe the properties of the analytical rep- 
resentation of the coordinate sequences and estimate the degree of the polynomial  fs,p.-~(x) from (19.15). 
Denote 

~t ~-- 'tt(~), at -~- 'tt(a), c --- a l a o  1, et(z) = tr ('t:(~a~)). 

19.13. T h e o r e m  (A. Nechaev, 1982; A. Kuzmin, 1986 [26,45, 123]). Let u be an MP-recurrence of the 
fo~m (19.4). Then 

Wo(Z) ~ Uo(Z) = tr ((0a~), rank Wo = m. (19.41) 

Ul(Z) = ~')(~oa~) �9 tr (~lag) �9 z.  tr ((oca~). (19.42) 

If R = Zv, and 1 < t < logv(m(p- 1)), then 

,,(~) ~ e,(~0ag) + a,(a~, z) + r (19.43) 

where Gt(x,y) E s O~(G,(x,y)) < p', deguG,(x,y ) < pt-a. Moreover, Mr = f(x)  p'-I+1. 
[] By (19.4), the relations (19.41) follow from (19.34). Since , (z)  - Tr ((~o + P~l)('~0 + pal)') (modp~), 

we have  

~,,(z) = 'tl(Tr (~0a~,)) �9 tr (~lat,) �9 z.  tr (~0cag). 

Now (19.42) follows from (19.35) and from the relations 

't0(~oag) = ~o~g, 't~(~0~g) = 0. 

The proof of (19.43) can be found in [123]. 
Theorem 19.13 makes it possible to estimate the ranks of the sequences Ul and vt. In particular, 

rank ul = + m, rank Vl > + + m. 
p - p 1 

More profound results will be obtained in Chapter 4. 
D. k - m a x i m a l  r e c u r r i n g  s e q u e n c e s  over  a Galo is  r ing .  Analogously to the definition 12.1, we give 
19.14. Def in i t i on .  An exact reversible k-LRS u over a Galois ring R -- GR(qn,p ~) is called a k-maximal 

recurrence if its operator ring S = Pk/An (u) is a Galois ring, and 

T(u) = IS*l, (19.44) 

i.e., if u is a full-cycle recurrence over R (see 6.24), and its operator ring is a Galois ring. If here S = 
GR(q",p") ,  then we say that  u is a k-max.-LRS of rank m. 

By Theorem 5.26, (19.44) is equivalent to the conditions 

S = a R ( q ' " , p " ) ,  S* = (0a , . . . ,  Ok), (19.45) 

where 0, = xs + I ,  s E ], k. 
The existence of these recurrences follows from 
19.15. T h e o r e m  (A. Nechaev, 1993). Let Q = GR(qm",p ") be a Galois extension of the Galois ring 

R, and let elements an, . . . ,  ak E Q* be such that 

Q* = ( a n , . . . ,  a,~). (19.46) 
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Then for any ~ E Q* the k-sequence u E R (k) of  the form 

= Wr 

is a k-max-LRS of rank rn over R with period 

T(u) = (qm _ 1)q,~(~-~). 

[] It follows from (19.46) that 

(19.47) 

(19.48) 

Q = R[a l , . . . , ak ] .  (19.49) 

Therefore, for a given ~ E Q, the k-sequence v(z) -- Tr Q(~a z) is equal to 0 iff r/---- 0. It follows that, under 
the condition (19.47), 

An (u) = {H(x) E PkIH(a) = 0}, (19.50) 

since H(x)u(z)  = Tr ~(H(a)~a") .  Furthermore, we see from (19.49) and (19.50) that  the ring of operators 

S = Pk /An  (u) = R[01, . . . ,  0k] (see 1.18) is isomorphic to Q, and there exists an isomorphism ~, : S -~ Q over 

R such that ~(0s) = as, s E 1, k. By (19.46), this implies (19.45), and, according to 19.14, u is a k-max-LRS 
of rank m over R with period (19.48). [] 

Now we are going to show that Theorem 19.15 describes all k-maximal recurrences over R. Let u satisfy 
the conditions of Definition 19.14. Note that SR is a free module of rank m over a Galois ring. Hence, the 

system 51, . . . ,5 t  E S generates SR iff the system 5 1 , . . . , ~  generates S~  over R [2, 132, 135]. Therefore, it 

follows from (19.45) that the basis of Sn can be chosen in the form 

B = { lJ 7 } ,  (19.51) 

where 9 v is a subset of N0 k of cardinality m. Moreover, the basis (19.51) can be chosen in such way that 9 v is 

a Ferre diagram (see 10.3). 
19.16. Def in i t ion .  A basis B of the module Sn of the form (19.51) and such that 5 r is a Ferre diagram 

is called a Ferre basis, and .T" is called a Ferre diagram of the linear recurrence u (and of the ideal I = An (u)). 
19.17. L e m m a .  Any k-maximal linear recurrence of rank m over a Galois ring R is uniquely determined 

by the ideal I = An (u) and by the polyhedron of values u(.T') on an arbitrary set .T" C Nko such that the system 

of elements 13 of the form (19.51) is a basis of  the operator ring S over R. In this case, for  any polyhedron o] 

values a ( 7 )  e R there exists a unique recur nce v LR(I)  with v(J=) = 

[] See the proof of Proposition 10.9. [] 
19.18. T h e o r e m  (A. Nechaev, 1993). Let u be a k-max-LRS over R = GR(q'~,p '~) of rank m. Then the 

extension Q = GR(q~'~,p n) of R contains invertible elements ~, a l , . . . , a k  such that the equalities (19.46), 

(19.47) hold. 

[] By (19.45), there exists an isomorphism ~ : S ~ Q over R. Let as = ~(0s), s E 1, k. Then (19.45) 

implies (19.46) and (19.49). Choose a basis B of the module SR in the form (19.51). Then the system of 

elements A --- {aJ[ j E 5 r} is the basis of QR, and the system of linear equations 

Tr = i e J=, 

has the unique solution ~ E Q. Moreover, ~ E Q* because u is an exact sequence over R, and, therefore, 

~(~)  ~ 0. By Theorem 19.15, the sequence v(z) --- Tr~(~a")  is a k-max-LRS of rank m with annihilator 
An (v) = An (u). Since v(9 r )  = u(~'), we have, by 19.17, that u = v, i.e., (19.47) holds. [] 

Note that we can construct a k-max-LRS of rank m over a finite field for any k, m E N. In the case of 
Galois ring this is not true. If R --GR(q~,p~),  q = p', then there exists a k-max-LRS of rank m over R if 
and only if 

k > mr, if p > 2 or p = n = 2; 
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k>__ m r + l ,  i f p = 2  < n .  

These restrictions on k follow from (19.45) [132, 148]. 
19.19. De f in i t i on .  We call a reversible ideal I ,~ Pk an ideal of maximal period over a Galois ring R if 

its operator ring S satisfies (19.45) for some m E N. 
19.20. T h e o r e m  (A. Nechaev, 1993). Let I be an ideal of mazimal period over R = GR(q",pn). 

Suppose that (19,45) holds. Then the group of periods of I is ~(I )  = {t E Zkl 0 t = e}, and 

T( I )  = (qr~ -- 1)qm(~-a), Zk/~(I )  ~ GR(q~,, ,p,,) . .  

The cyclic type of  the family La( I )  is given by 

Zz a = 1. Z k + 1-gl(I1) -t-...-t- 1.  g~(In-1) + 1-g~(I), 

where Is = I + pS79k, s E 1,n - 1. Moreover, T(Is)  "~ GR(q'~,pS) *. 

[] The family LR(I) is the set of all recurrences of the form v(z) = Tr Q(r/c~'), r/ E Q, because ILn(I)l = 

ISI-- IQI. The equality v = 0 is equivalent to 7? = 0. I f v  r 0, then r/E ptQ\pt+lQ for some t E 0,n - 1, i.e., 
rl = pt~, ~ E Q*. In this case 

v(z) = p ' .  Tr Q(~c~z), 

An(v)  = I +pn-'7)k = I,~_,, and 7~k/An(v) = S/p'~-'S = GR(qm('~-t),pn-'). By (19.45), (SPa/An(v)) * = 

(0x,---, 0k), where 0s = z ,  + I,,-t. Therefore, 

T(v) = IGR(q~('~-t),p'~-t)" I = (qm _ 1)qm(=-t-1), 

all recurrences from LR(I) with the annihilator I=_1 belong to the cycle T(v )  and have the group of periods 
~3(I,~_t). This implies (19.52). [] 
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Chapter 4. 

REPRESENTATIONS OF LINEAR RECURRING SEQUENCES 

Def in i t ion .  Let R, S be commutative rings with unit, u be a sequence over R, and cr : R ~ S be a 
map of the set R into the set S. The sequence a(u) over the ring S, defined by a(u)(i) = a(u(i)), i >_ O, is 
called a representation of the sequence u over the ring S or an S-representation of the sequence u. The map 

is also called a representation. 
If u is an LRS over R, then a(u) is not necessarily an LRS over S (for example, R = S = Z, u(i) = i, 

a(2 n) = 1, a(i) = 0 if i ~ 2~). If u is periodic (for example, if R is a finite ring), with period T and defect 

)~, then cr(u) is an LP~S over S with characteristic polynomial x T+~ - x ~. But we may have characteristic 
polynomials of ~r(u) of degree less than T + ~. The description of the annihilators of representations of a 
given sequence gives useful information about this sequence. It is also possible to use this description for a 
comparison of properties of different rings S. Note that in Section 30.C we use the GF(2)-representations of 
linear recurring sequences over Z4 for the construction of the Kerdoc code in a cyclic form. 

In this chapter, u is an LRS of maximal period over a finite field or over a Galois ring. The main results 
concern the descriptions of the annihilators, of characteristic and minimal polynomials, and of ranks (or the 
estimates of ranks) of representations of the sequence u over different rings S. References: [23, 24, 26, 27, 28, 

30, 33, 34, 45, 47, 83, 92, 93, 95, 107, 109, 119, 123, 164]. 
20. S - R e p r e s e n t a t i o n s  of  M P - R e c u r r e n c e s  over  F i n i t e  F ie lds  

Let U be an LRS of maximal period over the field GF(q) with a minimal polynomial f ( x )  of degree m, 
and let 

T = T(U) = q'~ - 1, r = T/(q  - 1), fl = ( -1)m f(0).  

Since f ( x )  is a polynomial of maximal period, fl is a primitive element of GF(q),  and by 12.5, (12.4), 

V(i + r) = flU(i) for i > 0. The sequence u(i) = fli, i>_ O, is an LRS of maximalper iod T(u) = q - 1 over 

GF(q) with minimal polynomial x - fl. 
Let S be a commutative ring with unit e such that qe is non-zero divisor, and cr : GF(q) --* S, cr(O) = O. 

Let ( g )  be an ideal generated by a subset K C_ S[x]. 
20.1. T h e o r e m  [34]. A n ( a ( g ) ) =  (G(x~)I G(x) e An(cr(u))). 

In the case where S = GF(2), q is odd, this result was obtained in [92]. 
20.2. Coro l la ry .  A polynomial G(x) is a minimal polynomial of ~r(u) if and only if G(x ~) is a minimal 

polynomial of cr(U). [] 
20.3. Coro l la ry .  The following equality holds: rank a(U) = r .  rank cr(u). In particular, if ~ ~ O, then 

ranker(U) > r.  [] 

20.4. Coro l la ry .  I f  q = 2, a ~ O, then An(a(V))  = (x T - e) and rank~r(V) = T. [] 
Thus, to find the annihilator, minimal polynomials, and the rank of the sequence a(U) for an MP- 

recurrence U of rank m, it is sufficient to find them for the MP-recurrence u of rank 1. Note that, by [70] (or 

by 26.2), the segment u ( ~  is a permutation of q - 1 nonzero elements of GF(q). Therefore, a(u) can 

be any sequence over the ring S of period q - 1 (depending on ~). 
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20.5. R e m a r k .  If a(0) = c ~ 0 and 5 = a - c, then 

rank - 1 < rank < ra.k (V) + 1. 

Thus, the rank of a(u) can be determined up to +1. 

To prove Theorem 20.1, define/3 ~ = e,/3 ~ = 0 and x~176 = 0 for an arbitrary sequence v. Let e(i), i _> 0, 

be an element of the set {0, 1 , . . . ,  q - 2, c~} such that U(i) =/3~(~). 
20.6. L e m m a .  /.f G(x) = go + glz -F . . .  E S[x], i, j >_ O, then 

(G(x~)a(U))(i + r j )  = (G(x)x~(i)a(u))(j).[] 

20.7. Corol lary .  I f  G(x)cr(u) = O, then G(z ' )a(V)  = O. [] 
20.8. L e m m a .  I f  g(x)o'(U) = 0 and 

H(x)  = Ho(x ~) + xH~(x')  + . . .  + x'-aH~_I(x~), (20.1) 

then = 0. 

[] By Lemma 20.6, for i, j >_ 0 we have 

(H(x)~z(U))(i + r j )  = ( Hk(x)x~('+k)a(u)) (j) = 0. (20.2) 
k----0 

Let us sum these relations for integers i E 0, T - 1 such that e(i) = 0. By [70] (or by 26.2), the number 

of integers i E 0,T - 1 such that e(i) -- 0 (i.e., U(i) = e) is equal to qm-1, and for arbitrary k E 1,r  - 1, 

a E (0, 1 , . . . ,  q - 2, oo} the number of integers i e 0, T - 1 such that (e(i), e(i + k)) = (0, a) is equal to q'~-~. 

Therefore, the result of the summation of (20.2) is 

"r--1 

qm-XHo(x)a(u ) + q,~-2. ~ Hk(x)(e + x + . . .  + xq-2)a(u) = O. 
k = l  

An analogous summation of (20.2) for integers i E 0, T - 1 such that e(i) = oo gives 

"t'--I 

�9 H (x)(e + x + . . .  + = o. 
k=l 

Therefore, qm-lHo(x)er(u ) = 0 ,  and since qe is not a z e r o  divisor, Ho(x)a(u) = O. [] 
20.9. Corol lary .  I f  (20.1) holds and H(x)a(V)  = O, then 

H 0 ( x ) o ' ( u )  = g l ( x ) o ' ( u  ) --- . . .  = gr-l(X)O'(U)= O. 

[] By Lemmas 20.6 and 20.8, Ho(x")cr(U) = O. Therefore, 

(xH~(x ~) + . . .  + x~-lH~_l(x~))a(U) = (H(x) - Ho(X~))a(U) = O. 

Since a(V) is reversible, we have (Hx(x ~') + . . .  + x~-2H~_~(x~))a(V) = 0. By Lemma 20.8, H~(x)a(u) = O. 
The proof is completed by induction. [] 

[] Proof of Theorem 20.1. The inclusion An (a(V)) D_ (G(z~)[G(x) E An (~(u))) follows from 20.7; the 
inverse inclusion follows from 20.9. [::] 

By 20.3, if cr ~ 0, then r < rank a(V) < T. A representation a ~ 0 is called minimal (maxima 0 if 

ranka(V)  = r ( ranka(U) = T). 

20.10. E x a m p l e .  A mapping a such that a(GF(q)*) = c E S\O is minimal. A mapping a, which is 

equal to 0 for every point except for some A0 E GF(q)\O, is maximal. 

20.11. P r o p o s i t i o n .  A mapping ~r : GF(q) --~ S is minimal if and only if  there exist elements a E S, 

c E S\O such that ca ~-1 = c and 

a(O) = O, a(e) = c, a(/3') = ca', i e 1, q - 2.[] 
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21. GF(q) -Represen ta t ions  o f  M P - R e c u r r e n c e s  o v e r  GF(q) 

Let u be an LR, S of maximal  period over the field P = GF(q), q = f ,  with minimal  polynomial f (x )  of 

degree m. Any mapping a : P -+ P is defined by the  polynomial A(x) = Aq_ax q-x + ... + Axx + Ao �9 P[x] 

such that  a(a) = h(a ) ,  a �9 P .  Denote I = {l �9 ~ 1  At # 0}. 
For k �9 No, let 

k = y~p~u~(k)= ~ qSNs(k), 
s>_O s>_O 

u,(k) �9 0 , p -  1, Ns(k) eO, q - 1 ,  

w(k) = F_, w ( k )  = F_, N,(k). 
s>O s>O 

We write the sum k = k I 3 t- , . . - 4 -  kt of integers kx , . . . , k t  �9 N0 in the  form k = k 1 4-  . . .  4-  k t  if us(k) = 
us(k1) + . . .  + us(kt) for s > 0. Let 0 �9 GF(q ~) be a root of the polynomial  f ( x )  and T = qm _ 1. For 

l �9 1, q - 1 denote  

f(~ = x -- e, 

f ( o ( z )  = 1-I{z  - Okl k �9 1, T,  W ( k )  = l, I = No(k)  4 - . . .  4- N,~_l(k)}. 

