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ON SOME APPLICATIONS OF POISSON R A N D O M  WALK PLANS 

V. V. C h i c h a g o v  (Perm, Russia) UDC 519.2 

In the present paper, we consider sequential Poisson random walk plans(SPRWPs). In particular, we solve such 
problems as the calculation of characteristics of SPRWPs with intensity parameter given, the construction of unbiased. 
estimates of characteristics of a homogeneous Poisson process observed in the case of a sequential trial plan, the 
construction of the joint distribution of Smirnov statistics, and the derivation of an optimal sequential Potsson 
criterion of given power. Another form of representing exact formulas for calculating characteristics of SPRWPs 
was given by A. Dvoretsky, J. Kiefer, and J. Wolfowitz. But they note no relationship between the SPRWPs and the 
corresponding sequential criteria; hence those formulas became approximate but not exact for the sequential criteria. 

Let {ri}~ be a sequence of independent random variables distributed by the exponential law with parameter A, i.e., 
with density 

A ( z )  = Ae -~=, ,~ > 0, x > 0. 

Let us define the Poisson random walk plan (PRWP) H a with stopping boundary G (see, e.g., [2]). The walk takes place 
on the set of states (t, d), t >_ 0, d = 0, 1 . . . . .  lying on the plane. At the time t = 0 the walk process W(t)  = (t, d(t)) 
is at the point (0,0). Here the component d(t) is the number of jumps of  W(t) at the time t. The walk process makes 
the ith jump, i = 1, 2 , . . .  , after a random time interval rt + r2 + .  �9 -+  rl, and the coordinate d increases by t. Between 
sequential jumps the coordinate d does not change. The walks stops as it attains the boundary G. 

LEMMA. Let Hi, H2, Ha be the SPRWPs with stopping boundaries Gl = {(Ao,0); G*}, G2 = {(t, m), 0 < l < 
At ;  G"}, G3 = G2 U {(A0,0)}, and intensity parameter A, where G z = {(z , j ) ,  j = 0, 1 , . . . } ,  0 < A0, 0 ~ At ,  0 < z. 
Then the probability of attaining the point F = (z, m), m E {0, 1 , . . .  } by the process of  random walk W(t)  starting 
from the origin 0 = (0, O) for each of the plans is 

p0[AA0], m = 0 A z  > A0, 

P[O, r l C , ] - b , , ( , ~ , z ) =  pm[~z], z < A o ,  (1) 

p.,[~.-][l - (1  - A0/z) ' ] ,  m >__ 1 ^ ~ > A0, 

r I m2]  = c m ( ~ ,  z )  = p ~ [ ~ : ] ~ "  o, : < A 1  v m = 0 ,  P[0 ,  
1 - ( A l / z )  m, z > A 1 ,  (2) t 

P[0, F I G3] = d.,(A, :) = pm[Az] { 

1 - (Al/z) m, 
1 - ( A ~ / - - )  m - (1 - A o / : )  "~, 

1 -  ( A U : )  m - (1 - A o / z )  m + ( ( A t  - A o ) / : )  m, 

0. 

A1 < z < A 0 ,  

At  < Ao <_zAm>_ 1, 

Ao _<AI <_:, 

r e = O V A l > z ,  

(3) 

respectively. Here p,~[z] = (z'~/(m!))e -r .  The distribution densities of the probabilities of attaining the state 7 = 
(y,k), k = m, forO < y <_ At  and k = m + l for Al  < y <_ 1, m E  {I,2 . . . .  }, from the s t e r e O  for the PRWP H2 and 
Ha with z = 1 are equal to 

{ p..-t[~y], 
A[o,v I V2] = a c..(a, y), 

{ b~_,{~,y], 
A[O,~IG3] = A dm(~,u), 

y _ < A t ,  
y > AL, (4) 

y _ < A I ,  
u > A1, (5) 

Translated from Slatislwheskie Melody Otsenivaniya i Proverki Gipotez, pp. 186-194, Perm, 1993. 

