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I N V E R S E  P R O B L E M S  OF S P E C T R A L  A N A L Y S I S  
F O R  D I F F E R E N T I A L  O P E R A T O R S  A N D  T H E I R  A P P L I C A T I O N S  

V. A. Yurko UDC 517.984 

I n t r o d u c t i o n  

Inverse problems (IP's) of spectral analysis consist in recovering operators from their spectral charac- 
teristics. Such problems often appear in mathematics, mechanics, physics, electronics, meteorology, geo- 
physics, and other branches of the natural sciences. IP's also play an important role in solving nonlinear 
evolution equations of mathematical physics. Interest in this subject has been increasing permanently 
because of the appearance of new important apllications, and nowadays the IP theory is intensively 
developed worldwide. 

The greatest success in the IP theory was achieved for the Sturm-Liouville differential operator (DO) 

-y" + q(x)y. (0.1) 

The IP for DO (0.1) was studied by many mathematicians (see [1, 4, 6, 7, 16, 20, 24, 25, 31, 33-37, 
39-41, 48, 49, 56, 57, 60-63, 65, 67, 71, 73, 75, 76, 81, 85, 89, 93] and references therein). The first 
result in this direction belongs to Ambarzumian [1]. He showed that if the eigenvalues of the boundary 
value problem 

- y "  + q(x)y = ~y, q(x) ~ C[0,~], y'(0) = J ( ~ )  = 0 

are Ak = k z, k > 0, then q(x) = 0. But this result is an exception from the rule, and the specification 
of the spectrum does not determine the operator (0.1) uniquely. Afterwords Borg [16] proved that the 
specification of two spectra of Sturm-Liouville operators mfiquely determines the function q(x). Levinson 
[56] used a different method to prove Borg's results. Tikhonov [85] obtained the uniqueness theorem for 
the inverse Sturm-Liouville problem on the half-line with the given Weyl fimction. 

An important role in the spectral theory of Sturm-Liouville operators was played by the transfor- 
mation operator. Marchenko ([60 61]) first applied the transformation operator to the solution of the 
IP. He proved that a Sturm Liouville operator on the half-line or a finite interval is uniquely determined 
by specifying the spectral function. Transformation operators were also used in the fundamental paper 
of Gel'land and Levitan [33], where they obtained necessary and sufficient conditions, and established a 
method for recovering the Sturm-Liouville operator from its spectral function. 

Let us briefly formulate the main results of Borg, Marchenko, Gel'fand, and Levitan for the self- 
adjoint Sturm-Liouville operators on a finite interval. 

Consider the boundary value problem L = L(q(x), h, H) of the form 

- y "  + q(x)y  = Ay, o < ~ < ~, q(x) ~ ~(o,  ~), (o.2) 

v ( y )  = y ' (o )  - I ~ ( o )  = o, v ( y )  - y ' (~ )  + H y ( ~ )  = o. (0.3)  
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Here q(x), h, and H are real, and ,k is a complex parameter. Let F(x, ~) be a solution of (0.2) under 
the initial conditions ~(0, A) = 1, ~'(0, A) = h. It is known (see, for example, [62]) that the following 
representation is valid: 

5g 

p(x, ~) = cos px + f K(x, t) cos pt dt, 
0 

X 

if ~= p2 K(x ,x)  = h + ~ q(t)dt. (0.4) 

0 

f 
The operator (A f ) ( x )+  f ( x ) +  I K ( x , t ) f ( t ) d t  is called the transformation operator. 

t /  

0 

The eigenvalues {kk}k>0 of the boundary value problem (0.2)-(0.3) are real and simple, and coincide 
with zeros of the characteristic function A(k)  = ~'(rc, ~) + Hp(Tr, A). For k -+ oc we have 

co ( 1 )  , 1 

The function A()~) is uniquely determined by its zeros: 

h + H + ~ q(t) dt . 

0 

k = l  

7r  

Denote c~k = ~2(x, A~)dx. It is easy to see that ~k > 0 and (~, = ~ + o as k -+ co. The set of 

0 
the numbers {Ak, at}k>_0 is called the spectrM data of L. 

Let the fimctions ~(x, A) and S(x, ,~) be solutions of (0.2) under the conditions U(~) = 1, V(~)  = 0, 
S(0, A) = 0, S'(0, h) = 1. Clearly ~(x,A) = S(x,A) + 9Y~(A)p(x,A), where 93~(A) = ~(0, A). The function 
~ ( A )  is called the Weyl function. It is meromorphic with simple poles at A = A~, and 

OO 

1 
= 

k = 0  

We now formulate two uniqueness theorems of the solution of the IP. 

T h e o r e m  0.1 (Marchm}ko [60, 61]). The specification of the spectral data {A~, c~k}k_>0 uniquely deter- 
mines the potential q(x) and the coefficients h and H. 

T h e o r e m  0.2, (Borg [16]). The specification of two spectra {Ak} and {A~l} of the boundary value 
problems L = L(q(x), h, H) and L = L(q(x), h, H1) (H 5 k HI) uniquely determines the function q(x) and 
the numbers h, H, and Hi. 

A method for constructing the Sturm-Liouville operator from its spectral data is based on the 
following theorem. 

T h e o r e m  0.3 (Gel'land and Levitan [33]). 
operator (0.4) satisfies the linear integral equation 

2g 

K(., t) + F(x, t) + f K(x, s)F(s, t) 
0 

where 

For each fixed x, the kernel K(x,  t) of the transformation 

f(x,t) 1  xcosv  t C O S  - -  - -  

k = 0  

ds = O, 0 < t < x,  (0.5) 

c ~  cos  k x  cos  ~:t , c ~  = 7r,/~ = 0. 
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d 
The potential q(x) and the numbers h and H can be constructed by the formulas q(x) = 2 ~ K ( x ,  

h =  K(0,  0), = 

Equation (0.5) is called the Gel'land Levitan equation. Using tlle Gel'fand-Levitan equation one 
can also obtain necessary and sufficient conditions for the solvability of the IP (see [57, 62, 63]). 

Tile IP of recovering the Sturm Liouville equation from two spectra can be reduced to the IP from 
spectral data, since the numbers {~k}k_>0 can be computed by the formula 

ak- -  H - H 1  

where A(A) = d A ( A ) ,  and AI(A) = ~'(Tr, A ) +  Hlg)(Tr, A) is the characteristic function of L = 

L(q(x), h, H1). It is also clear that the specification of the Weyl function fiR(A) is equivalent to the 
specification of the spectral data {Ak, a~}~_>o. 

The transformation operator method allows us to investigate also IP's for the Sturm-Liouville op- 
erator on the half-line and on the line (see [4, 62, 63, 57] and references therein). 

Many works are devoted to the IP theory for partial differential equations and its applications. This 
direction is reflected fairly completely in [8, 12, 17, 50, 70, 74]. 

In recent years there appeared a new area for applications of the IP theory. In [29] G. Gardner, 
J. Green, M. Kruskal, and R. Miura found a remarkable method for solving some important nonlinear 
equations of mathematical  physics connected with the use of the IP theory. This method has been 
described in [2, 26, 51, 59] and other works. 

In contrast to the case of Sturm-Liouville operators, the IP theory for higher-order DO 

n- -2  

ly -- Cn) + Z (0.6) 
k = 0  

is nowadays far fl'oln its completeness. For n > 2 the IP becomes essentially more difficult, and for a 
long time there were only isolated fragments of the theory not constituting a general picture. However 
in last time there appeared new results which allow us to advance in this direction. 

IP's for (0.2) were studied in [9-11, 19, 21, 22, 42 46, 52, 53, 66, 77-79, 83, 84, 87, 88, 90, 95 100, 
102, 105, 107] and other works. In recent years there has been considerable interest in investigation IP's 
for higher-order DO's as a result of emerging of new applications in various areas of the natural sciences, 
in particular, in the elasticity theory, for integration of nonlinear equations of mathematical  physics, and 
SO o n .  

Fage [27], Leont'ev [54], and Hromov [38] determined that for n > 2 the transformation operators 
have a much more complicated structure than for the Sturm-Liouville case, which makes it more difficult 
to use them for solving the IP. However, in the case of analytic coefficients the transformation operators 
have the same "triangular" form as for Sturm-Liouville operators ( see [46, 64, 77] ). Sakhnovich [78 79] 
and Khachatryan [44-45] used a "triangular" transformation operator to investigate the IP of recovering 
self-adjoint DO's on the half-line from the spectral function, as well as the scattering inverse problem. 
The scattering inverse problem on the line has been treated in various settings in [10, 11, 19, 21, 22, 42, 
84] and other works. 

Leibenzon in [52-53] investigated the IP for (0.2) on a finite interval under the condition of "sepa- 
ration" of the spectrum. The spectra and "weight" numbers of certain specially chosen boundary value 
problems for the DO's (0.2) appeared as spectral data of the IP. However it was found that the "sep- 
aration" condition is rather a hard restriction, since removing it leads to a violation of the uniqueness 
for the solution of the IP and to appearance of essential difficulties in the method. Things are more 
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complicated for DO's on the half-line, since in the non-self-adjoint case the spect rmn can have a "bad" 
behavior. 

The present review is devoted in the main to investigations IP's for DO (0.6) on the half-line and 
on a finite interval and their applications. Tile main results in this direction obtained in last years are 

provided. The paper consists of 4 parts.  

In Par t  1, we study DO (0.6) with  integrable coefficients. See. 1 is devoted to applying the trans- 
formation operator method to IP's for higher-order self-adjoint DO's with analytic coefficients. Results 
by Khachatryan constitute the base of Sec. 1. 

In Sec. 2, we provide the solution of a general IP for non-self-adjoint DO (0.6) on the half-line with an 
arbitrary behavior of the spectrum. We introduce and s tudy the so-called Weyl matr ix  9JI(A) = [g)l,~(A)] 
as the main spectral characteristic. The  uniqueness theorem for the solution of the IP with a given Weyl 
matrix is proved. We give a derivation of the main equation of the IP, which is a singular linear integral 

equation 

a) = a)  + 

?, 

with respect to ~(x, A). Here ~(x, )~) is a vector-function constructed from special solutions of the dif- 
ferential equation In = )~9. The functions ~(z, A), _~(a), and s a, #) are constructed from the given 
model DO 

n - - 2  

k = 0  

and from the Weyl matrix 92~(A) of DO (0.6). We give a constructive procedure, as well as necessary 
and sufficient conditions on the Weyl matr ix  when the behavior of the spectrum is arbitrary. Further, we 
consider a particular cases,namely, DO's  with a simple spectrmn and selfadjoint DO's. For second-order 

DO's we establish connections between the main equation of the IP and the Gel ' fand-Levitan equation. 
In Sec. 3, we study DO (0.6) on a finite interval. In this case there are specific difficulties connected 

with nontrivial structural properties of the Weyl matrix in neighbourhoods of the points of the spectrum. 

We provide an algorithm for the solution of the IP, as well as necessary and sufficient conditions of 
solvability of the IP. A counterexample shows that dropping one element of tile Weyl matrix violates the 

uniqueness of the solution of tile IP. 
Section 4 is devoted to investigations of the so-called incomplete IP's, when some part  of the coeffi- 

cients of DO (0.6) is known a priori or there is another information about tile operator. Such problems 
often appear in applications. As a rule, incomplete IP's  are more difficult for studying. In Sec. 4, we use 
the so-called method  of standard models, in which we construct  a sequence of model  DO's "approaching" 
the desired DO. The method allows us to obtain effective algorithms for the solution of a wide class of 
incomplete IP's.  We also apply the me thod  of standard models to solve an IP of the elasticity theory. 

In Sec. 5, we provide the solution of the IP for DO (0.6) on the half-line with locally integrable 
analytic coefficients. To solve this problem, we introduce the so-called generalized Weyl functions and 
use connections with an IP for partial differential equations. We also use the Riemann-Fage formula [28] 
for the solution of the Cauchy problem for higher-order partial differential equations. Note that  for n = 2 
generalized fimctions for solution of IP 's  were applied by Marchenko [62]. 

Part  2 consists of two paragraphs and is devoted to investigation of higher-order DO's with noninte- 
grable singularities. In Sec. 6 we consider DO's with singularities on the half-line, and Sec. 7 is devoted 
to boundary value problems on a finite interval. The IP is studied, and completeness, expansion, and 
equiconvergence theorems are obtained. 

In Par t  3, the so-called nonlocal IP 's  are considered. In contrast to IP's for DO's, nonlocal IP's, be- 
cause of their complicacy, have not been investigated yet. We consider two model nonlocal IP's. In See. 8 
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an IP for integro-differential  operators  is s tudied,  and in Sec. 9 we consider an IP  for one-dimensioiml 

per turbat ions  of integral  Volterra operators.  In Par t  4, we provide applications of the constructed IP 

theory to invest igat ions of nonlinear integrable equat ions of ma themat i ca l  physics. 

N o t a t i o n s .  
1. If we consider  a DO l, then  along with I we consider a DO I of the same form, but  with different 

coefficients. We agree tha t  if s o m e s y m b o l  ~b denotes an object  relat ing to l, then  ~ denotes  tile analogous 
object relat ing to 1 and ~ = r - ~b. 

2. One and  the  same symbol C denotes various positive constants  in est imates.  

3. A ma t r ix  A with  elements aij, i = 1, r, j = 1, s, will be wr i t ten  in one of the  following ways: 
. .  = . . .  ( /  r 

A = [aij]i=E~;y=l,~ - [ a i l ,  �9 ,ai~]i=E- J [aly, , ','J]j=i~,~, 

where i is the  row index, j is the  co lumn index, and T is the  sign for t ransposi t ion.  If  A has the 
max imum rank,  we shall write A #p 0. 

