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C O N V E R G E N C E  OF C E R T A I N  I N C O M P L E T E  B L O C K  
F A C T O R I Z A T I O N  S P L I T T I N G S  

L. Yu. Kolot i l ina UDC 512.643 

This note fills a logical gap in the theory of incomplete block factorizations of the generalized SSOR type. 
Namely, it is shown that using the so-called factorized sparse approximate inverses it is possible to preserve 
the symmetry of a given Stieltjes or positive definite H-matriz A in its incomplete block factorization K and 
to insure simultaneously the convergence of the related splitting A = K - R. Bibliography: 3 titles. 

This note fills a logical gap in the existence and convergence theory for incomplete block factorizations 
of the generalized SSOR type for M- and H-matrices developed in [2]. In that  paper it was proved, in 
particular, that, under certain general assumptions on the involved sparse approximate inverses to pivot 
blocks, the splitting A = K - R of a given M- or H-matrix A, where K is an (unmodified) incomplete block 
factorization of A either in standard or in inverse-free form, is convergent, i.e., p (K -1 R) < 1. However, 
for inverse-free incomplete block factorizations no method for constructing sparse approximate inverses 
was indicated which would simultaneously ensure the convergence of the related splitting and preserve the 
symmetry of the original matrix in its incomplete block factorization. Since, obviously, it is desirable to be 
able to construct a symmetric preconditioner for a symmetric original matrix, in this note, based on the 
results from [2] and [3], we show that, in the case of Stieltjes or symmetric positive definite H-matrices, using 
the so-called factorized sparse approximate inverses provides a way for constructing symmetric inverse-free 
incomplete block factorizations for which the related splitting of the original matrix is convergent. 

Throughout the paper the following notation is used. In or simply I denotes the n x n identity matrix. 
For two matrices X and Y of the same size the inequality X _> Y is understood componentwise and means 
that the matrix X - Y is nonnegative. By IXI we denote the matrix whose entries are absolute values of 
the corresponding entries of X; p (X) means the spectral radius of a square matrix X. Finally, the notation 
diag (X) and D x  is used for the pointwise and blockwise diagonal parts of a matrix X, respectively, while 
Diag (X1,. .  �9 , Xm) denotes the block diagonal matrix with blocks X1, . . .  , Xm on the main block diagonal. 

First we recall the construction of an (unmodifed) incomplete block factorization of the generalized SSOR 
. .  m type in inverse-free form (see, e.g., [2]). Let A = (A,j)i,j= ~ be a symmetric block m •  matrix. We also 

represent it in the form 
T 

A = D - L - L  , 

where DA = Diag (Al l , .  �9 �9 , A,,m) is the block diagonal part of A and - L  is its strictly lower block triangular 
part. An (unmodified) incomplete block factorization of A of the generalized S S O R  type in inverse-free 
form is constructed as follows: 

K =  ( I - L A ) A - I ( I - A L r ) ,  (1) 

where A = Diag(A1, . . .  ,Am) and 

T 1 
/ k i = ~ 2 i [ ( D A - L / k L  )~ ], i =  1 ,2 , . . .  ,rn, (2) 

whereas f~i ( X - l )  d e n o t e s  a sparse approximate inverse to X, and in what follows f/i are referred to as 
approximation rules. 

Recall next that, according to [3], a factorized sparse approximate inverse to a symmetric positive definite 
n x n matrix X is constructed in the following way. Fix a lower triangular sparsity pattern S, i.e., a set 
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of off-diagonal positions S C_ {(i , j )  : 1 < i r j <_ n} such that  S _D {( i , j )  : i < j} and define the lower 
triangular matrix G* = (gi~)i",j=l by the equations 

gi~ = O, ( i , j )  E S, 

(G* X) i j  = 6ij, ( i , j )  • S, (3) 

where 6ij is the Kronecker symbol. Then set 

D* = diag(G*) (4) 

and 

ensuring that  

G = D *-1/2 G*, (5) 

diag(GXG ~) = I . .  (6) 

Now the factorized sparse approximate inverse to X,  determined by the sparsity pat tern S and denoted by 
fsais (X), is defined by the relation 

fs~s  ( x )  = a ~ a.  (7) 

The following properties of factorized sparse approximate inverses to Stieltjes matrices were established in 
[3]. 

