
Behavior Genetics, Vol. 26, No. 2, 1996 

Type I and Type II Error Rates for Quantitative Trait 
Loci (QTL) Mapping Studies Using Recombinant Inbred 
Mouse Strains 

J. K. Belknap,  1,2 S. R. Mitchell ,  1 L. A. O'Toole ,  1 M. L. Helms,  ~ and J. C. Crabbe  I 

Received 11 Sept. 1995--Final 17 Oct. 1995 

Effective mapping strategies for quantitative traits must al low for the detection o f  the 
more important quantitative trait loci (QTLs) while minimizing false positives. Type I 
(false-positive) and Type II (false-negative) error rates were est imated from a computer 
simulation of  QTL mapping in the BXD recombinant inbred (RI) set comprising 26 
strains o f  mice, and comparisons made with theoretical predictions. The results are gen- 
erally applicable to other RI sets when corrections are made for differing strain numbers 
and marker densities. Regardless o f  the number or magnitude of  simulated QTLs con- 
tributing to the trait variance, the p value necessary to provide genome-wide .05 Type I 
error protection was found to be about p = .0001. To provide adequate protection against 
both Type I (c~ = .0001) and Type II ([3 = .2) errors, a QTL would have to account for 
more than half  o f  the between-strain (genetic) variance i f  the BXD or similar set was 
used alone. In contrast, a two-step mapping strategy was also considered, where RI strains 
are used as a prel iminary screen for QTLs to be specifically tested (confirmed) in an F 2 
(or other) population. In this case, QTLs accounting for - -16% of  the between-strain 
variance could be detected with an 80% probability in the BXD set when c~ = 0.2. To 
balance the competing goals o f  minimizing Type I and II errors, an economical strategy 
is to adopt a more stringent et initially for the RI screen, since this requires only a limited 
genome search in the F z o f  the RI-implicated regions ( - -10% of  the F2 genome when p 
< .01 in the RIs), If  confirmed QTLs do not account in the aggregate for a sufficient 
proportion o f  the genetic variance, then a more relaxed c~ value can be used in the RI 
screen to increase the statistical power. This flexibility in setting RI et values is appro- 
priate only when adequate protection against Type I errors comes from the F z (or other) 
confirmation test(s). 

KEY WORDS: QTL mapping; recombinant inbred strains; C57BL/6; DBA/2; BXD. 

I N T R O D U C T I O N  

L o c i  that  inf luence  a c o n t i n u o u s l y  d i s t r i bu t ed  (or  
quan t i t a t ive )  t ra i t  are  k n o w n  as  quan t i t a t ive  t ra i t  
loc i ,  o r  QTLs .  T y p i c a l l y ,  severa l  Q T L s  in f luence  a 
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quant i ta t ive  t ra i t  ( p o l y g e n i c  inher i t ance) ,  as wel l  as 
mu l t ip l e  e n v i r o n m e n t a l  in f luences .  The  p ione e r ing  
Q T L  m a p p i n g  effor ts  in l a b o r a t o r y  roden ts  used  
la rge  Fz or  b a c k c r o s s  p o p u l a t i o n s  and  the t h e n - n e w  
m a r k e r  t e chno log i e s ,  i .e. ,  R F L P s  and  S S L P s  (mi-  
c rosa te l l i tes ) ,  to g e n e r a t e  the  la rge  n u m b e r  o f  
m a r k e r  loci  n e e d e d  for  a g e n o m e - w i d e  search  (Rise  
et  al. ,  1991; Jacob  et  al . ,  1991; H i lbe r t  et  al. ,  1991). 
M o r e  recent ly ,  r e c o m b i n a n t  i nb red  (RI)  s t ra ins  
have  been  u sed  for  p r o v i s i o n a l  Q T L  m a p p i n g  
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(Plomin et aL, 1991). Unlike segregating popula-  
tions, they require no new genotyping and they 
possess all the advantages o f  inbred strains, e.g,, 
the accumulation o f  trait and marker information 
across time and laboratories on the same highly 
replicable genotypes (Bailey, 1981). This has led 
to a marked increase in the number o f  papers using 
RI strains o f  mice for QTL mapping purposes. The 
BXD RI set, derived by Taylor  (1989) from the 
C57BL/6 (B6) and DBA/2 (D2) progenitor strains, 
has been the most frequently used for this purpose 
largely because it has the largest marker database 
(--1500),  and among the largest number o f  strains 
(n = 26), and its progenitors are two o f  the most 
genetically diverse and commonly studied inbred 
mouse strains. However,  most o f  the basic conclu- 
sions presented below apply to other RI sets when 
corrected for differing strain numbers and marker  
densities. The largest RI sets are much preferred, 
and in the mouse this would include, in addition to 
the BXD set, the LSXSS set, with 27 strains 
(DeFries et al., 1989; Markel et al., 1995), the 
A K XD set, with 25 strains (Taylor, 1989), and the 
pooled AXB, BXA sets, with 31 strains (Marshall 
et  al., 1992). 

Whether  RI or segregating populations are 
used, detecting and mapping QTLs typically re- 
quire a hundred or more marker loci distributed 
throughout  the genome (Tanksley, 1993). Due 
largely to the development  o f  high-density marker  
maps (e.g., Dietrich et aL, 1992), QTL mapping 
can now be carried out for almost any heritable trait 
in the mouse. This powerful capability comes at a 
rather high statistical pr ice- -grea t ly  inflated Type 
I errors (false positives) arising from the large num- 
ber o f  markers needed for a genome-wide search 
(Lander and Schork, 1994). The standard remedy 
for this problem is to use more stringent oL levels 
(reduce acceptable Type I error risk), but no con- 
sensus exists for RI strains as to what o~ level for 
individual markers (or the interval between mark- 
ers) should be used to determine statistical signifi- 
cance. A general guideline for which there is much 
agreement  is to use an ~ value for individual mark- 
ers (as) that yields p < .05 protection against even 
one  Type  I error occurring anywhere in the ge- 
nome, i.e., c~o = .05 (Lander and Botstein, 1989). 
A genome-wide ac  = .05 implies that there will 
be a 95% probabili ty o f  no Type I errors in the 
entire marker  set. Thus, the conventional p < .05 
significance level is still operative, but it applies to 

all markers used in a genome-wide  search (o~c), and 
not  to individual markers (or intervals) examined 
singly (as). The relationship between o~ G and C~s can 
be estimated by c~c/o% = k, where k is the Bonfer- 
roni correction used to adjust cx s to attain a desired 
value o f  aG (Rice, 1989; Belknap, 1992; Miller, 
1981). The estimated e% for individual markers  that 
results in c~ G = .05 has been the subject o f  differ- 
ences in opinion. Recently recommended  0% values 
for mapping searches using only RI strains have 
ranged from p < .0006 to p < .00002 (Belknap, 
1992; Neumann, I992; Manly, 1993; Lander  and 
Schork, 1994). 