4. By E we denote  the ident i ty  mat r ix  of the corresponding dimension or the  ident i ty  operator  on 
the corresponding space. 

5. If for A -+ Ao 

then 

P 

: Z - A0) + - 
k=-q  

def  
= F < k > ( A o )  = o k. 

PART 1 

D I F F E R E N T I A L  O P E R A T O R S  W I T H  I N T E G R A B L E  C O E F F I C I E N T S  

1. T r a n s f o r m a t i o n  O p e r a t o r  M e t h o d  

1.1. F o r m u l a t i o n  o f  the  inverse  p r o b l e m .  Let us consider the  self-adjoint bounda ry  value problem 

~ - - J .  

( - 1 ) n r  2n) + (1.1) 

/ ~ = 0  

on the semiaxis (0, oc) for certain bounda ry  condit ions at the  point  x = 0. If the  coefficients p~(x) are 
summable  on the  semiaxis (0, oc), then  (1.1) has a bounded  solut ion u(x, p) (p > 0) for x -+ oc which 
satisfies the b o u n d a r y  conditions and generates the Fourier expansion with respect  to the eigenfimctions 
of the b o u n d a r y  value problem for (1.1). Let y(x, p) be a solut ion of (1.1) tha t  has the  asymptot ics  

y ( x , p ) = e x p ( i p x ) . ( 1  + o ( 1 ) ) ,  x -+oc .  (1.2) 

Let us assume tha t  the function y(x, p) is holomorphic  wi th  respect  to p in the upper  hall :plane and 
n 

is continuous oil the  reM axis. Then  u(x, p) = (2Ir) -1/2 E S~,(p)y(x, pwk), p > 0, where wt, = exp(#rk /n) .  
k = 0  

The solution u(x, p) can be normalized by the condit ion Sn(p) -- 1. For brevity, let us agree to call the 
functions Sk(p) phases. In Sec. 1, we consider the inverse scat ter ing problem which consists in the 
reconstruct ion of the  coefficients of (1.1) and the boundary  condi t ions  from the given phases 

So(p), S~(p), . . . ,  S~_I(p)  (1.3) 
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(for simplicity, it is assmned for the present that  the point spectrmn is absent). 
7r 7r 

We shall assume tha t  the coefficients of (1.1) are holomorphic in the sector l arg z I < -~ - 2-~n" Under 

this assumption, there exists a t r iangular  t ransformation which transforms the function exp(ipx) into 
the solution (1.2) of Eq. (1.1), and is hotomorphic with respect to p for I m p  > 0. As shown below, 
the kernel K(x, t) of this triangular t ransformation satisfies the Gel ' fand-Levi tan-Marchenko integral 
equation with a kernel F( t ,~)  which is constructed in a special manner from the phases (1.3). The 
solution of the considered IP is the result  of analysis of this integral equation, which will be called in 
the sequel the main equation. 

A more detailed investigation of the main equation enables us to find necessary and sufficient condi- 
tions under which given fimctions (1.3) are the phases of a certain selfadjoint  boundary  value problem 
for (1.1). 

In Sec. 1.6, we give the theorem tha t  the boundary  value problem for (1.1) is determined uniquely 
from its spectral matrix.  

We note that  the problem of reconstruct ion of boundary  value problem for (1.1) with n > 1 from the 
spectral matrix-function, and the problem on conditions for the existence of the t r iangular  transformation, 
have been considered in a series of articles by Sakhnovich. In particular, a local (in a certain sense) 
solution of the IP has been obtained in [78] by the Gel ' fand-Levi tan method. 

1.2. Auxilary propositions. 
is more general than  (1.1): 

Let us consider the following self-adjoint differential expression, which 

n - 1  

ly - ( - 1 ) n y  (2~) + E(-1)~(pek(x)y (~)) (k) 
k=0  

n - 2  

- ~'~(-1)/~ 2 ((p2kq_l(2;)y(k))(k--1)(p2k4:_l(x)y(k-kl))(k)). ( 1 . 4 )  

k=O 

Throughout  this section, we will assume that  the coefficients pk(x) are real for x > 0 and satisfy the 
following conditions for a certain c~ (0 _< c~ < ec): 

Ct (ND 

f x2~-l-~tpk(x)ldx+ f f  ]pk(x)tdx<oc , k = 0 , 2 n - 2 .  (1.5) 

0 a 

Following [69, p. 182], let us define the quasiderivatives y[k](x) (k = 0,2n) of the function y(x) 
corresponding to the expression (1.4) by tile equalities 

y[k] = y(~O, k = O,n; 

i ~ (n-k- l )  y[n+k] = ~p2n-zk-iY + P2n-2~Y (n-~) 

i o (._~+~) _ d (y[~+~_~]) k = 1, n - 1; 
- -  ~ P 2 n - 2 k + l U  d-x~ ' 

i , d 
y[2n] = p O y - -  ~PIY -- ~-~x(y[2n-- I ] )  - 

We will assume that  ly has sense if all quasiderivatives of y(x) of orders upto and including 2n - 1 
exist and are absolutely continuous on each segment [a, 3] C (0, ec); then ly = y[2~]. 

Let y(x) and w(x) be fimctions for which (1.4) has sense. The Lagrange formula 

o~ o~ 
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where 
~,--1_ 

{y, = Z - (17)  
k = 0  

is valid. We will also use the symbol {y, w}~,~ for the functions y and w depending on a parameter p. 

R e m a r k  1.1. It follows from (1.6) that the expression {y, w}x,~ does not depend on x for the solutions 
y(x, p) and w(x, p) of the equation ly = py for real #. 

R e m a r k  1,2. We can prove that each solution of the equation ly - py = f is continuous at the point 
x = 0 for f 6 s oc). 

For each nonzero p the equation 

l y = p 2 ~ y  (1.8) 

has solutions y~(x,p) (k = 0, 2 n -  1), for which the following asymptotic formulas hold for x--+ ec (see 
[69, p. 320]): 

yk(x,p) =exp(iw~px).  (1 + o(1)), k = O, 2 n -  1, (1.9) 

where 

and, in addition, 

wk = exp(i~rk/n), k = O, 2n - 1, (1.10) 

y~'](x,p) = (iwkp)" exp(iwkpx).  (1 + o(1)), u----0, n -  1, (1.11) 

y~'l(x,p) = ( -1) ' -~( iwkp)"  exp(iwkpx).  (1 + o(1)), u = n, 2 n -  1. (1.12) 

Let D~) denote the set of all functions y E s oc) such that ly E ~2(0, oo) and let Do denote the 
set of all functions y E D~ such that y[~](0) = 0 (k = 0 , 2 n - 1 ) .  Let us define operators L~ and Lo 
(Lo C L~) on the linear manifolds D~) and Do by setting L~y = ly for y E D~. One can prove that  
L0 is a symmetric closed operator and L~ is adjoint to Lo (see [69 ,p. 202]). By virtue of Remark 1.2, 
it follows from (1.9) that the deficiency index of Lo is (n, n) and, consequently, Lo admits self-adjoint 
extensions. The following two propositions are proved by the methods used in [69]. 

L e m m a  1.1. The domain D of each self-adjoint extension L of Lo is the set of all those functions 
y(x) from D~ which satisfy the boundary conditions 

{y,w do = o, k =  1,.., (1.13) 

where w~(x) (k = 1, n) are certain functions from, D~ which are linearly independent modulo Do and are 
such that 

{wj, u'k}0 -- O, j, k = 1, n. (1.14) 

Conversely, .for arbitrnry functions w~ E D~ (k = 1, n) that are linearly independent modulo Do and 
satisfy (1.14), the boundary conditions (1.13) generate the domain of a certain self-adjoint extension of 
the operator Lo. In particular, the Dirichlet boundary conditions y(~)(0) = 0, k = 0, n - 1 ,  are of this 
type. 

Everywhere in the sequel, L denotes the self-adjoint extension of the operator L0 determined by the 
boundary conditions (1.13). 

T h e o r e m  1.1. The following statements are valid: 
(1) The continuous .spectrum of the operator L coincides with the semiaxis [0, oc). The point spectrum 

of the operator L is bounded from below and does not have any nonzero finite condensation points. The 
multiplicity of nonpositive eigenvalues does not exceed n, and the multiplicity of positive eigenvalues does 
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not exceed 'n - 1. In addition, the set of positive eigenvalues of multiplicity n - 1 is bounded (in the ease 
of the Dirichlet boundary conditions, the point spectrum is bounded). 

(2) If  (1.5) is fulfilled for ~ = O, then the point spectrum of the operator L is bounded. 
(3) If  (1.5) is fulfilled for c~ = oo, then the point spectrum of the operator L does not contain the 

origin. Moreover, the number of the negative (positive) eigenvalues of multiplicity n -  1 (n > 1) of the 
operator L are finite. 

Let Ak(p),  k = 0, n, denote  a minor of order  n of the rectangular  mat r ix  [{yk:,Wj}O,P]k=O,n;j=l, n 
which does not contain the  k th  row of the matr ix ,  where yk(x,p) is a so lu t ion  (1.9) of (1.8) and  the 
funct ions Wy(X) are the same as in (1.13). T h e n  the  solution 

n 

~(x,p) = ~-'(--1)kAt:(p)yk(x,p) (1.15) 
k = 0  

of (1.8) satisfies the b o u n d a r y  condit ions (1.13). 

- -  ~ do not depend  on the Note tha t  the minors  Ao(p) ,  ~ < a r g p  < 0, and An(p)  0 < a rgp  < 
n - -  - -  ' - -  - -  ' 

choice of the solutions yk(x, p) with the asympto t ics  indicated in (1.9)-(1.12); moreover, these minors 
are holomorphic  in the indica ted  open sectors and  are continuous upto  the  bounda ry  (p r 0). 

L e m m a  1.2. The zeros of the minors Ao(p) and A,,(p) coincide on the semiaxis (0, oc). Moreover, 
the number p2~ (p r O, -~, < arg p < ~) is an eigenvalue of the operator L if and only if Ao (p) = 0 for 

For > 0 ~-~ . . . .  < a r g p < 0  or A s ( p ) = 0 f o r 0 < a r g p <  g.  p 

IAo(p)l = la (p)l. (1.16) 
Let T + ( T - )  denote the  set of all the immbers  p > 0 (a rgp  = - ~ )  such tha t  the numbers  p2~ are 

the  eigenvalues of L, and let T = T + U T - .  We set 

S~(p) = ( - 1 )  ~+A' A~(p) 

By vir tue of (1.16), we have 

Denote  

p > O ,  p ~ T  +, k = O , n .  (1.17) 

I s 0 ( p ) l  = 1. 

1 
- Z p > o, 

k = 0  

(1.18) 

p ~ T  +. (1.19) 

For each p > 0 (p ~ T +) the  funct ion u(x, p) is the  unique (upto a constant  factor) bounded  solut ion of 
(1.8) tha t  satisfies (1.13). By vir tue of (1.9), we have x, /~u(x,p)  = exp ( - ipx )  + So(p)exp(ipx) + o(1) 
for x --+ oo. The  functions u(x, p) and So(p) do not  depend on the  choice of the solution (1.9). The 
funct ions S~(p), 0 < k < n, depend  on the choice of the solutions of (1.9) and  will be defined below. For 
each p E T let m(p) denote  the  mult iplici ty of the  eigenvalue p2~, and ~ok (x, p), k = 1, re(p), denote  the 
corresponding orthogonal  sys tem of eigenfunctions.  

T h e o r e m  1.2. Let f (x ) ,  g(x) e s oc). Then the integrals 
(X)  O 0  

F(p) c(p)= 
0 0 

are convergent in the sense of the metric of s (0, oo) and 
(DO 

S f(x)~(x)  dx 
0 

dx 

O O  

= i F(p)-G(p) dp+ 
0 

~(p) ~ 

p c T  k = l  0 0 

(1.20) 
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It is easily verified that the integral operator with the kernel 

k = l  

is the orthoprojection onto the eigensubspace of the operator L corresponding to the eigenvalue p2,,. It 
is obvious that, by virtue of (1.9), the kernel ~(x, t, p) can also be represented in the form 

n 

Cb(x,t,p)= Z N~j(p)yk(x,p)~j(t,p), pET, pr (1.21) 
k, j=l  

where Nk~(p) = Nnk (p) = 0 (k = 1~,) for p E T +. Denote 

S k j ( p ) = I S k ( p ) S j ( p ) ,  p>O, k , j=O,n ,  (1.22) 

and introduce the nonnegative Hermitian matrices 

N(p) = [Xkj(p)]k,j=~,~ , p E T, p r O, (1.23) 

S(p) = [S,j(p)]k,j=~,n, p > 0. (1.24) 

The rank of the matrix N(p) coincides with the multiplicity of the eigenvalue p2~ of the operator L, and 
S(p) is a matrix of rank one. 

Let Eu ( -oo  < p < oc) be a left-continuous spectral function (a resolution of the identity) of the 
operator L. Since the spectrum is bounded from below, it follows that E# is an integral operator whose 
kernel will be denoted by E(x, t, #) It is obvious that  (I)(x, t, p) = E(x, t, p2n + O) - E(x, t, p2n), p E T. It 

g ~  

can be concluded from Theorem 1.2 that the derivative ~(x, t, p) = ~oE(X, t, p2n), p > O, p ~ T +, exists, 
~ g 

and 
n 

, , ( ,; ,t ,p) = ~ s~j(p)y~(~,p)~j(t ,~) ,  p > 0. 
k,j =0 

1.3. A tr iangular  transformat ion .  
holomorphic in the sector 

Let us now assmne that  the coefficients pk(x) in (1.4) are 

{ ~ ~ } (1.25) ~a = Z: 1 arg (z -  a)l < ~ -  2~ 
and satisfy the conditions 

a a 

S'-'" '' \R.(sLIPz=:. [Pk(X)i)dx < oo, k= 0, 2n - 2, (1.26) 
0 0 

for a certain finite a _> 0. Then for all p such that  Imp  _> 0 Eq.(1.8) has a solution y(x, p) which can be 
represented on the semiaxis [a, oc) in the form 

OO 
y *  

/ K(x, t) exp(ipt) dt, a <_ x, oc, (1.27) y(x, P) exp(ipx) + 

X 

where K(x, t) does not depend on p, and for each .~ 2 0 the function 

K0(x, ~) = K(~-, ~ + ~) (1.2S) 

is holomorphie with respect to z in fta, and 

I K o ( X , ~ ) ] < h ( R e z + ~ )  (1.29) 
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with a certain function h(x) which is nonincreasing and summable oil the semiaxis (a, oc). 