2874 1072-3374/96/8104-2874515.00 �9 Plenum Publishing Corporation 



P r o o f .  It is clear tha t  for m = 0 or A l  >_ z, the probabi l i ty  sought for differs from zero only in the case of l l l .  It  
i s  equal to e x p { - A  min(Ao, z)}. The validity of other assertions of the lemma for m > 1 can be proved by the use of 
the properties of the Poisson process and the total  probabi l i ty  formula. 

Denote FI = (zl ,  m, ) ,  Fs = (zs, ms),  rnl, ms E {0, 1 . . . .  }. z, > 0, zs > 0. If the s topping  boundary  is absent,  the 
probabil i ty  of the transit ion from Ft to Fs for the Poisson random walk is equal to 

0, z2 < zt V ms < ro t ,  
P x [ F , ,  F2] = p m 2 - m , [ A ( z ' , - z t ) ] ,  z ~ > _ z x A r n s > m l .  (6) 

From (6) we consecutively derive for m > 1 

Px[O, F I GI] = Px[O, r l  = p,,,[A~] as z < Ao, 

P~[0, F l a d  = Px[0, r ] -  Pal0, (~0, 0)]Pal(A0,0), r] 

= pr~[.~z] -- p O [ ~ A o ] p , , , [ . ~ ( Z  - -  A0)] = p,.[.~z][! - ((z - A0)/z) m] as z >  Ao; 

Px[0, F I Gs] = P~[0, F] - Px[0, (A1, m) ]Px[ (A , ,  m), F] 

= p,~,[Az] -p , - , , [AA , lPo[A( z -  A i ) l  = p , , , [ A z l [ 1 - ( A i l z )  ~] as z _ > A , ;  

Px{O, r a~] = V~[O, r I a2] ~ •  > :~ 

Px[0, r I aa] = Px[0, r [ GI] - P~{0, (AI ,  m)lV~[(A, ,  m), r] 

= p m [ A z ] [ [  --  ( ( z  -- A o ) l z )  m - ( A i l z )  m]  as AI  < Ao < z, 

P~[0, F I Gz] = Pal0 ,  F [ Gsl - Px[0, (Ao, O)]pm[A(z - Ao)][1 -- ( (At  -- A o ) / ( z  -- Ao))  m] 

+ z O) - ] 
as A o _< A 1 < z. It is not difficult to obta in  relations (4)-(5)  by applying the formula 

f~{0, v I a,] = P~[0, (v, k - 1) a, lf~(0),  

with z = 1. The lemma is thus proved. 
To prove the main results, we introduce the following notation:  

I ~ -- [1 
(a) = the integer part  of a, 

( c1[~] po[A] 
cs[~] v,[a] 

Q~ = Ilq#(A)ll7 = " " 
c~_,[a] p.-s[~] 
at[A] br-l[X] 

is the r x r -matr ix  whose nonzero elements are 

i = 2 , 3 ,  

if a is an integer, 

otherwise: 

0 . . .  0 
y o n  .. .  0 

p.-3[~] . . .  vo[~] 

qi,i_m+l(A)=pm[A], m = O  . . . . .  i - - 1 ,  i = 1  . . . . .  r - - l ;  

q r ~ , ~ ( ; 9 = C . . { : q = c m ( A ,  1 ) = p . . { . q ( 1 - A ? ) ,  , , , =  t . . . . .  r - 1 ;  
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q.,._.~+1(A)=b.~[Al-b.~(A,l)=pm[A]{l-(l-Ao)m}, m = l  . . . .  , r - l ;  