Because the number o f  genotypes (strains) in 
an RI set is limited in the mouse (n = 26 for the 
BXD),  using more stringent e, levels to reduce 
Type I errors (false positives) has the unfortunate 
consequence o f  increasing the risk o f  Type  II errors 
(13; or probability o f  false negatives). Type II errors 
are failures to detect and map QTLs when they are 
present. The statistical power  is defined as 1 - 13, 
which is the probability o f  correctly detecting a 
QTL. Consideration must be given to both Type  I 
(o0 and II ([3) errors because o f  this inevitable 
t rade-off  between the two sources o f  error when n 
is limited. 

In addition to using more stringent c~ s levels, 
there is a second way to control Type I error rates- 
- independent experimental confirmation. The RI 
QTL mapping results are subjected to confirmation 
testing using other genetic models to determine 
which presumed QTLs can be independently sup- 
ported (Johnson et al., 1992; Neumann,  1992; 
Belknap, 1992). This could be carried out using 
other RI sets, recombinant congenic sets (Groot  et 
al., 1992), standard inbred (non-RI) strains (e.g., 
Goldman et aL, 1987), selectively bred lines orig- 
inating from an F 2 (Belknap et al., in preparation), 
congenic strains (Oliverio et aL, 1976; Bailey, 
1981), or BXDF~'s (Plomin et aL, 1995) or by link- 
age analysis in E2 or backcross populations using 
the same progenitors as the RI set (e.g., Belknap et 
al., 1995; Crabbe et al., 1994a, b; Buck, 1995). 
This strategy is embodied in recently proposed 
two-step or multistep mapping approaches where 
all RI QTL results are subjected to confirmation 
testing to weed out Type I errors (Johnson et  aL, 
1992; Belknap, 1992; Crabbe et al., 1994a, b; 
Buck, 1995; Plomin et al., 1995; Markel et al., 
1996). When confirmation testing is done, less 
stringent e~ s levels can be used for the initial RI 
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screen, e.g., p < .05, resulting in lower Type  II 
error rates (failing to detect QTLs)  compared  to 
more stringent Values. This is feasible when ade- 
quate protection against Type  I errors comes  f rom 
the confirmation test(s). 

The purpose o f  this paper  is to assess the risk 
o f  Type  I and II errors in RI strains used for QTL 
mapping  purposes,  f rom both a theoretical and a 
computer  simulation framework,  and to compare  
the results with those in the literature. We  also 
wished to compare  error rates when no QTLs  were 
simulated compared  to simulations when one, two, 
or three QTLs  contribute to the strain variation. 
The latter better approximates  most  QTL mapping  
studies of  heritable traits. Finally, we wished to ex- 
plore the implications of  these findings for two- or 
multistep mapping strategies. 

M E T H O D S  

Theoretical Relationships Between Type ! and 
Type II Errors 

The relationship among c%, power  (l  - [3), n 
(sample size), and QTL effect size is given by 
Lander  and Botstein (1989) and Soller et  al. ( 1 9 7 6 )  
as n = (Z~ + Z~)2/(S~TL/S~Es) for a backcross  or Fz 
population, where Z~ and Z~ are the normal variates 
for the desired values of  a s and [3, S~TL is the phe-  
notypic variance due to (or explained by) a QTL,  
and S~Es is the residual (unexplained) phenotypic  
variance. The total phenotypic variance, s 2, is equal 
to S~TL + SRES.Z These expressions are useful for es- 
t imating the F 2 or backcross sample  size needed to 
test adequately RI QTL results in two-step mapping  
studies, or when a segregating population is used 
alone. [These calculations presume that all pheno-  
typed animals are also to be genotyped.  I f  only the 
extreme ends o f  the phenotypic Fz distribution are 
to be genotyped to save costs, the sample size o f  
phenotyped animals will need to be somewhat  
greater to offset the usually small loss in power  
shown in Fig. 5 o f  Lander  and Botstein (1989).] 

The above expression can be adapted to RI 
strains by using strain means rather than individual 
mice, since each strain is a unique genotype, and 
using t rather than Z when the number  of  strains (n) 
is <30 ,  as follows: n - 2 = (t~ + tB)2/(S~TL/SZEs), 
where S~TL and s~E s are sample variances based on 
RI strain means for the phenotype,  and S~TL + S~ES 
= S~, the total between-strain variance. Using n - 

2 = 24 d f  for the BXD RI set, this equation can be 
2 2 rearranged to (SoTL/SREs) = (t~ + t~)2/24. In addition 

2 2 to SQTL/SREs, the ratio o f  the QTL variance to the 
residual (error) variance, we also want to know the 
ratio of  the QTL variance to the total variance be- 

2 2 2 2 = tween strains, or SQTL/SB- This is given by SOTL/S B 
z 2 -__ (S~TL/S~Es)/[1 + (SoTL/SREs)]" SQTL/(SQTL + S~ES) 2 

[The latter expression is useful in the next para- 
graph.] Since s~ estimates the additive genetic var- 
iance, VA, in the RI set (or 2 VA in the F z as noted 

2 2 below), the ratio SQTL/SB provides an estimate of  the 
proportion o f  the additive genetic variance due to a 
QTL. (We ignore for the moment  the effect o f  errors 
in strain mean estimation, which would result in s 2 

2 2 > IRA.) We refer to SQTL/SB as the QTL effect size in 
the discussion below. 