The validity of the triangular representation (1.27) has been obtained in [46] and other papers. To 
obtain (1.27) we essentially use the analyticity of the coefficients in the sector (1.25). 

By virtue of (1.29), it also follows from (1.27) that 
~XD 

exp(ipx) = Y(x, p) + / H(x, t)y(t, p) dr, a < x < oc, (1.30) 

x 

where H(x, t) is a solution of the integral equation 

t 

t) + / t) = 0, < x <_ t < (1.31) 
0 

K(x,  t) + H(x, 

X 

It follows from (1.31) that  for each ~ > 0 the function 

Ho(z, ~) = H(z, z + ~) (1.32) 

is holomorphic with respect to z in the sector ~a and, by virtue of (1.29), satisfies the inequality 

(1.33) 

We note that, by virtue of (1.27) and (1.29), for each x >_ 0 the solution y(x, p) is holomorphic with 
respect to p in the half-plane Imp > 0 and continuous on the real axis. For x -+ oc, uniformly with 
respect to p in the domain Imp > 0, we have 

y(x,p) = exp(ipx). (1 + o(1)). (1.34) 

R e m a r k  1.3. If, ureter conditions (1.5), Eq. (1.8) has two solutions v~(x,p) and v2(x,p) which, for 
each x > 0, are holomorphic with respect to p in tile half-plane Imp  > 0 and have the asymptotics 
vt~(x,p)=exp(ipx). (1 + o(1)) for x -+ oc for each p, then vl(x,p)=v2(x,p).  

By the remark made above, under conditions (1.26) Eq. (1.8) has only one solution y(x,p) which 
can be represented for Imp  _> 0 in the form (1.27) with the kernel K(x,t) satisfying the condition 

lim f l c(x,t)l ; 0 
32--+(2O 

X 

The kernel K(z,t)  is unique in representation (1.27). 

In conclusion, we show that deletion of the condition of analyticity of the coefficients leads, in 
general, to loss of the triangular representation. Let us consider the equation 

(_ 1)~r q(x)y 2,, (1.35) - = p  y ,  0 _ < x  < o c ,  

in which q(x) is the characteristic function of the interval [O, 1). Let us assume that the solution y(x, p) 
of (1.35) can be represented in the form (1.27) for all x _> 0 and h n p  _> 0. Then y(x,p) must be bounded 
in the domain x >_, h n  p > 0; and, by Remark 1.3, for x > 1 we must have y(x, p) = exp(ipx). Extending 
this function as the solution of (1.35) to the segment [0, 1], we obtain the formula 

2 n - - 1  b(p)exp(ip) a3kexp (iaJkb(p)(x- 1)) b(p) = 2~v/p2~ + 1. 

k = O  

Since Re(iw~) < 0 for k = 1 , , n -  1, it follows that the fimction y(x,p) is unbounded for 0 < x < 1, 
p --~ +oc. We have obtained a contradiction. 
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1.4. S c a t t e r i n g  da ta .  Let the coefficients pk(x) be holomorphic in tile sector (1.25) and satisfy (1.26). 
By Theorem 1.1, 0 ~ T. Using (1.27), we can introduce the following solutions of (1.8): 

y~(~,p) = y ( x , p ~ ) ,  Im(p~k) >_ o, k = 0,,,. (1.36) 

It is obvious that (1.9) is valid for solutions (1.36) by virtue of (1.34). It is also obvious that for p > 0 
solutions (1.36) form a basis of the subspace of bounded solutions of (1.8). 

Everywhere in the sequel, we will assume that the functions SA:(p) introduced via (1.17), and also 
the matrices N(p) and S(p), introduced via (1.21)-(1.24), correspond to solutions (1.36). 

Let us consider the data set 

(T, N(p)(p E T), S(p)(p > 0)), (1.37) 

which we agree to call in the sequel the scattring data. 

1.5. I n v e r s e  s ca t t e r ing  p r o b l e m .  Let us consider the IP of recovering L from the data set (1.37). 
To solve this problem, let us consider the function 

R x t 
n 

F(:~'t'r'l~)=:///ESkj(p)eXp(iOJkp~)exp(-i'jp~])d~]d~dpk,j=O 
x 

72 

-J- pGTE / Ja k,j:iE Nkj(D)exp(icd/~fl~)exp(--i-~j.~])d~]d~, a~ x,t< oo, O<r</i~. 
r < l p l < R  

T h e o r e m  1.3. For arbitrary x , t  E [a, oc) the limit F(x,  t) = lira F(x,t ,r ,  R) exists and is finite. 
r - + O  

R - +  r 

Moreover, the .function F(x, t) - min(x, t) has continuous partial derivatives of second order in the domain 
0 2 

a < x , t  < oc. The derivative r ( x , t )  - O x o t ( F ( x , t ) -  min(x, t)) ,  a < x, t  < oc, satisfies the relation 

F(x,t)  = F(x, t)  and, in addition, 

CXD 

F(x,t) = H ( x , t ) +  f H(z,~)H(t,r])d~l, 
t 

OG 

f ( x , t )  + K(x , t )  + / K(z,r])F(~h t)dr]= O, 
x 

a < z _< t, (1 .38)  

a < z _< t. (1 .39)  

The proof of this theorem can be carried out with the help of tile Parseval equality (1.20) and the 
fornmlas (1.27) and (1.30) in the same way as in tile case n = 1 (see [63, pp. 185-188]). 

Equation (1.38) shows that the function F(x, t) is tile same for all self-adjoint extensions of the 
operator It fbllows from (1.38) that  tbr each .~ _> 0 the function Fo(z, ~) = F(z, z + ~.) can be analytically 
continued with respect to z from the semi-axis (a, oc) into the sector ~2a and satisfies the inequality 

( IF0(z, )l _< c h  R e x  + , ( 1 4 0 )  

where h(x) is the same as in (1.33). 
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For each z E f~a we define the integral operators Hz, H z, and G~: 

ec 

H;f(4)=j-Ho(z+ J,4-v)f(v)dv, 0<4<c , 
o 

o o  

0 

By virtue of (1.33) and (1.40), the operators Hz, H~, and G~ are completely continuous in each space 
s co), 1 < p _< oc, and by virtue of (1.38) we have 

E + Gz = (E + H~)(E + H;). (1.41) 

It follows from (1.41) that for each z E ft~ the operator E + Gz has an inverse in s co), 1 <_ p < oc. 

T h e o r e m  1.4.  

equation 
For each z E ft~ the kernel Ko(z, 4), as a ]:unction of 4 >- O, satisfies the integral 

O o  

Fo(z, 4 ) + t,:o( z, 4) d',l = 0 (1.42) 

0 

and is the unique solution of this equation in s oc). 

Integral equation (1.42) is obtained from (1.39) by a change of variables, and its unique solvability 
follows from the invertibility of the operator E + Gz and from the relation G(z, 4, 7]) = G(-2, 4, ~]). 

T h e o r e m  1.5. The data set (1.37) uniquely determines the corresponding self-adjoint operator L with 
the coefficients p~(x) which are holomorphic in a certain domain, containing sector (1.25) and the interval 
(0, a] and satisfy (1.26). 

P roof .  By Theorem 1.4, the data set (1.37) uniquely determines the kernel Ko(Z,~), z E ~ ,  4 >- O, 
and, consequently, the kernel K(x , t )  also (a < x < t < oc). By (1.27), for hnp  > 0 the solution 
y(x, p) of (1.8) is uniquely determined on the semiaxis (a, oc) which, in its turn, uniquely determines the 
coefficients p~(x) of (1.8) on the semiaxis (a, e~). We note that the functions pk(x) can be determined 
immediately with the help of the kernel K(x , t ) .  By virtue of analyticity, the coefficients p#,(x) are 
uniquely determined for all x > 0. But then the solution u(x, p) of (1.8) which satisfies the boundary 
conditions (1.13) for all p > 0 is uniquely determined by (1.36) and (1.19). It remains to consider the 
fact that in the boundary conditions (1.13), generating the desired operator L, we can take as w~(x) 
an arbitrary flmction from D~ that  coincides with the function u(x, Pk), where Pl, P2, - . . ,  P~ are certain 
positive numbers, in a neighborhood of the origin. This fact can be proved easily. 

1.6. R e c o v e r y  of t he  o p e r a t o r  f rom its s p e c t r a l  m a t r i x .  Let the operator L with the domain 
D and the spectral kernel E ( x , t , p )  be the same as in Sec. 1.2. Let us define the matrix or(p) = 
[o-#,j(#)]t~,j=l,n, - o c  < # < co, by tile formula 

0,  = 

where vk(x) (k = 1,n) are certain flmctions froln D;  that  are lineary independent modulo D. Then 
or(#) is the spectral matrix of the operator L (see [69, pp. 255, 273]), corresponding to the system of the 
solutions uk(x, p) (k = 1,n) of the equation lu = pu, and satisfy the conditions 

{uk,Wj}o,t~ = 0, {uk, Vj}o,, = (~kj, k , j  = 1,n, 

where wj(x)  are the same as in the boundary conditions (1.13). 
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Theorem 1.6. A self-adjoint differential operator L with the coefficients which satisfy (1.26) for a = 0 
is uniquely determined from its spectral matrix (7(#). 

The proof of this theorem is based on the fact that  the da ta  set (1.37) is determined uniquely from 

the matr ix o-(p). 

2. R e c o v e r y  o f  N o n - s e l f - a d j o i n t  D i f f e r e n t i a l  O p e r a t o r s  

f r o m  t h e  W e y l  M a t r i x  

2.1. The  uniqueness  theorem.  

2.1.1.  We consider a differential equation (DE) and linear forms (LF) L = (l, U) of the form 

n-2 
ly  - y(n) + = Ay, o < x < T < (2.1) 

lzzO 

erda--1 

U~a(Y) ---- Y(o'~a)(a) -~ E u~'aY@')(a)' ~ = 1, n (2.2) 
~=0 

on the half-line (T = co) or on the finite interval (T < oc). Here p,(x)  E s T) are complex-valued 
integrable functions; a = 0 for T = ec, and a = 0, T for T < oc; 0 _< cr~ _< n - 1, (7~ r C%a (~ r 7/)" 

Let A = p~. It is known (see [69, p. 53]) that  the p-plane can be part i t ioned into sectors S of angle 

(argp E ( ' ~  (,+l)~r) L, = 0 , 2 n -  1) in which the roots R1 , . .  ,R~ of the equation R ~ - 1  = 0 can 
% 

7% ' ' 

be numbered in such a way tha t  

Re(pR1) < Re(pR2) < - - .  < Re(pR~),  p e S. (2.3) 

Let the functions ~(x, A) = [ ~ ( x ,  A)]m= ~ be solutions of (2.1)satisfying the conditions U~o('12m) = 5~,, 

= 1,m, and U,r(q)m) = 0, 7 / = 1 , n - m  (for T < oc), em(x,.,k) = (exp(pRmx)) ,  x --+ oc, p e S (for 
T = oc). Here and in the sequel, 5~,,~ is the Kronecker symbol. Denote ff2,~k(,k) = Uk0((I)m), k = m + 1, n. 
The functions (I)m(x, A) and ffrt,~(A) are called the Weyl solutions (WS's) and the Weyl functions (WF's) ,  
respectively. The matrix 9 ) i ( a ) =  [9)I,~,k(,k)],~,k=l-~, f f ) i , ~ ( a ) =  5~,,k, k = 1,m, is called the Weyl matr ix  

(WM) or the spectrum of L. Thus,  9J1()~) = Uo(O(x, ~)), where Ua = [U~a]~=I-~.T We note that  

r (2.4) 

where C(x,A)  = [Cm(Z, A)]m=lZ ~ are the solutions of (2.1) under the conditions U~o(Cm) = 5~,~, ~ = 1, n. 

Formulation of the inverse problem. Given the W M  9)i(,k), construct the DE and LF L = (l, U). 

In 2.1, we study the properties of the WF's  and prove the uniqueness theorem of recovering the DE 
and LF (2.1)-(2.2) on the half-line and on the finite interval from the given W M  9)i(,k) when the behavior 
of the spectrum is arbitrary. Below, in Sec. 3, we provide a counterexample showing that  dropping one 
element of the WM violates the uniqueness of the solution of the IP. 

2.1.2. Let c~ e (0, T), pc~ = 2 n - l n a x l l p ~ l l s  It is known (see, for example, [69, p. 58 ]) 
LJ 

that  in each sector S with the proper ty  (2.3) there exists a flmdamental system of solutions (FSS) 
B~ = {yk(x,p)}~=~,~ of the DE (2.1) of the form 

y(~')(x,p) = (pRk)" exp(pRt~x) . (1 + O(p-1)) ,  iPl --+ e<), x >> ct, (2.5) 
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where for x >_ c~ and r~ = k the  funct ions y~,(x, p) satisfy the  equations 

x T 

y k ( x , p ) = e x p ( p R k x ) - -  R j e x p ( p R j ( x - t ) ) M , ( y k ) d t  + ~ R j e x p ( p R j ( x - t ) ) ~ I t ( y k ) d t ,  
a j = l  x j = r ~ + l  

1 3- n 
Mt(y~) = n p - ~-~p , ( t )y~ ' ) ( t ,p ) .  