{1-A~-(1-AoY f o r A 1 < A 0 < l ,  

q ' a ( A ) = d ' [ A ] = d ' ( A ' i ) = P ' [ A ]  I - A ~  (I  A o ) ' + ( A t - A o ) "  f o r A o < A t  < 1; 

if r = 1, we put  Qx = dl[A]; rr(h) = ( r l  . . . . .  r , )  is the row vector of size r whose on ly  nonzero  e lement  is r h  = 1, 
1 < h < r; ~ = (I ,  1 . . . . .  1) T is the c o l u m n  vector of size r all of  whose e lements  are equal  to l ;  R0[A] = (0 ,0  . . . . .  0, 
e -Xao)T is a co lumn vector of size r; Rt  [),] = (Pl [A], . - . ,  p,[,q)r is the co lumn vector of size r with e lements  

r n + l  r n - I  

Pro[),] = 1 - Z q,~,i = 1 - c,~[A] - Z Pi[A]' m = 1 . . . . .  r - I, 
j = l  i = 0  

r - - |  

p~[A] = l -  q , , i - e  -xzx~ = l - d r [ A l - Z b i [ A ] - e - X a ~  
i = 1  i----1 

R1 (A, A l ) = (gl (A, A t ) . . . . .  g, (A, A 1 ))T is the co lumn vector of size r with e lements  

r n - - I  

g, , , () , ,AI)  = 1 -  ~_,p,[,~A1], m =  1 . . . . .  r - I ,  
i = 0  

r - - I  

g,(A, ~1) = 1 - ~ b,[a], 
i = 0  

if r = 1, we put  gl(A, A1) = 1 -- bo[A]; Ir is the r x r un i t  mat r ix ;  R2(A,y) = (pl(A,y) . . . . .  p,.(A,y)) T is the co lumn 
vector of size r with e lements  

{ b , - l ( A , y ) ,  y_< A l ,  
p~(A,y) = A  d , (A,y) ,  y > A 1 ,  

~ f p,,,_~[,~y], y < A~, 
p,n(A, y) = ~ - , m =  1 , 2 , . . . , r - 1 ;  

c,~(A,y), y > A1, 

Lo, L1 are the lines de te rmined  by the equat ions  d = t - ao, ao > 0, d = t + a l ,  ao + al  > i ,  a l  > 0, respectively.  

TrlEOREI~.  Let II01 be a S P R W P  with stopping boundary composed of parallel lines Lo and L1; Vo be the probability 
that the random walk stops due to attaining the line Lo; r be the random stopping time; N be the number of  jumps  
that occurred before stopping; u be the number of  continuous parts of  the random walk's trajectory before stopping; 
V(A, t, ao, al) be the density of  distribution of'r. Then the following relations hold: 

Vo = ~r(I - Q ) - t  Ro[A], lr ~ ~r(rl), I - I,, Q -- Qx; (7) 

( "~ ) 
E x N = ; r ( I - Q )  -1 Q ' ~  R~(A. A I ) +  ~~.QiR~[A] + r ~ ( 1 - V o )  

1 = 0  

= T r ( I - Q )  - t  ~ - R I ( A ,  A I ) -  QiRo[A] + r l ( 1 - V o ) ,  

= Q) Q Ro[~], E x v  E~,N + r ( l -  -1 ,o 

(8) 

(9) 

E x r  = ExN/A,  A > 0, (10) 

{ R0[~], 
V ( A . t . a 0 , a t )  = rrQ h R2(A, y), 

if the random walk stops due to attaining Lo, 

if the random walk stops due to attaining or passing Ll. 

Here r0 = (ao); rt = (al) + 1: r = ro + r l ;  A 0  = a 0  - r 0 ;  A 1  = r l  - a l ;  h = ( t ) ;  y - -  t - ( t ) .  

