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L A G R A N G I A N  FAMILIES O F  J A C O B I A N S  OF G E N U S  2 C U R V E S  

D. Markushevich UDC 512.72 

The main result of this paper is that for any Lagrangian fibration on a projective algebraic (holomor- 
phically) symplectic fourfold which is a compactified Jacobian of a family of curves, its base is the projective 
plane, and the family of curves is identified with the linear system of hyperelliptic curves of genus 2 on a K3 
surface of degree 2. The relation between the Lagrangian structures on the Jacobians of different degrees is 
discussed; a nonsingularity criterion for the compactified Jacobians and for the relati~ve Hilbert schemes of 
families of curves is obtained; explicit construction of the compactified Jacobians in the genus 2 case are ob- 
tained; toric techniques for computation of certain tensor holomorphic fields are given for use in the proof of 
the main result. 

1. I n t r o d u c t i o n  

This paper continues the study of Lagrangian fibrations on projective algebraic (holomorphically) sym- 
plectic varieties along the lines of [19]. Let X be a complex algebraic variety of dimension 2n with a holo- 
morphic symplectic form a E F(X, fl~c ) ( d a =  0, a A" does not vanish), A Lagrangian fibration is a proper 
(or even projective) morphism f : X > B, whose generic fber  is Lagrangiam Applying the Stein factor- 
ization, one can suppose that the fibers of f are connected. By the Liouville theorem, the general fiber is an 
abelian variety of dimension n. In the classical mechanics, Lagrangian fibrations appear as a tool for integrat- 
ing Harniltonian systems. In the framework of the study of projective algebraic symplectic varieties (or more 
generally, of compact K/ihler holomorphically symplectic varieties) started by [6, 7, 10, 15, 21], the Lagrangian 
fibrations were introduced in [8, 9, 12, 13, 18, 19]. The following theorem was proved in [19, Theorems 2, 5]: 

T h e o r e m .  Let C / B be a family of hyperelliptic curves of genus 2 with mild degeneratiovz over the base 
B p2. Then the compactified relative Jacobian P = P~/B of the family C/B is a nonsingular projective 
variety. Assume that it is symplectic and that the natural projection to B is a Lagrangian fibration. Then C / B 
is identified with the family of curves {/3-1(I)}/Ep2. on a hyperelliptic K3 surface ~/: S ) p2  (the base B is 
identified with the dual projective plane p2* parameterizing lines I in the last p2). : 

This theorem describes the Lagrangian fibrations over p2 which are compactified fami!ies of Jacobians 
of genus 2 curves. All the resulting symplectic varieties P are birational to the Fujiki-Beauville symplectic 
fourfold S[ 2], obtained by blowing up the diagonal in the symmetric square S (2) of the K3 surface S; this 
birational isomorphism was described in other terms in [21]. So, in other words, the theorem states that with 
certain restrictions (mild degenerations), all the Jacobians which are symplectic and Lagrangian over p2 
are Mukai transforms of certain Fujiki-Beauville symplectic fourfolds. Here, we will strengthen this result in 
several directions: 

(1) replace p0 by pd;  in view of the periodicity pd ~_ pa+2 for genus 2, this adds one variety p1; 
(2) move the condition B = p2 from the hypothesis to the conclusion of the theorem; 
(3) replace the mild degeneration condition by a necessary and sufficient one for the nonsingularity of P. 
For (1), we have to analyze the relation between a Lagrangian fibration f : X ) B and its Albanese 

family (having a cross section) A ( I )  : A ( X )  ~ B. It turns out that the Albanese family of a Lagrangian 
fibration is always symplectic and Lagrangian (Proposition 2.3), but for the inverse passage a certain coho- 
mological condition should be verified (Proposition 2.6). However, this condition is automatically verified if 
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HI(B,  fl~) = 0 and all the fibers are reduced irreducible; in this case A( f )  is Lagrangian if and only if f is 
(Theorem 2.8). This implies that p0 is Lagrangian if and only if p l  is (Corollary 5.2). 

For (2), note that, except for isotrivial fibrations, the base B of a Lagrangian fibration of relative dimen- 
sion 2 is a rational surface (see [I8, Sec. 3, Remark 5; 19, Sec. 2]); we eliminate the isotrivial cases by requiring 
that X be irreducible symplectic (see Terminology and Notation8 below for the definition, and [6] for its moti- 
vation). So, to prove that B = p2,  it suffices to eliminate two cases: (a) /3  has exceptional (-1)-curves, and 
(b) B -- F ,  (Hirzebruch surface), n -- 0, 1, 2 . . . . .  In [19], it was shown that the families g / B  giving rise to 
Lagrangian fibrations of Jacobians over the two-dimensional base are constructed as two-sheeted coverings of 
P(TB) ramified in the divisor of zeros of a section u E F(B, $67"B | w~). We compute this group of sections 
on the formal neighborhood of a (-1)-curve and on Hirzebruch surfaces to see that the zero divisor is too 
bad: the corresponding compacuned Jacobian is singular. To see this, we establish a necessary and sufficient 
condition on the degenerations (item (3) above) for pa  to be nonsingular (Corollary 4.4). The proof of this 
condition uses a more general criterion of the nonsingularity of the relative Hilbert scheme Hilb d of a family 
of curves (Theorem 3.2) and a result of Altman-Iarrobino-Kleiman on the smoothness of the Abel-Jacobi 
map from the relative Hilbert scheme to the compactified relative Jacobian. 

The structure of the paper is as follows. Section 2 gives a construction of the Albanese family of a La- 
grangian fibration; having in mind applications to families with reduced irreducible fibers, we do not go into 
the uniqueness and compactification problems in case of multiple or reducible fibers. The relation between 
the fibration and its Albanese family is investigated in terms of an 6tale or Cech cocycle, and the conditions 
for moving the Lagrangian structure from one to the other are formulated. 

In Sec. 3, we cite the definition of the compactified Jacobian of a family of curves and the Altma~-hrro- 
bino--Kleiman result on its connection with the relative Hilbert scheme, and then prove the nonsingularity 
criterion for the relative Hilbert scheme of a family of curves, which implies also the one for its compactified 
Jaeobian. 

Section 4 deals with families of hyperelliptic reduced, but possibly reducible curves of genus 2. We provide 
an explicit construction of a nonsingular compactification 15 of the relative Jacobian as the result of a blow 
up and a subsequent blow down which is isomorphic to the Altman-Kleiman compactification p0 when the 
latter is defined, that is, when the curves are irreducible, and formulate the necessary and sufficient condition 
for the nonsingularity of p0. It is also proved that for a family of hyperelliptic curves on a possibly singular 
K3 surface S of degree 2, the nonsingularity of 15 is equivalent to that of S (Proposition 4.5). 

In Sec. 5, we provide a construction of the compactified Jacobian p t  of degree 1 as a compactified prin- 
cipal homogeneous space of j0  associated with an element of order 2 in the Shafarevich-Tate group of B and 
apply the results of Sec. 2 to show that p0 is Lagrangian if and only if p t  is. We also make explicit in co- 
ordinates the symplectic structure on p t  coming from a family of hyperelliptic curves on a K3 surface S of 

degree 2. 
Section 6 gives a method of calculating the groups F(B, S6Ts  | w~) for toric varieties B, which is then 

applied in See. 7 to two toric surfaces: the blow up ~2 of the origin in the affine plane A 2 and p2. The 
computation for .~2 implies that there axe not enough sections on the neighborhood of the exceptional curve 
to generate a nonsingnlar family of hyperelliptic curves, and hence if P d / B  is nonsingular with a Lagrangian 
fibration, then B is a relatively minimal surfax:e. The following main result is proved: 

T h e o r e m  1.1. Let B be a nonsingular projective surface, g / B  a family of hyperell!ptic curves of genus 2 
satisfying the conditions (i), (it) of (a) of Theorem 4.1, and/3 the nonsingular projective variety constructed 
in (b) of Theorem 4.1, which is'a compactification of the relative Jacobian J~ /B of the family C / B. Then the 
following assertions are true: 

(1) /3 is irreducible symplectic in such a way that the natural projection to B is a Lagrangian flbration 
if and only i f C / B  is identified with the family of curves {/~-l(l)}tep',. on a (nonsingular) hyperelliptic K3 
surface fl : S . > p2. In particular, the only possible base surface B is the projective plane (B - p2. ) .  
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(2) Assume in addition that all the curves of the family C / B  are irreducible. Then f~ in canonically iso- 
morphic to the Altman'Kleiman compactified Jacobian PO/B , and (1) holds with Pdc/B in place o f f  ~ for all 
d E Z .  