These polynomials are pairwise coprime, they  belong to P[x], and 

~-1 (m + us(l)- 1) 
degf (0 (x )  = 1-I \ t/~(1) ' 

s=0  
l �9 1, q - 1, 

where r = logp q. If q = p, then these formulas can be simplified: 

f(O(x) = 1]{x  - Oklk �9 1, T, w(k) = l}, l > 1, 

21.1.  T h e o r e m .  

degf(O(x) = (re + l -  l )  
l 

The following relations hold: 

l �9 1,p - 1. 

M~(~)(x) = 1-[ f(O(x), 
IEl 

,1( ) 
r a n k a ( u )  = E 1"I m + u s ( 1 ) -  1 

l e ;  , = o  ' 

where I = {l �9 O , q -  11 At # 0}. 
[] By Theorem 12.2, u(i) = tr  (cOi), i > 0, where t r  is the trace from GF(q m) to GF(q), c �9 GF(qm)\O. 

Then for l �9 1, q - 1: 

l! . (cOi)jo+qjl+...+q,,-,j,,_,. u(i)t = ~ jo! �9 j~-a !  
Jo +...+j-,,-a =t " " 

O~jt<l 

By Lucas'  theorem [4], p does not d iv ide  the polynomial  coefficient in the last relation if and only if l = 

j0 q- . . .  -~ jm-1. Therefore,  the minimal polynomial  of the LRS u t is equal to f (0 (x) ,  l 6 0, q -  1. Now the 

theorem follows from the  equality ~r(u) = A(u) = ~ t e t  At ut. [] 

21.2.  C o r o l l a r y .  We have rank (r(u) < ( m ~ - l ) ' ,  and this inequality becomes an equality if and only iJ 

I = O, q - 1, i.e., if all coefficients of the polynomial A(x) are not equal to O. [] 
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22. Z p ~ - R e p r e s e n t a t i o n s  o f  M P - R e c u r r e n c e s  ove r  GF(p) 

Let u be an LRS of maximal period over the field P = GF(p) (p is prime) with minimal polynomial f (x)  
of degree m, R = Zp., and let a : P --* R be a mapping. To simplify the formulations, we consider only the 

case a(0) = 0. The general case is considered in [27]. 

A. T h e  p o l y n o m i a l  c o r r e s p o n d i n g  to  a.  Let %, e be the units of the field P and the ring R 

respectively, r(R) = {& = 0, ~1,..., #p-l} be the p-adic coordinate set of R (see Section 19.S), fl: = te 

(modp), t e 0,p - 1. We define the norm of a mapping a :  P ~ R as Ilall = m a x { t  E 0--~la(P) C_ p:R} (see 

also 16.1). 

22.1. P r o p o s i t i o n .  There exists the unique polynomial ffl,(x) = Cp_lX p-1 + . . .  + r over R such that 

�9 ,(~,) = ~(tev), t E o , p -  1. (22.1) 

The following equations are satisfied: I[~,(x)t[ = II~ll, 

p--1 
~(~) = ~__L_ . ~ ~(tep)(~,-~ + ~-3~, + . . .  + ~ - ~  + ~-2) .  (22.2) 

p - 1  t=1 

[] The system of linear equations (22.1) of the variables r  r has a unique solution because its 

determinant is the Vandermonde determinant. The equality (22.1) for the polynomial (22.2) can be proved 
by direct evaluations. O 

B.  T h e  ann i h i l a t o r  o f  t h e  s e q u e n c e  a(u). Let z : P ~ R be the isomorphism of the fields P = GF(p) 
and R = GF(p). Let F.(x) E R[x] be the distinguished polynomial corresponding to the polynomial x ( f )  (see 

17.6): F.(x)lx T - e, -F.(x) = z ( f (x ) ) ,  where T = T( f )  = T(u) =pm _ 1. Let/~ be a root of the polynomial 

F.(x), 0 belonging to the Galois extension S = GR(pm~,p ") of the Galois ring R. Let 

F.~')(z) = H { x -  0kl 1 < k < T ,  w(k) = r}, r >  1, 

where w(k), u,(k) are defined as in Section 21. It is easy to see that F(.O(x) e R[x] and F(.O(x) = e for 

r > ( p -  1)m. The degree of the polynomial F(.O(x) is equal to the number { m } of combinations of r 
r 

identical balls into m boxes under the condition that each box contains less than or equal to p - 1 balls. By 
[59, p. 215] 

r i>o m - 1 , r > 1. (22.3) 

{ 
r 

F,(~) = 
p-1 

1=1 

22.2. T h e o r e m  [27]. Let [[otl = r e 0 ,n  -- 1. Then 

An (o '(u))  = (Fn-l(x),pFn-2(x),. . .  , p n - r ~ l F r ( x ) , p n - r ) .  

In particular, F,~-I (x) is a minimal polynomial of ~r(u). 
Note that if degF,(x)  = deg Ft(x) for some 0 < t < s < n - 1, then F,(x) = Ft(x). In this situation we 

may exclude p"-:-lF:(x) from the generating set of Ann (~r(u)). After all such exclusions, we get the canonical 

system of generators (i.e., Groebner base) of the ideal Ann (a(u)) (see Section 16.A). 

Denote F , ~ ( ~ ) =  F,~I~(~)..... F?I(~). 
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22.3. Corol lary.  For any s E ,n'O-,-,-,-,-,-,-,~T-1 the polynomial f - , - I  . F{(p-1)(,+x))(x ) annihilates L R S  ~r(u). In 

particular, F.((P-1)")(z) is a characteristic polynomial o fa (u ) ,  t3 

[] Proof of Theorem 22.2. The characteristic polynomial x T - e of the sequence a(u) is the product of 
pairwise coprime polynomials (x - O)(x - 02) . . .  (z  - or). Therefore, by 2.18, 

T 

= E i > o, (22.4) 
k = l  

where ck E S are uniquely determined coefficients. By 2.19, 

T T 

An (~(u)) = 1"I An (ck0 ki) = IT (z - Ok, p "-II(kll) (22.5) 
k=l k = l  

To Ilckll, we write the LRS x(u) E L-~(-r.(x)) in the form ~t(u)(i) = tr (~0/), c E S, i > 0, tr = t r f "  (see 

10.16). Let i _> 0 and let s E 0,p - 1 be an integer such that u(i) = sep. Then x(u) ( i )  = sE = fl--~ = tr ( ~ ) ,  

hence fl, = (tr (c01)) p"-I, and 

p--1 

~(u)(i)  = cr(s%) = ~ ( f l , )  = ~2~((tr (c0')) ~"-1) = ~ el" (c0' + (cO') p + . . .  + (c~i)P"-~) p"-~'. (22.6) 
1=1 

By Theorem 2.18, the coefficients of the binomial sequence {a k~} in (22.4) and (22.6) are equal. This leads to 
the relations 

(_p)t  . c k " l[ 
ck =- vo(k)! . . ,  v,~_l(k)! " Ct (modpt+llr 1 < k < T,  

where / i s  the residue of w(k) modulo p - 1 in the set 1,p - 1, t = (w(k) - l ) / (p  - 1), r is the coefficient of 
the polynomial k~(x), and w(k),  v , (k)  are defined in Section 21. Therefore, 

Ilckll = rain {t + I1r 
Now the theorem follows from (22.5) and from the definition of F,(x) .  [] 

C. The  rank  of t he  sequence  a(u) .  

22.4. P ropos i t i o n  [27]. The rank of  the L R S  ~r(u) depends only on the representation cr and on the 

rank m of  the L R S  u over the field Po and can be evaluated by the formula rank cr(u) = r(~r, m),  where 

p--1 

t=l l } + {  l + p - 1  } + ' " + ( l + ( n - l - l l @ l [ ) ( p - 1 )  })" (22.7) 

I f  p, n are fized, m --. 0% then r (e ,m)  = ('~+'-1)(1 + 0(~)), where t = (p - 1)(n - II ll - 1) + l(~), 

l(a) = max{l  ~ 1,p - 11 I1r = I1~11}. 
[] By Theorem 22.2, r (a ,m) = degF,_l(x) ,  and (22.7) follows from the definition of F,_I (z ) .  The 

equality I1  ( )11 = I1~11 (see 22.1) shows that the definition of l (g)is  correct. The asymptotic formula follows 

from(22.7) and from the relation { mr } =  ( m + r - l r ) ( I + 0 ( I ) ) .  [] 

22.5. Corollary.  I f  p = 2, then 

rn ,,o,,)o 
Now we are going to describe representations c~ such that the rank ~(u) is maximal or minimal. Denote 

R ( m ) = {  m m m m }, 
1 } + {  2 } + {  3 } + ' " + {  ( p - 1 ) n  
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r(~)  = { m 1 }§ 
P 

22.6. Definit ion.  A representation 
if Hall = 0 and r ( a ,m)  = r (m)  for any m 

Note that  if I[~1[ = t > 0, then a :  
instead of R = Zp.. This explains the 
Formula (22.7) implies 

22.7. P r o p o s i t i o n  [27]. I f  m > 1, 

I1r - - . . . - -  I1r -- o. [] 

m m 

} + ( 2 p - 1  } + ' " + {  l + ( p - 1 ) ( n - 1 ) } "  

a is called maximal if r(a, m) = R(m) for any m >_ 1, and minimal, 
> 1 .  

P ~ ptR, and a may be considered as a representation over Zp.-, 

condition [Jail = 0 in the definition of a minimal  representation. 

then r(cr, m) <_ n(m) .  A representation ~r is maximal if and only i] 

For example, let cr(0) = a(2ep) . . . .  -- a ( ( p -  1)ep) = 0, a(ep) = ( p -  1)e. Then  kg~(x) = x p-1 + . . .  + x 
and a is maximal. 

22.8. P r o p o s i t i o n  [27]. / f  Hall = 0, m >_ 1, then r(a, m) >_ r (m) .  The following conditions are 
equivalent: 

(a) a is minimab 
(b) coefficients of the polynomial kr~(x) satisfy [[r = 0, r . . . .  = r = 0; 

(c) there exists an element r E R \ p R  such that ~(tee) = r t E 0, p - 1, where {fl0, . . . ,  tip-1 } = F(R). 
rn The inequality r(a, m) >_ r(m) and the equivalence (a) r  (b) follows from (22.7). The equivalence (b) 

r  (c)follows from 22.1. [] 

22.9. Def in i t ion .  The representation a : P --* R of the form a(tep) = fit, t E 0,p - 1, is called p-adic. 
The representation ap of the form brp(tep ) = re, t E 0,p - 1, is called p-ary. 

D. T h e  p -a ry  r e p r e s e n t a t i o n  ap [28]. 

22.10.  L e m m a .  Let elements bt = g(tep) satisfy the conditions bt -- te (modp) ,  t E O,p =-"1. Then the 
polynomial q2~(z) from 22.! is compared with x modulo p. Let 

X(z) = x(z - b l ) . . .  (x - bp-1) = x p -t- hp-lZ p-1 -1-...-t- hlz  

and let ffl*(x), X*(x) be polynomials of degree p - 1 over R such that 

, ~ ( x )  = x + p,~*(x) ,  x ( x )  = x ,  - ~ + p x ' ( x )  

(see also Lemma 19.10). Then ~*(x) - X*(X) (modp).  

t2 Since bt =- te - fit (modp) ,  g fit (modp  2) and 

bt = b, + x (bd  = ~ + p .  x*(bd - ~, + p .  x ' ( Z , )  (modp2).  

On the other hand, by Proposition 22.1, 

b, = O , (A)  =/3,  + p .  ~*(flt), t e O ,  p - 1 ,  

and our lemma follows from the uniqueness of the polynomial ~ ( z ) .  [] 

Denote  rk(p) = 1 k + 2 ~ + . . .  + (p - 1 7 .  Then  

plrk(p), 1 < k < p -- 2; p2Xr l (p ) ;  p21r2~+l(p), 3 < 2a + 1 < p - 2. 

22.11.  Def in i t i on .  A pair (p, 2a), 2 < 2a < p - 3, is called regular if p2]/r2,(p). Otherwise, this pair 
is called irregular [6]. The number of irregular pairs is called the index of irregularity ofp and is denoted by 
ii(p). If ii(p) = 0, then the prime number p is called regular. 

For example, there are three irregular p < 100, namely 37, 59, and 67. Our definition of a regular number 
is equivalent to other definitions; see [6]. Note that  a pair (p, 2a) is regular if and only if the numerator  of 
the Bernoulli number B2~ is not divisible by p. Denote 

n--1 n--2 

m }, I E 2,p - 1. m }, Q ' = ~ - ' {  l + ( p - 1 ) t  ql  = E { 1 + ( p -  1)t 
t = 0  t~-0 
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22.12. T h e o r e m  [28]. Let u be an L R S  of maximal period of rank m over the field P = GF(p), p > 3. 
Then 

Q1 + E Ot + Q,-1 <_ rank o'p(u) < (22.8) 
IEs 

where ~3 = {l e 3,p - 21 l is odd, (p,p - l) is a regular pair}. 

[] Since g/~,(x) = z (modp), 

Qz + Qp-1, 
1st<p-2 
t is odd 

r - -  r  = - . -  ------ r  = 0 ( m o d p ) .  

1 
r = 5 -p. 

Using (22.2), it is possible to prove that 

r = r  . . . . .  r  = o, 

The second inequality in (22.8) follows from these relations and from (22.7). Let sk(p) = sk(1, 2 , . . .  , p -  1), 

where Sk(Xl , . . . ,  xp-1) is the symmetric function in p - 1 variables of degree k. Applying Lemma 22.10 and 
the Newton formulas, which connect Sk and rk, we get 

(22.9) 
1 

Cz ------ ht = (-1)P-ts , - t (p)  -= 7" r,-t(p) (modp2), 

l e 2,p -- 1. Therefore, I1r = 1 for l E z:, and I1r = 0, I1r = 1. The first inequality in (22.8) follows 
from these relations and from (22:7). [] 

22.13. Corol la ry .  Let p >__ 3. Then 

ranko'p(u) = ~ Qt +Qp-1 
l<t__.p-2 
t is odd 

if and only if  p is a prime regular number. [] 
22.14. Corol la ry .  I f  p = 2, then the p-ary representation ap is minimal and maximal. I f  p = 3, then 

% is maximal. I f p  >__ 5, then crp is not minimal and not maximal. [] 

22.15. E x a m p l e s .  We give the values of the ranks of sequences cr(u) for minimal, p-ary, and maximal 
representation cr. The last column contains the period T = p m _  1 of a(u). 

p n m r (m)  r(~rp, m) R(m) T 
2 4 11 
2 8 11 
5 4 11 
5 8 11 
11 4 5 
11 8 5 

205 205 205 561 
1980 1980 1980 2047 

7.6-10 s 1.5-106 6.107 4.9.107 
1.2.107 3.5.107 4.8.107 4.9.107 
1.5 �9 104 8.2- 104 1.59.105 1.61 �9 105 
1.6'104 9.7. 104 T 1.61-105 

23. T h e  F i r s t  C o o r d i n a t e  S e q u e n c e s  o f  M P - R e c u r r e n c e s  over  a Galois  R ing  

Let R = GR(q",p'~), q = pr, B = {b0 = 0, bx, . . . ,  bq-1} be the coordinate set of the ring R, F(R) = 

{/30 = 0 , i l l , . . .  ,flq-1} be the p-adic coordinate set (see Section 19.B). We suppose that the elements of all 

coordinate sets are enumerated in such a way that bt -= fit (modp), t E 0, q - 1, and if R = Zp,, then bt - te 

(mod p), t E 0,p - 1. 
By Proposition 22.1, there exists the uniquely defined polynomial 

�9 (x) = ~8 (x )  = Cq_,~q-' + . . .  + r  e R[~] 
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such that  @8(fit) = bt, t E 0, q - 1. Let 

= - = 

be the characteristic polynomial of the coordinate set B. 