(2.6) 
The  funct ions y(~')(x, p), u = O, n -  1, are regular for each x _> 0 with respect  to e ~ Sa = { p :  p ~ S, 
]pl > p~}, are continuous for x > O, p e S~ and have the  es t imate  

y~')(x,p). (pRk) -~" exp(-p~kx)- 1 <_ p ~ .  Ip1-1, x >>_ a, p C S~. 

As [p[ -+ co, p E S, 

- -  "2 . [ -~k  ] k , u = l , n  det[y~"-l)(x,p)]~,,=x,~ p act  , - 1  . ( 1 +  O( r -1 ) )  

f ( * ,  .., Moreover,  we require the  FSS Ba , ,  = { y ~  p), ym+z(x ,p) , ,  y~(x ,p)}  of the  DE 
0 X (2.1), where yk(x,  p) E Ba, k = m + 1, n and the funct ions Yk(", P), k = 1, m are solutions of (2.6) for 

o(.). 
x > c~ and rk = m. Furthermore,  the functions Yk (x ,p) ,  u = O , n -  1 are cont inuous for x _> O, p E S~,  

O(u), 
are regular  wi th  respect to p E S~ for each x _> O, and Yk ix, P) = O ( p ' e x p ( p R m x ) ) ,  x > c~, tP] --+ oc, 

p E S .  

2.1.3.  Let toe(R) = R ~  ~ 

~t ( j~ , . . .  , jp)  = det [wj. (RA:)] . ,k=~,  

~ ( j l , . - . ,  jp) = det [wj, (R~)] ,=l,p;k=l,p+l\;~, 

o _-- ( f~( t -~) )  -1 . f t (1 ,  m _  1,k),  #ink 

0 = a (t,m- 1), am k 

and also F = {A" hnA = 0}, ~=~1 = { A  +A > 0}. Let II and  II+l  are the  A-plane with the cuts F and 
F•  respectively. 

T h e o r e m  2.1.  (1) Let T < oo. Then the WF's 9)2,~k(A) are meromorphic in A and 

de=  act 
(2.7) 

(2) Let T = oo. Then the WF's  9)1ink(A) are 'Iwular in Yi(_l) .. . . .  with the exception of an at most  
countable bounded set A' of poles. For ( - 1 ) n - ' ~ A  > 0 the .following limits exist and are .finite 
off the bounded sets A,~.k : 

• 

z-+O 
Re  z > O  
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P r o o f .  
we obtain 

~,.(~,~) = E ~,~(p)~(~,~), 

a , ~ ( p )  = ( -1)m+k(A~ det [U(o(Y-)]~=~,--.~-~f_~;,=lZ~\k, 

0 def  

Since 9)lm~(A) = U~o((I)m(x, A)), it follows from (2.8) that 

Let T = co, { y ~ ( x ,  P)}~=~-7~ be the FSS B0 of (2.1). Using the boundary conditions on (I),r .~) 

(2.8) 

0 - 1  
= �9 a , , , k ( p ) .  

~r  (zx,~,,(~)) o (2.9) 

Using the asymptotic properties (2.5) of the functions y(k~')(x,p), we have for [Pl --+ co, p E S: 

~ . ~  + o (F~) ) ,  
m 

�9 ~(~, a)= p-~o E exp(pR~). (a% + O<-~)), 
k = l  

A0 [,~'~ -- ,~Gm+"'+G,~-, o+Gko. Q ( 1 - ~ - -  1, t r  -~- O( /9 -1 ) ) ,  
~ r n k k P l  - -  P 

Repeating the preceding arguments for the FSS Ba.~ we get that 

(ZX~.,,, (p)) m~(P), ~j~rnk (,~) = 1 - 1 A 1  

~ 1  / x def  
a,,~ktP) = det [U~o(y~ 

(2.1o) 

(2.11) 

(2.12) 

Let 

G =  p : a r g p E  ( ( - 1 ) * ' - " - l ) ~ n n , ( ( - 1 ) n - m + 3 ) ~ n ~  . 

The domain G consists of two sectors S with the same collection {R~}~=i- ~ .  Consequently, the functions 
1 A ~(p) are regular for p E G, IPl > P~ and continuous for p C G, }Pl -> P~. The theorem is obtained 

from this, in view of (2.9), (2.11), (2.12), and the arbitrariness of c~. 

Let A,,~ = A ~m~,~t~A+m~ UA~,k and A = U Am,~. We say that the spectrum of L has finite multiplicity, 
m,/c 

if for some p > 1 we have that 9J/(A) = O((A - Ao)-P), A -+ Ao, Ao E A. For example, if p , ( x ) e x p ( z z )  C 

s ec), c > 0, then the spectrum of L has finite multiplicity. It is known that,  in general, the spectrum 
can have infinite multiplicity. 

Let T < ec. Using the boundary conditions on (I)~(x, .~), we obtain 

�9 ,,(x, a)= (/,,,,,,,(A))-' .act [C~.(x,A),U,~(C,),..., U~_,,,T(C,)]~=~=:~, (2.13) 

and consequently, the relations (2.7) are valid. Theorem 2.1 is proved. 

For T < oc we denote by A,~ = {k/,,}l>l the set of zeros (with multiplicities) of the entire function 
n--J_ 

Am,~(k) and A = U A,~. The numbers {A~,~} coincide with eigenvalues of the boundary value problems 

Sm for the DE (2.1) under the conditions U~T(Y) = 0, ~ = 1, m, 'q = 1, n -- m .  For 1 -+ oc 

Alto = ( -1 )  n-m"  sin ~ l § Xmo -t- 0 . (2.14) 
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Denote  by G,s,~,~ the A-plane without circles tA - A0t < d, A0 G A~, Ga = 
y~,ml 

G~,,~. Let 

n ( n -  1) m-l~ n-m 
s . ~  = ~ o  2 + L ~ o  + L O-~?T ~ 

4=1 r/=l 
1 

Amk(p ) = det [Uio(Y,) , . . . ,  Um-l ,o(Y, ) ,  U~o(y,), U1T(y,),  . . . , Un-m,T(yv)]u=~, n, 

where {y,(x ,  p)},=~--~ is the FSS Bo in a sector S with the property (2.3). Then 

(2.15) 

am~(p) -- ( -  l)"~+k 

7~ 

4~m(X'A) = E amk(p)y~(x,p),  
k=l 

det [V,o(y,) , . . . ,  U,~-,,o(W), U\~(W) , . . . ,  U._,~,~(y.)] ~_~ \~ .  

(2.16) 

( )-l 
Since A~,,,,(1) = Amk(p ) - ~  det [U~o(y,)]~,,=~,~ then., using (2.15), (2.16) and asymptotic properties 

(2.5) of the functions y~")(x,p), we obtain for I~l -+ oo, arg((-1)~-'~,X) = 5 # 0, p ~ S: 

and also 

{ amk(p) = p - ~ ~ 1 7 6  k + O(p-1) ) ,  

amk(p) O ( p - ~ ' ~ ~  

[ . ~ ( ~ )  det  [_~JT] u=m+l,n exp 
j=l ,n-m 

/~ = 1, m, 

k = m +  1,n, 

:re ~ rej (1 
j = m + l  { ~r = ,,,,~o-,,,oo,,O . (1 + o ( p - ' ) )  

' r ' r t ,  

em(X,a) = p-~o E exp(pRkx)(a~ + O(D-I)),  
k=l 

x E [0, T), 

(2.17) 

+ O ( p - 1 ) ) ,  (2.18) 

(2 .19)  

{ P'Sm"exp(Tp~;~+ lR j ) ,  ,,kEG,,m, 

I'~[)i < CIp"-~''~ ,~ ~ G6,m 

( (  )) 
j=m+l  

(2.20) 

(2.21) 

2.1.4. Denote by W,  the set of functions f ( x ) ,  0 < x < T, such that  f ( x ) ,  i f (x ) ,  . . . ,  . f ( ' - l ) ( x )  are 
absohltely continuous and ,f(~) (x) E E(0, T), k = 0, u. Let N _> 0 be a fixed integer. We say that  L E VN 
if p,,(x) E W,+N, u = O,n- -2 .  We shall assume below that L E VN. We define p n ( x ) =  1, p n - l  (x) = O, 
and U~a = 5~,o-e, ~ , u > o0~ ,. Let 

n--1 

(y(x),4x))~ = ~ c,j(z):r (2.22) 
v,j =O 

I n--u--1 s j (s--j) 
s  = E ( - 1 )  CJsPs+,+l(x), v + j < n - 1 ,  

~=j - (2.23) 
/2,,j (x) = 0, r, + j > n - 1. 
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We consider the DE and the LF L* = (l*, U*): 

n - -  2 

l*z _~ ( - 1 ) n z  ('0 + ~ ( - 1 ) ' ( p , ( x ) z ) "  = Az, (2.24) 
r ' = 0  

~a--I 

U~ a,(z) : z ( ~ ) ( a )  + Z u*@ az(')(a)' cr~a = n - 1 - o-n+l_(,a, (2.25) 
~'=0 

* [ { _ _ t ' l n - - l - - ~ r k a l - T *  ] where the LF Us = L~ J ~n-k+l,aJk ~,~ are determined by tile relation 

<y,  = uo( )U2(z) = 
k = l  

It is clear that  L* C V)v. Thus, for any sufficiently smooth functions y(x) and z(x) 

d 
ly.  z -  y . l*z  = ~x (y,z}l. (2.26) 

In particular, if the functions y(x, A) and z(x, p) are solutions of the DE's ly = Ay and l*z = pz, then 

d d~(y,z}z = (A - #)yz. (2.27) 

For definiteness, it witl be assumed betow that  CrCa = n -  ~. 
Assume that  the flmctions r X), m = 1, n are solutions of DE (2.24) under  the conditions 

U~*o(~;) = 6(m, ( =  1, m (T < ec), 

U~T(r~) = O, 'l : 1,n-- m (T < ec), 

x - 4 o c ,  (T=oc), 

Let 9J~;~k(A ) U;0(~*n), ~ * ( x , A ) =  [ ( - l ' k - l r  * ' T = ) n_k+l [x ,A)]~=i~ ,  ~* (A)  = U~(~*).  We introduce the 

F S S  = (x, A)] ~=1-7~ of DE (2.24) under the conditions U* ~C* ~o~ mJ = 6~m, ~ = 1, n. 
Then 

~*(x,  A) = C*(x, A)9)I*(A). (2.28) 

The properties of the WF's  9)/~k(A ) are completely analogous to those of the WF ' s  9)/,~k(A). For T < oo 

, --i . = 

A ~ k ( a  ) = ( -1 )  m+~ det [U~*T(C;)] ( : l , ~_m 
u=mT~\/~. 

For T = ec the WF ' s  9)l~,,.k(A ) are regular in II(_l)~ except for an at most countable set A*' of poles, m h  
and for ( - 1 ) ~ A  > 0 the following limits exist and are finite off the bounded sets A ~ :  

z--+0 
R e  z > 0  

L e m m a  2.1. 9)I*(A) = (92~(A)) -1. 

Indeed, it follows from (2.27) that  ~ (O~, (x ,  A), r A)> 

n 

i.e., gJI(A)gYU(A) = E. 

= 0 .  Hence, for k + j  <_n 

Z (--1)'-19Y~k'(k)9)i;,n--+* (A) = 0, 
b ' = l  

(2.29) 
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Let y(x) be a sufficiently smooth flmction. We write 

y(x)  = [y(~')(x)]L,=o,n_l. 
L e m m a  2.2. Assume that the functions yk(x), k = 1, n - 1, are solutions of DE (2.1), and zj(x) = 

det[y~U)(x)]k=Ln_l;u=o,n_l\n_j_l. Then 

J 
~j(x) = ~ ( - 1 ) ~ ( p ~ _ ~ ( ~ ) z 0 ( x ) )  (j-~), j = 0 , n -  1, (2.30) 

8 = 0  

l*zo(x) = AZo(X), det [y l (x ) , . . .  ,Yn-i(x) ,y(x)]  = (y(x),zo(x)}l. (2.31) 

L e m m a  2.3.  

= , 'en_m+2ix , ~ _ , ~  , . (2.32) 

* X ~ * Proof .  Denote the right-hand side of (2.32) by Ym( , A). It follows from (2.31) that  l ym(x,A) = 
Ay*(x, A) and 

det [q)n(X, A ) , . . . ,  ~n--m+2(X, A), ~- -m(X ,A) , . . . ,  ~l(X,A),y(x)]lx=a 

n (2.33) 
* k - 1  * * = < ~ ( ~ ) , ~ ( ~ , ~ ) h , x = ~ = ~ ( - 1 )  v~(~)g~_~+~,~(~). 

k = l  

. .  V ~ l ~ k In (2.33), we take y(x) = ~ ( x , , ~ ) ,  ., y(x) = ~ - m + i ( x , A )  successively, and obtain that  ~oiY,~) = 5~,~., 
= 1,,~.  For ? < ~ ,  ~ = ? we take ~(~)  = e~(~,a) ,  . . . ,  ~(~) = ~ _ ~ ( x , a )  successively, and obtain 

* X u~,*~r(y~n ) = 0, ~ = 1, n - m. For T = oc, from the definition of the functions Ym( , "~) and the asymptotic 

properties of the WS's 55(~i)(x, ,~), we obta in  that  

~ , ( x ,  ~) = o ( e x p ( p ~ ; ~ ) ) ,  ~ - , ~ ,  ~ s .  

