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I N  W E A K  S O L U T I O N S  O F  E L E C T R O L Y T E S  
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We formulate a system of equations describing the interaction of electric, thermal, and diffusion pro- 
cesses in infinitely diluted solutions of electrolytes and investigate the process of electrodiffusion in the 

case where the concentration of neutral salt is given on the boundary of the body. 

We construct a mathematical model of thermal diffusion in infinitely diluted (weak) solutions. This model en- 
ables one to express the chemical potential of every component via known (measurable) physicomechanical charac- 
teristics of the material, electrochemical equivalents, stoichiometric coefficients, and the molar mass of the constitu- 
ent components. 

For the macroscopic description of the interaction between the processes of heat and electric conduction, diffu- 
sion, and electrolytic dissociation, we use the hypothesis of local thermodynamic equilibrium [1-4]. The relations 
of equilibrium thermodynamics are true for any arbitrarily chosen physically small element of the system. To de- 

scribe the state of this element, we use the following conjugate thermodynamic variables: temperature T, specific 

entropy S, pressu~?e P, specific volume V (19 = 1 / V is the density of particles), chemical potentials ~t k, and con- 

centrations 

C k = m----~ k ' 
m 

where m k and 

4 

m = Z m k  
k=l 

are the mass of the kth component and the total mass of the system, respectively, and parameters of the process 

(thermodynamic heat Ja  and mass Jk flows). The subscripts k = 1,'4 denote cations, anions, and particles of 

salt and water, respectively. By using the identities 

4 4 
Z C k  = 1 and Z ' ~  = O, (1) 
k=l k=l 

we exclude the concentration and diffusion flow of water from consideration. In this case, the function of state (the 

specific internal energy U) depends on the parameters S, V, and Ck, i.e., U = U(S,  V, C~), and its increment can 

be found by using the Gibbs equation [5, 6] 

3 

d U  = T d S  - P d V  + )"  ~ tkdC k, 

k=l 

(2) 
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where 

S = + ~ in - R • Ck( lnak  + C k , 
~=l M~\ M~ 
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P = oRT 4L Mk *[Ck|2,f '~ ~tk " '  " ( 1 1 
~ Mk j = k -- }'14 -- RT 

k = 1 \ Mk M4 

Mk. M4, ) 
- c 4  , 

and, in addition, 

�9 _ RT l n a k  s  (5+ik)/2 k = 

"k Mk Pq k T )  ' 
1, 4, (3) 

a k = 
,2, 1 / 1  1 

Mk* 1~I k Mk ) oT M k' -~, = 

4 

k=l m k '  

It'4(5+i~ (i~ 2M, 
)1~/k = ""0" i . -  

Ad(3+ik )/2 ' R 
' " k  

4 ik G - - - G - 5 = M * E  
k=l 

A p RA 2rth2N2( NA )2/3 
= - -  - , = ~ , (4) 

Tq M , '  q WgM, A R ~ go Vg ) 

~t k is the relative chemical potential of the kth component (with respect to water), Cp is the heat capacity at con- 

stant pressure, M.  is the effective molar mass of the mixture, M k is the molar mass of the kth component, i k are 

additional degrees of freedom of the same component, R is the universal gas constant, V~t is the volume of one 

mole of the ideal gas under normal conditions, N A is the Avogadro number, h is the Planck constant, and go is the 

statistic weight of an atom in the normal state depending on its orbital moment L and spin s. Here and in what fol- 
lows, the subscript "0" denotes the quantities corresponding to the equilibrium state. 

If we describe changes in the state of a system caused by the processes of electrodiffusion and electrolytic dis- 
sociation and by the action of  electromagnetic fields, then, instead of the masses of cations and anions, one must use 

the spatially distributed electric charge Q and the degree of electrolytic dissociation E as macroscopic parameters 
of state. By using the Faraday law [7, 8] and the de Donder principle [4], we can describe the indicated relationship 
by the formulas [6] 