Terminology and Notations. All the varieties are analytic or algebraic over C. We do not distinguish 
varieties and associated analytic spaces. A variety is called symplectic if i t  is nonsingular and  has a holomor- 
phic, closed everywhere, nondegenerate 2-form. If it is also simply connected and the symplectic 2-form is 
unique up to a constant  factor, it is called irreducible symplectic. A symplectic variety X of dimension 2n is 
called completely integrable if there exists a proper surjective holomorphic map f : X - > B with connected 
fibers onto_amormalvariety~B nf dimensionm.such~hat~its-generic fiber is-La~rangia_n-. Such a map f i s  called 
a Lagrangian fibration. In the case where X is projective, we demand that f and B also be projective. 

For a map f : X ) Y, a point x E X is critical if x or f ( x )  is singular, or if x, f ( x )  are nonsingular and 
r k d ~ f  < min{dimX,  d imY}.  A point y E Y is a critical value of f if there exists a critical x E f - l ( y ) .  A 
fiber f - 1 ( y )  is called multiple if all its points are critical. A map f is nonsingular if it has no critical points. 
We will denote by X,r the set of noncritical points of f ,  Y,m = f (Xnc)  the set of points y E Y such that  the 
fiber f - t ( y )  is not multiple, Ync the set of noncritical values of f ,  Xns = f -~ (Y ,~ ) )  the nonsingular locus 
of f ,  f,~ : Xnc ) Ynm and fns : Xns ~ Ync the restrictions of f ,  For another map g : U > Y, we 
denote by f u  : X u  ~ U the base change of f ;  here X u  = X • y U. For a nonsingular map f : X ~ Y, 

= ~ x / f  ~Y A bundle (=locally free sheaf) of relative p-forms on X, and we denote ~2~r p �9 1 [2~c -1 the vector 

T X l Y  1 �9 = ( f ix~Y)  the vertical tangent bundle (i.e., the distribution of tangent planes of the fibers of f ) .  

2. A l b a n e s e  F i b r a t i o n  

We fix for this section a completely integrable projective symplectic variety of dimension 2n and a La- 
grangian fibration f : X > B. We denote by o~ = c~x E r '(X, f~c) a symplectic form on X.  The following 

is standar& 

Proposition 2.1. (i) There is a canonical nondegenerate coupling & : f~sTB.~. @ ~'Xns/ Bnm ) O x.s defined 
by a, which gives a canonical i~omorphism i,~ : f*s~/~.., ) Tx , s lS ,  m. 

(ii) The connected components of fibers of fns are analytically isomorphic to the quotients C2" /  L, where 
L in a lattice of rank <_ 4n ir~ C 2n. In the algebraic situation, i f f  i~ projective, then each connected component 
Ai of a fiber A = f~sl(b) (b e B)  is quasi-projective and can be represented as an isotrivial fiber bundle over 
an abelian variety A I with G~ x GPm as a fiber (p, q and A' depend only on b). 

(iii) There is a canonical way to associate with f a nonsingular surjective holomorphic map A( f )  : 
A( X )  )Bnm which is a family of connected complex commutative Lie groups with a cross section e :Bnm ----'+ 
A ( X )  of neutral elementa, together with an action ~ : A ( X )  x Xns ~ Xns making each connected compo- 
nent Ai of a fiber A = f~t'(b) (b e B) a principal homogeneous space under Ab = A ( f ) - l ( b ) .  Moreover, 
if B , X  are algebraic and f is projective, then there is a maximal Zariski open subset B q p  C B n m  such that 
codimB,m(Bnm \ Bqp) >_ 2 over which A ( f )  is a quas@rojective family of commutative algebraic groups and 
the action �9 i~ algebraic. 

Proof .  The proofs of (i) and of the first part  of (ii) are the same as in the C a symplectic geometry; (ii) is a 
holomorphic (algebraic) analogue of the LiouviUe-Arnold Theorem [4]. A' is defined in the algebraic category 
as the Albanese variety of the irreducible components of f - l ( b ) .  We should check that  it does not depend on 
the choice of the component; we will first do so in the analytic category. 

Let Sl, s2 : U ) Xns be two local analytic sectk ns of f over a neighborhood U of b, meeting two 
connected components AI, A2 of f -  1 (b) at points p1,i02 respectively. Any holomorphic frame ~1,.-- , ~r~ of 
f~r over U can be lifted to that  of TX, ~ I S,  m via i,~; denote the latter by ~1,  - �9 �9 , ~ n .  Choose ~k closed; then the 
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fact that a is closed implies that ~l,--- , 4,, commute pairwise, so their flows define the fiber exponential map 
exp : fib ~ Aut(Xns u/U) .  The exponential induces by restriction homogeneous actions of the cotangent 
space T~X = f ~  (b) on A1, A2. Let LI, L2 be the kernels of these actions. It suffices to see that L I = L2. 
Let l E L1; then exp l(pl) = Pl, and by the inverse function theorem, I extends to a local section A of I2~ 
such that exp A(sl ) = st.  But on a dense open part of U the fibers of f are compact complex tori, so exp X is 
identity on this part, and hence, by continuity, everywhere. Hence Lt C L2. By symmetry, L1 = L2. 

Thus, we have a holomorphic automorphism between A1, A2 sending pl to p2. It can be extended to the 
holomorphic translation map t,  2_,~ : XI ,u  > X2,u, where Xi ,u  denotes the open subset of Xns v formed 
by the connected components of the fibers f~l(b)  (b E B) containing si(b). This map is algebraic if we are 
in the algebraic category and si are local cross sections in the 6tale topology. Indeed, by the GAGA principle 
over B,c, which is the projective locus of f ,s ,  t82-~1 is a rational map, regular over B,~; the regularity on 
X L u  follows from the rationality and from the regularity in the analytic category. Hence A1 ~ A2 in the 
algebraic category as well. 

To prove (iii), note that the above proof of (ii) gives a local system of lattices L: in the cotangent bundle 
fl~, m ; the fiber Z:b is the kernel of the action of ~2~3(b ) on f~sl (b) by the exponential map. Define A I X  ) to be 
the quotient ~2~3,m/s and A( f )  the natural projection. In the algebraic category, A(X)  is defined locally in 
the 6tale topology over Bnm as a quotient by a quasi-finite algebraic equivalence relation: Let s : U ---+ X u  
be a local section of f over an 6tale open rr : U ) V C Brim, and XU # the union of connected components of 
s(u) in ful(U) over all u E U. Then A ( X ) v  = X#u/R, where/t  is the equivalence relation defined by 

= i R 

where t=i_,(~i ) denotes the rational translation m~p on Xns, ,r(ui)- By [23], there exists a Zariski open V t C V, 
over which the quotient by R is quasi-projective. Then Bqp is the union of the V' taken over all V as above. 
[] 

Definit ion 2.2. The map A ( f ) :  A(X)  
Bqp its quasi-projective part. 

) Barn is called the Albanese family o f f ,  and A(f)qp : A(X)qp 

Propos i t ion  2.3. The Albanese family A( f )  : A(X)  > Bnm ~ analytically isomorphic to the quotient of 
the cotangent bundle ~'~Snrn by a local system of lattices s C ~'~Inm , and the natural symplectic structure on the 
cotangent bundle descends to A(X)  in such a way that all the fibers of A( f )  are Lagrangian. 

