Effect of maturity on nitrogen fractions in potato

A. C. KAPOOR¹ and P. H. LI²

¹ Department of Foods and nutrition, College of Home Science, Haryana Agricultural University, Hissar (Haryana), India 125004

² Department of Horticultural Science and Landscape Architecture, University of Minnesota, St. Paul, MN 55008, USA

Accepted for publication: 16 December 1982

Additional keywords: cultivars, protein metabolism

Summary

Different parts of plants of three potato cultivars were analysed 31, 47, 63, 79, 95 and 111 days after plant emergence to determine the variations in nitrogen fractions between cultivars and during growth to maturity. In all cultivars protein nitrogen in different parts decreased up to the 79th day and thereafter it remained constant. The organic nitrogen fraction of non-protein nitrogen followed a similar pattern except that it increased in the tuber during the last stages of maturity.

Introduction

The level of soil fertility (Hoff et al., 1971), growing temperature (Vigue, 1973) and genotype (Desborough & Weiser, 1972) affect the protein and non-protein nitrogen (NPN) contents of potato tubers. The NPN fraction of tubers comprises about 40-70% of total nitrogen (Kapoor et al., 1975; Li & Sayre, 1975), but a large quantity of NPN is leached out during processing. Most studies have been conducted on mature potato tubers and little work has been done to study protein metabolism during growth of the potato plant. Knowledge of protein synthesis relative to different nitrogen fractions in the developing plant, particularly in tubers of different cultivars, may be useful in determining the agronomic and genetic factors affecting protein composition in these storage organs at maturity.

The work described in this paper was undertaken to investigate the changes which occur in various nitrogen fractions during the development of potato plants.

Materials and methods

Three cultivars, Kennebec, Norchip and Early Ohio, were grown in a loam:peat:sand mixture (2:1:1) in 20 cm diameter pots in a growth chamber. A regime of 22/19 °C, day-night temperature with 16 hours light was held for the first 35 days and 20/17 °C with 14 hours light during the remaining period. A mixed fertilizer (20:20:20) equivalent to 140 kg/ha was applied at the time of planting and none thereafter. Samples were collected at 31, 47, 63, 79, 95 and 111 days after emergence. The root systems were washed with distilled water and the plants separated into roots, stems, leaves and tubers. After determination of fresh weight, samples were freeze-dried and ground through an 80-mesh sieve for further analysis.

Table I. Protein nitrogen, inorganic and organic nitrogen in non-protein nitrogen fractions of different parts of potato plants during growth and development (mg/100 g dry weight).

Cultivar and	ō	Protein nitrogen	ogen				Non-	Von-protein nitrogen	nitro	gen								
plant part Dave effect							inorg	norganic nitrogen	trogen				organ	organic nitrogen	ogen			
Days alter emergence –	31	47	63	62	95	Ξ	31	47	63	79	95	Ξ	31	47	63	62	95	Ξ
<i>Kennebec</i> Leaf Stem Root Tuber	4000 1820 2390	3200 1200 1740	3030 1110 1510 1140	2320 950 1290 1040	2350 820 1510 950	2380 770 1280 720	176 265 210 -	140 220 	90 50 80 90 50 80	65 55 80	50 25 20	45 20 20 20	1344 995 620 -	560 540 360	250 190 190 440	235 125 150 420	230 115 182 380	215 110 110 590
<i>Norchip</i> Leaf Stem Root Tuber	4001 1970 2160	3810 1060 1740	3190 1100 1177 1260	2790 930 1860 1090	2460 830 1810 1000	2540 700 900	242 307 265	140 280 260	60 50 80 80	55 65 90	55 50 20	65 35 20	1568 1113 575	780 496 420	290 150 210 420	205 160 145 320	145 70 340 390	195 75 237 580
<i>Early Ohio</i> Leaf Stem Root Tuber	3210 1790 2190	3100 1000 1760	3050 860 1690 1010	2500 610 1470 950	2230 720 1410 790	2130 700 1310 650	153 268 240	130 260 220	50 50 50 50	65 55 70	240 200 200 200	70 55 20	1217 632 570	440 260 430	260 140 200 410	255 95 390 370	210 50 310 420	220 55 530

A. C. KAPOOR AND P. H. LI

POTATO NITROGEN FRACTIONS

Non-protein nitrogen (NPN) was extracted from samples with 80 % ethanol (Kapoor et al., 1975). Inorganic and organic nitrogen contents of NPN fractions were separated by activated Dowex-4 (H⁺) cation exchange resin packed in a glass column (8 cm \times 1 cm). The samples of NPN were passed through column which retained organic nitrogen which was then eluted with 4 N HCl and collected for further analysis. Nitrogen in the ethanol extract, residue (obtained after extraction) and organic NPN was estimated by micro-Kjeldahl (Horowitz, 1970). Inorganic nitrogen was calculated by differences (Total NPN – organic NPN).

Results and discussion

Protein nitrogen was highest in the leaf tissue followed by that in the root in all the stages of development, whereas the stem contained the lowest amount (Table 1). This fraction decreased in different parts up to 79 days and thereafter there was generally little change. Organic and inorganic nitrogen fractions of NPN followed a similar pattern except that the organic nitrogen fraction increased in tubers at the last sampling stages. This increase may be related to senescence and could be caused by mobilization of NPN from haulms to tubers (Synder et al., 1977). No marked varietal difference was observed in these nitrogen fractions. The data showed that protein nitrogen constituted 60-80 % of the total nitrogen in different parts of potato plants, the percentage increasing with maturity. Organic nitrogen in NPN was a major fraction and inorganic nitrogen was present in only small amounts. The main component of inorganic nitrogen could be nitrate as ammonia is usually present only in negligible quantities.

These results are in agreement with those of Kapoor & Gupta (1976) who also reported that nitrogen in vegetative parts of soybean plant decreased as the plant matured and that NPN constituted a small portion of total nitrogen.

References

Desborough, S. L. & C. J. Weiser, 1972. Protein comparison in selected Phureja haploid Tuberosum families. American Potato Journal 49: 227-233.

- Hoff, J. E., C. M. Jones, G. E. Wilcox & M. D. Castro, 1971. The effect of nitrogen fertilizer on the composition of free amino acids pool of potato tubers. *American Potato Journal* 48: 390-394.
- Horowitz, W. (Ed.), 1970. Official methods of analysis of AOAC, 2nd ed. Association of Official Analytical Chemists, Washington, D.C., p. 16.
- Kapoor, A. C. & Y. P. Gupta, 1976. Effect of maturity and phosphorus nutrition on nitrogen fractions and free amino acids in soybean. *Forage Research* 2: 77-81.
- Kapoor, A. C., S. L. Desborough & P. H. Li, 1975. Extraction of non protein nitrogen from potato tuber and its amino acid composition. *Potato Research* 18: 582-587.
- Li, P. H. & K. D. Sayre, 1975. The protein, non-protein and total nitrogen in Solanum tuberosum sp. Andigena potatoes. American Potato Journal 52: 341-350.
- Snyder, J., S. Desborough & D. Holme, 1977. Accumulation of protein, non protein nitrogen and tuber growth of three potato cultivars. *American Potato Journal* 54: 545-555.
- Vigue, J., 1973. The influence of biochemical and environmental factors on protein synthesis and accumulation in potato. Ph.D. Thesis, University of Minnesota, USA, p. 130.