23.1. L e m m a .  I f  a e R, then "go(a) = a q"-a, 7g(a) = ~sCT0(a)). 

[3 It is easy to prove by induction that  70(a) - a qk-~ (modpk).  [] 
Let G(z) be a polynomial of maximal period of degree m > 2 over R, ~ be a root of G(x), ~ E Q = 

GR(q'~=,p ") > R and T = q" - 1. As in Section 21, we define the polynomials 

-G(t)(x) = 1 - I { x -  ~kl k e 1, T, W ( k ) =  l, l =  No(k) 5r . . .  5r N,~_~(k)}, 

where l E 1, q - 1, and 

"~q)(x) = i - I { z - ~  a] 1 < d < q"~- 1, W(d) =q,  (q/p)[N,(d) for s > 0} 

of degree degG(q)(z) = (m+~-l) _ m. The polynomials G(0(z), l E 1,q, are pairwise coprime and belong to 

R[z]. Denote 

s 1 6 3  q - 1 ] r 1 6 2  ( m o d p 2 ) } = { l E 2 , q - l l h t r  

The last equality follows from Lamina 22.10. 
23.2. T h e o r e m  [28, 33]. Let u be an LRS of mazimal period over a Galois ring R = GR(q",p"), q = p~, 

with minimal polynomial G(x) .of degree m, and let ua = 7~(u)  be the first coordinate sequence of u in the 
coordinate set 13. Then 

M~l(x ) = -G(x) 2. l"I-~O(x).-~q)(x),  
IEs 

ranku l  = m + ~--~ i~  rn + v,(l) - 1 r n + p -  1 
l ~  s=o vs( l )  + p 

[] Let ~t3(x) = Cxx + p~(x). By Lemma 23.1, 

u 0  = = = r  + p C ( u )  (modp ). 

It follows that  pul = u -  uo = u -  r  p'~(u) (mod p2). Let y be a sequence over R such that  u -  r q = py 

(modp2). Then ~a = ~ - ~(~). By Theorem 21.1, the minimal polynomial of the LRS ~(~) is equal to 

l']t~cG'(0(z). If we represent u by the trace function, u(i) = TrS(a~ i) (Theorem 19.3) and investigate the 

analytical representation of y, we get My(x) = U(x)2U(q)(z). It follows that  the minimal polynomials of the 

sequences ~ and r  are coprime. Therefore, the minimal  polynomial of ~1 is equal to the product  of these 
polynomials, r3 

In particular, if 3'a(u) is the first coordinate sequence of the LRS u in the p-adic coordinate set, then 

rankTa(u) = m + ('~+P-~). This result was proved by A. Nechaev for p = 2 in 1982 and by A. Kuzmin for 

p > 3 in 1986 (see [123]). 
23.3. Coro l l a ry .  The following inequalities hold: 

+ < rank-y ( ) < m - 
p - - 1 + P - 1 .  [] 

23.4.  Coro l l a ry .  I f  R = Z2., then the minimal polynomial of the sequence ~Bx (u ) is equal to -G(z)2-~)(z), 
and rank 7~(u) = m(m + 3)/2. [] 
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We call a coordinate set 13 minimal (mazimal) if the first (second) inequality of Corollary 23.3 becomes 
an equality. It follows from Theorem 23.2 that 13 is minimal if and only if s = g,  i.e., ~(z)  - Cxz (modp2), 

i.e., if 13 = r  (modp 2) for some r E e + pR. For example, the p-adic coordinate set F(R) is minimal. 

On the other hand, 13 is maximal if and only i f / :  = 2, q - 2. For example, 13 = {0, fl~ + pe, f12,..., ~q-~} is 
maximal. 

23.5. T h e o r e m  [28, 33]. Let R = Zp,, u be an L R S  of maximal period over R with minimal polynomial 

G(x) of  degree m, and let 61(u) be the first coordinate sequence of u in the p-ary coordinate set 13p. Then 

M~I(, ) = G(x) 2- 1"I G-(0(x) �9 G( ' - I ) (z) .  G(')(x), 
/ 

t l + 1 + p ' 

where the product and the sum are taken over odd numbers l E 3, p - 2 such Nat  (p, p - l) is a regular pair. 
[] This theorem follows from 23.2 and (22.9). [] 
The tables of irregular pairs can be found, for example, in [6]. 
23.6. Corol lary .  The p-ary coordinate set is minimal.for p = 2, maximal for  p = 3, and not minimal 

and not mazimal for p >_ 5. [] 
23.7. Corol lary .  Under the conditions of  Theorem 23.5, 

r a n k 6 1 ( u ) < m +  ~ ( r e + l - l ) ( r e + p - 2 ) ( r e + p - l )  
3<_1<_p--2 l + + , (23.1) - p - 1  p 

t is odd 

and this inequality becomes an equality if  and only i f  p is a prime regular number. [] 
The estimation (23.1) was proved by A. Kuzmin [123]. V. Kurakin [28, 33] determined when the inequality 

(23.1) becomes an equality~ 
By formulas for the sums of squares and quadrics, 

1 1 
r2(p) = g"  p(p - 1)(2p - 1), r4(p) = ~-~. p(2p - 1)(3p ~ - 3p - 1). 

Since these expressions are not divisible by p2, the pairs (p, 2), (p,4) for p > 7 are regular. This implies 
23.8. Corol lary .  Under the conditions of Theorem 23.5, if  p > 7, then 

3_<1<p-21-6 l + p - 4 + 

t is odd 

( m ; p ; 3 ) + ( m ; : ? 2 ) + ( m + ; - 1 ) ,  

where i = ii(p) is the index of  irregularity of p. In particular, 

r a n k 6 ~ ( u ) > m + ~ ,  p - 4  ] + \  p - 2  + m p _ l  + p -  " [] 

The formulas of the 6th, 8th, etc. powers (or the tables of the Bernoulli numbers) make it possible to 
find other regular pairs and to make more precise estimations of rank gl (u). 

Note that ii(p) << p. The tables in [6] show that if p < 125,000, then ii(p) _< 5. So, for p < 125,000, the 
rank of the sequence 5l(u) is very close to the upper estimate from Corollary 23.7. The same is also true for 
the upper estimate from Theorem 22.12. 

23.9. Example .  Let R = Zp,, p = 5, m = 11. Then the ranks of the first coordinate sequences of LRS 
u in minimal, p-ary, and maximal coordinate sets are equal to 

rank 71(u) = 3014, rank 51(u) = 4301, rank 7F max (u) = 4367 

respectively. I fp  = 11, m = 5, then the ranks are equal to 1370, 3577, and 4367 correspondingly. 
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24. Coordinate Sequences of  M P - R e c u r r e n c e s  over  Zp. 

A. T h e  m a i n  resu l t s .  Let u be an LRS of maximal period over the ring R = Zp, with the minimal 

polynomial G(x) of degree m > 2. Denote by uo = 7~(u), s e 0 - ~ -  1, the s-th coordinate sequence of  u 
in the arbitrary coordinate set B of the ring R (note that we have used another notation in Section 19.B,C; 
see (19.13)). Let ~ be a root of G(z), ~ belong to the Galois extension Q = GR(pm",p ") of the ring R, and 
denote 

- ~ N ) ( x ) = I I { x - ~ l d e l , r ,  w ( d ) = N } ,  N>_l ,  r = p " - l .  

It is easy to see that degG-(N)(x) = { m N } (see (22.3)). For k, l E N denote 

b(k,O)=k, 

and in other cases 

b(k, l) = 0, if k < pt, 

{ )~, if p > 
b ( k , l ) = k - p l +  1, if p =  

2, i fp  = 

3, where ,~ E 1,p - 1, ,~ - l (modp - 1), 
2, l is even or l =  l, 
2, l is odd l>_ 3. 

24.1. T h e o r e m  [26, 30]. Thepolynomial 

~(x )  = l ' I  G(N}(x) , (24.1) 
/=0 N=b(l+l)-t-1 

where b(l) = b ( f  , l), is a characteristic polynomial of the sequence u,, and 

f-~ b(O 

ranku,< E(l+l)- E { N }" (24.2) 
t=o N=b(t+l)+l 

In some special cases these estimations can be strengthened. 
24.2. T h e o r e m  [30]. Let u, = %(u), s E O , n -  1, be the coordinate sequences of u in the p-adic 

coordinate set. Then Theorem 24.1 remains true if the index N in the formulas (24.1), (24.2) satisfies the 
condition N =- 1 (modp - 1). 

24.3. T h e o r e m  (A. Kuzmin [123]). Let us = 5s(u), s E O,n - 1, be the coordinate sequences of u in the 
p-ary coordinate set, p > 5. Then Theorem 24.1 remains true if the index N in the formulas (24.1), (24.2) 
satisfies the condition N = 1 (mod2) or N = 0 ( m o d p -  1). 

Let ff(S)(x) E R[x] be the polynomials from Lemma 19.9 and uO) = OO)(x)u be the s-th derivative 

sequence of u (see Section 19.B). Denote/:o = {0, f - 1  }, 

f - . t = { l ] l < t < p ' - l - l , l = t ( m o d p - 1 ) } ,  t E l , p - l ,  i f p > 3 ,  

s  s - 1 - 2 ,  l i s even ,  2 ' - 2 l + l < m } ,  if p = 2 ,  

s = {ll 3 < I < 2 "-1 - 1, I is odd, 2 s - 2 l + 2  < m}, i fp  = 2, 

7~t= ~ ( l + l ) - {  b(/) } '  where b(l)=b(p' , l) .  
IEs 

24.4. T h e o r e m  [23, 30]. (a) rank us ~ T~o. 
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(b) If  polynomial G(x) is chosen in such way that the polynomials -~l)(x) '*,  a E O, m - 1, are linearly 

independent over the field -R modulo the polynomial -G(z), then 

rank u, >_ ~ + ~1 + 
m 

�9 ~2, 
m + p  

(c) I f  the linear rank of  the system of polynomials Res (~2)(x)"/-G(x)), a E O, m - 1, is equal to h > p, 
then 

h - p  
rank u, > Tgo + - - .  7~x. 

h 

(d) I f  deg-~2)(x) = 0 (i.e., h =  1), then 

rank u. k Tr + TQ + . . .  + 7~v-1. 

Note that, by (19.20), if p >_ 3, then ~(2)(x) = ~O)(x). 
24.5. R e m a r k .  Theorems 24.1 and 24.4 complete the following series of earlier results. For example, 

under the condition (b) of Theorem 24.4, if p = 2, s E 3, n - 1, then 

(m) rank 5,(u) > (2 "-x + 1)m + 2 "-1 + E ( 2  "-1 -- 2 k + 1) 2k+1 + 1 + 2" ' 
k---2 

(24.3) 

and i fp  > 3, s G 2, n -  1, then 

t - 2  
m m rankSs(u) >_ (P"l T1)m+ Y~(P"-l--Pk + l){ pk-]-l..[.p__ l .}-]- { p '  }" 

k----2 
(24.4) 

The presence of the summand in (24.3), noted by *, has not been proved in the general case, but the hypothesis 

was confirmed for m < 14 and m = 20. The lower estimations of rank 5,(u) for p = 2 are also given in [95]; 
these estimations do not contain the first and second summands of (24.3). Estimations (24.3) were obtained 
by A. Nechaev in 1982 in connection with the investigation of the function Tr (x) (see [47] and Section 19.C). 

Estimations (24.4) were obtained by A. Kuzmin in 1986. Theorems 24.1 and 24.4 were proved by A. Kuzmin 

for B = B v and by V. Kurakin for the arbitrary coordinate set B [23, 26, 30]. 
B. M e t h o d s  of  proofs .  T h e  m e t h o d  of  sect ions .  
24.6. L e m m a .  Let y be a linear recurrence over a field P, b(x) E P[x], z = b(x)y. I f  an element 7 o] 

some expansion of P is a root of Ms(x) of  multiplicity k > 0 and a root of  b(x) of multiplicity l >_ O, then 7 
is a root of My(x) of multiplicity k + l. 

[] Ms(x) = My(x)/(b(x) ,  My(x)). [] 
In what follows, an element which is not a root of a polynomial is called a root of multiplicity 0. We say 

that the sequence z = b(x)y is the section of the sequence y by the polynomial b(x). The method of sections 

consists in the following. We multiply a sequence y on some (well-chosen) polynomial b(x). Then information 
about the roots of the polynomial Ms(x) gives us some information about the roots of the polynomial My(x). 

Denote r = p'~ - 1, r, = r f ,  s = O, n - 1. 

24.7. P r o p o s i t i o n .  I f  s G O, n - T ,  then T(u.)  = r,. 

[] Since T(umodpt+l) lr t ,  by 6.3 and 17.3, T(u,)lr ,  and 

(x ~-1 - e)u =- (x "~ - e ) p " u ,  ( m o d f + l ) .  

On the other hand, (x ~'-' - e)u = p"u(") (by the definition of u(")). Hence 

(x "-1 - e)u, = u (") (modp). (24.5) 
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Therefore, T(u-'<')) = t iT(u , ) ,  T(u,)yro-a = 7"p "-1 and, a s  was noted above, T(u , ) l r ,  = r f .  It follows then 
that T(u~) = r,. D 

T h e  p o l y n o m i a l  c o m p l e x i t y  o f  a s equence .  Consider a more general situation. Let R be a commu- 

tative Artinian principal ideal ring with residue field R R/OI(R), v be an LRS over R, F(x)  e R[x] be a 

monic polynomial, and let Q be a Galois extension of R such that F (x )  = (x - 0~)~ . . .  (x - 0N) ~N for some 

elements 0~, . . . ,  0N e Q, pairwise distinct modulo radical ~I(Q). Let F(O(x) be monic polynomial over Q 
such that 

F(0(x)  = 1.c .m.[x-0, ,  ...01kl 1 < k < r, 1 _< ia , . . . , i k  <_ Y]. 

Then the following conditions are equivalent: 
(1) v is the sum of binomial sequences (see 2.15) with coefficients in Q such that  the roots of these 

binomial sequences axe products of not more than r elements from {01, . . . ,  ON}; 

(2) some power of the polynomial F(O(x) annihilates the LRS v; 
24.8. Def in i t ion .  The least r E N such that the conditions (1), (2) are satisfied is called the polynomial 

complexity p(Fiv) of the sequence v with respect to the polynomial F(x) ;  if there does not exist such an 
integer r, we define p(Fiv) = oo. We also set p(F]O) = O. 

It is clear that if F(x)  = H(x) ,  then p(FIv ) = p(HIv); but if~ = ~ ,  then not necessarily p(Fiv) = p ( f Iw  ). 

Polynomial complexity is defined, in particular, for sequences over a field. Obviously, p(FI ~) < p(F[v). 
24.9. E x a m p l e .  If v e L R ( F ) . . . . .  LR(F) (r times), then p(F]v) <_ r. The converse is not true. For 

example, if p(F[v) -- 1, then it is not necessary that v E LR(F). We can only state that  v E LR(F '~) for some 

n (in particular, for n = ind ~(R),  the index of nilpotency of the radical Ol(R)). 
The following properties are direct consequences of Definition 24.8: 

p(FIv + w) < max {p(FIv), p(FIw)} , 

p(F[vw) < p(FIv) + p(FIw). (24.6) 

T h e  p o l y n o m i a l  c o m p l e x i t y  of  t h e  s e q u e n c e s  u,. Now we return to the notations introduced 
at the beginning of the section. Let ~0 = 70(~) E r(Q), where r(Q) is the p-adic coordinate set of the 

ring Q = G R ( p ' ~ , f )  (see Section 19.B). Since the roots of the polynomial G(x) are ~, ~ , . . .  , ~" -~ ,  then 

p(G[v) < r if and only if the sequence v E Q0) is the sum of binomial sequences with roots ~d (or ~0d), where 

d E 1, T, w(d) < r, and r is the least natural number wi th  this property (here w(d) is the p-axy weight of d; 

see Section 21). For v E Q(1) we set 

p(v) = p(GIv); p(V) = p(GIv); p(vmodp')  = p( f ' - ' v ) ;  

v[. l = v. + pv,+l + . . .  + f - , + x  v,_, (where vo = 7~(v)), s e 0, n - 1. 