Proof.  Let u l , . . .  ,u,, be local analytic coordinates on an open U C B,m, and z i , . . .  ,z~, the coordi- 
nates on fls,m, dual to du l , . . .  , dun. Any local analytic section s of f ,s  over U provides the identification 

of A(X)u  with the open subset X~ # of X u ,  defined as in the proof of (iii) of Proposition 2.1, such that s is 
transformed into the section of neutral elements e. With this identification, u l , . . .  , u,~, z l , . . .  , z,~ are local 
analytic coordinates on Xu #,  and the restriction of the symplectic form a x  to Xu # can be written in the form 

= dup ^ + #, # = ^ duq. 

P P,q 

(i) 

There are no terms of the form dzp A dzq, as the fibers of f #  = f [ x ~  are Lagrangian. The condition that a x  

descends from Y/b to the quotient by / :  can be written down as follows: 

#(u,: + 7) - = d 7#u  1 , 
x P / 

(2) 
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where 7 = (7t . . . . .  7,~ ) is any local section of s Let 7( t ) , . . .  , 7 (2") be a local basis of s in the neighborhood 
of a noncritical value of f ,  and/~0(u, z) a R-linear in z solution of (2) of the form 

Then the coefficients of dup A duq in #(u, z) = fl(u, z) - l~o(u, z) are fiberwise harmonic and periodic with 
respect to a lattice of rank 2n; hence they are constant, hence they are zero. So fl = rio, and we have 
fl(u, z + 7) = fl(u, z) V 7 E s This implies that the coefficients flpq(z)do not depend  on z. By continu- 
ity, the representation (1) with l~pq(u, z) = tim(u) extends to the critical values as well. Hence the first term 

of aX,  

oto = ~-~ dttp A dzp, 
P 

is also invariant under s and hence it descends to the quotient A(X) = f~tBn m/s [] 

R e m a r k  2.4. Our construction of A(X)  shows that Bqp contains all the points of Barn over which the 
fibers of f are of dimension rt and do not have multiple components. Indeed, for such a point b, we can find 
a sufficiently araple subvariety/3 of dimension n in X which meets f - t  (b) transversely; then a neighborhood 
of A(f ) - t (b)  can be represented as a quotient of the projective family X a by the action of G = Gal(/~/B) 
associated with a cocycle cr E Ht (G,  XB). 

R e m a r k  2.5. It is very plausible that codimBBnm > 2. In this case, we have codimBBqp >__ 2. The 
analogous statement for fibrations of elliptic curves whose total space has trivial canonical class can be proved 
by using Kodaira's description of degenerate fibers. 

However, if we admit multiple fibers along a divisor C in B, we can specialize a t  the generic point r/of 
C and use a finite cyclic ramified base change to get a new family X,~ ~ /3~ with a local section; here r~ 
denotes the point of the base change above 7/, and Gal(/3,~/B,~) = ttr is cyclic of order r. It has a birational 
model (constructed, for example, following [22]) such that the nonsiagular locus of the irreducible component 
of the central fiber containing the image of the local section has a group structure; denote the resulting group 
family Y,~ ~ /~ .  Then the birational class of the original family is represented in the local Shafarevich-Tate 
group by a cocycle a E HI(Gal(Bo/B~), Y~) which specializes to a group homomorphism a0 : /z,. ~ Y0, 
where II0 is the group central fiber of the compactification chosen. Quotienting by the trivial cocycle, we will 
get the Albanese family of the original map f ,  defined at the generic point of C. As concerns the symplectic 
structure, it lifts to X'fi and hence to YO, but does not descend to the Albanese family over B via the quotient 
by the trivial cocycle, as the quotient map is ramified. 

This argument also shows that any connected component X0 of the nonsingular locus of a generic multiple 
fiber f over C has a group structure; it is the quotient of A0 by the image of cr0. Indeed, since X is nonsingular 
and the canonical class of X is trivial, the map from Y,~ to X, 7 is nonramified and does not contract anything, 
so the birational equivalence Y0/im(cr0) "~ X(r/) is in fact an isomorphism. 

The inverse operation of constructing X from A = A(X) consists of two steps: quotienting A by a cocycte 
r E H~t(Bnm, A), and compactifying the quotient in a minimal way, say, with trivial canonical class. (In the 
analytic category, one should use the Cech cohomology/7/1 (Bnm, A).) For a family of commutative complex 
Lie or algebraic groups h : A ~ Bnm, denote by h~. : Ao. ~ Bran (or h(cr) : A(~r) ~ Bnm) the quotient by 
the cocyele a. Suppose that a family h admits a symplectic structure oL0 induced from that of the cotangent 
bundle of B as in Proposition 2.3. Then the cohomology class cr*(a0) E H~t(Bnm, f~2) = Hl(Bnm, f~2) = 
/7/1 (Bnm, fie) is well defined. Say, in/7/~n , c~ is represented by a cocyele cij E Hol. Sections(U/N Uj, A), and 
r by ci*j(a0), where {Ui} is an open covering of Bnm in the strong topology. 
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Proposit ion 2.6. Let B be a nonsingular analytic (resp. projective algebraic) variety of dimension n, h : 
A > B a fiat analytic (resp. algebraic) family of commutative complex Lie (resp. algebraic) groups whose 
generic fiber is a compact complex torus of dimension n, and a e I:/atn(B, A). Then the twisted family ha : 
A~ > B is Lagrangian with respect to some symplectic structure if and only if the following two conditions 
hold: 

(i) A has a symplectic structure so such that h is Lagrangian with respect to so, and 
(ii) a*(~o) G HI (B , f /2 )  lifts to the zero cohomology class in Ht (H,  2 flclosed )" 

Proof .  We give a proof for the analytic category; the translation into the language of the 6tale cohomology 
in the algebraic category is an easy exercise. 

Sufficiency: Assuming (i), (ii), take an open covering {Ui} as above and a cocycle cii representing a. 
Then by (ii), there exist #i E F(Ui,df~ 1) such that ci*j(c~0) = #i - f/i. The 2-forms oq = c~0 + h;#i  give a 
well-defined global symplectic form on A~ with the required properties. 

Necessity was shown in the proof of Proposition 2.3. [] 

R e m a r k  2.7. (ii) of the proposition is equivalent to the following condition: 
(ii)' o'*(oLo) E H t ( B ,  ~2) lifts to an element of Hl(B,~21) via the de Rham differential d: fl 1 > f~2. 

T h e o r e m  2.8. Let X,  B be nonsingular projective varieties of dimensions 2n, n respectively such that 
H i ( B ,  f/2) = O, and f : X ) B be a flat surjective morphism with reduced irreducible fibers whose generic 
fiber is an abelian variety. Then X is completely integrable symplectic with moment map f if and only if there 
exists a flat quasi-projective family of commutative algebraic groups h : A > B whose generic fiber is an 
abelian variety of dimension n such that the following two conditions hold: 

(a) A has a symplectic structure cro such that h is Lagrangian with respect to Cro, and 

(b) f :  Z > B is a compactification of the family h~ : A~ > B associated with a class a e [-I~ ( B, A ). 

In this case A = A ( X ) ,  h = A( f ) .  

Proof .  Necessity follows by Proposition 2.3. By Remark 2.4, the hypotheses of the theorem imply that 
Bqp = B. For sufficiency, note that the condition H~(B,~2 2) = 0 implies that cr*(a0) = 0, hence, as in 
the proof of Proposition 2.6, the forms o~0 + h*#i give a global nondegenerate 2-form o~ on A~, vanishing 
when restricted to the generic fiber of h~,. By (b) and the assumption that the fibers are reduced irreducible, 
codimx X k A~, > 2, so a extends to a nondegenerate 2-form on X. It is closed by the projectivity of X. [] 

3. Criterion for the Nonsingularity  of the  Re la t ive  H U b e r t  S c h e m e  

Let ~b : X ~ S be a flat projective morphism whose fibers are reduced irreducible curves of arithmetic 
genus p. The relative Hilbert scheme Hilb~c/s parametrizing zero-dimensionai subschemes of length n in the 
fibers of X over S is closely related to the Altman-Kleiman relative compactified dacobian P .  = P,~(X/S), 
which is a projective scheme over S representing the ~tale sheaf associated with the following compactified 
Picard functor on the S-schemes T: 

[ the :somorphism classes of T-fiat coherent sheafs Z ]  
) o n  X x s T, such that for all t E T, the fiber 

P i c x / s  (-) = | Z ( t )  is torsion-free, of rank 1, and of Euler number " 

t x ( z ( t ) )  = 

(see [14, 24, 1-3] for the construction and general properties of P'~; the idea of this compactification is due 
to [20]). 