T h e o r e m  1. Let X be a Stieltjes matrix and let S be a lower triangular sparsity pattern. Then the lower 
triangular matrix  G defined by (3)-(5) is nonsingular and nonnegative, whereas G X  G r is a Stieltjes matrix 
and diag ( G X G  T ) = I. 

To insure that  incomplete block factorizations in inverse-free form based on factorized sparse approximate 
inverses are well defined for Stieltjes matrices, we need the following results. 

L e m m a  1. Under the assumptions of Theorem 1, the following inequalities are valid: 

o _< fsais (X) = G ~ G <_ X -~. 

Proof. The left-hand-side inequality is obvious since, by Theorem 1, G is nonnegative. On the other hand, 
since, in view of Theorem 1, G X G  T is a Stieltjes matrix and d iag(GXG T ) = I,  we have 

o x a  ~ = z - n, R > O, (8) 

and, therefore, p (R) < 1, because the Jacobi splitting of a Stieltjes matrix is convergent (see, e.g., [1]). It 
thus follows from (8) that  

x -1 = G T ( Z - R )  - l a  = G ~ ( z + R + R  2 + . - - ) a  > a T G, 

which completes the proof. [] 

A "* Stieltjes matrix and let for i 1 , . .  , m the approximation rules L e m m a  2 [2]. Let A = ( i j ) i , j = l  b e  a = . 

~i be such that, for any Stieltjes matrix X ,  the relations 

0 ___ ~i ( x  -1) <_ x -1, ~i ( x  -1) = [ ~ ( x - ' ) ] ~  

are valid. Then for i = 1 , . . .  , m, Aii - ( L A L  T)ii are Stieltjes matrices and A = Diag ( A 1 , . . .  , Am)  is well 
defined by (2) and is nonnegative. 

Using Theorem 1 and Lemmas 1 and 2 we easily derive the following existence result. 
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,n Stieltjes matrix, let Si (i 1 , . . .  , m)  be lower triangular sparsity T h e o r e m  2. Let  A = (A,j)i,i= 1 be a = 
pat terns ,  and let K be an incomplete  bIock factorization of A, constructed according to (1)-(2), with the 
following approximat ion  rules fti  : 

~ - ~ i ( X - 1 ) - - f s a J s i ( X ) ,  i =  1 , . . .  , m ,  

i.e., let 
T 

Ai  = G i Oi ,  i = I , . . .  , ra, (9) 

be the factorized sparse approximate  inverses to A i i -  (LALa' ) i i ,  determined by Si. Then the matrix 
A = Diag(A1, . . .  , A , , )  is well defined, symmetr i c  posi t ive definite, and nomaegative. 

We are now ready to establish the main result of this paper for Stieltjes matrices. 

T h e o r e m  3. 

Proof. Since 

for i :/: j ,  1 <_ i, j _< m we have 

Under the  hypotheses  of Theorem 2, the spl i t t ing A = K - R  is convergent, i.e., p ( K -1 R) < 1. 