As an example  o f  the use of  the above ex- 
pressions, let us set e% = .05 (two-tailed, t~ = 2.06, 
d f =  25) and [3 = .1 (one-tailed, t~ = 1.32, d f =  

2 2 = ( t e l  25), i.e., power  = .9. We then have SQTL/SREs 
2 2 + t~)2/24 = 3.382/24 = .47. To get SQTL/Sa, we cal- 

culate .47/(1 + .47) : .32 f rom the expression 
given in the prior paragraph.  Thus, QTLs  o f  this 
effect size (32% o f  s~) can be expected to be de- 
tected correctly 90% of  the t ime (i.e., power  = .9) 
at p < .05. In general,  this equation can be used 
to determine the relationship among o%, power  (1 
- B), QTL effect size (S~TL/S~), and n. This rela- 
tionship is shown in Fig. 1 for several values o f  as  
ranging f rom .20 to .0001 with n = 26 strains and 
in Fig. 2 for n = 31 strains, as in the AXB,  BXA 
set. For other n, a correct ion can be made as given 
in the figure legends. 

While s~ provides a reasonable estimate o f  VA 
in the RI set (or 2 VA in the F2) for many  practical 
purposes, it is often desirable to have a more  ac- 
curate estimate o f  the additive genetic variance 
f rom RI data, which in turn permits more accurate 
narrow-sense heritability (h~) estimates. This can 
be obtained f rom a one-way A N O V A  between and 
within RI strains, and calculating the components  
o f  variance, ~y~ and cr~v (Sokal and Rohlf, 1981), as 
follows: V A = cr 2 = (MS B -- MSw)/nw, where MSB 
is the mean  square be tween strains, MSw is the 
mean square within strains (which directly esti- 
mates  O-2w), and n w is the number  of  mice tested per 
strain. [ I f  nw is not equal for all strains, a correction 
is given by  Sokal and Roh l f  (1981).] From this, 

"~ 2 hZl = ~r~/(o" B + O-Zw). Est imates of  h~ can be used 
to estimate the heritabili ty to be expected in a n  F 2 

population derived f rom the same two progenitor  
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n=26 RI s t r a i n s  
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Fig.  1. Statistical power  is s h o w n  plotted against  Q T L  effect  
s ize expressed  as a proport ion o f  the be tween-s t ra in  var iance,  

2 2 SQTL/Sa, for five preset  a s  levels  f rom .20 to .0001. Plotted 
va lues  were f rom the equat ions  g iven  under  Methods  based  on 
n = 26 strains.  For other  n, this figure can be used  i f  the  X- 
axis  va lues  are mul t ip l ied  by (26/n) 3/4. This  correct ion is on ly  
approx imate  but  is accurate to within __ 3% i f  n is within • 5 
o f  26, and  S~TL/S2a is not  too large (< .4) .  More  accurate  va lues  
can  be obtained by us ing  the equat ions  g iven  under  Methods .  

strains, as shown by Hegmann and Possidente 
(1981): h22 = I/2o-2/(1/2o -2 + 0-2), where 0-2 and 
0-~ are estimated from a one-way A N O V A  of  RI 
data as described above. Roughly, h~2 will be about 
one-half  o f  h~[ when the latter is not too large, i.e., 
< .4 .  The difference between h~i and h22 is due 
largely to the fact that RI strains are comprised 
only o f  homozygotes,  which contribute much more 
to the additive genetic variance than do the usually 
intermediate-scoring heterozygotes comprising 
one-half  o f  F2 populations. For the same reason, 
S~TL, and V a in an F a will also tend to be about half  
that seen in comparable RI data. In contrast, the 
total phenotypic variance (s~) can be expected to 
be only slightly smaller in an F 2 compared to an 
RI population if  V A is not too large. The variance 
due to a QTL in an RI set, 2 SQTL, can also be esti- 
mated by ( M A I  - -  MA2)2/4, where MAI - -  MA2 is the 
difference in phenotypic means between the two 
homozygote  classes at a QTL or very closely linked 
marker. One-half  o f  this value, or (MA~ -- MA2)2/8, 
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Fig. 2. Conditions are the same as noted in the legend to Fig. 
1 except that n = 31 strains as in the AXB, BXA set. For 
other n, this figure can be used if the X-axis values are mul- 
tiplied by (3 I/n) 3/4. This correction is only approximate but is 

2 2 accurate  to within • 3% if  n is wi thin  _+ 6 o f  31, and  SOTL/S B 
iS not  too large (< .4) .  More  accurate  va lues  can  be obta ined  
by us ing  the equat ions  g iven  under  Methods .  

gives an estimate o f  S~TL to be expected in a com- 
parable Fz population for the same QTL. 

Simulation of  Type  I and  I I  E r r o r s  in the BXD 
Set 

We attempted a small-scale computer  simu- 
lation to verify that the above theoretical relation- 
ships were generally appropriate for the BXD RI 
set. Simulation o f  Type I errors was carried out 
under two conditions, either assuming no QTLs an- 
ywhere in the genome, as assumed by Lander and 
Schork (1994), or by allowing one, two, or three 
simulated QTLs to contribute to the strain varia- 
tion, each with varying effect sizes. For no QTLs, 
strain distributions for 26 strains were generated by 
sampling at random from the normal distribution 
with a mean of  zero and a standard deviation o f  
one. This was repeated 20 times, resulting in 20 
random variables (traits or phenotypes),  each with 
26 randomly generated strain means. This simu- 
lates traits that either are not heritable or have 
QTLs so small as to be beyond detection. 
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Each simulated trait was subjected to QTL 
analysis, which involved the determination o f  the 
point biserial correlation coefficient between each 
trait (RI strain means)  and each o f  the 1493 marker  
loci f rom the BXD marker  set o f  Manly  and Cud- 
more  (1994) f rom the database o f  Dr. R. W. Elliott. 
For each marker,  strains bearing the B6 allele were 
scored as zeros and the D2 allele as ones. While 
we used correlation coefficients to screen the ge- 
home for associations with each trait, the resulting 
p values are equivalent to those based on a t test 
o f  the difference in phenotypic  values between the 
two genotypic classes (B6 or D2 homozygotes)  for 
each marker.  This, in turn, is equivalent in p values 
to those given by a regression o f  phenotype on 
gene dosage (0 or 2). This RI QTL analysis method 
has been recently described (e.g., Crabbe et al., 
1994a, b; Belknap et al., 1995). The Systat statis- 
tical package (versions 5 and: 6) was used for all 
statistical analyses. 