We will also use the notation P'~ = P'~(X/S)  = P I - p - ~ ( X / S ) .  The scheme p n  contains the open sub- 
scheme Pic:~/s parametrizing the isomorphism classes of inversible sheaves of degree n (or linear equivalence 
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classes of divisors of degree n) on the fibers of X / S .  The map sending every subscheme of a fiber X(s)  to the 
isomorphism class of its ideal sheaf is well defined as a morphism of schemes 

A" = A"x/s : H i lb~ / s  > P'~. 

It is called the Abel-Jacobi map. 

T h e o r e m  3.1 (D'Souza-Rego-Altman-Kleiman) .  The following conditions on the Abel-Jacobi map ,4" are 
equivalent: 

(1) n >_ 2p - 1 and all the fibers X(s)  are Gorenstein; 
(2) .A n is smooth of relative dimension n - p; 
(3) all the fibers of .A'~ are of the same dimension. 

One concludes from this theorem that  the compactified Jacobian p2o-  1 is a nonsingular variety if and 
�9 �9 2 p - - I  only ff Hflbx/s  is. As all the schemes P "  are locally isomorphic in the ~tale topology, this condition is also 

that  of the nonsingularity of all the p n .  Now, we are going to formulate the criterion of the nonsingularity of 
Hilb~c/s. We eliminate the case where S is singular, because then the Hilbert scheme is singular along certain 
fibers. We also eliminate the case where the fibers X(s)  have singularities of embedding codimension > 1: in 
this case P " ,  as well as Hi lb~ / s ,  is not flat over S and the fibers of P'~ have irreducible components which are 
not in the closure of invertible sheaves. Thus, we assume that  S is nonsingular and that  the singularities of 
X(s)  are plane (of embedding codimension 1). To formulate the nonsingularity criterion, we have to introduce 
some notations. 

Let H = Hi lb~ / s ,  
components: 

Z E H, Z C Xo, 0 E S. We have a decomposition in the sum of irreducuble 

z = zl  I I . . .  I I  Zr, Supp Z, = { z , } ,  i = 1 , . .  ,r. 

Let { f , ( x i , y i , s l , . . .  sra) = 0} be a local (analytic or formal) equation of X at zi, s t , . . ,  sm being local 
parameters of S in the neighborhood of 0 and xi,yi  those on the fiber X(0) in the neighborhood of zi E 
Supp Z. L e t / / =  [zAi ,  where Ai = C[[zi, yi]]. Then there exists a resolution of [i of the following form (see 
[17, Exercise 7, p. 148]): 

0 > Aei( , - l )  u A.~(8) o> Ii --+ 0, (3) 

where v = A " - t u ,  i.e., v is the vector with s components ( v l , . . .  ,vs) which are the minors of order s - 1 
of the matrix of size (s - 1) x s defining the map u. The condition that  Zi C Xo is equivalent to fi0 := 
f i ( z i ,y i ,O, . . .  ,0) E I i .  Since Ii is generated by the minors of the matrix u, the last condition is equivalent 
to the existence of a representation of fi0 in the form of the determinant of the extended matrix: 

U s  I . . .  U s s  

Define the ideal -ri = (A'- lrS) generated by the minors of order s - 1 of the extended matr ix ~2. Since the 
minors of u form a subset of those of 72, we have the inclusion Ii C ]~. Define the map 

r : ToS -'+ Al l[ i ,  

0 Of/ mod .ri, 

where To S denotes the tangent space of S at 0. 

T h e o r e m  3.2. The scheme H is nonsinguIar at Z (~hat is, smoo~h over C) if and only if the map 

r = + r  ' + A i / ] i  (5) 
i = 1  i = 1  
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is surjective. 

Coro l l a ry  3.3. The condition of the surjectivity of the map ~ in Theorem 3.2 is a necessary and su~eient 
condition for the nonsingularity of the relative compactified Jacobian at all the points representing the isomor- 
phism classes of the sheaves I z  | L, where F_. is an invertible sheaf on X(0), and I z  is the ideal sheaf of the 
subscheme Z C X(O). 

The following corollary gives a sufficient condition for the nonsingularity of H.  

Coro l l a ry  3.4. If  the fiber X(0) has only one singular point z, and if the deformation {X(s)}sEs of X(O) 
dominates the versal deformation of the singular point z E X (  O ), then the gilbert scheme I'Iilb~:/s is nonsin- 
gular for all n in all the points Z with Supp Z = {z}. 

P r o o f  of  T h e o r e m  3.2. We will use the following criterion of the nonsingularity. 

Cr i t e r ion  for Nons ingu la r i ty .  Let H be a scheme of finite type over C, h E H a closed point. Let for 
k E  Z, k > 0 ,  Tk =SpecC[r162 k ) f 0 r k E  Z, k > 1, and t E Tk be the closed point. Then the scheme H is 
smooth at h if and only if for every k > 1, every morphism 7k : Tk ) H such that 7k(t) = h extends to a 
morphism 7k+1 : Tk+x > H. 

For a proof, see [19, Sec. 2]. 
By the above criterion, the nonsingularity of H at Z is equivalent to the possibility of extending over 

Tk+t simultaneously for all Zi the data (3), (4), in assuming they are already extended to Tk; this is done 
by induction degree by degree. The flatness of the deformation of Ai / I i  obtained in this way is guaranteed, 
e.g., by [5, Proposition 31]. Denote by s~k,. . ,  sink, fik = fiik the extensions to Tk (understood as polynomials 
in c of degree k), and fik = f / (xi ,  yi, s l k , . . .  , s,~k). Then, to construct the extension to Try+l, we have to 
define sl,k+l = s~k + a~e TM, . . . ,  8rn,k-4-1 = Srnk -'~ arng kq-1, ~i,kq-1 = u ik  + Gi~ k+l with al~. . .  ,am E C,  

Gi E Mat,(Ai) in such a way that det fii,k+l = f / (xi ,Yi ,Sl ,k+x, . . .  ,s,~,k+l) mod(ek+2). This brings us to 
the equation 

0fi _ ~ gpqfi~,a + known terms, 
~ aj Osy 

J P,q 

-Pq denotes the minor of order s - 1, complementary to the element (fii)pq. This implies the assertion. where ui 
[] 

4. Compac t i f i ed  J a c o b i a n  p2 

Let B be a nonsingular projective surface, and @ : C > B a flat surjective projective morphism whose 
fibers are reduced hyperelliptic curves of arithmetic genus 2. That is, for every b E B, the fiber Cb = r 
admits a double covering map ttb : Cb ) p t  whose ramification divisor is of degree G; such a curve can be 
defined by an affine equation t 2 = Pc(x), where P6 is a nonzero polynomial of degree < 6. We also suppose 
that the generic fiber of r is nonsingular. We will search for symplectic 4-dimensional varieties X compactify- 
ing the family of (generalized) Jacobians of degree 2 {J2Cb}bEB in such a way that the fibers are Lagrangian. 

Generically, the Jacobians J2Cb can be obtained by the classical procedure: take the symmetric square C~ 2) 

of Cb and blow down the hyperelliptic finear series 92 = p1,  formed by pairs ((x, t), ( x , - t ) )  E C~ 2). When 
extended to singular fibers, this construction gives a singular surface. The nonsingular part of the symmetric 
square C (2) for a reduced curve C is the symmetric square of the nonsingular part C ~ of C. The Jacobian 
JaC of degree d is defined as the quotient of the group of divisors of degree d of C o by the linear equivalence 
relation on C: D1 "-' D2 r162 Dt - D2 = ( f )  for a rational function f on C, regular and regularly invertible 
at all the singular points of C. By [25], if C is irreducible, then the generic class of J ' C ,  where zr is the virtual 
genus of C, is represented in a unique way as a positive divisor pt + .-. + p,~ with pi E C 0, so C (Tr) is bira- 
tional to J'~C. This is no longer true for reducible curves C. However, it is a natural question to search for 
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nonsingular eompactifieations of the family of Jacobians {J2C b } beB in resolving singularities of C~ ~'). This 
approach gives a minimal compactification ( that  is, with trivial canonical class) in the case where rt = 2, as 
the following theorem shows. 