R = K - A = A -1 + L A  -1 L r - DA, (10) 

Rij  = ( L A L r ) i i  > 0, (11) 
because L > 0  and, by Theorem 2, A>_0. Now let i = j .  As Theorem 1 shows, 

G i ( D A  - L A L  r ) i i G  r = I -  Qii, i = 1 , . . .  , m ,  (12) 

where Qii > 0. Therefore, taking into account (9), it follows from (10) and (12) that  

T 
Gi Rii O: = Gi As, 1 G i - ( I  - Qii) = Qii >__ o, i = 1 , . . .  , rn. (13) 

Relations (11) and (13) show that  
Q = O R G ~ _> 0, (14) 

where G = D i a g ( G 1 , . . . ,  a,~).  On the other hand, using (10) and (14) we derive 

G-rK-1AGT= G -T (I-K-'R)Gr=I-G -r K-'G-I(GRGT)=I-(GKGr)-IQ. (15) 

We next show that  the matrix G K G  r is monotone. Indeed, 

GKG r =G(A -1 _ L)A(A -1 - LT)G r = G(G -1 G -T _ L)G r G(G -a G -r _ LT)G r 

= ( I - G L G r ) ( I - G L G r )  r .  (16) 

Furthermore, since G >_ 0 is block diagonal and L > 0 is strictly lower block triangular, we can represent 
the inverse matrix ( I  - G L G  r )-1 in the form 

m--1 
( I - G L G T ) - I =  E ( G L G r ) i > O '  

i = 0  

implying, in view of (16), that  
(GKGT) - '  >_0. (17) 

Now, (15), (14), and (17) show that  G - r  K -1 A G r is a matrix with nonpositive off-diagonal entries and, 
as a matrix similar to K -1 A, it has positive eigenvalues. Therefore (see, e.g., [1]), G - r  K -1 A G  r is an 
M-matrix and G - r  K -1 A G  r = I - ( G K G  r )-1 Q is its regular and, hence, convergent splitting, i.e., 

p ( ( G K G  ~ )-1 Q) = p (G - r  K - 1  R G  r ) = p (K-1 R) < 1, 
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which completes the proof. [] 

Now consider the case of a symmetric positive definite H-matrix A, i.e., of a symmetric H-matrix with 
positive diagonal entries. The comparison matrix A4 (A) for a matrix A = (a,~)i,j= ~ is defined in the usual 
way: 

l < i , j < _ n .  (18) 
la,il, i = j ,  

( M ( A ) ) i j =  - ta , i l ,  i C j ,  - 

We recall (see, e.g., [1]) that, by definition, A is an H-matrix if and only if A4(A) is an M-matrix. 
Furthermore, if A is a symmetric positive definite H-matrix, then A4 (A) is a Stieltjes matrix and A > M(A) .  

As in the case of Stieltjes matrices, we first recall some known results concerning factorized sparse 
approximate inverses and incomplete block factorizations for H-matrices. The results summarized in the 
following theorem can be extracted from [3]. 

T h e o r e m  4. Let X be a symmetric H-matrix, let S be a lower triangular sparsity pattern, and let the 
two lower triangular matrices G* and H* be defined by (3) for X and M (X), respectively. Then G* is 
nonsingular and 

Ia* I < H*. (19) 

_b'hrthermore, 

where D* = diag ( G* ), and 

ID *-a G*I_  [diag (H* )]- '  H*, (20) 

I I - G *  X G *~ D*-l l  < I -  H*A'l(X)H*r[diag(H*)] -~. (21) 

= . n = N.. n Stieltjes matrix such L e m m a  3. Let X (xo )i,j=a be a symmetric H-matrix and let .Y (x,j)i,j=l be a 

that .~ < M ( X ) .  Then for a lower triangular sparsity pattern S we have 

Ifsais (X)l fs s (2) 2 - ' .  (22) 

Furthermore, if  the two lower triangular matrices G* and G* are defined by (3)/'or X and .Y, respectively, 
then 

-* (23) Iv*l ___ v ,  

I D * - l a * l < b * - a ~  *, (24) 

and 
I I _ G * X G  *r D * - a l < I _ G * X O * r b  *-1, 

where D* = diag (G*) and D* = diag (G*). 