Type  I errors were tallied whenever  at least 
one marker  s h o w e d p  values < .05 ,  < .01 ,  or < .001 
(two-tailed) in a chromosome region. A Type I er- 
ror (false-positive QTL) typically involved a string 
o f  closely linked marker  loci showing p values ex- 
ceeding one or more of  the three preset as  levels 
over  a span o f  1 to 30 cM of  a chromosome.  These 
could be unambiguously  determined and counted 
> 9 0 %  of  the time. Occasionally,  two apparent  
false-positive QTLs  located close together over-  
lapped to the point where it was difficult to 
ascertain whether  one or two QTLs  should be tal- 
lied f rom the bimodal  distribution o f p  values along 
the length o f  a chromosome.  In these instances, we 
used a decision rule employed  previously (Crabbe 
et al., 1994a, b). We first took the smallest p value 
(largest correlation) for each putative QTL as the 
best estimate o f  location. We counted two false- 
positive QTLs  whenever  the difference in peak  p 
values was > 10 cM and one or more  o f  the inter- 
mediate markers  showed p > .25. While other de- 
cision rules could have been used, the fact that less 
than 10% o f  false-posit ive QTLs  required any de- 
cision rule implies that the final results are not 
likely to be appreciably affected by  the decision 
rule choice. The cent imorgan map  locations were 
f rom Silver et al. (1994). 

When simulated QTLs  were present, we used 
the general linear model:  s 2 = S~TL A -~- S~TL B -~- 

S~TL c + SRES , 2  where the between-strain variance is 
parti t ioned into the variances due to individual 

QTLs,  and SEEs, the residual or unexplained vari-  
ance due to undetected QTLs  and environmental  
sources o f  strain mean variation, e.g., measurement  
error. S2s  is a normal ly  distributed random variable 
( " e r r o r "  term) uncorrelated with any o f  the Q T L  
variances. 

We  wished to examine both Type  I and Type  
II error rates when single s imulated QTLs  were  al- 
lowed to vary in effect size f rom 10 to 54% o f  s 2. 
For  this purpose, our s imulated QTLs  were as- 
signed the strain distribution patterns (SDPs) o f  the 
markers  Pep3,  Scn2a,  and 112, and scored as zeros 
and ones for the two possible  genotypes  for each 
marker.  A random variable was added, SRES,2 which 
was sampled f rom the normal  distribution with a 
mean  o f  zero and a standard deviation which varied 

2 2 so that any desired value o f  SOTL/S B could be at- 
tained. The introduced residual (error) term, SRES, 

reduces the accuracy o f  predicting phenotype f rom 
QTL genotype, i.e., it reduces S~TL/S 2 of  each QTL.  
For each combinat ion o f  QTLs  and effect  sizes, 
five random samples  (SEEs) were used, resulting in 
45 new traits for analysis. The distributions were  
unimodal  and approximated  the t distribution with 
very small dr. Previously,  we have shown that bi- 
modal i ty  appears in BXD RI strain mean  data only 
when individual QTLs  account  for about two-thirds 
or more  o f s ~  (Belknap et al., 1993). The failure to 
observe any obvious b imodal  distributions in this 
study is fully consistent with this earlier finding. 

In addition to the above simulation o f  single 
QTLs  with varying magnitudes,  we also wished to 
simulate the s imultaneous presence o f  two or three 
QTLs  for each trait. This was done by adding to- 
gether two or three s imulated QTL SDPs in all pos-  
sible combinations (AB, AC, BC, and ABC)  plus 
random variation, s z in varying degrees as de- RES~ 

scribed above. There were  15 replications (5 per 
simulated QTL)  for each of  the 4 possible QTL 
combinat ions and effect sizes, for a total o f  60 new 
traits. These were also distributed unimodal ly  ap- 
proximat ing the t distribution with very small dr. 

From the Type  I errors observed, it is possible 
to determine f rom the  Bonferroni  inequality the as  
for single markers  that yields a~ = .05 for a ge- 
nome-wide  search: as  = o~Jk or k = ac / a s ,  where 
k is the Bonferroni  correction (Miller, 1981; Rice, 
1989; Belknap, 1992). For  example,  i f  a s = .0001 
and a c = .05, k = 500. [This equation is reason- 
ably accurate when both a ' s  are fairly small 
(< .20) ;  otherwise, a s = 1 - (1 - ac )  ~/* is more  
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Table  I. Mean N u m b e r  o f  Type I Errors (NG) Observed as a Function o f  Three 
Preset Alpha (Cts) Lex~els for No QTLs or One to Three Simulated QTLs as 

Described under  Methods" 

a s  = .05 a s = .01 a s = .001 

No QTLs (random variation) 
NG_+SE 19 .4+ .98  (20) 4.3_+.48 (20) .52___.18 (20) 
a s (p) estimate 1.3 • 10 -4 1.2 x 10 -4 1.0 • 10 -4 
Estimated LOD 3.2 3.2 3.3 

One to three QTLs 
NG_+SE 19.0_+.40 (105) 3.7_+.21 (105) .54_+.06 (105) 
ct s (p) estimate 1.3• 10 -4 1.4• 10 -4 1.0• 10 -4 

Estimated LOD 3.2 3.2 3.3 

Also given are the estimated ~x s values yielding genome-wide .05 protection against 
even one false positive, i.e., 0% = .05, from the Bonferroni inequality. These were 
estimated from Arc by calculations described under Methods. The number  o f  simulated 
traits used to calculate each mean value is given in parentheses. All simulations used 
the BXD R! marker  set o f  Manly and Cudmore (1994) and assumed no planned 
confirmation testing. 

appropriate (Sokal and Rohlf, 1981).] Since the raw 
data from our simulations were numbers o f  Type I 
errors per genome-wide analysis, the above rela- 
tionship can also be expressed in terms o f  the num- 
ber o f  such errors rather than a,  as follows: k = 
N J N s ,  where N G is the number o f  Type I (false- 
positive QTLs) actually observed in a genome-wide 
search using a preset a s, and Ns is the expected 
number  o f  errors for a single marker for the same 
as; thus N s = a s . For example, if  N c = 4 false 
positives were observed in a genome-wide search 
with a s set at .01 (i.e., p < .01), then the expected 
number  o f  errors for a single marker, Ns, is .01. 
The Bonferroni correction is estimated by N J N s  = 
4/.01 = k = 400. Having thus estimated k, a s that 
will yield a G = .05 can be estimated by calculating 
as  = a c / k  = .05/400 = .00013. As noted below, 
this a s estimate is close to that found in our sim- 
ulation studies. 