24.10. L e m m a .  For s E O, n - 1, we have p(~,) < f . 
[] By induction on s we get a stronger property: 

p(~[,]) < p,; p(u[~lmodpt+a) < f+ t ,  t _> 1. (24.7) 

Since, by Theorem 19.3, u[0](i) = u(i) TrQR(af{), we have p(u[0]) = 1, so that (24.7) is proved for s = 0. Let 

(24.7) be true for some s E 0, n - 2. Then u[d _= y (modp),  p(y) < f .  By Lemma 23.1, 

v , E . + , ]  = -I,1 - =  I,l-  g(y) = 

Let ~*(x) be a polynomial of degree _< p - 1 such that k~e(x) = z + p~*(x) (see Lemma 22.10). Then 

ypn-1 ~ . .  pn-1 
pu[,+l] = u M -- -- p (y ). ( 2 4 . s )  
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1~ ioaows then that  
pu[s+l] ---- u[s] -- yP -- p~Y*(y) (modp2). 

By the induction assumption, p(u N m o d p  2) < p'+~. By (24.6), p(yt) < p(y)l <pSl < pS+t for 1 < p. Hence 

p(pu[s+i] m o d p  2) < pS+l, i.e., p(U[s+l]) < pS+,.  From (24.8) it follows that  

ypt+l t 
pu[s+l] - u[s] - -pgl*(y  p ) (modp'+2), t _>1. 

Using the induction assumption and (24.6), we get p(PUls+~lmodp t+~) < pS+t+l i.e., p(u[s+llmodp t+l) < 
pS+l+t t _> 1. [] 

T h e  m e t h o d  of  e x t r a c t i o n  of  t h e  m a i n  t e r m .  By Lemma 24.10, us is the sum of binomial sequences 
with roots of the form ~a, d E 1, ~', w(d) <_ pS. Therefore, u~ = ~+ff,  where ~ is the sum of binomial sequences 
for which w(d) = pS and ff is the sum of the rest of the binomial sequences, p(ff) < pS. We call the sequence 
the (forma 0 main term of the sequence Us (it is possible that  y = 0). In this section we describe its analytical 
representation. 

By Theorem 19.3, there exists a constant a E Q* such that  u(i) = TrQ(a~i), i > 0. For N -> 0, define 
the sequences y[N] over the ring Q by 

y[g](i) = 

where 

E(d) =E~(d )  = 

l < d < r  
w~d)--N 

i -> O, 

a d 

vo (d ) ! .V l (d ) ! . . . . . ~_ l (d ) ! '  
d =  

In particular, y[0] = (e, e ,e , .  :.). This definition gives the analytical representation of the sequence y[N]. It 
follows from the definition that  p(y[N]) < N for N > 0. 

24.11. P r o p o s i t i o n .  I f  M,  N E No, then 

y[MI. y[g]  - �9 y[M + g l  +,7, where P('I) < M + g .  
P 

I f  M, N are divisible on p, or if M + N < p, then this comparison is true modulo p2. [] 
24.12. T h e o r e m .  For s E O, n - 1, we have 

us = y[pS] q_ 7? (modp),  where p(y[pS]) < pS, p(r/) < pS 

Note that  if the coordinate sequences of u are taken in the p-ary coordinate set, then this result follows 
from (19.43). 

[] If s = 0, then our theorem follows from the relations 

uo(i) ~ u(i) = TrQ(a~ ') ~ tr~'(a~') = y[1](i). (24.9) 

Let the theorem be true for some s E 0, n - 2. By Lemma 23.1, 

u,  - ~,((Y[P'] + 7)") --- (Y[P'] + 7)" + P~*(Y~'] + 7) (modp2) �9 

Therefore, by (24.6), u,  = y[p']~ + ~ ( m o d p ) ,  p(r < p,+l, and by Proposition 24.11, u, - ( - p ) .  y[pS+X] + r 
( m o d p ) ,  where p(r )  < pS+l. Hence 

pus+l =-PU[s+ll = u[s] - us = u[s] + p" y[pS+l] _ zr (modp2). 

Now the theorem for the parameter  s+ l  follows from (24.7) (for t = 1). I::I 
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Thus, we have extracted the main term y~v'] o f  the sequence u,. Since y [ f ]  = 0 for p" > m(p - 1), 
Theorem 24.12 gives some information on the sequence u8 only for small s. To get more information on u,, 
we use the method of sections. 

T h e  fo rma l  p o l y n o m i a l  complex i ty .  We say that a sequence y E R0) is expressed via the sequences 

y l , . . . ,  yt E R 0) if y is the sum of products of these sequences with coefficients from R. Denote 

= {v,I v e L s ( G ) ,  ~ =/= o, s 6 o, n - 1}  u {0}, 

~ J ~ m  { c y  1 . . . y t [  C6 R, t 6 N, Y l , . . . , y t  6 ~o} .  

We define the formal polynomial complexity of sequences from 9Yto by the following relations: 

~ ( 0 )  = 0 ,  ~ ( v , )  = f ,  , e 0 ,  ~ - 1.  

A sequence y E fin\0 can be written in the form 

y C" y ~ l  at  = .... Yt , c E R \ O ,  a l , . . . , a t > l ,  

where Yl , . . . ,  Yt are distinct sequences from 99to. Let 

~(y) = ~(yx)A~ + . . .  + ~(Yt)At, 

where A i E 1,p - 1, Aj = a i ( m o d p -  1). This definition is constructed in such a way that if y, y' E ~ ,  y --- y' 

(modp), then iS(y) =/~(y'). For example, tS(u~) =/5(u,)  = p' .  

We say that the formal polynomial complexity of a sequence y E R (1) is equal to N,/5(y) = N, if y is the 
sum of sequences from ~ of the formal polynomial complexities < N, and N is the least nonnegative integer 
with this property. We write/5(y) = oo if there exists no such N. The relation/5(y) < 0 means, by definition, 
that y = 0. It follows from the definition that 

/9(Yl "JI- Y2) ~ m a x  (/3(y,),/3(y2)), P(Y, Y2) <_/5(yx) +/5(y2). (24.10) 

By Lemma 24.10, for any sequence y E R (1), 

p(y) </5(y). (24.11) 

The value/~(y mod pt) = ~(p,,-ty) is called the formal polynomial complexity of y modulo pt. 

Sec t i ons  o f  t h e  s e q u e n c e s  u,. Let k "-~ p" - = E,=o p'u~(k) E 1, 1. Denote 

rL--1 

utk] = 1]  u? (k), u [~ = (e, e, e , . . . ) ,  u t-x] = u [-2] . . . . .  O. 
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and the sequence r I can be expressed via 

(U(ol)) ~, 
U{o 2), 
u (2), (1) 

O t*O , 

1 , p -  1, 

i f p >  3 o r p = 2 ,  l =  l, 
if p = 2, l is even, 

/ f p =  2, l isodd, l > 3 ,  

A -- l ( m o d p -  1), 

. . ( r + l )  
UO, �9 . �9 , U s - - l , U  0 . 

s = 0  

The definitions imply that tS(utkl) = k, k E Z. 

24.13.  L e m m a .  I f  k E 1,p n - 1, I E N, then 

(x ~ - e) I. u [k] = (cu [~-n~ + rl)w + ( ( m o d p ) ,  

where c ~ n \pn ,  ~ ( ~ )  < k - p l  - (p  - 1 ) ,  ~ ( r  < k - p l  - p ( p  - 1 ) ,  



[] This theorem is proved in three steps: (1) l = p ' ,  k = pS; (2) l = p~, k is arbitrary;  (3) l, k are 

arbitrary. To prove (2), it is necessary to use the equali ty u[k] = 11o=o'-'"-x ~n~'(k)~i=~ ulp'] and the  case (1). To prove 
n--1 (3), it is necessary  to use  the  re la t ion  (x" - e) z = IL=o I-l~'=(~0(x ~ - e ) f  ( m o d p )  and  the  case (2). We  give 

more a detailed proof only in the case (1)�9 By (19.22), (19.23), it is sufficient to show that  

( (  l ~ s - r + l ,  iv--1 p--1 (x~'~ - e)u,  --= ,t  - , -o_1 . . . u , + ,  + r / ) u  ('+1) +~" (modp) ,  

where fi(r/) < p, _ 2p~+1 + 1, ~(~) < pS _ p(p~+l _ 1). This property  is a direct consequence of the  following 
l e I n i I l a ,  

24.13' .  L e m m a .  Let 0 < r < s -  1 < n -  2. Then 

_s[  1ha--r+1[. p--1 p--1 - s ( r + l )  (z*'-e)'pSuts]=e ~-~) ~-o-1...u,+~'u(;+~)) p€ ~+p rTUo +fie,  (24.12) 

where 

~(pS(modp ,+ l )  < pt _ p(p,+X _ 1), 

�9 . , U(0 r + l )  and the sequence 7] can be expressed via uo, . ,  u,-1 
[] We use induction by s. Let s = r + 1. T h e n  

~ ( p S y m o d p t + l ) < p t - 2 p ~ + l + l ,  

t E s, n - - l ,  

(X "rr - -  e )  " p rT lu[ r+l ]  -~- (X "rr - -  e ) u  = p r + l u ( r + l )  -~ pr+lu(or+l)  --"l" p r T 2 u [  1](r+l) �9 

By Lemma 23.1, p u ( r + l ) =  pkOB((u(~+l))P"-2). Therefore, 

(X ~'r - -  e ) .  p r + l U [ r + l  ] ---- pr+l((u(or+l))Pnr'2 + T/U(0 r + l )  + r  

where 

(24.13) 

Therefore, by (24.12), 

x'~'us = qs ( (us  + Y + rtU(o ~+1) + ()~"-~). 

(X "rr - -  e )  . pS+lu[s_{.1] = ( x  ~'r - -  e )  * p S u [ s  ] - -  (X vr - -  e )  �9 p S u  s = 

pS(y  + ~U(0r+l) + ~ + Us - -  II/B((Us ..~ y + ,,-0 + ( ) , . -1 ) )  = 

p'(us - ~tB(uP,"-~)) + pS (y  _ ~/8(yp--~))+ 

p S ( , u ( ; + l )  _ + p'(r 
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p-1  
.[. I (r+l)\pn-21 

p uC; +1) = (r  - +  ,tUo ) , 
1=2 

(~+1) 
= put1 l 

Since ff/B(x) --- x (modp)  by Lemma 22.10, we have r = e (modp) ,  Ct = 0 (modp) ,  l > 2. Now one can 

check that  the  sequences pr+lTlu(o r+~), pr+l~ satisfy conditions (24.13) for s = r + 1. Thus,  our lemma is proved 
f o r s  = r + l .  

Suppose that  the lemma is proved for some s E r + 1, n - 2. Let 

y - -  ( l ~ s - r + l u P - 1  p - 1  . U~r+D. 
k m ] a--1 " �9 �9 * U r + l  

By (24.12), x'~'u, =_ us + Y + flu (~+1) + r (modp) .  By L e m m a  23.1, 



p-1  (v"-10t 
p'" E r E .,.btctd, " 

t=1 a+b+e+d..~p n-I l 
O<_a,b,e,d<p n-1 l 

Choose the summand of this sum with the indexes 

( l, a, b, c, d) = ( 1 , p " - Z ( p -  1) ,p"-2,0,0).  

We divide the other summands into two groups. Let p'+lr/'u(o'+l) be the sum of the summands which have 

u(0 r+l) as a multiplier and which do not have ( as a multiplier, and p~+l(, be the sum of the rest of the 
summands. Then 

- e) .  1 = -p 'r  
\p , -2J  , �9 , 

ps+lr], tt(or+l) nu pS+lC,  = _p,+l(_1),-r+1(up-Iy)iv"-2 + p ,c(u~- iy) ,  .-2 + pS+irfu(0,+1)  nu pS+l r 

where 
(p,-1~ 

c = p ( - 1 )  "-r+l - r \p , -2]  ((-1) '-~+1) Iv"-' - P ( -1 )  ' - ' + l  - CxP( - 1 ) ' - ' + i  - 0 (modp).  

L e t  ps+lT]/t?2~r+l) = p S c ( u s P - l r )  Ivn-2 Jr- ps+l,/u(0r+l). Then 

(~'rr - -  e )  �9 pS-l-l~[sq_l ] = pS+l(__ 1),-,+2 . ( , ~ - I  . . . Ur+IiV-l* ~r+I))IV n-2 .-I'- ~ ' + I  ~ H " ( r ' ] ' I ) / . .  , t~ 0 "Jl- ps+l~!. 

Direct (but rather long) evaluations (based on the divisibility of the polynomial coefficients by the power of 

the prime number p, see [37, Lemma 6.39]), show that  the sequences p'+~rl"u(o ~+~), p,+1r satisfy the conditions 
(24.13) in which s is changed to s + I. Thus, we get the relation (24.12) for the parameter  s + I. [] 

24.14.  Coro l l a ry .  In the notations of Lemma 24.13, 

(x" - g) t .  g[k] = g, if 0 _< k < pl; 

(x" - g ) t .  ~[k] = ~ y [ k  - pl]~ + ~, if  k >_ pl > O, 

where -d # -0, p(g[k - pl]~) < b(k, l), p(g) < b(k, l), and b(k, l) are defined in the beginning of the section. 
[] The first relation follows from 24.12 and 24.11. The second and the third relations follow from Lemma 

24.13, the first relation, and (24.11). [] 

C. T h e  p roo f s  of  t h e  m a i n  t h e o r e m s .  Let M, (x )  be the minimal polynomial of the sequence g,  over 

the field R. 
[] Proof of Theorem 24.1. Let ~ be a root of M, (x )  of multiplicity A > 1. It is sufficient to prove that  

is a root of the polynomial ~ ( x )  of multiplicity B >_ A. By Lemma 24.10, 

~ = ~ ,  d E  1,% 1 <w(d)  <p~. 

Since 0 = b(p "-~ + 1) < b(p "-x) < . . .  < b(O) = p ' ,  there exists a unique integer l E O,p "-i  such that  

b(l + 1) < w(d) < b(l). The definition of ~ ( z )  implies that  B = l + 1. Thus, it is sufficient to prove that  

A < l + 1. By Corollary 24.14, p((z ~ - ~)~+~) <_ b(l + 1). By the definition of p(g), the last inequality means 

that  the element ff = ~d is not a root of the minimal polynomial of the sequence (x" - g)z+lg,. Therefore, by 
Lemma 24.6, A < l + 1. [] 

[] Proof of Theorem 24.2. It is sufficient to prove that  any root of the polynomial M, (x )  has the form 

~d, w(d) =_ 1 (modp  - 1), or, equivalently, the form ~ ,  d - 1 (modp  - 1). To prove this, it is sufficient to 
show that  the sequence u[,] is the sum of binomial sequences over Q with roots 

~o ~, d - 1 (modp  - 1), where ~0 = 7o(~) E F(Q). (24.14) 
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We use induction on s _> 0. The relations u = Tr~(a~i), i > 0, imply that the LRS u[0] = u is the sum of 

binomial sequences with roots ~ r .  Let our property be true for some s. By Lemma 23.1, 

t ~pn--1 
u, = 7o(U[,]) = tu[ol) . 

Since the product of elements of the form (24.14) is an element of the form (24.14), u, is the sum of binomial 
sequences with roots of the form (24.14). Hence, this property is true also for the sequence pu[,+x] = u[,] - u,. 
[] 

[] Proof of Theorem 24.3. It is sufficient to consider the case s = n - 1. The equalities u(i) Tr~(a~ i) 
imply that 

u(i + r. - 1~ ~ - l J  = flu(i), i > 0, (24.15) 

where/3 E F(R) is an element of order p - 1. Then the sequence ~ = (z ".-1/2 + ~)~,~-1 satisfies 

-1 ,  if u(i) ~ 0 (modp"-l) ,  
~(i)  = 0, if u(i) -=- 0 (modp"-l) ,  i >__ 0. 

Therefore, by (24.15), T(~)I~. Thus, 

- + = - + e ) F - ' .  

Hence, if ~ is a root of M , - l ( x ) ,  then either ~a,/2 = - ~  or ~a,/(,-x) = ~. In the first case, d = 1 (mod2); in 
the second case, d _= 0 (modp - 1). [] 

[] Proof of Theorem 24.4. (a) By Theorem 24.12, M, (z )  is divided by the minimal polynomial of the 

sequence 2[p~], i.e., by G ( ) ( x ) .  By (24.5) and Lemma 24.6, M,(z)  is divided by G(z) p'-a+l. Since the 

polynomials -~N)(x), N _> 1, are pairwise coprime, M~(z) is divided by G(" ' )(z) .  G(z) "'-~+1. Therefore, 
rank u~ >__ 7"~0. 