C 1 = k 1Q + v I.E, C 2 = k 2Q + v 2E, C 3 = C +  v 3E,  J1 = klJq,  J2 = kzJq, (5) 

where k I and k 2 are the electrochemical equivalents of the cations and anions, v k is the bulk stoichiometric coef- 

ficient of the kth component (k = 1, 3 ), and Jq is the conduction current density. Note that the stoichiometric co- 

efficients satisfy the condition [4] 

v 1 + v  2 + v 3 = 0, (6) 

which is a consequence of the law of conservation of mass in the course of chemical reactions. By virtue of relation 
(6), we can rewrite the normalizing condition (1) for parameters (5) as follows: 
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C + C 4 + (k I + k2) Q = 1 and .7 4- .74 + (kl q- k 2 ) J q  - O, (7) 

where .7 and .74 are the diffusion flows of salt and water. 

We assume that, in the initial state, the system contains only water and neutral salt with concentrations C04 and 

C O , respectively. Further, by using relations (5), we can write the expressions for the effective molar mass of the 

mixture in the equilibrium M0, and nonequilibrium M, states 

1 1 + Co and 1 _ 1 + 1 ( C + k Q +  v~,) (8) 
Mo,  M 4 M M ,  M 4 M 

and the effective molar masses of the components under consideration 

1 _ P0T0 ~ / /  
Mi .  9T,~ti + . ( k  i Q + v i E), 

i =  1 ,2 ,  

M3. 
- P~176 ( ,~ OT c~ + ~3(c + v3--), 

M3 
(9) 

M4, 
_ p o l o (  

pT M4 
1-Co) 1 

+ - c - + k a ) Q ) .  

Here, we assume that C01 = C02 = 0. In relations (8) and (9), we have used the following notation: 

- , = + - -  , a n d  v =  M M--" 
M M 3 M 4 M 2 M 4 i=1 

If we now substitute expressions (5) in Eq. (2), then we arrive at the fundamental equation of thermodynamics 
for infinitely diluted solutions: 

d U  = T d S  - P d V  + ~tdC + cpdQ + A d E ,  

where ~t = Ia3 is the relative chemical potential of salt, cp = k I gl + k2 g2 is the electrochemical potential, and 

3 

= ~ v ~ k  A 
k=l 

is the affinity of electrolytic dissociation. 
By virtue of relations (3), (5), and (7), for chemical potentials, we obtain 

[.t = R T ( 1 3 - 1 4 ) ,  r = R T [ k l l  z + k2l 2 - (k  1 + k2)14], A = 

3 
R r  

k=l 

(10) 

where 

PIll (5+ik)/2 Mk*] ik = 1 I lna  k - 1 + C k , k = 1, 4, 
MkL ~ Mk 
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and the quantities Mk, are given by relations (9). 

We arrive at the following balance equations for the concentration of neutral salt 

charge Q, and the degree of electrolytic dissociation E [6]: 
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C, the density of electric 

dC - - d Q  _ _ ~ .  ~ q ,  and dE _ I ,  (11) 
P--~-t = - V . J ,  P d--t-- dt 

where I is the rate of electrolytic dissociation per unit mass, 

is the total time derivative, 

d 3 
- + ~ . ~  

dt Ot 

Ox a 

is the Hamiltonian operator, i'a is a unit vector of the basis, x a is a coordinate in the Cartesian coordinate system 

introduced in the.Euler space, cx = 1, 3, and t is time. Here and in what follows, the dot placed between the varia- 
bles denotes their convolution. 

The equations of state (10) must be supplemented with the Maxwell equations 

Vxf f l  = 3D + J, V •  = - -  V.B = 0, and V.D = pQ (12) 
~t Ot ' 

and the following material relations used to express the vectors of electric /) and magnetic B induction via the 

vectors of electric /~ and magnetic /4 field intensity: 

b = eoeE + e ~ - l g x / ~  and /~ = gog/4 e g - l f x / ~ ,  (13) 
C2 C 2 

where -j = Jq + 9Q9 is the density of the total electric current, e0 and go are the absolute electric and magne- 

tic permittivities, and 

1 
c -  "~/-~ogo 

is the velocity of light in vacuum. 
By using the law of conservation of the total specific energy of the system [2] and the relations 

where 

3 
E ~kffk = ~tcJ + (PqJq' 
k=l 

RT 
gc = g +  = g 3 - g 4  and (pq= cp+kpRT= klg 1 +k2~t2 - (k l+k2)~4  

Mp 
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are, respectively, the effective chemical and electrochemical potentials, and 