Proof. Let H* be defined by (3) for the Stieltjes matrix M (X). Then, by Theorem 4, 

(25) 

IG*l ~ H * .  (26) 

On the other hand, using the assumption NX <_ A4(X) and the well-known fact that the inverses to M- 
matrices M1 and M2 such that M1 _< M2 satisfy the relation M~ -1 > M21 , we readily derive that 

H* < G*. (27) 

Taken together, inequalities (26) and (27) prove (23). Now we establish (24). By Theorem 4, we have 

I D*-I G* I < [diag(H*)] -1H*,  
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and, thus, to prove (24) it is sufficient to make sure that 

[diag(H*)] -1 H* _< 9 *-1G*, (28) 

where H* and G* are defined for the two Stieltjes matrices 2M (X) and .~ < Ad (X), respectively. Inequality 
(28) is similar to inequality (20) and is established in a similar fashion (see [3]). Now the inequality 

Ifsais (X)I--IG*TD *-' a*l < fsais ( J r ) - - 0  *T b *-1 G* 

follows from (23) and (24), whereas the inequality fsais (2 )  <__ )~-1 is insured by Lemma 1. It thus only 
remains to prove (25). Since, obviously, 

diag (a* X a *~ D "-1 ) = I = diag (a* X 0 "~ b*- '  ), 

we need only to show that, for i # j ,  

< I(a*x& 5.-1),jl, 
while in view of (24), the last inequality will be established if we prove that 

N 

I(a* x ) , i  I _< I (a* x ) , i  I, 1 _< i, j _< n. (29) 

For ( i , j )  ~ S inequality (29) is obviously satisfied by the definition of the matrices G* and G*. If ( i , j )  e S, 
then 

( i,k)~s ( i,k)~s (i,k)~s 

because the simultaneous conditions ( i , j )  E S and (i,k) ~ S imply that k r j and so I zkj I_<1 ~kj I in view 
of the assmnption .M(X) > J(. Lemma 3 is thus completely proved. [] 

, .  I T I  Lemma 4 [2]. Let A = (A,j)i,/= 1 be a symmetric positive deIinite H-matrix, and for i = 1, . . .  , m let the 
approximation rules f~i be such that, for any symmetric positive definite H-matrix  X and a Stieltjes matrix 
X satisfying the inequality 2 <_ M ( X ) ,  the relations 

I a , ( x  I< -1) ---2 -1, = 

are va/id. Furthermore, let the matrices Ai  and ~Xi, i = 1 , . . . ,  m, be de/]ned by (2) for A and a Stieltjes 

matrix A = / 9  - L -  ~r  such that A <_ M ( A ) ,  respectively. Then for i  = 1, . . .  ,m,  we have 

( L A L ) i i )  > *ii  (L~xL r)ii Aii - ( L A L  r)ii >_ M (Aii - T _ _ , 

implying that A i i  - ( L A  L r ) i i  a r e  symmetric positive de/]nite H-matrices and 

I A, I<_ 

Applying Theorem 4 and Lemmas 3 and 4, we easily establish the following result. 
� 9  m Theo rem 5. Let A = (A, 3)~,j=1 be a symmetric positive det]nite H-matrix, let S~ (i = 1 , . . . ,  m) be lower 

triangular sparsity patterns, and let A = Diag ( A1, . . . , Am) be constructed according to (2) with 

f l~(X-1)=fsais,(X), i=  1,... ,m, 

i.e., let 
T 

Ai = Gi Gi, i = 1, . . .  ,m, 

be the factorized sparse approximate inverses to Aii - (L ALT)ii  determined by Si. Then the matrix A is 
we11 de!qned and symmetric positive de/]nite. 

The final theorem of this paper establishes the required result on the convergence of splittings related to 
incomplete block factorizations based on factorized sparse approximate inverses in the case of symmetric 
positive definite H-matrices. 
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T h e o r e m  6. Under the hypotheses of Theorem 5, the splitting A = K - R  is convergent, i.e., p (K -1 R) < 1. 