Since LOD scores are asymptotically distrib- 
uted as X 2, they can be estimated from p values 
using the expression LOD = 1/2(logt0e)x 2 = 
.2172X 2 for an additive (df = 1) model (Lander and 
Botstein, 1989). Because the number o f  RI strains 
is limited, the LOD scores calculated from this 
equation are only approximate. 

For all but the no-QTL condition, we also tab- 
ulated Type II errors (failures correctly to detect 
simulated QTLs) at each of  the three preset as lev- 
els. Since we wished to express the data in terms 
o f  statistical power, we determined the proportion 
o f  all simulated QTLs that were correctly detected 

as a function o f  QTL effect size. For this purpose, 
we used the same SDPs to simulate QTLs as in our 
Type I error simulations. 

While our simulated and theoretical QTLs 
were at a marker, somewhat  lower power estimates 
would be expected when QTLs are between mark- 
ers. However, due to the high density o f  markers 
used ( - -1-cM average density), this reduction 
should be small and almost negligible for the pur- 
poses o f  this study (Simpson, 1989; Darvasi et  al.,  
1993). However, in RI sets with few markers, in- 
terval mapping (Markel et  al. ,  1996) can be used 
to largely offset the loss in power  when QTLs are 
a considerable distance from the nearest markers. 

R E S U L T S  

N o - Q T L  Condi t ion  

The results when there were no simulated 
QTLs are given in Table I. The mean numbers o f  
Type I errors observed throughout the genome (NG) 
were about 19, 4, and .5 false-positive QTLs for 
the preset .05, .01, and .001 a s values. From N~, 
the three estimates o f  the Bonferroni correction (k) 
were in the 400 to 500 range, yielding as estimates 
giving a c = .05 ranging from 1.0 to 1.3 • 10 -4. 
The corresponding LOD score estimates (additive; 
d f  = l) were in the 3.2 to 3.3 range. Thus, when 
there are no QTLs present, about p < .0001 (LOD 
-- 3.3) is needed to provide .05 protection against 
even one false positive in the genome, or a 95% 
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probabil i ty that there will be no Type I errors. Type  
I errors (N~) were distributed approximate ly  as the 
Poisson distribution, with the mean  about equal to 
the variance. 

One to Three Simulated QTLs 

The Type I error results are shown in Table  I. 
They  were similar to the no-QTL condition for  all 
three preset cx s. Thus, the est imated cx s when  oL c = 
.05 was again a b o u t p  < .0001 or 1 • 10 -4 . The 
number  o f  Type  I errors was not significantly re- 
lated to the individual QTL effect size, or the pro- 
port ion o f  s 2 due to all QTLs  (data not shown).  
However ,  the number  o f  Type  I errors was reduced 
as a function o f  the number  o f  QTLs  by  about 15% 
overall  when compar ing no QTLs  to three QTLs,  
a small but highly significant difference (data not 
shown). To some degree, this is to be expected 
since the presence o f  a QTL is likely to mask  any 
false-posit ive QTLs  in the same ch romosome  re- 
gion. 

Statistical Power (1-Type II Error Rate) 

The Type  II errors (false negatives) were  tal- 
lied for all conditions except when no s imulated 
QTLs  were present.  The observed power  was cal- 
culated as the proport ion of  all s imulated QTLs  that 
were correctly detected at preset e% levels o f  .05, 
.01, and .001. The results are shown in Fig. 3 as a 

2 2 function o f  QTL effect size, SQvL/Sa. Each point rep- 
resents the observed power  based on 15 QTLs  at 
each o f  the three preset  e% values (for six o f  the 
points, 30 QTLs) .  From these results, the m i n i mum 
size o f  a Q T L  that could be detected when power  
= .8 was .27, .38, and .50, respectively,  for p < 
.05, p < .01, and p < .001, as shown in Fig. 3. 
These values are close to the theoretical values o f  
.26, .36, and .47 shown in Fig. 1. 

Power  was assessed using two end points. The 
first, shown in Fig. 3, required that the marker  rep- 
resenting each QTL had to surpass one or more  o f  
the three preset  as  to qualify as detected. The sec- 
ond required that any marker  within +_ 6 cM o f  the 
marker  defining a QTL must  exceed the preset  0% 
criteria. The latter increased the power  by  - - 1 5 %  
on average over  the former, and the m i n i m um  Q T L  
effect size that could be detected when power  = .8 
was reduced to .24, .34, and .47 for 0% = .05, .01 
and .001, respectively.  This occurred because the 
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Fig. 3. Observed statistical power plotted against QTL effect 
size for three preset a s levels from .05 to .001 in computer 
simulation studies in the BXD set (n = 26 RI strains) using 
1493 markers. Each point represents the proportion of  correctly 
detected QTLs (observed power) of  15 simulated QTLs tested, 
except for six points, where 30 QTLs were tested. The dis- 
tance-weighted least-squares curves are also shown, which do 
not presuppose any functional relationship (Wilkinson, 1990). 

most  significantly associated marker  was not the 
marker  representing the simulated QTL in about 
ha l f  o f  all cases but, rather, was a nearby marker  a 
few centimorgans distant. Thus, increasing the " e r -  
r o r "  term not only reduces the power,  but also 
causes an error in est imated QTL map  location 
away from the " t r u e "  location of  + 6  cM (90% 
confidence limits). 

D I S C U S S I O N  

When there were no simulated QTLs,  the pres- 
ent simulation study indicates that a p value o f  --1 
• 10 .4 (LOD ~ 3.3) is needed to provide .05 pro-  
tection against even one false-posit ive Q T L  in the 
genome When the B X D  RI set is used alone. 
Roughly  the same findings emerged when  simu- 
lated QTLs  were present. Strictly speaking, this es- 
t imated e~ s is specific for the marker  set we  used in 
the simulations, which approximates  a 1 to 2-cM 
density map.  I f  we presume that the markers  are 
distributed at random throughout the genome,  the 
proport ion o f  the genome (P) within d cM o f  at 
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least one o f  N markers  is given by  P = 1 - e  -zNa/D 
(Jacob et al., 1991), where D is the map  length o f  
the entire genome,  about 1600 cM in the mouse,  d 
is the span in centimorgans on either side o f  each 
marker  locus, and e is 2.71. From this expression,  
about  84% o f  the genome can be expected  to be  
within 1 cM of  a marker  when there are 1493 
marker  loci. Since marker  distributions cannot  be 
assumed to be entirely random, these are rough but 
still useful estimates. In any case, in RI sets with 
fewer  markers,  the number  o f  Type  I errors would 
be lower  (Lander  and Botstein, 1989), and thus a 
less stringent e~ s would be needed for genome-wide  
.05 protection. The opposite would be true for a 
marker  set more dense than that used in our study, 
al though the upper  limit is probably  about a 1-cM 
map in the BXD and other sets o f  similar strain 
numbers  for reasons noted below. 