T h e o r e m  4.1. Let r : C ) B be as above, t : C ~ C the hyperelliptic involution given by (x, t) ~-r (z, - t )  

in the al~ne coordinates, C(~ ) = C x B C/(permutat ion)  the symmetric square, 

A = {(p,p) C C(~ ) }, E = {(p, t(p)) C C(~ ) } 

the diagonal and antidiagonal respectively, and • : C[~ ] ) C(~ ) the blow up of (the reduced ideal of) the 

diagonal in C(~), r r : C[~! ...... r B the natural projection. Suppose that C is giver~ by the equation y2 = 
P(x ,  s l , s2)  in the formal neighborhood of a fiber Cb0 = r for a point bo E B,  where sx,s2 are local 
parameters of B at bo, and P is a polynomial of degree 6 with coefficients in C[[st, s2]]. Let Qi = {x = xi, 
y = 0}, i = 1 , . . . ,  r, be all the singular points of Cbo (obviously, r < 3). Then we have: 

(a) C[ff is nonsingular in the neighborhood of the fiber r  if and only if the following conditions are 
verified: 

(i) For any i = 1 , . . . ,  r, the partial derivatives OP/Osx, OP/Os2 are linearly independent modulo the 
ideal ((z - zi) 2, st ,  s2). 

(it) For all i # j,  i, j = 1 , . . . ,  r, the matTi~ 

( OP(x,)/Osl op(x~)/as2 
aP(~)/as~ aP(~i)/as2 ) 

is nondegenerate at st = s2 = O. 
(b) I f  the conditions (i), (it) of (a) are verified for all bo E B,  then the proper transform E'  of the antidi- 

agonal E in C[~ l represents a family of nonsingular rational (-1)-curves in the nonsinguIar loci of the fibers 

of r that can be contracted simultaneously by a projective map contE,/B : C[~ ] > P to give a nonsingular 
projective variety P with trivial canonical sheaf w p / B. 

R e m a r k  4.2. Condition (i) of (a) means that  locally C can be given by the equation y2 = xk + s i x  + a2 + 
p (s l , s2 , z )  for an appropriate choice of local analytic parameters x ,y  of Cbo at Qi and s l , s2  of B at b0; p is 
a polynomial in �9 with r in C[[SX, ~=]1 or des~er _< k - 2 such that p ( ~ ,  s2, ~) - 0 mod ( ~ ,  s2)( .2) .  
Condition (it) means that  the reduced tangent cones at b0 of the germs of discriminant curves At, Aj  C B 
of the unfoldings of the singular points Qi, Qj are transversal. Conditions (i) and (it) represent a weakened 
form of the mild degeneration condition of [19]. The latter imposes the additional restriction that  k < 3. 

P roof .  The nonsingularity of the blow up of A follows from Theorem 3.2 and from the fact that  whenever 
the singularities of fibers of a fiat family of curves are plane, the relative Hilbert scheme Hilb 2 is identified 
with the blow up of the diagonal (see, e.g., [16]). It remains to verify that the proper t ransform E '  of E in C[~ ] 

is a family of nonsingular rational curves contained in the nonsingular locus of fibers of C~ ] over B. 
Choosing local analytic parameters s l, s2 on B and s t ,  Yl, z2, y2 on two copies of C as in Remark 4.2, we 

can consider 
sl ,  s2, z i = z l + z 2 ,  z 2 = y l + y 2 ,  z 3 = ( z t - z 2 )  2, 

z4 = ( ~  - ~ :~ ) (y ,  - y2 ) ,  ~ = ( y i  - y~)~ (6 )  

as local parameters on C~ ). We have, in addition to (6), two equations defining the two copies of C: 

y~ = z~ + s lx i  + s2 +p(s l , s2 ,  xi), i = 1,2. (7) 

The case k < 3 has been treated in [19], so we restrict ourselves'to k = 4, 5, 6. The elimination of xi, Yi from 

(6), (7) gives the local equations for C(~ ). We will make explicit the equations of the fiber 6(~ ) (b0) in terms of 
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parameters  Zl, �9 �9 �9 , zs: 

l_z ~ 3 2 41_ k = 4 :  z ~ - z 3 z s = O ,  4 - z2 + 2  z z z 3 +  z 2 - z s = O ,  

1 3 i 
~ZlZ4 q" ~ZlZ3Z4 -- Z2Z5 = O, 

1 2 ~ g3 z3 "3 I- ~ Z l g  3 -- Z2Z4 = 0; 

k = 5: ~ - ~3~s = o, ~ - zg + 5 - ~  + 5 
4 _~zlz 3 2 _ z5 = O, 

5Z41Z4 Jr- ~Z2Z3Z4"~ ~ - ' - z 2 z 4 - z 2 z 5  "~" (8) 

5 4 5 2 2 &Z3 
~-~z I z3 + ~zl  z3 + 16 Z2 Z4 0; 

1 5 2 2  ~-  k = 6 : z24 - z3z5 = O, k Z  6 .-.. Z 2.~- 15Z4Z3 Jr "~Z  l z  3 Jr- Z 3 -- Z5 = O, 
16 16 6 

3z~z, + 5-z~z~z4 + 3 
8 .~ZlZ3Z42 __ Z2Z5 - ~ -  O, 

5z3z2 3 3 3z~z3 + ~ , 3 + ~ z l z 3  - z2z4 = 0; 

Thed iagona l  is given by A = { z  3 = z4  = z5  = 0 }  in coordinates sz, s2, z l , . . .  , zs, and the antidiagonal 

by E = {z2 = z3 = z4 = 0}. Let us look, for example, at the case k = 5. Restricting the blow up of A to the 

fiber Sl = s2 = 0, choose a chart ,  say {zs # 0}. Then  the equations of r  = C[~](bo) will be 

z 2 - z 3 = 0 ,  ~ z [ - z  2+54 z3z3zs+58zzz2zg - z s=O'  

5 •  zg - z2 = o, (o) z4z4 + "8 zzz3z4zs + 16 2 

5 2 2 & Z 3 Z  2 Z2Z 4 = O. z4z3 + -8 zlz3zs + 16 3 s - 

The first and third equations allow us to ehminate z3, z2, and the fourth one becomes tautological. Upon elim- 
ination, (9) defines a surface given by one equation in local parameters  zi,  z4, zs. In terms of these parameters ,  

E '  is given by z4 = 0 (z2 = z3 = 0 being tautological), and r  is given by 

I 5 ( 4 2 2 l z4z2)2z24 5 3 2 5 z z z 2 z 2 - z 5 = O .  (10) -~1 - ~z,16 + ~z , z ,  + 16 + ~z ,z ,  zs + s 

One sees immediately that  on E ' ,  that  is ,  when z4 = 0, the partial  derivative of the 1.h.s. of the second 
equation with respect to z5 is - 1 ,  so the Jacobian of (10) is nonzero along E ' ,  and hence E '  does not  meet 

1 5 Sing r  The  intersection E '  r r  is given by sz = z4 = ~z 1 - zs = 0. A similar verification in the 

other  charts shows that  E t N r  (b0) is nonsingular and irreducible. 

Condition (ii) of (a) assures the nonsingularity ofU(~ ) at a point (Qi, Qj)  with i # j ;  such a point  is not 

on E U A, so the blow up of A does not change anything in its neighborhood, and locally C(~ ) _~ C[~ ]. The  rest 

of the proof goes exactly as in loc. cir., Sec. 3: E ~ over B is a smooth family of nonsingular rat ional  curves of 
self-intersection - 1 ,  and hence can be contracted simultaneously by the relative version of the Castelnuovo 

contraction theorem [26]. The differential 

, dx z dx2 
= (X 1 --  X2) A A dsl A ds2 

YI Y2 
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on C xB C is invariant under  the permutat ion a : ( x i , y l )  ~+ (z2,y2), and hence descends to the quotient 

C(~ ) = C x B C/a. It lifts to C[~ ], as it is a small blow up ( that  is, without exceptional divisors), and descends 
to /5  via the contraction map, because the image of the exceptional locus is of codimension 2. 