Consequently, y~n(x, A) = ~,~,,,(x, .~). L e m m a  2.3 is proved. 

2.1.5. In this subsection, we obtain the uniqueness theorem for the solution of the IP. Let CM(X, ,~) = 
[Cm(x,A)]Tm=IZ~, ~ M ( X , A ) =  [~hm(X,A)]T=Th? Then (2.4) takes the form 

~OM(X,A) : CM(X,)~)92~T(A). (2.34) 

Since det 9)I(,~) = 1, (2.34) and the Ostrogradskii  Liouville theorem imply 

n ( n - 1 )  

d e t ~ M ( x , ~ )  = d e t C . ( x , ~ ) =  ( - 1 )  ' (2.35) 

Let L, L E VN. We define the matr ix  P(x,  A) = [Pjk(x, A)]j,k=T;7~ by the formula P(x,  A) = ~M(x,  A). 

( ~ . ( x ,  ~)) -~ or 

. ,  . ,  J 
P j ~ : = d e t [ _ ,  (x, ,k) , . .  ~(k)(x,A),~(J-1)(x,A),~5(k-2)(x, ,~) , . .  ~ , ( x , A )  =1,.,~ 

= N-'(- l) '+k-~-l~(J-1)( 'c  )~) (2.36) 
p : J _  

•  ~ ) ( ~ , ~ ) , . . . ,  , _ ~ , ,  ~ . + ~ x ,  . ,  

We remark that  the idea of using mappings of the solution spaces of DE's for solving the IP is due 
to Leibenzon [52 53]. 
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[Pj (x, I < ClplJ-L 

(~ ~ G~ for T < oc). Let 

From (2.36) and the asymptotic properties of the WS's q~o,(x, ~) and ~,~(x, A) we obtain the esti- 
mates 

C 
[P I~ (x ,A) -  51k I < ~-[, j , k =  1, n (2.37) 

n - - 1  

v , j  = 0  

L e m m a  2.4. Let ~(x) be a sufficiently smooth function. Then 
rZ 

P(x, A)~(z)=  E ( - 1 ) k - l ( ~ ( x ) ,  -*  
k = l  

( ( P ( x , A ) - P ( x , # ) ) ~ ( x , A ) ,  ~j(x,#)}t=(r~k(x,A),~;(x,#)}t--(~k(x,* A), (I)j (x, t t ) } p - *  (2.39) 

Proof .  Let us use (2.36). We have 
n 

P(x, A)~(x) = E( - - t )k - l~hk(x ,  a) det [ ~ ( x , , k ) , . . . ,  ~ + l ( X ,  a), ~k- l (x ,  A ) , . . . ,  ~ l (x ,  A),~(x)]. 
k = l  

From this, using Lemmas 2.2 and 2.3, we obtain (2.38). Further,since P(x,>,)~(x,A) = ~5~(x,A), it 
follows that  

(P(x,A)~k(x,,k), O;(x,#)}t = (~k(x,A), ~ (x , , ) } l .  (2.40) 

By (2.38), 
?% 

(P(x,p),~2~(x,A),r E ( - - 1 ) ~ - l ( ~ k ( x ,  --* * = # ) ) , .  

8=1_ 

According to (2.27), (~)~(x,,), ~(x ,#)}  t does not depend on x. Using the conditions on the WS's for 
x = 0 and x = T, we find that  

* = ( - 1 )  

Thus, 

(P(x,#)~(x,A),  q);(x,#)}l ( ~ ( x ,  ~) -* = , 

which together with (2.40) yields (2.39). Lemma 2.4 is proved. 

T h e o r e m  2.2. tf  9)t(A) = ~(A) ,  then L= L. 
Thus, the specification of the WM 9J[(~) uniquely determines DE and LF (2.1), (2.2). We remark 

that the deletion of a single element from the WM leads to nonuniqueness of the solution of the IP. 

Proof .  We transform the matrix P(x, ,~). For this we use (2.34). Under the conditions of the theorem, 

P(x, A) = (PM(X,A)(~M(X,A)) -~ = CM(x,A)9)IT(A)(~I T(A)) -1 (CM(:r, A)) -1 = CM(X,A)(CM(x,A)) -1. 

In view of (2.35) this leads us to conclude that for each fixed x the matrix-valued function P(x, A) is entire 
analytic function in A. Using (2.37) and Liouville's theorem ([72, p. 209]), we get that P~(x ,A)  _-- 1, 
P~k ~ 0 for k = 2, n. But then O,,,(x,A) - ~,~(x,A) for all x,A, and m, and hence l = L. Theorem 2.2 
is proved. 

2.2. S o l u t i o n  o f  the  inverse  p r o b l e m  on  the  hal f - l ine .  
We consider the DE and LF (2.1)-(2.2) on the half-line (T = co). In 2.2, we present a solution 

of the IP of recovering L from the WM 9)1(A) when the behavior of the spectrum is arbitrary. We 
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give a derivation of the nmin equation of the IP, which is a singular linear integral equation. We obtain 
necessary and sufficient conditions on the WM and algorithm for the solution of the IP. The main results 
of 2.2 are contained in Theorems 2.3 and 2.5. 

2.2.1. We formulate some auxiliary assertions. 

L e m m a  2.5. The functions 

are regular for ~ ~ F(_~)~-,~ \ A. 

Let L, L E VN. In the A-plane we consider the contour 7 = 7-~ t2 7o U 7~ (with counterclockwise 
circuit), where 7o is a bounded closed contour encircling the set A U A U {0} (i.e., A t2 A U {0} C int Yo), 
and 7• is the two-sided cut along the arc {iX" =1=~ > O, ), ~ int 7o}. Let J~ = {A" ~ ~ 7 �9 int 7o}- 

L e m m a  2.6. The following relations hold: 

1 f (~(x,A),~*(x, ~(x, A) = (I'(x, A) - ~ ~ #)}'(a2(x,#)dtt, ~ &/, (2.41) 

<~(x,a),e*(:~,#)), <~(~,a),~*(x,~))r_ 1 f<~(x,a),~*(x,r r {~(x,r162 

A,# E J~. (2.42) 

In (2.41) (and everywhere below, where necessary) the integral is understood in the principal value 
sense ([30, p 27]) 

Proof .  Using Cauchy's theorem ([72, p. 166) and (2.37), we obtain 

1 f P~k(~, ~) d~, Plk(x, A) = 51k + ~-~ A - 

Pj~(z,a)- Pj~.(x,#) 1 / Pj~,(z, ~) d{, 
a - ~ - 2~i ( ~ - ~ -  ~) 

By (2.38) and (2.43), 
n 

~ P ~ ( x ,  a)~ (~ ~>(~) 
k = l  

1 f (~(x),~*(x,{))re(x,{)d{ 
-y 

Setting here ~(x) = ~(x,.k), we obtain (2.41). Similarly, by (2.38) and (2.43) 

e(x,A) P (x ,# )y (x )  = ~ s=l 

From this, by (2.39), we obtain (2.42). Lemma 2.6 is proved. 

Let 

(2.43) 

Y = [ ( ~ j , k _ l ] j = l , n _ l ; k : T n ,  

/%(a) = ~(a)~-~(a), 
Ao(a) = N ( a ) ~ - l ( a ) ,  

9)to(A) = diag[9)lm,m+t(A)]m=l,n_l. 
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For real A we define the matrices 

f(x,A) = [f~(x,A)]~=~,~, 
according to the formulas 

f k (x , /~ )  = X(( - -1)n-k+l /~)g2k(X, )~) ,  

where X(A) is the Heaviside function. For A ~ 7 let 

a(A) = X+I(A)X_~(A)YAo(A)Y T, 

a(A) = X+~(A)X_I(A)YAo(A)Y T, 

f*(x,A) = ff 1 ' k - l e *  (X,/~)] T Lk-- ) Jn-k+l k=l,n-1 

f;(x,~) = x ( ( - l ?  ~ ) % ( z ,  ~), 

N(A) = E + 2a(A), 

~(~) = ~ -  ~a(~), 

where X• = 1 for A E 7o U 7• and X• = 0 for A E 7:F~. For A, # E 7 we define the matrices 

~(* '~ )  = [ ~ ( ~ '  ~)]~=z~, 

G* (z, ~) r = [c~(~, ~)]~=~,  

according to the formulas 

g (. ,  ~) . r * = [~(x, ~)]~=~,~, 

~(x, ~ , . ) =  [~,(x,  ~ , . ) ] ~ . : 2  ~ 

~(x,a) = { Y~(*'~)' 
f(x, A), 

a*(x,  ~) = f ( . ,  ~)~, 

e ~o, f -~*(x,~)Ao(A)Y ~, ~ e ~o, 
/~ ~ "/1 U "Y-l, g*(Z,.)t) = .[ -if(x,/~)~Y~O(/~), /~ ~ "}11 U "T 1, 

.(x, ~ , . ) =  (~(~,~) ,~*(x, . )} ,  
A - #  

Similarly, we define the matrices c~(x,A), ~*(x,A), G*)x,A), and '7(x,A,#) with ~, f ,  q)*, f*, and 
Ao instead of ~, f ,  (F*, f*, and Ao. Finally, the matrices F(s = [F3"(~'#)]j,.=~-Ta and A(#) = 

[AJ'(#)]j , .=Uz, # E 7, are defined according to the formulas 

AJ~(# )  = (~j ,~ ' - - l )~(--1)n-J(#)~j , j§  ~ ~ ~/1 U ~ - l ,  

3~(~) -- 3~o(~), ~ ~ ~o. 

Siuce Ao(A)-  A~o(:~)-- &(A)Ao(~), then ~(:~)- a ( ~ ) =  a(A)~(~). From this we obtain 

N(A)N() , ) -~(A)a(A)=E,  2V(A)a(A) - ~(A)N(A) = 0. (2.44) 

T h e o r e m  2.3. 

1 f F(x, A, #)F(x, #) d#, A E % ~(x,,~) = ~(~)~(x,  A) + 

"7 

1 / ~(x, A, {)r(x, {, #) d{ = 0. 

�9 Equation (2.45) is the desired main equation of tile IP. 

(2.45) 

(2.46) 

Proof. By (2.4), (2.28), Lemmas 2.1 and 2.5, relations (2.41) alia (2.42) give us 

1 f (~(z,A),~*(x,#))/ 

'7 

(2.47) 
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By continuity, it follows from (2.47) that 

/ (/(~, ~),~*(x,~) 
f(x, A) = / ( x ,  A) + ~-~ ~ - ;  }Y ~ ( x , n ) d , ,  (2.48) 

For A ~ 70, we have from (2.47) by the Sokhotskii formulas [30] that 

Y ~ 2 ( x , A ) = Y r  ~(A)~(x, A) + ~ i  A : 2 ~  ~(x ,p)dn ,  
,-,/ 

which together with (2.48) yields (2.45). The relation (2.46) is proved analogously. 

We shall assume below for simplicity that L, L E Vx are chosen so that 

~,~+~(~) = o ( p - ~ - ~ ) ,  IAI -* ~ .  (2.49) 

Then 

Let 

{ [~*(")(x,#)[ < ClO"-J-n exp(-ORjx) l ,  

I~')(x,;~)l < CIOJ+~-n exp(0Rj~)l. 
# E 71 U 7-1, (2.50) 

1/ 
7 

~ +  [3 u , x t j . (x)  =-9 :1C)C~-1xr3 - " -1 '3 - /3 ( '  )' 

tj .(x) = % . ,  
n - ~ - - i  n - s  

j u ,~ . 

s=O j �88 

j - ~ - - i  

+<o(-1)  j-~ Z 
3":0 

~ + s < n - 1 ;  

j > ~,, 

j<_v, 

r:r ~j- .-1-~) ) ~-_~_~j (~)~0(x) , 

n--2 

j~ ~ = 0, ~?; 

(2m) 

(2.52) 

=0, n - 2 ;  (2.53) 

c . ( x )  = ~,9x) - E r (2.54.) 
j = ~ + I  

The following lemma establishes a connection between the coefficients of the DE's and LF's L and L. 

L e m m a  2 .7 .  

p.(:~) = ~.(x) + ~.(~), 
n-- i 

~ o  : Z ~j0tj~(o). (2.55) 
j = 0  

Proof. Differentiating (2.47) with respect to x and using (2.27), (2.51), and (2.52), we get 

n 

t]=0 

A E J,~. (2.56) 

340 



It follows from (2.47) that 

-- l /<~(x ,  a), ~*(x,,)>r l~(x, i f -  _, 
z ~ ( x , ~ ) = ~ ( ~ , a ) + ~  ~ 7 ;  ' ) d ~ + 5 ~  i {~(:~,,),~ (x,,)}r~(x,u)d,, 

"7 "~' 

aeg~ .  

By (2.57), in view of (2.56) and (2.22), we have 

n n n - 1  

j = 0  v = 0  v,j=O 

and hence 

(2.57) 

n n - -  i 

j = v + l  j = 0  

Using (2.23), (2.52), and (2.53) we get i~,(x) = a,(x),  and the first relation (2.55) is proved. The second 
assersion of the lemma is proved analogously. 

Let 

"Y"={A:AC~IU~/ -1 ,  in f iA-# l ->5o ,  # ~ / o } ,  5o>0; ~ / ' = ~ \ 7 " .  

Thus, "y = 7' U 7"- 

c .  I e~p((eR~ - 0 Rj)~)I 
IPl=-~lthln§ ~- 1) 

cxl exp((pRta - o R j ) x ) l  
~ ~  (Ipl Jr 101) ~ 

L e m m a  2.8. 

I~j(*, A,.)I < 

for p C T", % E 7 or for p E T, ACT" ,  and 

for A, # E 7, z~ = O, n - 1 .  