(11) 

2 8 7 6  



P r o o f .  We define in the domain where the random walk determined by H01 is in progress the homogeneous absorbing 
Markov chain (, ,  t _> 0, (0 = r t ,  with transient  states l,  2 . . . . .  r which mean that  the random walk W(t) is to be found 
at the lines 

d ( t ) = t + r l - m ,  m =  1,2 . . . . .  r, 

respectively, and with two absorbing states 0 and r + 1 meaning that  W(t) at ta ins  the lines L + : d(t) = t + r, and L0, 
respectively. It is easily seen that  the chain (t on the set of transient states 1, 2 . . . . .  r is associated with the transit ion 
matr ix  Q; the vector R0[A] contains the probabil i t ies  to t ransi t  to the absorbing s tate  r + 1 in one step, and the vector 
zr is the initial probabil i ty  dis t r ibut ion of  ('t on the set of transient  states.  Hence, applying Theorem 3.3.7 from [3], we 
get (7). Formula (8) can be proved by means of the calculations 

O0 O0 

EaN = zr Z iQi+'~ R0[A] + lr Z Q i - ' ( ( r t  + i ) R , [ A ] -  R1(A, A t ) )  
i----I i = l  

o o  o o  o o  

= ~rQ~~ Z iQi-l R0[A] + rl~r ~ Qi-IRI[A] + rr Z iQi-X RI[A] - c 
i----I i = l  /=1 

---- ? r Q r ~  - Q ) - 2 R o [ ) ~  ] -~ r l T r ( I  - Q ) - I R 1 D ~  ] 2t- ( [  - Q ) - 2 . R I [ , ~  ] - c 

= zrQ,~ _ Q ) - I (  _ ( I  - Q)-2RI[A]] + r~(1 - V0) + 7r(I - Q)-2R,[A]  - c 

( 5 ) = rc(i_Q)-I Q~o+I~ _ QiRl[A] +rl(1-Vo)--c = zr ( I -Q)- lQ~~ 
i=0  i=0 

[ ro ] 
= T r ( I - Q ) - '  ( - Z Q i R 0 [ A ]  + r 1 ( 1 - V o ) - c ,  

i=0  

c = 7r(l - Q ) - I R I ( A  , AI )  , 

if one takes the identities 

k Qi = (t - Q)- ' ,  
i=0  

~-~ iQ i -1  = (I  - Q ) - 2 ,  

i=1 
( I  - Q)- t (R0[A] + R~[A]) = 

into account. Similarly we can obtain 

E~v=zcZ(i+l)Q'+r~ Q'- ' ( (r~+i)R,[AI-R~(A,  A1)) 
i----0 i = 1  

O a  , 

Q) Q Ro[ ]. = E~N + zc~'Q,+rORo[A]= ExN +1r(I_ -1 ~o A 

i=O 

Formula (10) follows from the well-known Wald formula. Formula (11) can be derived by using the total  probabi l i ty  
formula and the welt-known propert ies  of Markov chains. The theorem is thus proved. 

R e m a r k .  The mat r ix  I - Q  is a lower a lmost- t r iangular  matr ix  whose de terminant  can be recursively expanded in 
terms of the elements of its last row. This fact lets us use the formula 

Vo = e -'~a~ D[rl  - 1] 
o[~1 

where D[m] is the principal minor of order m of the matr ix  I - Q. To this end, for r > l, we may apply the relations 
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O[O] = 1; 
ra--I 

D[m] = Olin - 1 ] -  Z Pi[A](P~ - j ]  - c'*[A](p~ m = 1 , . . . ,  r -  1; 
j = l  

r--t  

D[r] = D [ r -  t ] -  Z bl[Al(Po[A])J-'D[r- j ] -  dr[A](p0[A])'- ' .  
j = l  

In the sequel we apply the SPRWPs to sequential inspection of reliability of products under the assumption that the 
distribution of time between failures of one item is determined by the density function f~(z) .  The sufficient statistic for 
the family of distributions generated by:H0t is the pair-of coordinates (k;-r) of  the s t a tewhere  the random walk stops. 
Here k is the number of jumps of  the random walk under consideration that  occurred prior to the stopping time r. 