(d) If deg~(~)(x) = 0, then by 24.14, (19.22), (19.23), 24.11, 

( x  ~- _ .g)t . ~ ,  = "d. ~[p~ - pl]  . ~o + "g = -d. ~ v  ~ - p l  + 1] + ~, 

where "d, "d 7~ "0, p(~) < p~ - pl + 1 = b(/), 1 < l < p,-1 _ 1, and if p = 2, then l E Z11. Therefore, by Lemma 

24.6, M~(x) is divided by the polynomials G'O(0)(x)t+l for the above-mentioned l. Since these polynomials 

are pairwise coprime, M,(x)  is divided by the product of these polynomials. Putting this together with (a), 
we get (d). 

By Corollary 24.14, 

(x" - g ) t .  ~ ,  = -d. y[p~ - p l ] .  (g(01)) ' + g, if p > 3, l e s 

(z" - g ) g ,  = ~ .  y[2" - 2 ] .  ~(o 1) + ~, if p = 2, l = 1, 

( x ' - g ) t . g ,  = ~ . g [ 2 " -  2/]-~(02) + g ,  i f p =  2, l E s 

(x" - g ) t .  g ,  = e .  g[2" 2/1 .  ~(~)~(1) - "0 ~o + ~ ,  if p = 2 ,  l ~ Z : ~ ,  

where ~ r O, p(g) < b(-/). Let 3,-= ~0)(~) (where ~ ~ Q is the root of the polynomial G(x)). By (24.9), 

~0)(i) = tr ~(~'-~),  i > 0, 

and i fp  = 2, then by (19.19), we have 

= tr + V = ) F ) ,  i >_ 0. 
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These relations and the definition of y[N] show that: 
if p > 3, I E s  or if p = 2, 1 = 1 (then we put t = 1), then 

if p = 2, I E s then 

if p = 2, I E s then 

d 

( ~  - ~ ) % ( i )  = ~.  ~ - ~ ( a ) C - ~ ( a )  + -~l(a)~)-~ ' + -~(i), 
d 

(24.16) 

(24.17) 

( ~  - -~)%(i)  = -~. F_,-~(d)-~(d)~'  +-~(i) ,  i >_ O, (24.18) 
d 

where ~ # g, p(~) < b(1), the summation in these formulas goes over integers d E 1, r such that w(d) = b(1), 
the coefficients E(d) are defined in 24.B, and 

I~ l  2J 2k+l Q~(~)= ~ ~', R(d)= ~ ~,j(d)~,~(d).y -~ . 
l<r<d j # k  
,~-(,):=t o< i, k < , ~ -  i 

Denote VN ---- {d E ~,r[ w(d) = N}, N > 1. Since E(d) # 0, the dement  ~ ,  d E V~(0, is a root of the minimal 

polynomial of the sequence (24.i6} (respectively (24.17}, (24.18)} if and only if Qt(d) r 0 (respectively 

Ql(d) + Ql(d) 2 r ~, R(d) # 0). To get an estimation of rank us, it is sufficient to estimate the number of 
such d. 

(b) Let p > 3. Suppose that the conditions of (b) are fulfilled. Then the dements  ~'~, a E 0,m - 1', are 

linearly independent over the field R. Hence, Ql(d) r O, d E 1, r.  Therefore, if 1 E s then the minimal 

polynomial of the sequence (24.16) is divided by G(~(0)(x), and, by 24.6, M, (x )  is divided by G(b(0)(x)t+l, 
1 E 1zl. It follows that the rank us >_ 7Z0 + 7~1. 

Now let l E s We are going to estimate the number of integers d E Vb(0 such that Q2(d) # O. Divide 
the set VN into the following classes. Two integers belong to one class iff they have the same p-ary digits; the 
order of the digits may be different. Let d, d' E Vbq) be different integers from one class such that d turns 
into d' by permutation of the j - th  and k-th digits of d. We have 

t=O 
t~k,  t # j  

siuce the elements ~ " ,  ,~ E O, m - 1, are linearly independent and w(d) = b(O - 2 (modp), then ~ ( d )  # U 

or ~ ( d ' )  # ~. 
24.15. L e m m a .  Let fl = {0, 1 , . . .  , p -  1}, ~o + . . .  + ~p-~ = m. Let A be the set of all vectors of length 

m over fl such that ~j of the components of each vector is equal to j ,  j E f l .  Suppose that B C A and there 
ave no two vectors in B such that one of them is a permutation of two coordinates of another. Then 

IAI _> IBI(1 + max {~//; j E f~}) > IBI �9 m +_____pp [] 
P 

Applying this lemma for A = Vb(0, B = {d E Vb(0[ ~2(d) = 0}, we find that the number of integers 

d E Vb(0 such that Q2(d) # 0 is not less than IAI-  IBI >_ [AI(1 - P ) = { b(l)m } .  m . This implies 
m + p  m + p  

the estimation rank us > ~ + 7~t + =-~" ?Z2 for p > 3. 

2888 



Now let p = 2. Then, in addition to the relations ~ l (d)  # g, d E 1,r ,  we have Ql(d) + Ql(d)  2 r g, 

d E 1, r  - i. This and (24.16), (24.17) imply that rankuo > "/'r + ~ .  The complete proof of (b) for p = 2 is 

based on (24.18) and is analogous to the case p _> 3 with substitution of R(d) instead of Q2(d). 
(c) Under the condition (c), the element ~ is a root of an irreducible polynomial of degree h over the field 

R. Let l E Ex, and let d, d' E Vb(t) be chosen as in (b). Then 

Q l ( d )  - Q l ( d ' )  = - - 

Therefore, Ql(d) = Ql(d ')  = 0 if and only if hlk - j. Hence, by Lemma 24.15, the equality Ql(d) = U is true 
m.  P - t h  part of all integers d E Vb(0. Therefore, not more than for the h ,~+p 

m 
rank u. >__ Tr + (1 - ~- -  P p)xl > h-P- i. 

m +  - h 
[] 

24.16. Coro l la ry .  Ifrn --* 0% then the rankus = (~m,)(1 -t-0(~)). [] 

Note that, in the notation of Theorem 24.4, the polynomial G(x) can be chosen in such a way that the 

polynomial ~-(~)(x) (which depends only on G(x)) is an arbitrary polynomial satisfying (19.18), in particular, 
in such a way that the conditions of Theorem 24.4 are satisfied. 

24.17. E x a m p l e s .  Let p = 2 and let the conditions of Theorem 24.4(b) be satisfied. Then, by Theorems 
24.1 and 24.4, we have 

i f m  = 3, then 15 < rank u3 _< 31, 195 < rankur < 451; 
if m = 11, then 3383 < ranku3 < 5340, 59,703 < rank u~ < 128,430; 
if m = 31, then 1.37- 10 ~ < ranku3 < 1.53- 107, 6- 10 l~ < rankur < 1011 . 

Now let the conditions of Theorem 24.4(d) be satisfied. Then 

if p = 5, m = 3, then 328 < rank u3 < 3093, 2- 10 ~ < rank u7 _< 2- 106; 
i fp  = 5, m = 11, then 2- 10 s < ranku3 < 109, 1011 < ranku~ < 8- 1011; 

i fp  = 11, m = 5, then 10 ~ < ranku3 < 2.107,  2- 101~ < ranku7 < 3- 1011 . 

25. GF(p)-Representations of  M P - R e c u r r e n c e s  over  Zp, 

We use the notation of Section 24. Consider R-representations (i.e., GF(p)-representations) of the se- 

quence u. For any mapping a : R ~ R there exists a unique polynomial H~(x0 , . . . ,  x,,-1) over the field 

such that deg~,H~ < p -  1 for i E 0, n - 1 and 

= a R ,  

where a~ = %(a),  s E 0, n - 1 are the p-adic coordinates of the element a (see Section 19.B). For a monomial 

g = x0k0. .. x,,-lk"-l, 0 _< kj _< p - 1, denote fi(Iz)= ko + pkl + . . .  + p"-lk~_l. Let ~(H~) be the maximal value 

of/5(#), where # runs over all monomials of the polynomial H~ with nonzero coefficients. For p > 3, define 

J = J(a) to be the set of all integers j E 0,p - 2 such that the polynomial H~ contains a monomial g with 

t5(#) = ~(H~) - j ,  and denote 

l + 1 ,  i f N E b ( k , l ) - J o r N < b ( k , l ) - p + l ,  
5(k, l ,N) = l, otherwise, 

where b(k, l) is defined in Section 24, t - J = {t - Jl J ~ J}.  For p = 2, we set 5(k, l, N) = l + 1. Let Ix] be 
the largest integer less than or equal to x. 
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25.1. Theorem [30]. Let u be an L R S  of  maz imal  period over the ring R = Zp. with minimal  polynomial 

G(x)  of  degree m,  a : R ~ R be an arbitrary mapping, and k = fi(H~) > 1. Then the polynomial 

H ( ~ G(N)(z)S(k't'N)), 
1 N=b(l+l)+l 

o<<.pt<k 

where b(l) = b(k, l), is a characteristic polynomial o f  the sequence a (u )  over the field -R, and 

ranka(u) 

o<pt<k 

25.2. Theorem [30]. Under the conditions of  Theorem 25.1, let p >_ 3. Then 

ranka(u) > E { m - N } + ([k/p] + 1){ m }*, 
x N E k - J  

where ~ E 1,p - 1, ~ _= [k/p] mod (p - 1), and * means that the second s u m m a n d  is present only i f  k >_ p and 

the set k - J contains an element j - 0 (modp). I f  the polynomial G(x )  satisfies the condition 24.4(b), then 

ranka(u)>_ E { m N mx }* N }  + E ( l + l ) .  E { m  } + ([k/p] + 1){ �9 
N E k - J  l: O<pl <k N Eb( I ) -a  

Z=l (modp-0 N>o 

where A = 0 if  x = 1, and A =1 /fx r 1. 
25.3. Theorem [30]. Under the conditions of  Theorem 25.1, let p = 2. Then 

rank a(u) >-- ( k ) + ( 2 k - + l ) m ' ,  

A,  

where * means that the second s u m m a n d  is present only i f  4lk. I f  the condition 24.4(b) is satisfied, then 

r nk 'u'> +2(k:1) + (m) 
E ( l + l )  k - 2 l + l  " 

t is even 
4~_21<k, k-21+l<m 

I.f-~2)(x) = 3, then 

(m) 
ranka(u)> +2 k 1 + ~ ( l + l  k - 2 l + r  ' 

t is even 
4<2t<k 

where e = 1 if  k i f  even, and e = 0 i f  k is odd. ~ 
[] The proofs of Theorems 25.1-25.3 are analogous to the proofs of Theorems 24.1 and 24.4. [] 
25.4. Corollary. Under the conditions of  Theorem 25.1, let m ~ oo. Then the ranks(u) = (~)(1 + 

~ ( z ) [ ]  

2890 



Chapter 5. 

STATISTICAL PROPERTIES OF LINEAR RECURRING SEQUENCES 

26. S ta t i s t i ca l  P r o p e r t i e s  of  L i n e a r  R e c u r r i n g  Sequences  over  F i n i t e  F ie lds  

Let u be an LRS over the field P = GF(q). For a set of nonnegative integers k = (k0, . . . ,  ks-l), 

0 = leo < kl < < ks-1 = L, and a row a = (a0,. as-l),  at E P,  we define the frequency vN(k] of . . . . .  , u \ a ]  

appearance of a in u(0, N + L - 1) as the number of integers i E 0, N - 1 such that  

u(i + kt) = at, t E O, s - 1. (26.1) 

We would like to get estimations of v N {k~ and, if possible, to define the exact value of v~, u k a ]  ' 

classes of LRS with some conditions on N, k. 
Some algebraic methods have been applied mainly to LRS of maximal period in the case N = T(u). 

Under these conditions, the main problem is to determine the number of solutions of special systems of 
equations over a finite field [35, 37, 70]. 

Let u be an LRS of the 'maximal period 0" = qm _ 1 over the field P with the minimal polynomial 
g(x) of degree m. Then g(x) is a polynomial of maximal period over P,  and the order of its root a in the 
multiplicative group of the field Q = GF(q m) is equal to r.  In this chapter, by a cycle of a periodic LRS u 
we also mean a segment of u of length T(u) (cf. 5.23). 

26.1. T h e o r e m .  I f  the system of elements ak0, . . . ,  a ks-1 of the field Q is linearly independent over P, 

then the frequency u: (ka) of the appearance of a on a cycle of u is equal to qm--8, i f  a ~ O, and qm-S _ 1, iJ 

a = 0 .  
v: (k) is equal to the number of nonzero solutions in Q of the system of linear [] Under these conditions, 

equations 

trQp(ak'x) = at, t CO, s - 1 .  (26.2) 

This number depends only on the dimension of the linear space spanned by a k~ , . . . ,  a k'-I over P. [] 

If the system of elements ak~  a k'-' is linearly dependent over P,  then system (26.2) has no solutions 

for some a. But if (26.2) is solvable, then it has qm-~ solutions, where r = dim p{ak~  a k,-a }. 
It is possible to generalize the results of [35, 37, 70] on the properties of LRS of maximal period over 

P = GF(q) to the case of k-maximal recurrences. 
Let u be a k-max-LRS over P of rank m, and (12.3) be valid. Then the period of u is T(u) = r = qm _ 1. 

We can choose i0 , . . . ,  i~_1 E No k such that the cycle of LRS u is described by 

(see 5.23, 6.23, 12.4). Let 

be a finite set of vectors, and 

7(u) = {x i~ x i ' - l u }  = {0 . ,  d ' - '  

J --- { j l , . . . , j t }  C No k, J1 _ . . .  "4 jr, 

9/(J) - ( a ( j l ) , . . . ,  a(j/)) 

(26.3) 

(26.4) 

(26.5) 
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be the polyhedron of values in P J  (see Section 2B). Define v,,(J/~(J)) as the  number  of solutions s E ~, r - 1 
of the equation 

u(i,  + J ) =  ~(J ) .  (26.6) 

26.2. T h e o r e m .  Let vectors (26.4) be chosen in such a way that, in the notations of Section 12, the 

system of elements o~ , . . . ,  ~t  of the field Q is linearly independent over P. Then l < m and 

q"-', if ~( J) ~ O, 
v~(J/~t(J)) = q '~- ' -  1, if~t(J) = O. 

[] By (12.3) and (12.2), 
equations 

v~,(J/~(J)) is the number of n o n z e r o  solutions in Q of the system of linear 

tr Qp(~a-i'x) = a(j,), t e 1,~. 

The rank of this system is equal to 1, so the desired result follows. [] 
In the particular cases where k = 2, 3 and J = II(n) is the Ferre diagram of the ideal I = An (u) (see 

10.6), this result has been obtained in [128, 145, 146, 153] and has been called the window effect (the window 

J,  moving on the cycle T(u) of the LRS u, shows all nonzero polyhedrons ~t(J) E P J  for the same number of 
times). 

Algebraic methods make it possible to get the exact values of the frequencies of appearance of rows on 
the cycle of an LRS. But they are connected with strong restrictions on the parameters of the LRS and on 
the length of the segment of a sequence. 

/v (a~) for recurrences with arbitrary The method of tr igonometric sums gives informative results about v~ 

characteristic polynomials [19, 20, 37, 54-57, 60, 73-75]. But the length N of the segment of a sequence must 

be large. The most  of the known estimations of v N {k~ ~a/ are nontrivial for N 2 > T(u). Here we give only one 

result, obtained in [60]. 
26.3. T h e o r e m .  Let u be a LRS over the field GF(p), p prime, with the irreducible minimal polynomial 

g(x) of degree m, and let a be a root of g(x) in the field GF(p"~). If the system of elements ak~  ,a  k'-1 is 
linearly independent over GF(p), then 

There is another method  of investigation of the statistical properties of LRS, consisting in construction 
of recurrences with given statistical characteristics. The most well-known representatives of this class are 
uniformily distributed sequences, i.e., recurrences u such that  all elements of the field have the same frequency 
of appearance on the cycle of u [15, 168]. These works mainly deal with LRS of small ranks and with some 
class of LRS with minimal polynomials of special types. 

More complete review of the statistical properties of LRS over finite fields is given in [37]. 

27. S t a t i s t i c a l  P r o p e r t i e s  of  L i n e a r  R e c u r r i n g  S e q u e n c e s  ove r  R e s i d u e  R ings  

In [18, 37, 110, 168] recurrences of small orders and uniformly distr ibuted LRS (ULRS) have been 
studied. The difficulties in the study of the statistical characteristics of linear recurrences over residue rings 
are connected with the fact that  the available algebraic methods and the  method  of trigonometric sums are 
only slightly effective in this case (in comparison with the case of LRS over finite fields). 