The other types of singularities are treated in a similar way. [] 

C o r o l l a r y  4.3. I f  we assume in addition to the hypotheses of Theorem 4.1(b) that the curves of the family 
C are irreducible, then [9 i~ canonically isomorphic to the Altman-Kleiman compactified Jacobian po over B. 

Proof .  It is identical to that  of (v) of Theorem 4 in [19]. [] 

C o r o l l a r y  4.4. I f  the fibers of the family C/ B are irreducible, then conditions (i), (ii) o f (a )  of Theorem 4.1 
are equivalent to the nonsingularity of pd for any d. 

Proof .  As all the pd are locally isomorphic in the ~tale topology, it suffices to verify the assertion for one 
d; take d = 3. By Theorem 3.1, p3 is nonsingular if and only if Hilb 3 is. By Theorem 3.2, this is equivalent to 
the surjectivity of the map (5) for all Z. Conditions (i), (ii) of (a) of Theorem 4.1 are an obvious reformulation 
of its surjectivity in the eases where # (Supp  Z N Sing Cb0) = 1 or 2. This is enough for the nonsingularity of 
Hilb 2, but for that  of Hilb 3 we should add a similar condition with 3 singular points of Cbo in the support of 
Z. This condition, in fact, is never verified over a base of dimension 2, but fortunately, irreducible curves of 
arithmetic genus 2 cannot have more than 2 singular points. So, in the case where the fibers are irreducible, 
(i), (ii) are also equivalent to the nonsingularity of Hilb 3. O 

The following proposition shows that  the families of hyperelliptic curves arising from K3 surfaces of 
degree 2 in Theorem 1.1 always satisfy the conditions of (a) of Theorem 4.1. 

Proposition 4.5. Let S be a surface with a (2 : 1)-covering # : S > p2 ramified in a (possibly singular} 
seztic curve D, and C the family of hyperelliptic curves of arithmetic genus 2 { / ~ - l ( l ) } l E p = .  , parametrized by 
the dual projective plane B = p2 . .  Then C satisfies the conditions (i), (ii) of Theorem 4.1 if and only if S (or 
equivalently, D) i~ non~ingular. 

Proof .  For (i), choose affine coordinates x ,y  in p2 and sl,s2 in p2 .  near a singular point of a curve 
Cb0 in such a way that  the equation of D is Ps(z,y)  = O, C is defined by t 2 - P6(x , s lx  + s2) = 0, and 
Ps(x, 0) = z k +ck+lx  k+l + . . . + c s z  s (k >_ 2 having the same sense as in Remark 4.2). Then the nonsingularity 
of D in the origin is equivalent to OPs(O,O)/Oy = c ~s O, i.e., t 2 - Ps(x, s lx + s2) = t 2 - cslx - (382 --~ " ' ' .  

This is equivalent to (i). 

Thus, we can now suppose that  D is nonsingular, and we will show that in this case (ii) is always verified. 
We will use the reformulation of (ii) given in Remark 4.2. Singular  points on Cbo = ~- l (10)  correspond to 
points of tangency of 10 to D. So, the discriminant curve parametrizing the points l E: B for which Ct is 
singular, is the dual curve D v of D, parametrizing all the tangent lines to D. Let I be tangent  to D at Q E D. 
Then the tangent cone to D v is the pencil of lines passing through Q. Hence, whenever there are two distinct 
points of tangency on l, the corresponding tangent cones are different. [] 
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5. Compactifled Jacobian pt 

We discuss here two constructions of a nonsingular compactification p l  of the relative Jacobian j t  of 
a family of hyperelliptic curves of arithmetic genus 2. We impose one more restriction in addit ion to the 
assumptions of Sec. 4: the curves of the family must be reduced irreducible. 

T h e o r e m  5.1. Let r : C > B be a family of irreducible curves satisfying conditions (i), (ii) of Theorem 4.1. 
Then there exists an element a E H~t( B, J~ / s )  of order 2 such that J~/B is isomorphic to the twisted family 

J~/B(a). Moreover, the action of J~/B on itself by translations extends to a regular action on the compact- 

ification /5 -- pO = P~/B of jo  constructed in Theorem 4.1, so that the twisted family p t  = P ~ / , ( a )  i8 a 

nonsingular compactification of j r  __ J~/B with reduced irreducible fibers and codimpt j t  = 2. 

Proof .  Identify j2  with j0  by translation by the hyperelliptic divisor class. Let # : C > P be the 
hyperelliptic covering, where rc : P ~ B is a P t -bundle  over B isomorphic to the projectivization of the 
rank 2 vector bundle E := r  | E. wi th / :  invertible. Let O(1) = Op/B(1) be the relative Grothendieck 
tautological sheaf; if L is sufficiently ample, 59(1) is very ample. Each irreducible surface S from the linear 
system ]59(1)1 represents a rational cross section of the bundle 7r; it is regular over the open subset U C B. If 
A C P is the ramification divisor of #, then A N S is a very ample curve in A, hence, by the finiteness of ~'[~, 
7r(A N S) is very ample in B. By construction, B \ U C rr(A N S), so B can be covered by afflne open subsets 
of the form Us := U \ ~ r ( A N S ) ,  L e t s  : U > P be the cross section defined by S, andVs  = # - t ( s ( U s ) ) .  
The map # s  : ~r o #lVs : Vs ---+ Us is an 6tale double covering with the following property: the family 
Cvs : CVs > Vs obtained from r by the base change admits two natural  regular sections s + : Vs > Cvs, 
s + being the tautological one, coming from the inclusion Vs C C, and s -  = s + 0 ~;, where ~; : Vs > Vs is the 
involution transposing two points in the fibers of/zs. Then the cocycle a is defined on Vs by a(a)  -- [s -  - s+], 
where the brackets s tand for the divisor class, so that  the r.h.s, is a cross section of J~ The translation 

by a(~) extends to /5  by Corollary 4.3; it is then presented on the level of the presentation functor by tensor 
multiplication by the invertible sheaf corresponding to the divisor ~ -  - s +. To finish the proof, it suffices to 
note that  the Al tman-Kle iman compactified Jacobians pd  are locally isomorphic in the 6tale topology over B. 
O 

Now, we turn to the question whether p t  is Lagrangian with respect to some symplectic structure. The 
above construction of j r ,  which is an open part of p 1  and Proposition 2.3 imply tha t  if p t  is Lagrangian 
over B, then p0 is. By Theorem 1.1, this implies that  B = p2,  hence H i ( B ,  f/2) = 0, and by Theorem 2.8, 
we conclude the following. 

Corollary 5.2. With the hypotheses of Theorem 5.1, p1 i~ Lagrangian over B if and only if pO is. 

Now we discuss another more explicit construction of p1 for particular families of curves arising in The- 
orem 1.1 or Proposition 4.5 from a hyperelliptic K3 surface ~ : S > p2. We will also verify directly that  p1 
of such a family is Lagrangian over p 2 .  Let W be the hypersurface of the triples (Pt, P2, P3) E S (3) whose 
images fl(Pi) are collinear. It is defined in affine coordinates by one equation of the form 

[ ~t 71 1 
1 ,  (11) 