Belknap (1992) estimated c~ s when c~ G = .05 
to be p = .0006 when the BXD set is used alone 
to map  single-locus (qualitative) traits based on a 
set o f  empirical  rules. While data are not presented 
here, we have carried out simulations for qualita- 
tive traits (in preparation), and the numbers  o f  Type  
I errors were similar to those observed in the pres- 
ent study. There appears to be no fundamental  dif- 
ference in false-positive error rates be tween 
qualitative and quantitative traits despite the differ- 
ing distributions encountered. Thus, it is clear  that 
the earlier recommendat ion o f  Belknap (1992) is 
not stringent enough to provide .05 genome-wide  
protection with the current BXD marker  set in the 
absence o f  confirmation testing. 

Neumann  (t992),  based on a Bayes ian  anal- 
ysis o f  RI strains, estimated that a p value o f  2.5 
• 10 .4 (LOD ~ 2.9) was needed to obtain a 95% 
probabil i ty  o f  linkage. This analysis takes into ac- 
count the very much smaller prior probabi l i ty  o f  
l inkage compared  to nonlinkage between a Q T L  
and a marker.  The probabili ty o f  l inkage was cal- 
culated based on the binomial  expansion,  and an 
unlimited number  o f  markers  was tacitly assumed.  

More  recently, Lander and Schork (1994) rec- 
o m m e n d e d  using p < 2 • 10 -5 (LOD = 3.9) for 
significance in RI  strain QTL studies, the most  
stringent level proposed thus far. This  is largely 
because these authors made several assumpt ions  
that can be described as "wor s t  c a s e "  in terms o f  
generat ing more  false positives. First, they assumed 
an unlimited number  of  markers,  while our marke r  
set, while large (--1500),  approximates  a 1- to 2- 

cM density map. Second, they assumed an infinite 
number  o f  distinct genotypes  due to recombinat ion.  
In contrast, the number  o f  RI  strains (distinct gen- 
otypes)  in any set is quite l imited, and deriving new 
RI strains is not likely due to the cost and t ime 
required. The estimate o f  the map  distance associ-  
ated with 1 discordant strain o f  26 (the m i n i m u m  
difference between two adjacent  but distinct SDPs) 
is about 1.0 cM (Silver, 1985), which implies that 
there are probably  only about  1600 distinct SDPs 
that are genetically possible  o f  the 226 (67 million) 
SDPs that are mathemat ica l ly  possible (Neumann,  
1992). This suggests that even i f  infinite numbers  
o f  markers  were available,  the extent o f  SDP re- 
dundancy would be so high that only a 1-cM den- 
sity map (equivalent to an - - 4 - c M  map  in an F2 
population) is ul t imately attainable with 26 strains. 
Figure 4 o f  Lander  and Botstein (1989) indicates 
that the difference be tween an infmite number  o f  
markers  and a 4-cM marke r  density in an F2 or 
backcross  mouse populat ion is about  0.4 LOD,  or 
a 2.5-fold difference in p values.  This consideration 
alone m a y  account  for mos t  o f  the difference be- 
tween the Lander and Schork (1994) est imated CXs 
yielding genome-wide  .05 protection and those 
found in the present study. I f  the finite number  o f  
genotypes  is taken into account,  .4 LOD should be 
subtracted f rom the Lander  and Schork (1994) es- 
t imate,  yielding LOD = 3.5 (p < 6 • 10 -5) for  RI 
strains with strain numbers  similar  to the BXD set. 

The Lander  and Schork " w o r s t - c a s e "  as- 
sumptions are defensible by  arguing that it is bet ter  
to be biased on the side o f  be ing  too stringent rather 
than not stringent enough. However ,  they did not 
take into consideration the negat ive consequences 
o f  more  stringent c~ s on Type  II error rates (false 
negatives).  Because their assumpt ion o f  unlimited 
numbers  o f  markers  and recombinant  genotypes  
guarantees that Type  II errors will be essentially 
zero, they could well  afford to ignore this concern. 
Unfortunately,  Type  II errors cannot be ignored 
with the limited genotype numbers  available in ex- 
isting mouse  RI sets. Moreover ,  the limited number  
o f  RI  genotypes clearly differentiates them f rom 
segregating populations,  where  nearly unlimited 
numbers  o f  recombinant  genotypes  can be approx-  
imated by  using very large sample  sizes. 

In addition to the use o f  stringent cx s per  ex- 
periment,  another strategy for  dealing with Type  I 
errors is to emphasize  independent  replication. A 
good  example  is the two-s tep  mapping  approach 
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we (and others) have recently employed for QTL 
mapping. RI strains are used to screen the genome 
in search o f  provisional QTLs as Step 1. This initial 
step requires no genotyping, since each RI strain 
has been genotyped for hundreds o f  markers 
throughout the genome as a result o f  the cumulative 
effort o f  many workers over many years (Silver et 
al., 1994). Since the number of  available RI strains 
is generally too small to map all but the largest 
QTLs unequivocally (see Fig. 1), the RI QTL re- 
sults must be followed by a second step---confir- 
mation testing in an independent test, usually in an 
F z intercross between the two RI progenitor strains. 
In Step 2, each FE mouse must be genotyped,  but 
only for chromosome regions that Step 1 results 
indicate contain QTLs. In our experience, the lim- 
ited genome search typically involves only about 
10% of  the genome when as is set at p < .01 in 
Step 1. This results in a large savings in genotyping 
cost and effort compared to the full genome search 
required when there is no preliminary RI screen. 
This approach is exemplified by several recent re- 
ports (Crabbe et al., 1994a, b; Belknap et al., 1995; 
Buck, 1995). 