Let R = Zp., p prime, and let G(z) E R[z] be a polynomial of degree m of maximal  period T = T(G) = 
T 0 (p" - 1)p "-1, u be an LRS of maximal period from LR(G), T(u) = T. Consider the frequencies v,,(a) = v,, (,,) 

of the appearance of elements a E R on the cycle of LRS u. 
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Let (I)(')(z), r E 1, n - 1, be the polynomials defined in Lemma 19.9. We say that the polynomial G(x) 

satisfies the property (K~) if > 0. 

27.1. T h e o r e m  [22]. The frequencies of the appearance of elements of the ring R on the cycle of LRS 
u satisfy the following relations: i f p  > 3 and G(z) satisfies (K1), then 

vu(a) >_ p -  1 T for any a 6 R; 
p IRI 

if  p > 3 and G(z) does not satisfy (If1), then 

i f  p = 2 and G(x) satisfies (K2), then 

v~,(a) = p,~-I for  a ~ R*; 

1 T 
v~(a) >__ 7 " , ,,~ for any a e R; 

~ l l"t | 

if  p = 2 and G(x) does not satisfy (Kg), then 

1 T 

~',,(a) ___ 5 " I R  I 
for a E R*. 

[] Let u(') = r  be the derivative sequence of LRS u (see Section 19.B). If u-(1)(i) r 0, ~(2)(i) r 
for some i, then (24.5) implies that 

{u(i 4- r j )  I 0 _< j _< p"-I  - 1} = u(i) +pR,  where r = p~ - 1. 

With regard to (19.22), (19.23), the desired results can now be obtained by means of the enumeration of 

integers i E 0, r - 1 such that ~0)(i) # F, ~(2)(i) # ~, u(i) = a. [] 
In the case R = Z4, we have a complete classification of all possible types of distribution of elements on 

the cycle of u. 
27.2. T h e o r e m  (A. Nechaev, 1983). Let u be an MP-recurrence over Z4 with minimal polynomial G(x) 

of degree m. Then, for a suitable e, 6 E {-1 ,  0, 1}, the distribution of elements on the cycle of L R S  u is 
described by the following table: 

Conditions on m v~(0) 
m = 2A 2 m-1 - -  2 - 2~6 

2 m-1 - 2 -  2a-16 
m = 2A + 1 2 ' ' -1 - 2 - 2a6 

2 r"-I - 2 - 2~-16 

2~-1 _ 2ae 2,~-~ + 2~6 2 m-1 + 2ae 
2m-1 _ 2a-l~ 2.,-1 + 2a-16 2-~-1 + 2a-le  

2m-1 __ 2.~e 2-,-1 + 2~6 2 m-1 + 2~e 
2m-1 _ 2~-1 e 2m-1 + 2a-16 2m-1 + 2a-le  

Conditions on e, 6 
e6 = 0 
~6r 0 

= 151 
# 151 

[] Let O be a root of the polynomial G(x) in the field Q = GF(2m), and let tr be the trace function from 

Q into R. By (19.41), (19.42), the coordinate sequences of u can be represented by the trace function. Since 
we are interested in the distribution of elements on the cycle of u, we may suppose without loss of generality 
that 

uo(i) = tr (0i), ul (i) = tr (bO i) + itr (c0 i) + ,r2(oi), i >_ O, 

where b E Q is a constant depending on the initial vector of u, c E Q is a constant determined by properties 

of the polynomial G(x), and a2(x) = ~0.j<k<,~ x2~+2k- Since 0 is a primitive element of Q, the frequency 

v,,(a) of appearance of the element a = ao + 2al, a0, al E {0, 1}, on the cycle of u is equal to the sum of the 

number of nonzero solutions over Q of the system of equations 

tr (x) = ao, tr (bx) + (r2(x) -- al 
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and of the number of nonzero solutions over Q of the system 

t r ( x )  = a o ,  t r ( (b - I - c )z )+a2(x )=aD 

The first system corresponds to the terms u(i) with even i, and the second to the terms with odd i. Thus, the 

problem is to evaluate the weights of the  quadric quantics Of the form tr (bx) + a2(x) over Q and the weights 
of their restrictions to the set {z E Q[ tr (x) = 0}. It follows from the theory of quadrics over a field of 
characteristic 2 [9, 39] that for this purpose it is sufficient to evaluate the ranks and defects of the appropriate 

quadrics (see also Section 30 below). Straightforward evaluations lead to the stated results. [] 
This approach also makes it possible to estimate the frequencies of appearances of vectors on the cycle 

of an LRS u over Z4. 
27.3. T h e o r e m  [22]. Let u be an L R S  over Z4 of maximal period T = 2(2" - 1) with minimal polynomial 

G(x) of degree m.  Let s <_ m/4 ,  0 = ko < k l  < . . .  < k s - l ,  and let the system of residues of the polynomials 

z ~ , . . . ,  x k,-a modulo -G(x) be linearly independent over R - -GF(2) .  Then for  any vector a E ZI 

Applying probabilistic methods, it has been shown in [1] that if an LRS u is randomly chosen from 

Ln(G), where R = Z2- and G(x) is an MP-polynomial of degree m, then the distribution of vectors of length 
t _< m on the segment of length N of the sequence u is close to the distribution of vectors on the segment of 
random sequence over R = Z2 . . . .  

But all these results tell nothing about the presence of all elements of the ring on the cycle of an MP- 
recurrence. 

27.4. T h e o r e m  [22]. Let u be an L R S  of maximal period of rank m over R = Zp.. I f  m ( p -  1) > p~, 

then u~(a) > 0 for any a E R. I f  m(p - 1) >_ (p" - 1), then v,,(a) > 0 for  any a E R*. 
[] Let v = - u  and us = 6s(u), vs = 6s(v) be the p-ary coordinate sequences of the sequences u and v (see 

Section 19.B). It is necessary to prove that each nonzero element of R appears on the cycle of LRS u modp  ~-a. 

Suppose the contrary. Then ~ - a  + ~,-1 = 7, where E is the sequence of units of the field R = R/pR .  Let 

G(x) be the minimal polynomial of u and let ~ be a root of G(x) in GF(p'~). Since ~(i) = H i, i _> 0, where 

r = p"* - 1, the polynomial complexity o f t  with respect to G(x) is equal to r e ( p -  1) (see Definition 24.8). On 

the other hand, by Lemma 24.10 and by (24.6), p(-C(x)[~,-1 + ~_~)  < pn-1, and so we have a contradiction 

with the condition m(p - 1) > p~-l. 

Now, to prove that any nonzero element a E Zp, appears on the cycle of u m o d p  '~-1, it is necessary to 

consider the coordinate sequences of the recurrences u' and v' (instead of u, v), where u'(i) u(i) - a, i >_ O, 
V t ._~ - - u  t .  

In contrast to MP-recurrences over residue rings, a k-maximal recurrence u of rank m over a Galois ring 
R = GR(q" ,p  '~) (see Section 19.D) has statistical characteristics which are similar to the characteristics of a 
k-maximal recurrence over a finite field. In this case 

T(u) = T = (qr~ _ 1)q,~(,~-~), (27.1) 

and the cycle of u is described by 
 r(u) = (27.2) 

(cf. (26.3)). Let ~t(J) C R s be the polyhedron of values of the form (26.5), and let u,,(J/~t(J)) be the number 

of solutiofis s E 0, T - 1 of Eq. (26.6). 
27.5. T h e o r e m .  Let the k-maximal recurrence u of  rank m over a Galois ring R satisfy the conditions 

of Theorem 19.25, and let the system (26.4) of vectors be such that { o ~ , . . . ,  a J~} is a free system of elements 
of the module QR. Then 1 <_ m and 

u~,(Y/~(J)) = (qm-Z _ 1)q.~(.-x), if ~ ( J )  = 
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[] By (19.47) and (19.46), v~(J/~(J))  is equal to the number of solutions in Q* of the system of linear 
equations 

Wr 0e((a.hx ) = a(j,), t 6 1,--"/. 

Since { ~ 1 , . . . ,  a& } is a free system, this system of equations has q,,,-tqm(,-~) solutions in Q. If ~(ff) ~ 0, 

then each solution belongs to Q*. If ~ (J )  = 0 ,  then exactly q"(~-~) solutions belong to pQ = Q\Q*. [] 

28. Uniformly Distributed Linear Recurring Sequences over Residue Rings 

A reversible (i.e., purely periodic) sequence u over a ring R such that  the elements of R have the same 
frequencies of appearance on the cycle of u is called a uniformly distributed LRS (ULRS) [15, 168]. Here we 
consider only two aspects of the investigation of ULRS: how does one construct a ULRS over a residue ring 
and what is the maximum of periods of a ULRS of a given order k? 

Let R = Zp,, p prime, and let w be a ULRS over R with characteristic polynomial H(x)  of degree k. 
Then 

pnIT(w)lT( H) lT(  H)p~-I , 

and therefore piT(H).  Define T(R,  k) as the maximum of periods of ULRS over R of the given order k. 
28.1. T h e o r e m .  Let R = Zp,. Then 

T(R ,  2) < (p - 1)p ~ and T(R ,  k) < (pk-2 _ 1)p~ for  k > 2. 

[] If w is a ULRS with minimal polynomial H(x),  then T(w) = T(H)  < T(-H)p '*-1, p[T(H),  and the 

polynomial H(x)  is reversible. Now, it is sufficient to note that  if h(x) is a reversible polynomial over GF(p) 

of degree k such that  piT(h),  then T(h) < p(p - 1) for k = 2 and T(h) < p(p~-~ - 1) for k > 2. [] 
Since the residue ring Z2v is the direct sum of primary residue rings, Theorem 28.1 makes it possible to 

estimate T(ZN, k) for arbitrary N > 2. 
ULRS of order 2 over Zp. are completely described in [168]. This article also contains a review on this 

subject. We now formulate some results of [168] in a form convenient for us. 
28.2. T h e o r e m .  Let u be an L R S  over R = Zp. with characteristic polynomial H(x)  of degree 2 and 

with generator ~,,(x). Then u is uniformly distributed if  and only if  the following conditions hold: 

(a) H ( x ) =  ( x -  ~)~, a 6 R*; 
(b) / f p  = 2, n > 1, then H(x)  -= (x - e) 2 (mod4) ;  

i f  p = 3, n > 1, then T(  H) = T(-H) . 3 ~-1. 

(c) (H(x), ~ ( x ) )  = e. [] 
Let L~ be the set of all recurrences u 6 LR(H) such that the generator of u is coprime with g(x ) .  
28.3. T h e o r e m  (A. Nechaev, 1986). Let Y ( x )  = F(x)G(x)  be a polynomial of degree k > 4 over 

R = Zp,, where F(x)  satisfies conditions (a) and (b) of Theorem 28.2, and let G(x) be a reversible polynomial 

of degree m = k - 2 such that "G(x) is an MP-polynomial over the field -R, i.e., T(-G) =pm _ 1 = r.  Then for 

any w 6 L~ 
(a) there exist uniquely defined sequences u 6 L~ v 6 L~ such that w = u + v; 
(b) w is a ULRS of order k and period T(w) = rp~; 
(c) for  any i 6 No, the sequence w(i), w(i + r ) , . . . ,  w(i + T(p ~ -- 1)) is a permutation of  elements of R. 

[] (a) The desired result follows from the condition (F(x),  G(x)) = e and from the equality La(FG) = 

LR(F) + LR(G). 

(b) Since T(F)  = T(O) = where d e O,n - 1, we have 

T(w) = T(H)  = IT(G), T(F)]  = [rp a, ~p"] = rp".  
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The uniformity of w follows from (c). 

(c) It is sufficient to prove that  i f j  E N, (j,p) = 1, and r E 0,n - 1, then 

IIw(i + r j f )  - w(i) l l  - r, (28.1) 

where Ilxll is the norm of x E R (see 16.1). Let w = u + v be the decomposit ion from (a). By (19.25), 
T(v m o d f + a ) l r f ,  hence I l v ( i + r j f ) - v ( i ) l l  >_ r + l .  Theorem 28.2 implies that  T(u m o d f  +1) = (ord ~ ) . f  +1, 
hence Ilu(i + r j f )  - u(i)l I = r. This implies (28.1). [] 

28.4. Coro l la ry .  I f  R = Zp~, pk-2 > 2, then 

T ( R , k )  = f ( p ~ - 2  _ 1). [] 

The concept of an extension of a sequence (Section 8) proves to be useful for constructing a ULRS. If 

R = Zp~ and H(x)  = (x - e)2G(x), then each LRS w e L~ is an extension of the congruent sequence 

v(i) = ai + b, a e R ' ,  b �9 R (see 1.4) by polynomial G(x) and vector w(0, m---,-,-,-,-,-,-,~ (see (8.5)). This gives a 
simple method of realizing such a ULR.S. 

One can generalize this method to ULRS over an arbitrary residue ring. For example, let R = Z(p~)., 
where p, q are distinct primes. Let z be th e sequence over S = Z(pq).+~ given by 

z(i) = ai + b, where a -_- e (modp),  b �9 S*, and i fp  = 2, then a -- e (mod4) ,  

and let v(i) = [z(i)/(pq)~], where the square brackets mean the integral part.  We suppose that  a reversible 
polynomial G(x) �9 R[x] of degree m > 2 and numbers M, N �9 N0 satisfy the following conditions: 

T(Gmodp)  = pro_ 1, T (Gmodq)  = am _ 1, qMIpm -- 1, pNlq'~ - 1, 

((p'~ - 1)/qM, q) = 1, ((q'~ -- 1)/pN,p) = 1, m a x { 1 , M , N )  < u. 

28.5. P r o p o s i t i o n  (A. Kuzmin, 1986). Under our previous hypotheses, let w be an extension of LRS v 

by the polynomial G(x) and arbitrary vector w ( ~ ) .  Then w is a ULRS over R. 
[] The proof is analogous to the proof of 28.3(b). [] 
We now state a result which shows that  uniformly distributed sequences have some interesting analytical 

properties. 
28.6. T h e o r e m  (A. Kuzmin and A. Nechaev, 1990). Let R = Zp., w be a ULRS from LR(H). Suppose 

that the following conditions hold: 

(a) H(x) = (z - e)2G(x), deg G(x) = m > 2, T(-G) = p" - 1; 

(b) T(w) = T (H)  = f ( p ' ~  - 1). 

Then, the minimal polynomials Mr(x), t �9 O, n - 1, of the coordinate sequences 8t(w) of w in the p-ary 
coordinate set satisfy the following relations: if p > 3, then 

M t ( x ) = ( z - e )  p'+I" IX 
l < N  <p t 

N ~,,,('i- x ) 

and if  p = 2, then Mr(x) divides on 

~(N)(Z)P ' -N+X ' 

1-i TM, 
1 < N < 2  t 

N ~m.2[N 

where G(N)(z) are the polynomials defined in Section 24.A. [] 
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Chapter 6. 

SOME A P P L I C A T I O N S  IN C O D I N G  T H E O R Y  

29. L R S - F a m i l i e s  and  L inea r  Cycl ic  C o d e s  

Let R be a finite ring and let M be an exact R-module. 
A. 1 - c o d e s  over  m o d u l e s .  We transfer the standard terminology of the theory of codes over fields [4, 

39]. An arbitrary subset K:C M N is called a code of length N over the module RM.  1C is a linear (R-linear) 
code if K: is a submodule of M. 

The Hamming weight Wt(a )  of a vector a = ( a0 , . . . ,  aN- l )  E M N is the number of nonzero components 

of a. The distance between a, fl E M N is defined by d(a, fl) = W t ( a  - fl). The code distance of a code/C is 

defined by d(/C) = min {d(a, fl)[ a, fl E/C, a ~ fl}. If/(: is a linear code, then 

d(K:) = rain {Wt(a)  : a e E\0} .  (29.1) 

A code K: detects r mistakes if d(E) > r, and corrects t mistakes if d(/C) > 2t + 1. 

An (N x / ) -mat r ix  H over R is called the check matrix of a linear code IC if/C = {a �9 MN[ a H =  0}. 
The system H1, . . .  ,Hr  of rows of the matrix H is said to be free over M if alH1 § . . .  § arH, = O, where 
a l , . . . , a ~  �9 M, implies al . . .  = a, = 0. 

29.1. P r o p o s i t i o n .  I f  ]C < M y is a linear code with check matrix H, then d(]C) = r -b 1, where r is 
the maximal number such that any system of r rows of H is free over M.  [] 

Note that there exists an example of a linear code which has no check matrix. 