~3 T}3 1 

where (~i, r]i) are coordinates on affme open charts of three factors p2,  the three factors S being defined by 
(y2 _ P6(~i, rli) = 0}, i = 1,2, 3. This equation descends to S(3) because it is symmetric  in (~i, r/i), i -- 1, 2, 3. 
Let g : W --* p 2 .  be the natural  rational map sending each triple (pt,p2,p3), such that  at  least two of the 

three points/3(pl),  ]3(p2), ~(P3) are distinct, to the line l = fl(Pl )/3(P2)]3(P3) C p2 ,  and  p : W - - 4  C(~ ) the 
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natural  map ( P t , P 2 , P 3 )  6 W ~ (pl,P2,P3) 6 (~--t(/))(3) C C(~ ), where r  C ) B -~- p2 -  is the family of 

curves/~-l(1). Then p is a birational map which identifies g with the natural  projection r (3) C(~ ) ---+ B. 
To write down everything in coordinates, represent C/B in the form {y2 _ Ps(z, Sl Z-J-32)}, where (sl ,  s2) 

are a/fine coordinates on a chart of B. Then the cartesian cube C~ (resp. S 3) has (xl ,  y l ,  x2, y2, x3, y3, s 1, s2) 
(resp. (~i, rli, Yi)i=L2,3) as affine coordinates, and p, p-1 are given by 

p : ( ~ i , r l i , Y i ) i = l , 2 , 3 ~ ~ Y i  = Y i ,  Xi = ~ i ,  Sl = L~j-~iJ' ~J ~i ~i ' 

p- t  : ( Z l , Y l , Z 2 , Y 2 , x 3 , Y 3 , S l , S 2 )  ~--+ ~i = Zi ,  rli =SlXq- .s2 ,  Yi = Yi ( { =  1,2,3),  

where [. . ,  ] denotes the symmetrizat ion with respect to  the subscripts i, j .  
Let o~ be the symplectic form on S (z) induced by that  on S, denoted a s .  Then there is a 1-dimensional 

foliation in W defined by the kernel of a t w" We have, up to a constant factor, 

d~Adrl 
01S -~ 

2y 

o , - -  i = L J ^ dsl + [ 2yi J A ds2, 

so the distribution of kernels of a I w is given by 

= t 2y~ J L2u~J o. (12) 

By the Abel-Jacobi theory, these axe exactly the equations of the tangent distribution of the Abel-Jacobi 
map A : C(~ ) ~ J~/B" In taking into account that  the generic fiber of .4 is compact (it is P~), this implies 

that  c~lw descends to J~/B" 

6. C o m p u t a t i o n  o f  F(SeT | w 2) 

We will describe a way to compute the groups Akt = F(X, SkTx | Wtx) for toric varieties X.  Fix the 
following toric data: an algebraic torus T = ( C ' ) n ,  its lattice of characters M, that  of 1-parametric subgroups 
N = MY, and a fan E in N | 1~ defining a toric variety X = XE of dimension n. For more details on toric 
varieties, see [11]. We have a weight decomposition of Akl considered as a representation of T:  

= G (13) 
rnEM 

where Akt(rn) is the T-semi-invariant subspace on which T acts by multiplication by the character x '~ (we use 
the monomial notation for characters: if z = ( z t , . . .  , xn) are coordinates on T, then the character associated 
with m 6 M is x 'n = x ~ '  .- .  z~ m~ ). To describe Am(m), we start  with the well known description of f/c[x~] = 

F(X,,, fllx~,) for an affine toric variety, i.e., in the case where the fan consists of a unique cone o. and of all 
its faces (see loc. cir.). The weight m subspace f~[x~](rn)  is generated by the rational differentials of the 

form xm-m'dx  "a' which are regular on X , .  The regularity cond:.tion is verified at generic points of the toric 
divisors F~ i C X~, i = 1 . . . .  , ~, where a l , . . .  , ~ are all the 1-dimensional cones (rays) of the fan (see loc. 
cit. for the correspondence between cones of the fan and T-invariant subvarieties of X~).  Finally, we have 

~ [ x , ] ( m  ) ( z m - ~ '  m' = d z  )m,en(m), 
where II(m) is the linear span of the minimal face -r(m) -.< r containing m, and 7" denotes the dual cone 
a v = {m 6 M | 1% [ (v, rn) >__ 0 V v 6 ~r}. Note that  in the case where Z~ is singular, f ~  should be 
understood as the sheaf of Zariski differentials, i.e., 1-forms which are regular in codimension 1. 
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Apply the same idea to describe the summands in the r.h.s, of (13) for an affme toric variety X~, as groups 
k 1 * (o,,  ~| which are regular at  generic points of the F~ i. The dual of rational tensors ~ E S (f~C(X,,)) | ~"~ 

(~'~C(Xa))1 * (as a C(X, ) -vec to r  space) is generated (as a C-vector space) by the rational semi-invariant vector 
fields xmLx ,  where ,k E N, m E M,  and Lx denotes the invariant vector field on T C X ,  generating the action 
by translations of the 1-parametric group ,~ on T. To find out when x m Lx E A 1,0 = F(Xc,, T x ,  ), look at the 
open piece O ,  i = F~ i Cl X~, i of F, i ,  which is the T-orbit associated with hi. The open subvariety X~i 

(C*) '~-t  x C C X ,  can be endowed with coordinates Zl x "Jl} = x m(=) , " = , . . .  ,zn where m 0 ) , . . .  , m  (n- l )  
form a basis of the lattice M C/a~, and rn(") E Int(a v)  f3 M completes it to a basis of M. Then O ~  is defined 
by the equation zn = 0 in X ,  i, and the condition that  z 'nLx be regular on O~ i means that  its expression 
irt terms-of the coordinates zr,==.: za does not contain z~ in  the-denominator.  Thus~ i-fL~ -fl (coast) �9 z,O,~, 
where 0p is a shorthand for 0 g-g;,p, then the regularity on O~ i is equivalent to the condition ord,= (x '~) > 0, i.e., 

(vl, m) > 0, where vi is the primitive vector of N spanning a~. I fLx  =(cons t ) .  z,,O,,, then A is Z-proportional 
to vi, and the regularity condition is ord,=(x m) > -1 ,  i.e., (v~,rn) > -1 .  Finally, we get the following 
formulas for X = X~: 

F(X,  T x )  = E[~ At,0(m), 
m E M  

if there exist i , j  E {1, . . .  ,~} such that  (vi + v j , m )  < - 2 ,  

if there exists i E {1, . . .  ,~} such ~hat (v i ,m)  = - 1  and 
m) >_ 0 for any j # i, 

(14) 

0, 

C L,i  , 
= (12) 

CLxq, i f (v i ,m)  > 0 V I E  { 1 , . . . , a } , w h e r e A 1 , . . . , A , , i s a n y l i n -  
q=l early independent set of elements of N. 

Note that  the condition (v i ,m)  > 0 V i E {1, . . .  ,to} is equivalent to m E a v = r ,  and (v i ,m)  = - 1  
means that  m lies in the exterior of r ,  but  is at the smallest possible distance from the wall a~- of r .  The first 
condition (vi + v i , m }  < - 2  forbids tha t  m be at a distance > 2 behind a ~ ,  and also that  it be behind two 
walls at once. 

Now, if Xn  is a toric variety associated with any fan E, one should apply the above arguments to all the 
cones g E E. Let Er  denote the set of all the r-dimensional cones in E (I = 0 , 1 , . . .  ,n) ,  and N1 the set of 
primitive vectors of N on the rays from ~z. Formulas (14), (15) remain valid for X = Xn if one makes vi run 
over NI, ~ being the cardinality of N~. Similar arguments prove the analog of (14), (15) for tensors of a more 
general form, given by the following proposition. 

P r o p o s i t i o n  6.1. Let X = X~., EL, N1 = { v l , . . . ,  v~ } be as above. Denote Bi(rn, I) = max{0, l - ( v i ,  rn)}, 
i = 1 , . . .  , ~, I E N ,  m E M.  Let T be arty subset of N generating N | R as a R-vector space and containing 
N1, T (k) = SymmkT its kth symmetric power, and 

T ( k ) ( m , l ) = { ( ) q , .  " ~k) E T ( k ) l f o r  each i = 1 , . . . , ~ ,  vi is present i n }  
�9 ' ( ,kl , . . .  , )q,) at least Bi(rn, l) times " 

Then we have the decomposition (13) with 

Akl(rn) = 0 

and 

dx t 
w h e r e  v ~ �9 

: e l  

if ~ B i ( m , l )  > k, (16) 
i = I  

(17) Ak/(m) = E C .  xmL,xl . . .  L~, k | v l, 

(xl,... ,Xk)6T(k)(r,,,l) 

d x r t  . 
ts a T-invariant n-differential havin 9 simple poles on all the E~i (hi E E I ) -  

Xrt 
A . . . A  
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Example 6.2 (Vector fields on p2) .  The fan ~ in R 2 defining p2 consists of three 2-dimensional cones 
(angles) (vl ,v2),  (v2,va), (va,vL) and their faces: three rays Rvi ,  i = 1,2,3, and  the origin {0}, where 
vl = el, v2 = e2, va = - e l  - e2 in terms of the s tandard basis of R 2. Here Nl generates R 2, so we can choose 
T = N~ = {v l ,v2 ,v3} .  The corresponding vector fields are L~1 = x~O~,L~,~ = x202,Lva = -Xl01 - x 2 0 2 .  
Applying (14), (15) (or (13), (16), (17) with k = 1, l = 0), we see that  A(m) = A1,0(m) can be nonzero only 
if m is in the triangle A bounded by the lines (vi, m) = -1 ,  and for m ~ A the nonzero A(m) are 

h ( - I ,  1) = (~0~), A(0,1) = (~z20x + ~0~), 

A(-1 ,0 )  = (01), A(0,0) = (z,Ol,z20~), A ( 1 , 0 ) =  (x201 + z , z 2 0 2 ) ,  

h ( 0 , - 1 )  = (0~>, A(1 , -1 )  = (~0~>. 