COROLI, AZtY 1. Unbiased estimates( u.e. 's) of  the probability of  reliable functioning p0[Ax] = e -~= for z < ao and 
of the intensity parameter A for al > 1 can be calculated by the formulas 

{ - - + *) 
= > 0 ifT > . ,  (1"2) 

0 i f r  < x, 

{ AV(A,r,  a o + l , a l - l )  V A > O  i f k > l ,  
u.e.[A] = V(A,r, ao,a,) - (13) 

0 i l k  = O. 

The proof of (12)-(13) is based on the fact that, in the case of a Poisson random walk, for any state 3' where the 
random walk determined by H01 stops, the relation 

u.e.(p0,y) - -  #O,F#F,'r 
~0,~, 

holds, where lzu, z is the density of the probability of transition from U to Z with stopping boundary given. 
Now, let us consider the sequential Poisson criterion (SPC) Sp minimizing the average number of trials whose 

durations are distributed by the exponential law with density fu(x).  B y  the results z l , z 2  . . . .  ,xn of n sequential 
independent trials, based on the value 

U,~ = ~ szi,  s -  #l - ~o (14) 
i=t log(/~l//~o) ' 

we either accept the null hypothesis 

or accept the alternative 

Ho:  # = p o ,  if U,, > _ n o + n -  1, ao > 0 ,  

Ht : p = #t if l;,~ <_ n - al, al q- ao > 1, 

or continue the trials if a0 + 1 < U, < n - al. Thus. the SPC just defined corresponds to the SPRWP l-I01 and hence 
the validity of the assertion given below follows. 

COROLLARY 2. The operating characteristic L(p), the average number of trials M~v, and the average duration of 
trials Mgr for the SPC Sp for the parameter l~ can be calculated by the formulas 

L(#) = Vo, M~v = E~v, M ~ r =  ExN/~ ,  

respectively( A = p/s) .  If the criterion is of power ((~, ~1), then the parameter ao can be computed by the formula 

log(1 - a ) / 3  Ao #0 #1 
= - - ,  AI = - - .  (15 )  

a0 = AI - A0 ' s s 

P roo f .  The first part of the assertion is true by virtue of the correspondence mentioned above. To prove the second 
part. we use the relations 
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Ao e-:~~ = "~1 e - ~  , (16) 

L(#) = e-X"~ (17) 

where ~o(-) is some positive-valued function. The first relation follows from (14), and the second one, from Lemma 12.4.1 
from [4]. Hence. taking the relations I - a = L(/~0),/3 = L(/~L) into account and applying (16)-(17), we obtain 

1 - o~ L(#o) exp(-Aoao)~'(Ao exp(-Ao))  
/3 - L(/~I) - exp(-~la0)~o()q exp(- ,~t)  ) -- exp(a0(~t - Ao)), 

hence (15) follows. 
It is interesting to note that the approximate Wald formula(see, e.g., [1] or [5, formula (29), p. 135]) gives the 

optimal value of a0 which is only one above the true value given here. 
R e m a r k .  The second parameter at of the SPC Sp of given power (~,/3) can be obtained as the root of one of the 

equations 

L(I.to) = 1 - ~, L(Ut ) =/3. 

To compare the empirical distribution function F + with the known continuous distribution function F(z) ,  one can 
use the joint distribution of Smirnov statistics 

D + = sup [ F + C z ) -  F(z)],  D~" - - inf [ F + ( z ) -  F(z)].  
I~I<~ Ix]<~ 

The problem on determining the distribution of (D~, D +) admits an exact solution, which can be obtained in the same 
way as in [6]. 

COROt.LArrY 3. The relation 

?l!en  n 
P(D~ < v0,D. + < v , ) =  --y~--Q, [rt] (18) 

n r is valid, where QI [ i] is the (rt ,  rt) th element o f  the nth power of  the matrix Q with ao = yon, al vtn, vo > O, 
vt > O. For ao + at <_ 1, probability (18) is equal to zero. 
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