_ _  M4* 1 1 M3* (C + v3E ) + - -  C4, 
Mp = M M~ 11424 

k (k2M1. k~M2. ~ (klVlM,. k2v2M2. ) M4. C4 ' 

kp- M ~ M? + M2 ~ J Q -  a~--T - +  M2 ~ -=+(k1+<)~2-4~ 

we arrive at the equation of entropy balance in the form 

as - v L  + T -~ P "~-t = ~s- (14) 

The flow Js and production o s of entropy are given by the formulas 

Js = z - l f f Q  , s = J Q ' X Q  -I- J ' X  c + J q ' X q  + I X  A - PrrV 'V  - e z  V . f f  + k p V ' J q  , ( 1 5 )  

where 

P~z ~ 

and, for the thermodynamical forces, we have 

~Q = -~-1~T, ~c = -V~c, 

/ ps~ Z ~ 1 -  ck 
~=j  M k  

Xq = E + g x / ~ - V q ~ q ,  and X A = - p A .  

By using the principles of the theory of Onsager and Curie [1, 2, 4] and neglecting the cross effects, for infinite- 
ly diluted solutions, we obtain 

JQ = - n T ~  VT,  J = -~.cVbtc, Jq = ~,(F. + 9 x B  - V~pq), and I = - p L A ,  (16) 
T 

where ~: and ~. are, respectively, the coefficients of thermal and electric conductivity, ~,c is a quantity expressed 

via the diffusion coefficient, and L is the coefficient used to characterize the rate of the process of electrolytic dis- 
sociation. If we now substitute relations (1 6) in (1 1), then we can rewrite the balance equations for concentrations in 
the form 

dC = ).cAbtc, P dQd~_ - ~'cV'(~7 + 9 x B )  + )~Aq)q, and dEdt = -pLA.  (17) 
P dt 

In view of relations (3), (15), and (16), Eq. (14) implies the following heat conduction equation: 

1 d T  1 W 
- AInT + - - ,  (18) 

a dt T O w. 

where 
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W =  a s - JQ . XQ - pRT ~ ~** l - I n  - k = l ~  lnak + Mk C k (19) 

are heat sources and 

1( a - 
p Cp 

is thermal diffusivity. 
The equations of state (10) and electrodynamics (12) and (13), the balance equations (17) and (18), and the 

equations of conservation of the total mass and momentum [6] equipped with proper boundary and initial conditions 
(the model has twelve parameters) constitute a closed system of equations of thermal electrodiffusion in weak so- 
lutions of electrolytes. We consider two special cases. 

Electrolytic Dissociation 

Assume that the concentration Co of neutral salt in the body at the initial time is known and the diffusion flows 
are absent. Mathematically, this means that the original system of equations (12), (13), (17), and (18) has no opera- 

tors depending on coordinates. In this approximation, there are only two equations for the functions E and T, 
namely, 

3 4 
dE _ p L A ,  T dS = p L A  2, A = RT  ~ v~l k, S = C p -  R 2 Cklk' (20) 
dt dt k=l k=l 

and 

Ik= ~ l n ~ , k , \ ~ k T  ) - - 1 +  Mk C k , k =  1 ,4 ,  

l T0 1 + Vi ~, 

Mi,  T M i M i 
i = 1 , 2 ,  

1  or c0 +c0+ 3=_ 1 l C 0  
M3, T ~.M 3 M 3 )  M3 ' M4---~ = T-~.A~4 ~/4 ) + M---~ 

where the concentrations of components (5) have the form C i = v i ~ i = 1, 2, C3 = Co + v 3 ~,  and C 4 = 1 - C 0. 