Since the two-step strategy requires only a 
partial genome search in the F 2 (or other) popula- 
tion, this implies a lower risk o f  Type I errors com- 
pared to a full genome search. Is it therefore 
appropriate to use a less stringent criterion for sig- 
nificance from that required for a full genome 
search? The same question can also be asked in 
cases where only a few markers are used in a ge- 
nome-wide search (sparse map condition). In both 
cases, Lander and Schork (1994) argue that low- 
ering the significance threshold is not appropriate 
on the grounds that today 's  limited search by one 
investigator can potentially lead to future full ge- 
nome scans carried out by the genome research 
communi ty  using unlimited markers and geno- 
types. While we see some merit in this view, for 
example, the establishment of  significance criteria 
that should remain stable in the future, there are 
particular circumstances where exceptions are war- 
ranted. We suggest that among these are (1) studies 
in RI sets where the number o f  genotypes is fixed 
and is unlikely to be increased, (2) testing for the 
presence o f  a QTL previously substantiated in other 
studies, or (3) testing hypothesized candidate genes 
o f  known map location. 

Since Steps 1 and 2 are statistically independ- 
ent experiments using the same progenitor strains, 

it could be argued that their LOD scores for a given 
marker (or interval) could be added to obtain an 
overall LOD score for both experiments, as is often 
done in the human literature (Ott, 1991). However ,  
another useful approach, which is more conserva- 
tive, is to use Fisher 's (1958) method o f  combining 
p values from two (or more) independent experi- 
ments testing the same hypothesis, as articulated by 
Sokal and Rohlf  (1981, p. 779). This approach 
takes advantage o f  the fact that -2 ln(p)  is distrib- 
uted as X z with df  = 2. The equation for combining 
p ' s  is - 2 Z / n ( p )  = X 2 with df  = 2t, where t is the 
number o f  p values f rom separate experiments to 
be combined. For example, p = .01(RI) and p = 
.001(F2) yields p = 1 • 10 .4 as the joint  proba- 
bility (X z = 23, df  = 4). The two-step results, in 
turn, can be subjected to further confirmation test- 
ing using another population derived from the same 
two progenitor strains. For example, using Fisher 's  
method, three such independent experiments (e.g., 
RI, F2, backcross) using the same trait, markers, 
and progenitors, each yielding p = .01, .001, and 
.01, respectively, when pooled y ie ldsp  = 1 • 10 -S 
(LOD ~ 4.2) in the aggregate. Even though no one 
experiment alone comes close to meeting the Neu- 
mann (1992), the Lander and Schork (1994), or the 
present estimated as  for significance (and might be 
denied publication for this reason), all three exper- 
iments jointly would meet  these criteria. The sep- 
arate studies could conceivably involve the work o f  
two or more laboratories aggregated over a consid- 
erable length o f  time. Replication is probably the 
best insurance available against Type I errors and 
should be given at least as much emphasis as strin- 
gent criteria for significance for single experiments. 

Concerning statistical power (1-Type II error 
rates), the estimates from our simulation studies 
(Fig. 3) were in good agreement with those derived 
theoretically from equations given by Lander and 
Botstein (1989) and Soller et al. (1976), as shown 
in Fig. 1. However,  in RI sets with few m a r k e r s ,  
the power would be less, but this reduction can be 
largely offset by the use o f  interval mapping meth- 
ods such as those recently developed for RI strains 
by Fulker and colleagues (Markel et al., 1996). In 
any case, it is clear that the power to detect QTLs 
when an RI set is used alone is adequate only for 
the larger QTL effect sizes. I f  we assume that % 
must be set at .0001 to obtain ~c = .05, then we 
can reliably detect QTLs (power = .8) only i f  they 
account for more than half  o f  the between-strain 
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variance in the larger mouse  RI sets. Thus,  the ex- 
isting RI sets, when used alone, can map  unequiv-  
ocal ly  only the largest QTLs.  This l imitation has 
p rompted  the use o f  two- or multistep mapp ing  
strategies referred to above,  where the burden o f  
protect ion against both Type  I and Type  II errors 
can be distributed over  a larger number  o f  geno-  
types than those in an RI set. 

In the assessment  o f  power  in our  simulations,  
quite often the most  significantly associated marker  
was  not that assigned to serve as our QTLs  but, 
rather, was a few centimorgans distant. This was 
mos t  likely to occur when the QTL effect  size was 
small,  i.e., the error variance was greatest. This in- 
dicates that the introduction o f  random error vari-  
ance not only reduces the ability to detect the 
presence o f  a QTL,  but also can change the esti- 
mated  location of  a detected QTL away  f rom its 
" t r u e "  location. The 90% confidence limits in our 
s imulat ion studies were +_ 6 cM. Furthermore,  us- 
ing the most ly  significantly associated marker  
within 6 cM of  the " t rue ' (  QTL location increased 
the power  by about 15% (not shown). This m a y  
better  simulate most  research efforts where  the pre- 
cise location o f  the QTL is not known beforehand.  

While power  is usually defined as the proba-  
bility o f  correctly detecting a QTL,  the power  also 
est imates the expected proportion o f  s~ accounted 
for by  all correctly detected QTLs.  For example ,  
let us assume that we have four QTLs,  each ac- 
counting for 25% o f  s 2. (This approximates  25% 
o f  V A when there is negligible strain mean  esti- 
mat ion error, or a correction is made for the latter 
using components  o f  variance as described under  
Methods.)  The power  analysis (Fig. 1) indicates 
that QTLs  o f  this effect size can be detected with 
a power  o f  .78 at a s = .05. The expectat ion is that 
.78 • 4 = 3.1 QTLs will be correctly detected (on 
average),  accounting for 3.1 • .25 = .78 o f  s 2, 
which equals the power.  

I f  we assume that the min imum acceptable 
proport ion o f  s 2 due to all detected (and mapped)  
Q T L s  is 80% (i.e., power  = .8), an RI set with 26 
strains is useful as a prel iminary screen only for 
Q T L s  accounting for >26% o f  s 2 when  as = .05 
( f rom Fig. 1). In the case o f  an F2 or a backcross,  
the power  can be increased by  increasing the num- 
ber  o f  genotypes tested, but this is not an option 
with RI  sets when all available strains are routinely 
tested. In this case, power  can be increased in the 
RIs  only  by  using a less stringent O~s value, say, 

.20. Flexibility in setting a s for Step 1 is possible 
only when the confirmation test(s), or Step 2, is 
(are) capable o f  providing adequate protect ion 
against Type  I errors. When  segregating popula-  
tions are used for confirmation testing, the sample  
sizes necessary to provide adequate  Type  I error 
protection can be est imated f rom the equations 
given under Methods.  Steps 1 and 2 together 
should be designed to mee t  the Lander  and Schork 
(1994) significance level o f p  < .0001 for an F 2 or 
backcross  (additive; d f  = 1). 