29.2. P r o p o s i t i o n  [49, 137]. Any linear code IC < M N has a check matrix over R if and only if M is 

a QF-module. [] 
Recall that in Section 4 a method of constructing a QF-module over an arbitrary finite (commutative) 

ring R was given. 
If I ~ P is a monic ideal, then the set 

= �9 L . ( I ) }  (29.2) 

is a linear code of length N over M. If M is a QF-module,  then the check matrix of this code can be easily 
written out if a system of generators of I is given. But not every linear code E can be represented in the form 

E = L(~)(I)  for a suitable I (even when M is a Qf-module) .  The situation is completely different when E 
is a cyclic code. 

We define the cyclic shift operator on M y by ~Ta = ( a l , . . . , a g _ l , a 0 ) ,  a �9 M N. A code E is called 

cyclic if ~7E = K:. 
29.3. T h e o r e m .  Let M be a QF-module and let I ,~ "P be a monic ideal. A code 

= (29.3) 

is cyclic i f  and only i f  I is a reversible ideal and T ( I ) [N .  Any cyclic code IC < M y has the form (29.3) for a 
suitable I. 

[] Let E < M N be a linear cyclic code and ,44 _ M (1) be the set of sequences # of the form 

= (a0, a l , . . . , a N _ l , a 0 , a l , . . . , a N _ l , a 0 , . . . )  
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such that p ( ~ )  E K:. Obviously, Ad is a finitely generated R-submodule in MO), and also a P- 

submodule, since, by the definition of a cyclic code, xtt E ~ for tt E .hi. Therefore, ,s = LM(I), where 

I = An (A4) (see 4.6), and (29.2) holds. The definition of .t4 implies that  x N - e e I ,  i.e., I is a reversible 

ideal and T(I)IN. [] 
29.4. E x a m p l e .  Let g(x) be a polynomial of maximal period r = q'~ - 1 over P = GF(q), degg(z) = m. 

Then L(p")(g) is a linear cyclic code of length r and dimension m, with code distance d = (q - 1)q '~'-x, and the 

weight of each nonzero vector from L(pZ)(g) is equal to d (see Section 26). Such a code is called a symplectic 
Code of maximal length [39]. 

29.5. E x a m p l e .  Let R = GR(q ' , f )  be a Galois ring, and let G(x) e R[x] be the distinguished 

polynomial of degree m corresponding to a polynomial g(x) e R[x] of maximal period ~" = q'~ - 1 (Section 

17.B). Then L~)(G) is a linear cyclic code of length r and dimension m over R (i.e., a free R-module of rank 

m). It consists of q '~  elements and has code distance d(L~)(G)) = ( q -  1)q m-1. 

29.6. E x a m p l e .  Let R = GR(q=,p ") be a Galois ring, F(x) e R[z] be a polynomial of degree m of 

maximal period N = (q'~ - 1 ) f  -1. Then L(RN)(F) is a linear cyclic code of dimension m over R and with 

code distance d(L(RN)(F)) = f - X ( q _  1)q"-1. 

B. k -Linear  cycl ic  codes .  Let N1 , . . . ,  Nk be natural numbers and M n be an R-module, where II = 

If(N) (see Section 2.B). An R-submodule K: < M n is called a k-linear code over M of volume N~ x ... x Nk. 
Obviously, K: is isomorphic to some linear code over M of length N = N1 . . .  Nk. The Hemming weight of a 
code vector #(l-I) E/C and the code distance d(/C) of K: are defined analogously to the case of l-linear codes. 

If I ,aT)k is a monic ideal, then the set L(~)(I) = {p(II)l # E LM(I)} is a linear code over M of volume 
N l x . . . x N k .  

We define k cyclic shift operators ~7~,--., ~7k on M rI by the rule X7,(p(II)) = v(II) for g(ii)  E M n, where 

V(Zl, . . . ,  zk) = #(z~,..., z, @ 1,.. . ,  z~) and ~ is the addition modulo hrs. A code K: < M n is called k-cyclic 
8 8 

if ~7JC = K: for s E 1, k. 
29.7. T h e o r e m .  Let M be a QF-module and let I ,~ 79k be a monic ideal. The code 

1C = L(~)(I) (29.4) 

is k-cyclic if and only if 

�9 - e I .  ( 2 9 . 5 )  

Any cyclic code E < M n has the form (29.4), where I satisfies (29.5). 

r3 Let K: be a cyclic code in M n. Let A4 be the subset of all recurrences # E L M ( X  N1 -- e , . . . ,  x f  k -- e) 

such that tt(ii) E/C. Obviously, M is a finitely generated R-submodule, and also a 79-submodule, since, by 

the definition of a cyclic code, x,A~ = . ~  for s E 1, k. Therefore, .&4 = LM(I), where I = An (.&4) (see 4.6), 
and (29.5) holds. The converse is easy. [] 

29.8. E x a m p l e .  Let I~Pk be an ideal of maximal period q '~ - I  over P = GF(q) (see 12.3), Q = GF(q m) 
be the field of a root of I over P,  and a = ( a x , . . . , a k )  be a root of I. Then Q* = ( a l , . . . , a ~ )  (see (12.3)). 

Let ord a ,  = N,, s E 1, k. Then the code K: = L(pN)(I) is a k-linear cyclic code, consisting of all u(ii)  such 

that u is a sequence of the form (12.4). If a l , . . . , a k  are such that N1...Nk = q" - 1, or, equivalently, 

Q* = (a~) x . . .  x (ak), then the unique nonzero cycle of the family Lp(I) has the form T(u) = {xlu[ i e H}. 
In this case, the results of Section 26 imply that K: is a simplex code, i.e., the distance between two arbitrary 
vectors of K: is equal to 

(q - 1)q "-1  = N1. . .  Nk" (1 -- (q,n-1 _ 1)/(q,~ _ 1)). 

This code is equivalent (see [39]) to the code from Example 29.4 (see also [128, 143, 157]). 
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29.9. E x a m p l e .  Let I ,~ Pk be an ideal of maximal period T = (q'~ - 1)q "(n-l) over a Galois ring 

R = GR(q",p") (see 19.19, 19.20) and Q = G R ( q ' " , p " )  be an extension of R. Suppose that oh , . . .  ,ak e Q* 
are elements such that a = ( h i , . . . ,  ak) is a root of the ideal I. Then (19.46) holds, and each k-LRS u E L~(I)  

has the form (19.47), where ~ E Q. Let ord a ,  = N,, s E i, k. Then K: = L(arr is a k-linear cyclic code. 

If a l , . . .  ,ak are such that  Q* = (a~) x . . .  x (ak), i.e., N1 . . .Nk  = T, then the vector with minimal weight 

in L(a~)(I) is u(II), where u e LR(I),  u(z) = Tr ~(p"-l~a~), ~ e Q*. This vector is, in fact, the q'~("-l)-times 
repeated vector from Example 29.8. Hence, 

d(1C) = Wt(u(H))  = q,~(,~-l)q,=-l(q _ 1) = N1 . . .  N~(1 - (q,~-i _ 1)/(qm _ 1)). 

30. S o m e  C o n s t r u c t i o n s  of  N o n l i n e a r  Cycl ic  Codes  w i t h  t h e  H e l p  of  L i n e a r  R e c u r r e n c e s  over  
Galois Rings 

A. C o n s t r u c t i o n s  of  codes  [25, 45, 47]. Let R = GR(q",p") be a Galois ring. Recall (see Section 

19.B) that each element a E R can be represented in the form 

a = ?o(a) 4- PT1 (a) 4- . . .  4-pn-l~'n-l(a), ~t(a) e F(R), 

where F(R) is the p-adic coordinate set of R. 

Let F(x)  E 79 = R[x] be a reversible polynomial of degree m. The initial vector u ( ~  of an LRS 
u E Ln(F)  is uniquely determined by the vector 

=  0(u(m - 1 ) ) ,  - 1 ) ) )  

of length mn over the field F(R). Define the vector 

")/n--1 ( U ( ~ ) )  = (~/n--1 (~(0)), ")'n'l (U(1)) , . . . ,  ~n--1 (?A(N -- 1))) 

of length N = T(u) over F(R). We say that this vector codes the information vector ? ( u ( ~ ) .  We 
define the code C'r(F) as 

C'r(F) = { 7 ~ - 1 ( u ( 0 - ~ -  1)) I u e LR(F)}. 

In the case where R -- Zp,, an element a E R also has the p-ary representation (see Section 19.B) 

a ----- 6o(a) 4- p61(a) 4- . . .  4-p'~-16,~_l(a), ~t(a) E O,p -- 1, 

and we can define CS(F) as the code, consisting of vectors 

= ( 6 , _ l ( U ( 0 ) ) ,  - 1 ) ) ) .  

Note that we cannot even restore (in the general case) the information vector 7 ( u ( ~ )  by the code 

vector %_~(u(0, N -  1)), since it is possible that [C'r(F)[ < [LR(F)[ = q'~=. 

30.1. T h e o r e m  [25]. I f  F(x)  is an MP-polynomial over R, then C~(F) is a nonlinear cyclic code o] 

length N = p,,-l(qm _ 1), and [C~(F)[ = qm,,. The information vector 7 ( u ( ~ )  can be uniquely restored 

by the code word 7 , , - l ( U ( ~ ) )  with the complexity O(N).  I f  R = Zp,, then the same propositions are 

valid for the code CS(F). I f  p '~-1 < m ( p -  1), then C6(F) is equivalent to a subcode of  the code 

RM(p=-l ,p "~ - 1) (p"-I) = RM(pn-l ,p m - 1) x . . .  x RM(p"- l ,p  m - 1), 

where RM(p"- l ,p  "~ - 1) is the Reed-Muller code over GF(p) of  length p'~ - 1 and of  orderp ~-~ [4]. 

[] The desired results follow from the descriptions (19.42), (19.43) of the coordinate sequences of MP- 
recurrences over Galois rings. [] 
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B. Codes  based  on  r e c u r r e n c e s  over  CR(q2,p2). Let F(x)be  an MP-polynomial over R = GR(q2,p2), 
q = pi. In this case, we get a complete description of the structure of the vectors of C~(F). Let ~ be a root of 

F(z) in the Galois extension Q = GR(q2"~,p 2) of R. Then ~o = 7o(~) is a primitive element of the field F(Q). 

Let c = CF = 3'1(~)" 7o(~) -1. For a, fl E F(Q), k E 0,p - 1 denote 

where t r (x)  = x| | 1 7 4  q'-I is the trace mapping from F(Q) into r ( R )  and ~ 0 ( x )  is definedin Section 

19.C. For a function f :  F(Q) ~ F(R) we denote f (x) = (f(e), f (~o), . . . ,  f (~m-2)) .  
30.2. T h e o r e m  [25]. Let F(x) be an MP-polynomial over R. Then the code C~(F) of length N = 

(qm _ 1)p is equivalent to the code C, consisting of all vectors of the form 

(x), (x) , . . . ,  (x)), 

where a, fl E F(Q). The code C is a subcode of the code R M ( p , p " - 1 )  (p). The code distance of C~(F) satisfies 

q -  l (N + p ) p -  l _ p <<_ d(C(~)(f)) < q -  l (N + p) _ p. 
q P q 

There ezists an algorithm of complezity O ( N .  logN),  which corrects �88  1)(q m -q"~ - I  - 1 )  mistakes in a 
code word. 

[] The description of the code words of C'~(F) follows from the description (19.42) of the first coordinate 

sequence 7x(u) of the MP-recurrence u E LR(F). In order to estimate d( C(~)( F) ), we consider two distinct 

vectors 7 1 ( u ( ~ ) ) ,  7 x ( u ' ( ~ ) )  E C ' ( F ) ,  which correspond to two distinct recurrences u, u' E La(F). 
Then, by (24.5), 

(x ~ - E)(ul - u~) = -~a)(x)(Uo - u~), where r = qm _ 1. 

If u0 # u~, then the right part of the last equality is an MP-recurrence over GF(q). Hence, 

q,~-l(q _ 1)(p - 1) + (qm-~ _ 1)p > d(71(u(O,N - 1)), 71(u'(0, N - 1))) > qm-X(q _ 1)(p - 1). 

If u0 = u~, then it follows from (19.42) that ~ - ~  E L~(T), and d(7~(u(O,N- 1)), 7~(u'(0,--,-N--:~- 1))) = 

p ( q -  1)q m-x. 
In order to obtain the algorithm of decoding of CT(F), it is necessary to double the well-known algorithm 

of decoding of linear cyclic codes over GF(q") [39], which restores tr (~z) and tr (fix) and makes it possible 
to restore ~ and ~. This algorithm is a direct generalization of the algorithm of decoding of the Kerdoc codes 
[45]. El 

C. N o n l i n e a r  cycl ic  codes  based  on r e c u r r e n c e s  over  GR(q2,22). In the case R = GR(q 2,22), 
q = 2 z, the theory of quadric quantics over a field of characteristic 2 [9, 37] makes it possible to determine 

the exact value of d(C'Y(F)) depending on some characteristics of the constant c = 7x(4)" 70(~) -~ and also to 

determine d(CT(F.)), where F.(x) is the distinquished polynomial corresponding to F(x) (see Sect. 17.B), i.e., 

the monic polynomial over R of the degree m with the root ~0 = 70(~), so that F . ( x )  = F(x) ,  T(F.) = q'~ - 1. 
We now formulate some results about quadrics over finite fields of characteristic 2 [9, 39]. Let g(x) be 

a quadric over L = GF(qm), q = 2', with bilinear symmetric form f ( z ,  y) = g(x + y) + g(x) + g(y). There 

exists a basis e~, . . . ,  e,~ of the space L over GF(q) such that for some r < m/2 

e, i f { i , j } = { s , s + r } s < r ;  
f(e~, ej) 0 otherwise. 

This basis is called a symplectic basis of f ,  and 2r is called the rank of f:  rank f = 2r. Let 

L • = L~ = {z e L[ f ( z , y )  = 0 for any y e L}, d imL ~" = m0, 
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and h(x) be the restriction ofg(x) to L ~-. Then h : L • --* GF(q) is a linear map, and m l  = dimKer  h >_ mo-1 .  
In these notations, the defect defg and the rank rankg of g(x) are defined by 

defg = mo - ml ,  rank g = rank f + defg. 

30.3. T h e o r e m  [9, 37, 39]. Let g(x) be a quadric over L = GF(qra), q = 2 t, with bilinear symmetric 
form f ( x , y )  of rank 2r. Then there exists a symplectic basis e l , . . . ,  era of L such that 

g(x) = ~ xixi+~ + x 2 if defg 1, 2 r + l  
i----1 

g(x) = ~ x~,+r + ~(~ + ~ )  if de~g = O, 
i----1 

where ~ = ~=1 g(ei)g(ei+r). The weight Wt(g) of g(x) satisfies 

Wt(g) = ( q -  1)q ra-1 if defg = 1, 

Wt(g) = (q - 1)(q ra-/ - qra-l-r) if defg = 0, ~ = 0, 

Wt(g) = (q - 1)(q ra-1 + q,~-l-r) if defg = 0, ~ # 0, [] 

30.4. T h e o r e m  [25]. I f  F(x) is an MP-polynomial of degree m > 1 over R, then the parameters of the 
nonlinear cyclic codes CT ( F ( x ) ) and C'~ ( F. ( x ) ) are described by the following table. 

Length [ Efficiency [ Conditions on m, c = CF [ Code distance [No. 