Proof. Let a = Diag(g~, . . .  ,am),  D* = [diag(a)?,  G* = D*'/2G, and O = GRGT. Then A = G r G 
and 

p ( K - '  R) = p ( a  -T K - 1 V - '  Q) = p([  D "1/2 GKG T D*-1/2] - ' .  [D *'/2 OD*-'/2]) 

_< p (l[ D*'/~ aKaT D._,/~ ]_,[. [D.,/~ O,D._,/,t)" (30) 
~ T  

Now let * = M (A), so that 5 = D X = M (DA) and L =]L].  Furthermore, let ~ i  = Gi Gi = fsa~s, 
( * i i -  ( ~ r ) i i ) ,  i = 1, . . .  ,m, ~ = Diag (~ , , . . .  ,~x,,), G = Diag(G, , . . .  ,G,~), 5* = [diag((~)] 2, 

G* = D*l/2 G, _~ = ( I - J S ~ ) ~ - I  ( I - ~ J s T ) ,  R = K - - 4 ,  and 0 = ~ r  be the corresponding 

matrices defined for the Stieltjes matrix A. 
First we show that 

I[ D*'/2 GKGT D*-a/2 ]-'[ <_ [ 5"/2 0 R ~ " 9,-,/5]-'. (3~) 

Indeed, since (see (16)) 

D*'/~ aua" D*-'/~ = D*' /2 ( I -am' ) ( I -aL  T a:)D*-'/, 

=(I-D*'/2GLG T D*-i/2)(I-D*a/2GL T a*D *-'/2) = (I-G*LG**D*-')(I-G*L T a** D *-1) 

and since, by Lemmas 4 and 3, 

I ( z - a * m  *T D*-') I~-' I m-, ID,_ ' T - ' l= ~ (G*LG *T D*-')' < ~ (Ic*I LI G*I 
i=0  i = 0  

m - 1  
<_ ~ (a*Za*TS*-')'=(~--O*~O*TS*-') -1, 

i=o  

i 

we see that 

[ [D*'/2GKGT D*-I/2]-' [ <_ ( I - G * s  (I_G*L~*T ~*-'  ) -'  

=[  (I-,~*Y_,d ,*T 5*-,)(z-~*'i. T c7_."5"-')]-' = (5"/2 ~ ~ ~T b._,/~)_," 

This establishes inequality (31). 
Next we show that 

ID*X/2QD*-I/21 <_ 5 * ' / 2 0 5  *- ' /2.  (32) 

To this end, we first note that, for i r j ,  

r . - , /2  * (LAL r)ij G~ r .-1 (D*I/2QD*-I/2)ij = D*'/2GiRijGj Dj = Gi Dj , 

where we use the notation D* = Diag (D~, . . . ,  D*),  implying, in view of Lemmas 4 and 3, that for i r j 

- - . , / 2  * 9; . - , /2  _ (5 . , /2  0 b . _ , / : ) , j ,  [(D*'/2QD*-'/2)~j <_O*(Z, ZxY, T),iGy T 5 ; - a = D  i GiRijGj  �9 - 

where D* = Diag (Da,...N* , Din) , N *  i.e., inequality (32) is valid for i r j .  Let now i = j. Then, using inequality 
(25) of Lemma 3 and Lemma 4, we derive 

I(D*a/2QD*-a/2)iil = 10; 1/2 Gi (A;  1 - [Aii - (L/~Lr)ii]) G: O *-1/2] 

=II-G~[A.- (LAS).]G*TD;-'[ < _r-67 [~ . -  (Z 7, ZT).] 6 *T b; - '  

=(b*1/205*-1/2).. 
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Inequality (32) is thus proved. Finally, using (30)-(32) and applying Theorem 3 we obtain 

p ( g  -I R) ~ p(1~ *lit2 {~-T .K'--I ~__~--1 5.--112 b*I/2 0 h*-I/2) 
= p (~_T ~_, ~_, ~ ~ ~T) = p ( k - '  ~) < i, 

which completes the proof of Theorem 6. [] 

Translated by L. Yu. Kolotilina. 
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