Assume for definiteness that argp E (0, 2rr/n). Denote 

gt(x, A) = diag [p/~-n exp(pR~x)]~=~, 

~+(x, a) = u-l(x, a)~(., a), ~+(x, a,~) = a-l(x,  a)~(x, a, .)u(x, .) ,  
a+(x,A) = f~- l (x ,k)a(k) f t (x ,A) ,  N+(x,A) = a- l (x ,k)N(A)f t (x , )~) .  

We define the matrices ~+(x, •), g+(x, k,#), a+(x, A), and N+(x, A) similarly. Then 

{~j(~')(x,A)I<CIp{ ~', AET, y = 0 ,  r z -1 ,  

~_+_ C x 

IR~j(x'A'#)} < {Ol2~(Ip-O l + 1 ) '  AET, p E T "  or AE-y", pE-y,  

and the functions g~(x ,k ,#)  are continuous for k , r  E 71 and A,> ~ 7-1, while for A,# E 7o 

~+ (x, a, ~) - a§ (x, a) ~r+ (x, a, ~), 
# - A  + 

where H+(x, A, >) is a continuous function. The functions r+(x, A, >) and qo+(x, A) have analogous prop- 
erties. It follows from (2.44) and Theorem 2.3 that the following theorem is valid. 
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{ 

T h e o r e m  2.4. 

~+(x, ~) = ~+(x,  ~)~+(x, A) + 
-y 

f ~+(x, A, ~)r+(x, ~, ~) d~ = o, ~+(x,  ~)r+(x, ~, ~) - ~+(x, ~, ~)x+(~,  ~) + 

N+(x , )ON+(x ,k )  - ~d+(x,k)a+(x,A) = E, 

N+ (x, k)a+(x, )~) - '5+(x,  A)N+ (x, A) = O. 

~ n - 1  ~// n - 1  We introduce the  Banach space B =  2 ( ) O / 2 ~  (7") 

Z(,~) = [ Z j ( / ~ ) ] j = l , n _ l ,  ,~ ~ "~, with the  n o r m  

n - 1  

j = l  

For fixed x > 0 we consider  on B the linear operators 

1 

(2.58) 

A,p, C ~; (2.59) 

(2.6o) 

of vector-valued functions 

A ~ ~, (2.61) 

1 [ r + ( x , A , p ) z ( p ) d #  ' A E dz(A) = N + ( x , A ) z ( A ) -  7. 
, I  ,y 

L e m m a  2.9. For a fixed x, the operators A and _~ are bounded linear operators on B, and ~,A = A.~ = E. 

P r o o f .  The  boundedness  of A and A is obvious. Using the  formula  for interchanging the  order of 

integrat ion in a s ingular  integral ([30, p. 60]), we obtain tha t  

1 / ~ + ( x , A , ~ ) d ~  1 f r + ( x , ~ , p ) z ( # ) d #  

2 / ~ 

T h e n  it follows from (2.59) (2.61) t ha t  

~A~(A) = (~+(x,A)N+(x,~) - i~+(x, A)a+(x, A))~(~) 

~+(x, a)r+(x, a, ~)- ~+(x,a,~)X+(x,~,) + 
2rri 

i.e., AA -- E.  Similarly: AA = E. 

C o r o l l a r y  2.1. For x >_ 0 the main equation (2.45) of the IF' has a unique solution ~ - l ( x ,  k)F(x,  A) 

in the class B and sup I I ~ - ~ ( x , ~ ) ~ ( x , ~ ) t t .  < ~.  
x 

2.2.2.  Denote by M the set of matr ices  9)I(A) = [KR,~k(A)]m,~:U~ such tha t  (1) 9)lm~(A) = 5,~k, 
m >_ k, and ~ m k ( ~ )  = O(P '*-k ) ,  I~1 ~ ~ ,  ~n < k; (2) the funct ions  9:R~k(A) are regular in H(_I) . . . . .  
wi th  the exception of an at most  countable  bounded  set A' of poles, and are continuous in YI(_l) . . . .  rnk  
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with the exception of bounded sets A.~; (3) the flmctions 9J / .~(A)-  9J/.,,,.,,+l(A)9:Rm+l,k(A) are regular 
for A E F(_l)~--~ \ A, a = LJ A.~k (in general, the set A is different for each matrix 9J/(A)). 

rrz, ~r 

T h e o r e m  2.5. A matrix 9Jr(A) E M is the WM for  L E VN if and only if the following conditions 

hold: 

(1) (asymptotic) there exist I. E VN such that ~ , . ~ + ~ ( A )  = O(p-~-2), lal -+ o~; 
(2) (condition P) for" x >_ 0 Eq. (2.45) has a unique solution in the class a-l(x,a>(x,a) e B and 

sup Ila-~(x, A)~(x, A)IIB < ~ ;  
X 

(3) c~(x) E W~+N, ~' = O,n-- 2, where the functions c , (x)  are defined by (2.51) (2.54). 

Under these conditions the DE and LF are constructed according to (2.55). 

It can be shown by a counterexample that conditions (2) and (3) in Theorem 2.5 are essential. 
The necessity part of Theorem 2.5 was proved above in 2.2.1. The proof of the sufficiency is in [100]. 

2.3. D i f f e r e n t i a l  operators  w i t h  a s i m p l e  s p e c t r u m .  
We consider DE and LF (2.1)-(2.2) on the half-line (T = oc). If the spectrum of L has finite 

multiplicity, then the main equation obtained in Sec. 2.2 cab be contracted to the set F tO A. For 
convenience we confine ourselves here to the case of a simple spectrum. For DO's with a simple spectrum 
the main equation can be transformed to the form (2.68)-(2.70), and the WM is uniquely determined 
from the so-called spectral data (see Definition 2.2). In particular, if only the discrete spectrum is 
perturbed, then the main equation of the IP is a linear algebraic system (2.73). For n = 2, from the 
main equation, using Fourier transform, we obtain the Gel'land Levitan equation. 

2.3.1. Def in i t i on  2.1. We shall say that L has a simple spectrmn if for each A0 C A' ~f  A \ {0} C II 
there exist finite limits 

and 

L e m m a  2 .10 .  

where 

~{_1}(,~0) = lim ( k -  Ao)gJ/(k) 9J/~_l>(ko) = lira ( A -  Ao)gJF(A) 
h-+;~o ~ A-+Ao 

mr  = o ( p  ~ k), a -~ o, 

If  L has a simple spectrum, then A is a finite set, and 
Oo 

1 f M~ 

-oo AoEA' 

O(ao) 
A- Ao' 

(2.62) 

Im A # 0, (2.63) 

M0(a) = ~§  - ~x-(a),  
1 # def A# 

(~(/~0) = ~-~I~(-1}(A0), A0 E ARe = N F, 

~(--I> (/~0), /~0 E A~m def A' \ A' 
R e '  

M-O(a) o 

Thus the WM is uniquely determined from {M~ {)~0,~J~(_I}(/~0)}AoEA,. B u t  really to con- 
struct 9)I(A) we need less. 

Def in i t ion  2.2. Assume that L has a simple spectrum. The set 

where M(A) diag[M~(A)].~=l,,~_l, M.c(A) = + ----- ~J~m,m+l (A) -- 9J/~,~+~ (A), is called tile spectral data of L. 
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The specification of the spectral data uniquely determines the WM 9)I(A). Indeed, by virtue of 
Lemma 2.5, the functions ffR,~k(A) -93/,~,m+~(A)9:Rm+~,~:(A) are regular for A E P(_~) ..... \ A and hence 
M~ = Mm(A)gil/.~+l,k(A). Then it follows from (2.6a) that 

(3O 

9)~r~,Iv(A)- 1 Mm(#)~.jlm§ q- ~ A -  AO ' 2rri 
-oc AoEA' 

Thus, the specification of the spectral data uniquely determines the WM 9)I(A). To construct L from 
fiR' we can construct 9)I(A) by the recurrent fornmlas (2.64), and then use the method described in 
Sec. 2.2. But if there is more precise asylnptotics of 9)t(A) in the neighborhoods of the points of h ~, we 
can contract the main equation to the set F U A and solve the IP directly from the spectral data 9:R'. 

Assume that  for each Ao E A' the following asymptotics are valid for A -+ Ao: 

{ ~1)~(/~) -= ~Y)'Q-t) (/~o) _}_ ~t~(o)(.~o ) _}_ (.~ _/~o~l.Q1)(Ao) ~_ o(A -/~o), 
;~ - Ao (2 .65)  

~*(A) ~%~>(a~ + ~o>(ao) + (a - ao~L(~o)  + o(a - ~o). 
k - ko 

We shall say that  L E V~r if L E VN and (2.62) and (2.65) hold. 
Let L, L E V~, Ao E A'. For simplicity, we assume that  ~-I(A) = O(p-~-2),  [A[ ~ co. Denote 

~J~(/~0) ~ - -  ~}~(_1)(.~0)(~(0)(/~0)) -1, J =  A' U A', Jo = J n r ,  ~<o)(X,~o)= Y~<o>(X, Ao), ;~o ~ J; Qi(ko) = 
m(Ao) (Ao ~ J \  Jo), Ql(Ao)= �89 (Ao ~ 0r0). For Ao E J ,  s = -1,0,  we define the matrices 

L e m m a  2.11. The .following relations hold: 

1 7{ - f . ( . ) ( x ,p )~ (# ) f (S ) ( x ,p )+  E (+~'*(~')(x'A~176176 (*)~ A0)}d# 
x ~ ( x ) -  2~i ( ~ -  ~o) 2 ~<~ ~x' 

-oo AoEJo 

~,*(~) (x, ~o)Q~ (~o)v r) ~<o> - Z v=(o) "(~)(X, ko), u + s < n -  1, (2.66) 
koEJ 

--OO 

+ ~ (::k D_l(x,k, ko)91(Ao)yT) �9 ~<~176 } 
~,o~,o (~- Ao)~ a~ + ~,o~, ~ (f)~176176176176 6r) 

where we 'write + (-)  when Ao lies on the upper (lowe, 0 side of the cut. 

Denote 

Y'  = [~j,l~-l]j=l,n-2;k:l,n-1, Yo = [(~j,k--1]j,k:'l,rz_ 1, 

VI(zO) : go ( M ( - 1 ) ( z o ) ~ -  ~/I"'-(o}(zo)Y~(zo)]rT), 

g2(zo) = Yo ( ~ o ) ( z o ) - ~ -  ~ l } ( z o ) r ~ ( z o ) y T )  , 

V3(zo) = YoM"'~_i)(zo)Y 'r, zo e Jo; Vk(zo) = O, 

X(x, A) = Y' f (x ,  A), 

zo E Jo, 

zo E Jo, 

z o E J \ J o ,  k = 1,3. 

T h e o r e m  2 . 6 .  

344 



1 / { ()-(x, A), .?*(x, :q)r~(,)f(x, 
- - 0 0  

~<o> (x,),o) } 
+ ~ ( • 1 7 6 1 7 6  ~ - i o ~  ~" 

Ao~Jo 

+ ~ (JO(X,A, AO)OI(,~o)yT)~(O}(X,,~O), ,,~ ~ F, 
Ao~J 

1 Y~(z,  A), Y*(z, #))r  
~<o> (z, zo) = ~<o> (x, zo) + 2-~_~ 5 - ~ IX=zo 

A 

M(#)f(x,p) 

v~(~o)~<o> (~, zo) } 
(it - zo) 2 + ),oe ~Jo ( • Yb-~'<~176176176 cp<o>(x, Ao)~ :2  Xo~ dp 

1 
T~ (~(~o)~(o>(~, ~o) + V~(zo)x<~> (~, ~o)) 

+ E (Yb~176176176176176 (x'A~ Zo E J, 
ho~J 

l ~ {  (2(x, ~), f*(x,,))~] <~> ~ 
2{1} (:;C, Z0) = ~(1} (X, ZO) -[- 2-~  -~----~ i),=~oM(P).f(x,#) 

- - ( N 3  

~<o> (x, ~o) } ' -  (x, ~o)~(Ao)Z ~) (~_ Ao)~ d~ + Z (:L v ~_~,<~> zo, 
),o E Jo 

+ ~ (Y'do,<I>(x, zo, Ao)QI(Ao)YT)~(o>(X, Ao), Zo e Jo, 
Ao~J 

(2.68) 

(2.69) 

(2.70) 

Relations (2.68)-(2.70) are the main equations of the IP with respect to {f(x,A)}~cr,  
{F<o>(X, Zo)}zoCJ, {X<l>(x, zo)}zoCJo. They allow us to solve the IP of recovering the DE and LF L C V~ 
from the given spectral data 9)Y. For constructing L we need solve the main equations (2.68)-(2.70) for 
each fixed x _> 0 and then find the DE and LF via (2.55), where the functions z.(x) and tj,(x) are 
defined by (2.66) and (2.52) (2.54). 

2.3.2. Consider a perturbation of the discrete spectrmn. Let L, L E V~ and 

AoCJ 

A 

i.e., M(A) - 0. Denote 

P(x, A, :~o) = boO:, ~, :~o)O~ ( ),o)Y ~, 

~* ( x, Ao ) = -~,<*o> ( x, ,Xo )O~ ( ~o ) YT, 

~*(:~) = [~*(x ,  ~o)]  ~ 
Ao~J ~ 

5(x, zo, Ao) = [Y>(x, A, ~o)] <~ i)~=zo, 

~(x) = [~<o>(x, ~o)]~o~ J, 
5(,~) = [5(~, zo,~o)]zo,~o~, 
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T h e o r e m  2.7. 

~(~,~) = ~(~, ~) + ~ ~(~,~,~o)~<0>(~, Ao), 
~o~ 

s : (E + 5(x))~(x). 