For the static case (t---> ~,), it follows from system (20) that A = 0. From the physical point of view, this 
means that the system is in the state of chemical equilibrium, i.e., the process of electrolytic dissociation is com- 

pleted. In this case, the neutral salt is completely dissolved and we have C 3 = 0 and 

_ Co 

V3 

Moreover, by using the equation A = 0, one can determine the variation of temperature in the system. 
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Let us now analyze the original system of equations of the model [Eqs. (10), (12), (13), (17), and (18)] for the 

case where the concentration of salt on the boundary of the body Z 

Ca(P, t)[ z -- C O (21) 

is fixed. 
For infinitely dissolved solutions, we have C O << 1. This condition enables us to expand the twelve basic func- 

tions of the model in powers of their small deviations from the equilibrium state and linearize the problem. The a 

priori estimates established for this model show that, in the case under consideration (21), we can neglect the ther- 
momechanical processes and reduce the problem to a system of four linear coupled differential equations for the 

concentration of salt C 3 , the electric charge Q, the degree of electrolytic dissociation E, and the electric field in- 

tensity /~ [6]: 

3C 3Q 1 
- D A ( C  + kcQ + vcE), C = C 3 - v3E, - 

3t 3t "c~ 

c +  Vqzl ' 
Q +  DqA Q +  kq kq j 

- ( c ,  / 3.E 1 .E 0 + Z + - -  + - - Q  , 
3t x~ v~ v~ 

~z./~ = P Q, 
EE o 

(22) 

where we have used the following notation: 

D = ~'cRTo (1 + M4/17/3 "l 

og4 ), 
Dq = ~keTokq ( k 1 "k k2) 

pM4 

k c = kl + k 2 
1 + M 4 M13 M32" Vc = 

V 3 

1 + M2 (M4~/3) -1 '  

M4 /17'/1 k2 + _ _  
kq = k 1 + k 2 + k! + k 2 M 2 

- v3-M- 3 .M? vl + v2 ' 

M4 ) 
Vq = kl + k2 ( M2 v, + g---- 7 v 2 , 

V~ = M32 ' ~  /f'/'k V~, 

k=l 

(23) 

eeo M3 2 

x e -  9 , x~ = pLRToV2V~/~3' 

3 pV~t ( A_~(3+ik)/2 
M2Ao AO = RTo Z Y_L ln-=-- 

E0 - RToV3V~'~/3' k=l MIr Mk k'MkT~ 

D and Dq are the diffusion coefficients of neutral salt and electric charges, respectively, ze is a characteristic elec- 

trodynamic time, and x~ is a characteristic time of electrolytic dissociation. The remaining parameters in (23) char- 

acterize the coupled processes of diffusion of neutral and charged particles and the process of electrolytic dissocia- 

tion. 
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In the process of electrolytic dissociation, lhe molar mass of cations and anions is always smaller than the molar 

mass of neutral salt, i.e., M i < M 3 (i = 1, 2). Therefore, relation (4) implies thai 37/i >> aT/3 and the analysis of 
relations (23) gives the following estimates: 

- -  << 1 and , , >> 1. (24) 
v ' k  v v 

By using these estimates, we can rewrite system (22) in the following simplified form: 

~C 
= D A ( C  + k c Q), (25) 

Ot 

a__QQ _ Q + DqA(Q + ~Vql ,  (26) 
at T, E ~ kq ) 

~):: _ 1 ( ~ , o + z + Q k ~ )  
at "c~ V~ ' 

(27) 

V . E " -  PQ (28) 
EE o 

It is known [7] that the electrolytic dissociation of salts proceeds almost instantaneously, i.e., x~ = 0. This en- 

ables us to express the degree of electrolytic dissociation E from Eq. (27) via the electric charge Q as follows: 

I Qk~ I 
=~ = - "~0 + _ _  . Vg ) 

(29) 

Substituting this relation in formula (26), we arrive at the following equation for the electric charge: 

OQ _ Q + DqAQ, (30) 
at "c E 

where  

�9 ( Dq "= D 1 V~kq ) 

is the effective diffusion coefficient for electric charges. 
Thus, we reduced the system of equations of electrodiffusion to a system of coupled equations for the concen- 

tration of neutral salt (25), electric charges (30), and electric filed intensity (28) and the algebraic relation (29) for 
the degree of electrolytic dissociation. 

This work was partially supported by the International Scientific Foundation and the Ukrainian Government 
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