Code C'r(F.(x)) 

N = q m - 1  
(N + 1) 2 m = 2 ) ~ + l  

m = 2 A  

~ql(N + 1 - ~/q(N + 1)) - 1 

~ k ( N  + 1 - q v f N +  1) - 1 

Code C'(F(~)) 

N = 2 ( q ~ - l )  1 /4) (N+2)  2 

m = 2 A + l  

m = 2 A  

c e F(R) 

c r r(R) 

c e r(R) 
o r  

tr(c) r 0 

c r r(R) 
and 

tr(c) # 0 

~ql(N + 2 - ~/q(N + 2)/2) - 2 

~ql(N + 2 -- ~/2q(N + 2)) - 2 

~ ( N  + 2 - q ~ / ( N  + 2 ) / 2 ) -  2 

~ql(N-+ 2 - q ~ / 2 ( N  + 2 ) ) -  2 

[] Consider the code C'r(F). For p = 2, by (19.33), 

qt~O(x) = x(xh), where x(x) = y~ x qk+q', 
O<_k<t<m 

By (19.42), 

,~(i) = , ~ ' ) ( , ~ g ) ,  tr ( ~ ) ,  i .  tr ( , ~ ) ,  

h = 2 t-1. 

i > 0 ,  
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where a,  fl E F(Q). We split the code word 7 1 ( u ( ~ ) )  into two parts, consisting of the coordinates u~(i) 
for even and odd i respectively: 

u1(2i) = ~2~0(a~o 2i) EB tr (fl~i),  0 < i < qm _ 2, 

u~(2i + l)  = ~O(a~o~2o') EB t r ( ( #  + ca)~o~'),  O < i < q" - 2, 

o r  

u1(2i) = x(oth~ i) EB (tr (flh~gi))2, 

ul(2i + 1) = x((a~o)h~ ') EB (tr (((fl + ca)~o)h~') 2. (30.1) 

Since ~ is a primitive element of F(S), (30.1) implies that C'Y(F) is equivalent to the code C, consisting of 

all vectors of the form Z =  (70 (x), 71 (x)), where 

�9 oCx) = ~(ax)  �9 (tr ( ~ ) )  2, 

�9 ~(~) = ~o(~) �9 (tr (~ch~)) 2, ~, # E r(Q). 

Consider the distance between two arbitrary code words ~ and w ' =  (~'o (x), ~'1 (x)) of C, where 

tI,~(x) = ,,(a'z) e (tr (#'x)) ~, ~ ( x )  = ~o(X) e (tr (a'dx)) 2, d = d F = c  h. 

This distance is equal to the sum Wt(Ao) + Wt(At)  of the weights of the functions 

~o(=) = ~o(=) �9 ~(=), ~1(~) = ~(~)  m %(x). 
If a '  = a, then Ao(x) and AI(z) are linear functions over F(Q), and the sum of their weights is equal to 
2(q - 1)q "-~. If a '  # a, then, without loss of generality, we may suppose that a '  = e, a # e. Then d(C'~(F)) 
is equal to the minimum of the sums Wt(Ao) + Wt(At) of the weights of the functions 

~o(~) = ~ ( ~ )  �9 ,,(~) �9 tr ((# + #')~)~, 

A,(x) = A0(x) E) t r ( ( a  + e)dx) 2 

over all a, fl, fl' E F(Q). Denote # = (e + a) -1, 7/= (fl +/3') 2, x = #y. Then 

ZXo(~) = ~(~y) r ~((~ + ~ ) y ) ,  tr ( ~ ) ~ ,  

zxl (~) = Ao(~) ~ tr (d~) ~. 

If L~ = {y E F(Q)I tr (dy) ~ = a}, a e F(R), and A g~ ~) are the restrictions of Ao, A~ to L~, then it can 
be immediately verified that 

wt(~o) + w t ( ~ )  = ~ (wt(a(o ~ + wt(z~~ = 
~Er(R) 

(wt(ZXo) + w t ( ~ o  + ~)) = q~ - q~-~ + q - ~ .  wt(Z~o) + q �9 wt(Z~(o~ (30.2) 
~Er(R) q -  1 q -- 1 

To evaluate Wt(Ao) and Wt(A(o~ we use Theorem 30.3. Since x(x) is a quadric over F(Q) with bilinear 
symmetric form 

x(x) @:x(~):E) • + Y):= tr (xy)EB tr (x)tr (~); 

the space L" = L~Ao f o r  the qnadric Ao is defined b y  

L • = 0, if m = 2,k, tr (#) :~ e; 
L • = r (R)  ~ #r(R) ,  if m = 2)~, tr (#) = e; 
L •  i f m = 2 A + l ,  
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and Theorem 30.3 yields 

Wt(Ao) > (q - 1)(q ~-1 - qX), where A = [m/2].  

We now consider the quadric A(o ~ (defined on L0). An element x E Lo belongs to L~ = L~(o0 ) if and only 

if tr (dx) = 0 and the element x $ #t r  (x) �9 tr ((e + ~)x) belongs to the subspace d .  r(R), generated by d 

o v e r  r (R) .  Therefore, Lo t C r (R)  �9 ~,. r (R)  ~ d .  r (R) ,  and dim Lot < 3. If m = 2A, then dimLo = m - 1, 

dimLot E (1,3);  i f m  = 2A + 1, then dimLo = m -  1, dimLot e {0,2). By 30.3, 

Wt(A(0)) > (q _ 1)(q~-2 _ q~-l), if m -- 2~, 

W t ( A ( ~  i f m  = 2~, 
W t ( A ( ~  i f rn  = 2 ~ +  1, 

Wt(A (~ _> (q - 1)(q m-2 - q~-'), if m = 2A + 1, 

tr(d) # 0 or d e r(R); 
tr(d) = 0, d r r(R); 
d r r(R); 
d e r(R); 

Now (30.2) implies that  the values defined in the table in our theorem are the lower bounds of d(O"(F)) .  

The proof of the fact that  d(C~(F))  is equal to these lower bounds consists in the step-by-step examination 
of four cases, enumerated in the table (depending on the properties of m and c). In each case we find a pair 

/~, ~] such that  the weights Wt(Ao), Wt(A(o ~ reach the minimum simultaneously. 
The distance of the code C ~ ( F . ( x ) ) i s  determined analogously. [] 
For q = 2 there exist extensions of the codes from the first and third rows of the table, which have 

parameters coinciding with the parameters of the best codes listed in [39]. Namely, they have the parameters 
of the Delsarte-Goethals linear cyclic code [39], and of the code, obtained from the Kerdoc code [39] by the 
elimination of two coordinates [45, 47]. See below A d d e d  in Proof .  

31. E v a l u a t i o n  of  G e n e r a t o r  and  C h e c k  P o l y n o m i a l s  of  R e e d - M u l l e r  C o d e s  

Let f ( x )  be an MP-polynomial over P = GF(p)  of degree m, 1 < r < (p - 1)m, R = Zp., and F.(x), 

8, F.(r)(x) be the notations introduced in Section 22.B. Then F . (x )  is an MP-polynomial over R of degree ra 

with the root 0, and -F!r)(z) = H { z - O k l  1 < k < T, w(k)  < r}. The  last equality shows that  F'(.r)(z) is the 

check polynomial of the shortened rth-order generalized Reed-Muller code of length T = pM _ 1 ,  considered 

as a cyclic code over R = GF(p)  [4, p. 362]. The generator polynomial of this code is equal to 

(x - ~)U!(P-1)'n-r-l)(X), where G.(x)  = F , ( O ) - ' x m F . ( 1 / x ) .  

We can evaluate F(,~)(x), using the following procedure. Divide the set {k E 1-~[ 1 < w(k)  < r} into the 

cyclotomic classes {k, kp, kp2 , . . . }  modulo T = pM _ 1. For each class we find an irreducible polynomial over 

with root ~ (and therefore with roots ~kp, ~ 2 , . . . ) -  Then F-(.r)(x) is the product  of all of these polynomials. 

We propose another method of evaluating F!~)(x). First, consider the case p -- 2. Let u E L p ( f )  be an 
LRS of maximal period over P and n = r. Define (r : P ~ R = Z~ by q(0) -- 0, a ( e p )  = e .  By Theorem 

22.2, FJr)(x) is the minimal polynomial of the LRS v = ~r(u) over R. To find T!")(x), we solve the Hankel 

(N x N)-system of linear equations over R (see (3.2)): 

( co , . . . ,  c N ' l ) ~ g ( v )  = v ( g ,  2 N -  1) 

where, by 22.5, N = (=) + . . .  + ('~) + m. For any solution (c0,. . . ,CN-1) of this system we have E r ) ( x ) =  

x N -- -~N_lX N-1 -- . . .  -- -dlx -- ~0. 

I f p  _ 3, we write r in the form r -- (p - 1)t + l, where l E 1,p - 1. Let u E L p ( f ) \ O ,  n = t 4  1, and let 

the representation q be defined by its polynomial ~2~(x) = p(x  p-~ 4 . . .  4 x z+~) 4 x ~ 4 . . .  4 x (see 22.1). Then 
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F(.')(z) is the minimal polynomial of LRS a(u), and F(.O(z) can be found as in the case p = 2. Methods of 
solving systems of linear equations over Zp, are described in [11, 12]. 

A d d e d  in P r o o f  

Note, that in Section 30.C along with C'Y(F) we can consider codes C~(I) for reversible ideals I ,~ R[x]. 
If T(I)  = N then by definition 

C~(I) -- { 7 1 ( u ( ~ ) )  I u E LR(I)}. 

Under the condition of Theorem 30.4 let 

I .  = (F.(x)(x  - e),2F.(x)),  I = (F(x)(x  - e ) , 2 f (x ) ) ,  

then 
C' (L)  = C'(F,)  r(R)(e, . . . ,  e), C'Y(I) = @ r(R)(e, . . . ,  e). 

The code C'Y(I.) has the same length and distance as C~(F.), but [C~(I.)[ = qlC'Y(F.)]. It is nonlinear cyclic 
code with the parameters coincident to the parameters of the Delsart-Goethals linear cyclic code [39, 15.5 
Corolarry 17]. 

The code C'~(I) has the same length and distance as C'~(F), and [C~(I)[ = q[C~(F)[ = q / 4 ( g  + 1) 2. 

In the case m = 2A + 1, CF E F(R) this code has the largest code distance in comparison with others codes 
of Theorem 30.4; for q = 2 it is the distance of the code, obtained from the Kerdock code [39, 120] by the 
elimination of two coordinates, but the efficiency of C'Y(I) is the half of the efficiency of the Kerdock code. 

Note, that Kerdock code has the optimal efficiency N 2 in the class of codes of the length N with the code 

distance (N - v/-N)/2 [59]. This ~ode may be constructed by the following way. 

30.5. T h e o r e m  [25]. / f  F(x)  is MR-polynomial of degree m > 1 over Z4, then C~(F(x)(z  - ~e)) is a 
nonlinear cyclic code having the length N = 2(2 m - 1), the efficiency (N + 2) 2 and the code distance, which 
is defined from the rows 3--6 of the Theorem 30.4 table for q = 2. I f  m = 2A + 1, c f  = e, then this code is 
equivalent to the code, obtained from the Kerdock code by the elimination of two coordinates [45, 47]. 

We remark, that a.s in [45, 47] in the paper Calderbank A. R., Hammons Jr. R., Kumak V., 
Sloane N. J. A., Sole R. A Linear Construction for Certain Kerdock and Preparata Codes, Bull. Am. Math. 
Soc., 29, No. 2, 218-222 (1993), it is possible also to find a construction of the Kerdock code based on some 
linear code over Z4 (however in this article the Kerdock code is not in cyclic form). 

The result of Theorem 30.5 concerning the Kerdock code can be obtained as the special case of the 
following general result. 

Gene ra l i z a t i on  of  t h e  K e r d o c k  code  for t h e  case  of  t h e  field of  q = 21 e l e m e n t s .  AS before, let 

R = CR(q ~, 22) q = 2 t, and let R < Q = GR(q2'~,22). First we construct a l-linear cyclic code/C over R (see 

Section 29.B) of the volume/71 x . . .  x Nl, where Nx = 2(q" - 1), N2 = . . .  = Nl = 2. 

Let a l , . . . ,  at be a basis of the field F(R) over GF(2). Then r h = e + 2 a l , . . . ,  r/~ = e + 2a are elements of 

order 2 in the group R*, and e + 2R = <  r/1 > x . . .  >< < T/t >. Let ~0 be a primitive element of the field F(R). 
Then ~ = ~07 h is a root of some MR-polynomial F(x)  e R[x] of degree m. 

The ideal I - {F(xl)(Xt  -7h ) ,  z 2 -  712,... ,xl - 7,) '~ g'z = R [ x l , . . . ,  xt] is reversible, and its group of 
periods ~3(I) (see 6.21) is generated by the vectors (N~, 0 , . . . ,  0 ) , . ,  ( 0 , . . . ,  0, Nz). The desired/-l inear cyclic 
code is 

IC = L~(I ) ,  where N =  ( N ~ , . . . , N t ) .  

It consists of all polyhedrons #(H), where H = II(N), # E LR(I). 
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Now consider the following code over the field F(R): 

C'r(I) = {Tx(g(II))[ g e La(I)}.  

This is the code of the volume N1 x . . .  x Nl, each its element can be identified with a vector over F(R) of 

the length N = N1. . .  Nt = (q'~ - 1)q. So, we can say that CT(I) is a code of the length N. 

30.6. T h e o r e m  (A.S.Kuzmin, A.A.Nechaev, 1993). / f m  = 2~ + 1 _> 3, then the code C'~(I) has the 
length g = (qm - 1)q, the efficiency (N + q)2 and the code distance 

d =  q -  l ( N  + q - v [ ' N + q ) - q .  
q 

[] Since I = Ix n /2 ,  where 11 = (F(xl) ,  x2 - r/2,. . . ,  xt - tit) and /2  = (xl - ~1, x2 - -  ~2,.- . ,  Xl - -  ~ l )  a r e  

comaximal ideals, Ln(I) = Ln(I~)JcLn(I2) is the family of all/-sequences of the form 

.~zl~..z. .r/7', u E Q ,  c e R ,  , ( z )  = (Wr + . 

and ILn(I)I = IR[ d*gf(~)(~-"~) = [RI = q2(m+l). Any code word w E C~(I) is uniquely determined by the 

constants u = u0 + 2Ul, c = co + 20,  where us e r(Q), cs e r(n), and the collection of coordinates of the 
vector w is the collection of elements of the form 

w(io, it) 7,((Tr ~(u~~ + c)r/[ ~ . . . ,  = 

O < io < q m -  2, O < i l , . . . , i t  < l .  

From here, using the notation and techniques of the proof of Theorem 30.4, we get 

w(io,. . . ,  it) = 71 [(Tr ( u ~  ~ ) + c)(e + 2(ilal +. . .  +ita,))] = 7(Tr (u~io ~ ) + c)@(ilal r  ~ itat)(tr r(n)~ 

�9 ,' h h ~ - h i o  = ~(uh~ h*~ (~ tr  I, UoCoqo ) G c, (~ ( i l a l  ( ~ . . .  (~ ital)(tr(uh~ho '~ ) (~ Cob) 2. 

Thus, for suitable constants a, fl E GF(qm), a, b E GF(q) the set of coordinates of w is the set of the values 
of the function 

@(x, y) = g(ax)  + tr (/3x) 2 + tr (aax) + y(tr (ax) + a) 2 + b, 

where x is the indeterminate on GF(q'~) *, and y is on GF(q). The code distance of C'Y(I) is equal to the 

minimum of weights Wt(A(x ,  y)) of the functions 

A(x, y) = x(c~x) + • + tr (f~z) ~ + tr ( (aa + a 'a ')x) + y(tr  ((a + a')x) + c~ + a') 2 + 

on GF(qm) * x GF(q) such that (a + a',/~, a + a', b) # (0, 0, 0, 0). This minimum is attained when a # a'. In 

that case we can assume that a ~ = e. Then 

where 

A(x,y)  = ~(x) + y(tr((ct + e)x) + 5) 2 , 

qo(x) = x((a + e)x) + tr (Sx) 2 + tr  (ax) t r  (x) + tr ( (aa + a')x) + b, 

or, 5 E GR(qm), a, a', b E GF(q), 5 = a + a'. 

Let 
Lo = {x E GF(qm)*[ t r ( ( a +  e)x) = a}, 

It is easy to see that if qOo(X) = qol Lo, then 

L1 = GF(q~)*\Lo. 

Wt(A(x ,y))  = ILxl(q-  1 ) +  Wt@o(x))q. 
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The definition of Lo implies that 

~0(z) = ~((~ + ~)z) + tr (6~) 2 + b. 

The change of variables z = (a + e)z + a for m odd leads to Wt(~oo(Z)) = Wt(A(o~ where the right part 

is the weight of the form A(0~ = ,,(z) + tr(6z) ~ + b on the set Lo = {(z E GF(q")[  tr(z) = 0, z # a}. It 
follows from the proof of Theorem 30.4 that 

W~(A(0~ > (q-- 1)(q"-2-- q'X-1)--~, where ~ =  q,n-1 _ [L0[ E {0, I}. 

Therefore, Wt(A(x ,  y)) > d, where d is given in the formulation of the theorem. The attainability of this 
bound is proved by selection of the parameters in (1). {3 

This work was partiaily suppored by The Grands of Russian Foundation of Fundamental Research. 
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