(2.71) 

(2.72) 

(2.73) 

We note that (2.71)-(2.72) is the particular case of (2.66)-(2.67) when the integrals in (2.66) and 
(2.67) are equal to zero. Further, multiplying (2.72) by Y at the left, we obtain 

~(0/(z, z0) = ~(ol(x, zo) + ~ G(~, z0, ~0)~10t(~, Ao), 
AoEJ 

i.e., (2.73) is valid. 

Equat ion (2.73) is the main equation of the IP. For each fixed x _ 0 (2.73) is a linear algebraic 
system with respect to ~(x) and det[E + G(x)] ~ 0. To solve the IP we must find ~(x) from (2.73) and 

then construct the DE and LF L via (2.55), where the functions c , ( x )  and t j , ( x )  are defined by (2.71) 
and (2.52)-(2.54). 

2.3.3.  C o n n e c t i o n  w i t h  t h e  G e l ' f a n d - L e v i t a n  e q u a t i o n .  We consider the DO 

l ly  = --y" + q(x)y, x > 0; y'(O) -- hy(O) = 0, (2.74) 

where q(x) and h are real. Let ~(x, A) be a solution of the DE l~y = Ay under the conditions 7)(0, t )  = 1, 
c/(0, A) = h, and let or(A) be the spectral function of the DO (2.74), which can be uniquely expressed in 
terms of the WF [57]. Then the main equation (2.45) of the IP becomes 

 (0J ) OO 

~(x, , )  d~(,) 

after contraction of the contour to the real axis. Assume for definiteness that  ~(x) = h = 0. Then 

~(x, t )  = cos x/~x. Using the transformation operator (0.4) we get with the help of the Fourier cos- 
transformation the Gel ' land Levitan equation 

x o o  

r(x,t) -- fcos  cos 
0 oc  

,/fit d~(,) 

2.4 .  T h e  s e l f - a d j o i n t  case .  

We consider DE and LF L = (/ ,U) of the form (2.1)-(2.2) on the half-line x > 0 (T = oo). In 
Secs. 2.1, 2.2, we obtained a solution of the IP for the general non-self-adjoint case. The central role 
was played there by the main equation of the IP. One of the conditions under which an arbitrary matrix 
9~(A) is the WM for a non-self-adjoint DO is the requirement that  the main equation must  have a 
unique solution. It is difficult to veri.fy this condit ion in the general case. In connection with this, an 
impor tan t  problem is that  of obtaining sufficient conditions for solvability of the main equation, and 
extraction of classes of operators for which unique solvability can be proved. One of such classes is the 
class of self-adjoint operators. Here we investigate the IP for the self-adjoint case. We prove unique 
solvability of the main equation, and obtain necessary and sufficient conditions, along with a procedure 
for construction of an operator from its WM. Some difference in the notations is pointed below. 
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2.4.1.  For definiteness, let n = 2m and ~reo = n - {. We assume tha t  L = L*, where the adjoint pair 
L* = (l*, U*) is defined by the relations 

n - 2  

l ' z =  z (n) + Z ( - 1 ) ' ( p - - ~ z ) ( ' ) ,  
t~=0 
7Z 

(y(X),Z(x)}OIx=O = Z ( - 1 ) ~ - l V ~ o ( y ) U : t _ ~ + l ( z ) ,  
~=1 

where 

u+j <_n-- 1 

It was proved in Sac. 2.1 that  the WF ' s  9)I~(A) are regular in H(_~)~, and are continuous in 
H(_~)~ \ {0} with the exception of the bounded sets A~ .  We have 9Jlk~(A)p ~-~ = O(1) as IAt ~ ec. Let 

A : U A k r  9~(A) : 2@/(gJI;,~+~(A)- + 

=h 
9 ) I ~ ( A ) = l i m O ) I ~ ( A + i z ) ,  z - + 0 ,  R e z > 0 ,  - o c < A < o c .  

To simplify the computat ions  we confine oursdves to the case where there is no discrete spectrum. For 

definiteness, let/Y.(x) = u~,0 = 0. 

D e f i n i t i o n  2.3. L is said to be in V + if p , (x )  ~ VV~+N, L = L*, A = 0, g)Ik~(A)p ~-k = O(1) as 
]A I --~ 0, and 91~(A) = O(p - n - z )  as ]A] -+ oc. We solve the IP in the classes V + .  

T h e o r e m  2.8. Assume that L E V +. Then the WM has the ,following properties: 

(1) 9)~k~(A) = 5h:(, k > ~; 
(2) the functions 9J~k~(A) are regular in H(_l)k and continuous in II(_l)~ \ {0}; 
(3) the functions 92itk~(A)p ~-k are bounded; 
(4) the functions g)~k~(A) --gJ~k,k+l(/~)9:R~+l,~(A) are regular for A E F(_l)k; 

(5) = o(p - ' - 2 )  I Xl 
(6) ~ n - k , n - k + l ( , ~ )  = ~ J [ k , k §  /g = 1, m ;  

(7) (-1)m91m(A) > O, A e r ( -1) , - .  

We remark that  9~(A) -= 0 for A E F(_t)~-l ,  and the functions p92k(A) are continuous and bounded 
for A C F(-1F- 

T h e o r e m  2.9. 
functions 9t1 (A) , . . . ,  92re(A) according to the formulas 

Assume that L E V~. Then the WM is uniquely determined by the specification of the 

9~,~_j(A) - my(A), j = 1, m -  1; 

We set 

j 91~(P)~'+z'r ~ > k. 
A - H  

~(x,A) = IX((--1) ~ 1A)~k(x,A)],~=2-- ~ 

~(x, A ) :  [(-1)k-lX((-1)~-tA)~n_k+~(x,A)~t~(A)] T k=2--.~. 

(a column vector), 
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(a row vector) (here T is a sign for transposition, and X(~) is the Heaviside function), 

J 

= - c) c9_~79_._~,~_9(x ), j > . ,  t~(x) = 6j., j <_ ~, 
/ 3 = u + 1  

n--u--1 
~.(x) = ( -1)%~_._~,0(x)  + ~ c~cx_._~-yn_._._~,.(x), 

8 ~ 0  

n - - 2  

~. (x)  = ~.(x) - ~ ~j(x)t~.(x) ,  ~ = 0, ~ - 2 
j=~+l 

(2.75) 

(2,76) 

T h e o r e m  2.10. 
equation 

For a fixed x > 0 the vector-valued function ~(x, A) is a solution of the linear integral 

f (~(x ,a) ,q(x ,~)}~(x ,  ~(x,,~) = ~(x, ~) + ~ - - ~  #)d#.  

o(3 

Equation (2.77) is called the main equation of the IP. 

(2.77) 

T h e o r e m  2.11. The following relations hold: 

n - - 1  

p.(x) = r ~ . 0  + ~ ~ U . . ( o )  = o. (2.78) 
j = . + l  

2.4.2. In this section, we give a solvability theorem for the main equation, along with a solution of 
the IP. Notation: M is the set of matrices 9:~(A) = [ff2k~(A)]~,~=~ with the properties (1)-(7) in The- 
orem 2.8. Assume for definiteness that argp �9 (0, 27r/n). We let ~ ( x , A ) =  diag [p~-kexp(--pRkx)]~=9~.~ 

and introduce the Banach space B ~-1 = s  ( -oc ,  cc) of vector-valued functions z(A) = [zj( .~)]j=l,n_l,  
zj(A) �9 s  c~) with the norm 

n - - 1  

j = l  

T h e o r e m  2.12. Let 9Jr(A) E M. Then .for each fixed x > 0 equation (2.77) has a unique solution in 
the class f t (x ,A)~(x ,A ) e B. 

We indicate briefly the scheme of proof of Theorem 2.12. It suffices to prove that tile homogeneous 
equation 

h(, ' ,~) + f ( ~ ( x ' a ) ' q ( x ' ' ) ) ~  - ~ _ ~  h ( x , p ) d # =  0, f~(x,A)h(%A) �9 13, (2.79) 

has only the zero solution. We consider the flmction 

n 

B(x, A)= ~ ( - 1 ) J : l H . ( x ,  ~ )n~_ j§  
j = l  
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where the vector-valued flmction H(x, A) = [Hi(x, A)]j=U~ is defined by the relation 

H(x,~)  = -  f <~(x'A)'q(x'#)>~h(~, A - # #) d#. 
- -  OG 

For each fixed x > the functions H(x, A) and B(x, A) have the following properties: 

(1) the functions Hk(x,A) are regular in II(_L)k; H~(x,A) = h~(x,A) for k = 2, n and A E F( x)k-~, 
and the flmction B(x, A) is regular in II(_l).~; 

(2) the functions H~(x, A)-9)lk,~+~(A)H~+~(A) are regular for A E F(_~)k, and the function B(x, A)+ 

( -  1)mgJt,~,,,~+l (A)H,~+I (x, A)Hm+I (x, A) is regular for A E F(_ t)m ; 

(3) the following equalities hold: 

lira 1 J B(x,A) dA=O, 
R--+oe 

]:~I=R 

From these properties it follows that  

lira 1 f B(x,A) dA 
I,xl=e 

= 0 .  

f [hm+1(x,A)1292,~(A)dA = O, 
- - 0 0  

hence h.~+x(X,A) - 0. From this, using (2.79) and the properties of the functions H~(x,A), we obtain 
h(z, A) =- 0. 

T h e o r e m  2.13. A matrix gJt(A) E M is the WM for an L E V + if and only if 

supT.(~) < ~ ,  r  e w.§ . = 0, n - 2, 
x_>0 

where ~/,(x) and r are constructed according to the formulas (2.75) and (2.76), and p(x,A) is the 
solution of the main equation (2.77). Under these conditions the DE and LF L = (l, U) are constructed 
according to the formulas (2.78). 

3. I n v e r s e  P r o b l e m s  o n  a F i n i t e  I n t e r v a l  

We consider DE and LF L e VN of the form (2.1)-(2.2) on a finite interval (T < oo). In Sec. 3, we 
provide a solution of the IP of recovering L from the given WM ~))I(A). We use the notations and the 
results of See. 2.1. For IP's on a fni te  interval there are specific difficulties connected with the properties 
S~ and $2 of the WM 9/R(A) (see Lemmas 3.1 and 3.2). We obtain necessary and sufficient conditions 
on the WM, a procedure of constructing coefficients of the DE and LF from the given WM g)I(A), study 
tile stability problem. A counterexample in Sec. 3.3 shows that dropping one element of the WM leads 
to nonuniqueness of the solution of the IP. 

3 .1 .  P r o p e r t i e s  o f  t h e  Weyl  so lu t ions  a n d  t h e  Weyl  m a t r i x .  

We shall say that  L C V/r if L E VN and the functions A~,~(A), m = 1, n -  1, have only simple 
zeros. If L E V/e, then the WM 9)I(A) and 9)I*(A) have only simple poles. For simplicity, in the sequel 
we shall assmne that  L E V). 

Denote a~,~k = res m,, ,k(~).  It follows from (2.7), (2.20), and (2.21) that 
A l m  

[gJl,~k(A)l < CIpI m-k, A E Gs, (3.1) 
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(G5 is the A-plane without the circles IA - Aol < 6, Ao E A), and hence 

Thus, the WF 9Jlmk(A) is mfiquely determined by its zeros and residues {A~,,, /~z,~}z>l. 

For Ao E A we define the matrix 9~(Ao) = [91yk(Ao)]i,k= ~ via 9~(Ao)= f!R<_O(Ao)(gJT<o>(Ao)) - I .  
Since 9)lma(A) = 6mk, m > k, it follows that  9~jk(Ao) = 0 for j >_ k. The following relations hold: 

{ ~ ( a o ) ~ ( A o ) = 0 ,  

~(--1)(X, AO) = m(Ao)(I)(o) (x, Ao), ( 3 . 2 )  

~- i>  (~, Ao) = - ~  <%> (~, Ao)m(Ao). 

It follows from /(I),~(x,A)= A(I)m(x,A) and (2.13) that 

Un_m§ = ( - 1 ) n - r n ( m m m ( A ) ) - l / k r n _ l , ~ . n _ l ( A ) ,  

{ I~,<_i>(~, Ao) = A o ~ , < _ l > ( ~ ,  Ao), 

Ir Ao) = Ao~,<o>(~, Ao) + ~,<<>(x, Ao). 

We prove two important properties of the WM. Define Ao = Am = 0. 

(3.3) 

(3.4) 

L e m m a  3.1 (property $1). /f  Ao ~ Am, then  fflj,m+~ (Ao) . . . . .  9lj7~ (A0) = 0, j = 1, rn. If, moreover,  
.\0 C A~+~ O-- .  <~ A.~_~, Ao 6} A . ,  1 <_ u + 1 < rn <_ n,  then 9l.+~,.~(Ao) # 0. 

Proof.  The first assertion of the lemma will be proved by induction. Since Ao r A.~, it follows from 
(2.13) that (I)m,<_L)(x, A0)= 0. On the other hand, in view of (3.2), we get 

�9 .~,<_1>(x, Ao) = m.~,~+1(Ao)~m+1,<o>(x, Ao) +- - .  + mm.,(Ao)~,<o>(x, A - 0). 