With an adequate confirmation test(s), pri- 
macy  can then be given to minimizing Type  II er- 
rors (increasing power)  in the RI prel iminary 
screen to avoid miss ing important  QTLs.  For  ex- 
ample,  with as = .20 and 26 strains, the min imu m 
QTL effect size detectable at power  -- .8 is 16% 
of  s~ (Fig. 1). The major  undesirable consequences 
o f  relaxing o~ s in Step 1 are that a larger portion o f  
the genome must  be searched in the confirmation 
test (Step 2) and a more  stringent Step 2 o~ s will 
be needed to offset  the relaxation in Step 1 when 
using Fisher 's  method or adding LOD scores. 
When Step 1 a s = .2, essentially the entire burden 
o f  Type  I error protection falls on Step 2. 

We very roughly est imate that about 40% o f  
the genome would need to be searched in the F 2 
(Step 2) when the Step 1 a s = .20, compared  to 
about 10% when the Step 1 a s = .01. The 40% 
estimate comes f rom adding the 20% of  markers  
likely to be " s ign i f i can t "  at this as  level due to 
chance, plus an additional 20% for the " r e a l "  
QTLs  and the portions o f  the genome needed to 
flank each putative QTL with markers .  Further re- 
laxation o f  as is possible,  but at some point the 
advantage of  reduced genotyping effort  diminishes 
to where it no longer offsets the cost and effort  o f  
testing (phenotyping) the RI  strains. At this point 
there would be little or no cost savings compared  
to a full genome search in an F 2 without an RI 
screen. We surmise that as = .20 is probably  not 
far f rom this practical lower  limit o f  relaxation. 

An economical  s trategy for  two-step mapping  
efforts is to start with a more  stringent RI as level, 
e.g., p < .01, to minimize  the portion o f  the F2 
genome to be searched, and to resort  to less strin- 
gent a s values only when the aggregate  o f  detected 
and confirmed QTLs  falls short o f  an acceptable 
proport ion o f  the genetic variance,  e.g., two-thirds 
o f  s~ in the RI strains or two-thirds o f  V A in the F2. 
[Multiple regression with adjusted R 2 can be used 
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to assess this since it corrects for correlations 
among  the markers  that can inflate aggregate Q T L  
variances (Phillips et  al. ,  1994).] This two-step 
strategy with flexible o% yields a high probabil i ty  
o f  mapping  the larger QTLs  (when power  > .9 )  but 
will l ikely miss most  o f  the smaller  QTLs  when  the 
power  <z 0.5 at less stringent ots levels. I f  we as- 
sume that as = .20 is as relaxed a value as is cost-  
effective, and .8 is the lowest  power  acceptable,  
then the practical lower limit in QTL effect  size is 
16% of  s~ with 26 strains (Fig. 1). For the other 
large RI  sets, this value would be similar. I f  it is 
desired reliably to detect and map  QTLs  much  
smaller  than this, the RI prel iminary screen would 
not have sufficient power.  In this case, a full ge- 
home  search in a very large segregating populat ion 
would be needed (e.g., Berrettini et  al . ,  1994; Flint 
et  al. ,  1995). However ,  in cases where we are in- 
terested primari ly in QTLs  with effects larger than 
the above-noted minimum,  the low reliability o f  
detecting those with even smaller  effects may  be 
o f  little concern. 

As noted above,  the limitation imposed by  the 
available number  o f  RI strains (genotypes) in a set 
is sufficiently great that confirmation tests are re- 
quired for virtually all but the largest QTLs.  This 
limitation is somewhat  mitigated by two consider-  
ations. First, RI strains are homozygous  at all loci, 
which are more  informative for Q T L  mapping  than 
the usually intermediate-scoring heterozygotes  
compris ing ha l f  o f  F2 populations. Thus,  26 RI 
strains are equivalent tO about 50 F2 intercross an- 
imals for any given values o f  o~ and/3.  Second, by  
testing several animals per strain, multiple meas-  
urements  on what  is the same genotype can be 
made to assess more  accurately the phenotype as- 
sociated with each genotype. This is possible be-  
cause each genotype (strain) is replicable by  s imply  
breeding more  members  of  the same strain. In an 
F 2, in contrast, each genotype is represented by  
only a single mouse  that cannot be replicated. Thus,  
the accuracy o f  predicting phenotype f rom geno-  
type, which is essential for efficient QTL mapping,  
is potentially much  greater in the RIs (Lander  and 
Botstein, 1989). Another  advantage o f  replicable 
genotypes  is that an unlimited number  o f  pheno-  
types can be assessed on the same genotypes,  so 
that direct compar isons  can be made among  them 
at both the genetic correlation and QTL levels 
(Crabbe et  al . ,  1994a). In contrast, F 2 populat ions 
tend to be " s i n g l e - u s e "  studies o f  only one phe-  

notype. At best, only a l imited number  o f  traits can 
be assessed on each F2 mouse ,  and then only i f  the 
multiple measurements  per  mouse  are not con- 
founding. 

RI strains have been invaluable for mapping  
loci associated with single-locus Mendel ian (qual- 
itative) traits, a purpose for  which they were orig- 
inally developed (Bailey, 1981; Taylor,  1978). 
Recently,  they have also been  shown to be valuable 
as a tool for mapping  loci associated with quanti- 
tative traits, particularly as part  o f  two- or multistep 
mapping  strategies. However ,  their proper  use in 
QTL mapping  requires an appreciat ion o f  error 
risk, which this paper  has shown are considerable 
but not insurmountable concerns.  Since the goal o f  
QTL mapping  is to detect (and map)  QTLs  with 
minimal  errors, an appropriate  balance between 
Type  I and Type lI error risk is critically important 
in the design o f  two- or multistep mapping  exper- 
iments. 
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