So, d imF(p2 ,  Tp~) = 8, as was expected. 

E x a m p l e  6.3 (Computat ion o f  r(s  re  | Applying (13), (16), (17) with k -- 6, l = 2, we see 
that A6,2(m) can be nonzero only for m E A1, where the triangle A~ is cut out by the inequalities (vi, m) < 
2, and for m E At ,  the vector spaces A6,2(m) are 1-dimensional, generated by - m r b l  ]'b2 l'b3 x ZJVl--V2~v3 | / /2  where 
bi -~ Bi(rn, 2). For example, the generator of As,2(m) corresponding to the vertex rn -- ( - 4 ,  2) of the triangle 

is z-~4x2(x101) 6 @ ( ~ A d~_~ 2 = 06 | (dxl  A dz2) 2, and so on for the other 27 lattice points of A1. In 
k zl ~2 / 

particular, dim F(S6Tp~ | w~2 ) = 28. One can identify this space with that  of homogeneous polynomials of 
degree 6 in three variables by the map 

P6(X, Y, Z)  ~-+ P6(01,02,-x101 - x202) @ (dxx A dz2) 2. (18) 

7. P r o o f  o f  T h e o r e m  1.1 

Let r : C ) B b e  a family of hyperelhptic curves of arithmetic genus 2 satisfying (i) and (ii) of Theo- 
rem 4.1. Suppose that  the variety/5 constructed in Theorem 4.1 is Lagrangian over B. Then,  as shown in [19, 
formula (21)], C is a double covering of the projectivization P = P(TB) of the tangent  bundle of B ramified 
in the divisor of zeros of a section a E F(B, S6TB @ w2B). To make explicit this description in coordinates, 
choose local coordinates x, y on B; then v can be written in the form 

a = ~ a,j(x,y)ai_a~(dx A dy) 2. (19) 

To represent this as a homogeneous form on P ,  one should consider a t ,  ay as homogeneous coordinates of 
the fibers of P over B; iet us denote them in this quality as ~ = &~,r/ = ay. Then C is defined by t 2 - 

E a~j(~,y)~, i = 0 

L e m m a  7.1. Lc~ E C B be an exceptional (-1)-curve wi~h local equation u = O, and 77 a vector field in the 
neighborhood of E,  annihilating u. Then all the fibers arc  over points z E E have a singularity at 17 = 0 (7] 
being considered as a linear form on P )  of local analytic ~ype t 2 - w p = 0 wish p >_ 4. 

Proof .  By the rigidity of exceptional subvarieties�89 we can identify the formal or analytic neighborhood of E 
with that  of the exceptional curve in the blow up .& of the origin in the affine plane A 2. Th e tensors (19) will 
be then represented by series in powers of x, y, which can be rewritten in the notat ion of Proposition 6.1 as 
infinite sums on rn of elements of the semi-invariant spaces Akl(rn) defined by (17) with k = 6, l = 2. F o r / ~ 2  
the fan ~ has three rays, generated by el,  e2, el + e2. The corresponding vector fields are Lel = xO~, Le~. = 
yOy, Lea+e2 --- zoo: + yOy. Then A6,2(m) is generated by the 'monomials' 

j = x m L ~ : L ~ L ~ + ~ @ v 2 = x , , ~ , y . , ~ ( x O . . ) k , ( y c O y ) k 2 ( x O  ~ + y0~)k3 | (_~ A ? ) 2  (20) 
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such that  
ml  + k l - 2 _ > 0 ,  m 2 + k 2 - 2 > 0 ,  m l + m 2 + k 3 - 2 > O  , 

kl q- k2 q- k3 = 6, ki _> 0 (i = 1, 2, 3). (21) 

Let us rewrite (20) in a coordinate patch of the blow up, say x = u, y = uv: 

= u'~'+'=+~-2,,~+k~-2(uO,, - v & )  k '  a~2a~3(du ̂  dv)L 
Restrict it to the exceptional curve u = 0, in replacing Ou, 0,, by the corresponding homogeneous coordinate 
forms ~, r/on P:  

51,,=0 = _vm2+kt+k2--2~k3r/kt+k2 

with the additional restriction ordE5 = ml  + rn2 + k3 - 2 = 0. As 7/ corresponds to the vector field av 
annihilating u, we have to prove that  kl + k2 > 4. Assume the opposite: kl + k2 < 4. Then,  by (21), k3 > 2, 
and m x +  m2 + k3 - 2 = 0 implies m t +  m2 < 0. Taking the sum of the first two inequalities (21), we obtain 
ml  + m2 + kt + k 2 , 4  > 0, which contradicts kt + k2 < 4 and ml + rn2 < 0. [] 

The lemma implies that  the local equation of C cannot be locally analytically equivalent to y2 = x k + 
s t x +  s2 + p(sl,s2,x) with p(sl,s2,x) ~ 0 mod(sl,s2)(x2), as it should be in order that  (i) and (ii) of 
Theorem 4.1 might be satisfied (see Remark 4.2). Thus, B is relatively minimal. By Theorem 1 of loc. cir., B 
is rational, so it is p2 or a Hirzebruch surface F ,  (n = 0, 2, 3 , . . .  ). 

L e m m a  7.2. Anysectiona ~ r(B, S6"lb| = F .  (~ = 0 , 1 , 2 , . . . )  defines afamilyC/B of 
generically singular curves. 

Proof .  Look at the two affine charts A 2 in the atlas of Fn with transition functions (x, y) = (xt, 1/yt). In 
the chart (x, y), the tensor field a can be given by the formula (19). In coordinates (x~, yt) ,  we have 

( 1 )  (dxt A dyz) 2 

It is holomorphic at yt = 0 only if aij = 0 for j < 2. This implies tha t  if ~, r/ denote the homogeneous 
coordinates on P corresponding to 0~:, Ou, then q = 0 is a (at least) double point of every curve of C/B. [] 

Hence, the only possible case is B = p2.  The general form of a is represented in this case by (18). Replace, 
as above, the fields 01,02 by corresponding homogeneous coordinates ~, r/, change the notat ion for coordinates 
in the base B from xl ,  x2 to s t ,  s2, as we have done in the preceding sections, and pass to the affme coordinate 
x = ~/r /on the fibers of the p t -bund le  P .  Then we will obtain the following family of hyperelliptic curves: 
t 2 - Po(x, 1, - s i x  - s2) = 0. This is one of the affine charts of the family {f l- l ( l )}  for the map fl : S ~ p2 
ramified in the sextic curve P6(X, Y, Z) = 0, the lines l C p2 being parametrized by Z = - s i X  - s2Y. 

The regularity of the extension of the symplectic structure to the compaetification t5 can be proved by 
using its coordinate representations as in (26), loc. cit. The rest of the statements of thc theorem follow from 
Corollaries 4.3, 4.4, 5.2, and Proposition 4.5; the regularity of the extension of the symplectic structure to p t  
follows from Theorem 5.1, together with the Riemann extension theorem, as codim p t  \ j t  > 2. 
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