Applying here the LF Um+l,o,--. ,  U,.o, we find successively r  . . . . .  ~mn(Ao) = 0. 
Assume that  91j,m+t(Ao) . . . . .  91jn(Ao) = 0; j = m - s + 1, m, s > 1. According to (3.2), we have 

o r  
.S 

r Ao) - ~ ~.,-s,~_.~§162247 Ao) 
g = l  

~-~+,~ (3.5) 
= ~ ~m-~,~-~+~(AO)~m-s+~,<o>(X, Ao) d~ ~(~)- 

i = s + l  

Since (I)m,<_~>(x , Ao) = 0, (3.4) implies that  the functions (I)m_~,<_l)(x , Ao) and (I),,,,<o>(X , Ao) are solutions 
of the DE ly = Aoy. Further, using (3.2) and the assumption of the induction, we obtain 

s - - i  

8 - - 1  

i=l t.,=rn,-- s + i +  1 

m ~ - - m - + - s - 1  

1 1 ~ m - - s + 2  i=i 
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s - - 1  

and consequently, the function ~ 91,~-~,m-~+i(s is a solution of the DE ly = .~oY. 
i = 1  

This and  (3.5) imply that  hp(x) = )~or Using (3.5) again, we compute  UO(r  = U~T('~) = O, 
= 1, m, 71 = 1, n -  m. Since .Xo is not an eigenvalue of S,~, we conclude that  ~b(x) = 0. Applying the 

LF U~+l,o,  . . . ,  U~o to (3.5), we find successively 91,~_~,k(s = 0, k = m + 1, n. 
Let us go on to the second assertion of the lemma. Since A , , ( s  r 0, A~s(Ao) = 0, s = z, + 1 ,m - 1, 

it follows from (3.3) that  Un-~+I_,T(C%,<o>(X,.ko)) r O, s = ~' + 2, m -  1, ~,+l,<-~>(x,.~o) ~ 0. Assume 
that  91,+~,,~(,ko) = 0. Then 

r (x, ~o) = m.+~,.+2(.%)~+~,<o> (x, ~o) + . . .  + m.+~,m_~(ao)~.~_~,<o> (x, ~o). 

Applying the LF U n - m +2 ,T , . . . ,  Un- , -1 ,T  successively, we obtain 9l,+z,m-z(Ao) . . . . .  91,+z,,+~(Ao) = 
0, i.e., r Ao) - 0 .  Lemma 3.1 is proved. 

Denote A~(Ao)= [91j,(Xo)]j=1,n_<,=~_~,,, s =  1, n -  1. 

L e m m a  3.2 (property $2). 

rank A~(3,o) < 1, s = 1, n -  1. 

P r o o f .  We will prove the lemma by induction. Let us show that  rank At(Ao) < 1. In- 

deed, if An_2,n_2(Ao ) = An_x,~_x(Ao) = 0, then from (3.3) we have U2T(Oen_l,(_x)(x,)@) =- O, 
U2r(q~_x,(o)(X, Ao)) r 0. Applying the LF U2T to the equality q)i_~)(x,)~o) = 91()to)Oio)(X, Ao), we 
obtain 

91j,n-t(s Ao)) + 92j,n(Xo)U2T(a2n,(o)(X, Ao)) = 0 ,  j =  1, n -  1, 

and hence rankA~(s < 1. If An_x,~_x(Ao) ~ 0 or An_2,n_2(Ao) ~ 0, then, by Lemma 3.1, 92j~(Ao) = 0, 
j = 1 , n -  1, i.e., rankA~(Ao) < 1. 

Assume tha t  the relations rankA~(Ao) _< 1, k = 1 , s -  1, have been proved. If An_~_~,n_~_x(Ao) = 
A~_s,n_~(Ao) = 0, it follows from (3.3) that  

u~§ ) = o ,  v~+~,~(~_~,(o>(x,~o)) ~ o, 

hence 
n 

%~(~o)V~§ A o ) ) = 0 ,  y =  1 , n -  s. (3.6) 
] r  s 

We take a fixed nonzero row of the matrix As(s 

[~,,~-~(~o),.. .  ,~,n(~o)] # [o,... ,o]. 
Since rankAs_l (Ao)  <__ 1, it follows that  9~jk(Ao) = aj91,~(Ao), k = n - - s +  1,n.  Then from (3.6) we 
derive 

( % , n - ~  (~o) - a j ~ , ~ - ~  (Ao))U~+I,T (~_~,(o)(x,  Ao)) = 0, 

or 91j,,~_~(Ao) = aj9~,,~_~(~o). Hence rank As (,ko) < 1. If A~_s_l,~_s_t(,ko) ~ 0 or A~,-s,~-s()~o) r 0, 
we obtain fl'om Lamina 3.1 tha t  

%,~-~+~(~o) . . . . .  ~jn(Ao) = o, j = 1,.. - ~, 

i.e., rankA~(Ao) < 1. Lamina 3.2 is proved. 

Denote by 2tl the set of meromorphic matrices 9Jr(A) = [gJt,,,~(A)],~,,k=lZ~, 9Jt,~k(A) = 5 ,~  (m > k), 
having only simple poles A (in general, the set A is different for each matrix 9)1(A)) and such that (3.1) is 
valid, and for each Ao E A the matr ix 9)1(A) has the properties S~ and $2, where the sets Am = {Atm}l>~, 
At,~ ~ Ato,,~ (1 ~-~ lo) are defined as follows: if Ao E A, 91kj(Ao) ~ 0, then Ao E A~ N - - - N  Aj_z. 

It is clear that  if 9Jr(A) E M,  then 91(Ao)91(Ao) = 0 for Ao C A. If L E V/r and ffJt(A) is the W M  for 
L, then 9)I(A) ~ M.  
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L e m m a  3.3. Assume that the matr izg2(A)= [9J/,~(A)],~,~=~Z~ , 93%~(A)= 6,~ (m >_ k), has a simple 

pole at a point ko. For the matrix g2*(A) de_f (9)t(A))-X to have a simple pole at ko it 'is necessary and 
suflficient that 91(ko)gt(ko) = 0. 

P r o o f .  The necessity part  of the lemma is obvious. We prove the sufficiency. Let 91(Ao)~(Ao) = 0. 
Denote by Xp the set of matrices A = [A,j],,j=~,~ such that  A, j  = 0 for j - z~ < n -  p. It is clear that  
if A ~ Xp, B ~ Xq, then A B  ~ Xp+q_n. Since 9)l(A)9)I*(A) = E, it follows that  

oo n--k-I 

9)I*(A)= ~ (A-Ao)/~9")I~>(Ao), E ffR~_j_~>(Ao)~<j>(Ao)=0, k = l , n - 1 .  
k = l - n  j=--i 

From this, in view of the relation 9~(ko)~R(ko) = 0, we obtain 

~ _ ~ > ( ~ o ) = - ~ _ ~ > ( ~ o ) m ( ~ o ) -  ~_~_~>(~o)~<~>(~o) (~<o>(~0)) -~, 
\ ~=~ 

n-k / 
~m<~_~>(ao)m(ao) = -  m~<_j_~+~>(ao)~<~>(ao) (~<o>(ao))-M(~o), ~=  ~ , . , -  ~. 

Since 9l(3,o) e X._~, 9~_z>(Ao ) e Xn-~, we can find gJ/~I_~}(Ao)fR(Ao), 9Jt~_~)(Ao) e Xn-~ -2 ,  k = 

2, n -  1. Repeating this procedure several times we obtain 91R~_~>(Ao) = O, k = 2, n -  1. Lemma 3.3 is 
proved. 

C o r o l l a r y  3.1.  

Let f, e Yk, ~ (A)  e M. Denote 

b (x ,~ ,~o )  = <~(.%A),~.(~,~)}~]<o> 

Using (2.27), (3.2), and Lemma 2.1, we obtain the following fact. 

tf ~(~,) e M, the,. the ,,~a~rix ~*(:~) ~e3 (mt(:~)) -~ ha~ only sim~,te >t~s. 

k = 0 , - 1 .  

L e m m a  3.4. 

{ @<-i> D(*,~,Ao)m(Ao) = <~(x,~,),-* (X,~o)}~ 
A - Ao 

h(zo)D<o>(x,~o, Ao) = <~,<_~>(x:~o)_,~_*(x,~)}~] 
<o> 

Zo -- # ] It*=Ao 

b(_~) (x, zo, ,%) : h(zo)b(o)(:~, zo, ,~o) - 6(zo, Ao)Z, 

'~<_l>(X,.~o)>~ 
h(~o)Sio / ( . , zo ,Ao)~(Ao ) =  {~<_l>(x,~o),-* .- 

so - Ao 

'~here 5(~o, Ao) = 0 (zo r ~o), ~(~o, ~o) = ~ (~o = Ao). 

From Lelmna 3.4, in virtue of the equalities 

, ~ (x,,)>~x= ~ = 5~(~ (x ,  ~ ) ) 5 ~ ( ~ * ( x , , ) ) ,  

(zo # Ao), 

(zo = Ao), 

(3.7) 

(3.8) 

(3.9) 
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we obtain 

Corol la ry  3.2. 

5ku t~ > u, 
bk~,(O, 5, 50) - 5 - 50' - 

Dk.(0, 5 ,5o)=  f k . (?~ j , j+s;s= 1 , u -  k;j  = 1 , n - l ) ,  k < u, 

/'Sk.(T, A, Ao) = (/'5(r,A, Ao)h(Ao))k~" = (h(zo)b(o>(T,  Zo, Ao))k~ ' = 0, 

(91(zo)b(o)(T, zo,5o)91(ao))~,. = a(Zo, 5o)r k < u. 

Denote Y =  [6i,k_l]j=,,n_,;k=<n , 910(50): 91(5o), 9l , (5o)= h(Ao); then 

P~(x,A, Ao)=D(x,A,  Ao)91e(Ao)Z y, ~ = 0 , 1 ,  

G~(z, Zo,5o) : ZD(o)(X, Zo, Ao)91~(Ao)Y T, e = 0,1, 

~ (x, 50) -* -* =-g2(o)(X, Ao)91e(Ao)Y T, e = 0 , 1 ,  

7~(~o) = 5oE + z h ( 5 o ) y  r,  

k < u ,  

P(x, 5, 5o)= b ( z , 5 , 5 o ) ~ t ( 5 o ) Y  r ,  

G(x, zo, 5o)= YD(o>(z, zo,5o)~t(~o)Y T, 

~*(*,~o) -* = - ~  <o> (x, 5o)~(ao) z~ ,  

A(Ao) = 5of  + Y91(Ao)Y r, 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

c = 0 , 1 .  
(3.15) 

~(. ,  5o )=  r~<o>(x, 5o). 
L e m m a  3.5. 

P~(x, 5 , 5 o ) = ~ ( x ,  5)g-*(X,5o), O'~(X, Zo, Ao)=~(X,  Zo).q~(x, 5o), c = 0 , 1 ,  

P(z, 5 , 5 o ) ( 5 E -  A(Ao)) = (~(x, 5),~*(x, 5o)}/-, 

X(Zo)O(Z, Zo, Ao) -  (7(x, zo, 5o)A(5o)--5(Zo,5o)Y~(5o)yT= (~(x, (o),~*(x, 5o))i-. 

ff h(5o)~.n(5o) = o, ~h~,~ 

l ~ ( x , 5 , 5 o ) ' ( S E - A ( 5 o ) ) = ( ~ ( x ,  5) ,~(X,  5o))r, g = 0 , 1 ,  

X(~o)5~(., ~o, 50) - O~(x, ~o, 5o)A(5o) - 6(~o, 5o)V~&(5o)V ~ : (~(x, ~o), g (~ ,  50))> 

Proof .  In virtue of (3.2) and (3.4) we compute 

l~<o/(x, 5o)= (AoE + ~(5o))~<o>(X, 5o) 

This implies (3.10). Using (2.27) we derive D'(x,5,5o) = -~(x,5)(~o)(X, 5o) , and consequently, 

(3.11) is proved. Further, it follows from (3.7) that (A - Ao)/)(x,A, 50) + D(x,A, 5o)~(5o) = 
-(~2(x, A), (I)~o } (x, 5o)}r Multiplying this equality by 9l~(5o)Y T, we obtain 

P~(x, 5, 5o)(5E - A(Ao)) + f-'l(x,A, Ao)Y91(Ao)Y T = (~(x,5),g~'~*(X,5o)}y, z = 0,1. (3.16) 

This yields (3.12) and (3.14). It follows from (3.8) that 

(o) - 5(Zo, Ao)Y91~(Ao)Y T. [Y/5~ (x' 5' 5~ (-*)Ix:zo -- Yh(z~176 

Using (3.16) we arrive at 

G~(x, zo,5o)(ZoE - A(Ao)) + Y [/5~ (x, A, Ao)] ]~=~ o(-1) + G,(x, Zo, 5o)Y91(Ao)Y T = (~(x, Zo),~*g~ (x, Ao)}p 

From this, in view of the equality 

r~(Zo)[?~(x,5,5o)] <~ = Y~(Zo)Y~G~(, ,Zo,5o),  
I A = z o  
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we have 

5,(~o)O~ (x, ~o, Ao) - ~(:~, zo, Ao)a(Ao) + O, (x, ~o, Ao)Zm(Ao)Z r 
- a(~o, Ao)Z~(Ao)Z ~ = {~(x, zo),o~;(., Ao)}~ 

This yields (3.13) and  (3.15). Lemma 3.5 is proved. 

3.2.  S o l u t i o n  o f  t h e  IP.  Neces sary  a n d  suff ic ient  c o n d i t i o n s .  

We consider L, L E V/r Denote 

~%--i I n 

m = i  k=rn,+l 

ll--~. 

In the sequel we shall assume that the numbers At., and ~z,~ are numbered in such a way tha t  Al,~ r 

Ato,mo, ~l,~ r Xlo,ro, o, Az,~ r ~lo,-~o for l r lo, [ m -  m0] = 1. This is possible and it means that  "common" 
poles have the same number  I. 

L e m m a  3.6. 

~(x,A) = e(x,A) + ~ ~(:~, A, Ao)~(~, Ao), 
~o~• 

~(*,~o) = ~(~,~o)+ ~ 5(.,~0,Ao)~(~, Ao), 
~o~. 

~(~,~o,~o)-G(x, zo,~o)= Z ~(x, zo, Ao)C(x,:,o,~o), 
AoCI 

(3.1r) 

zo E I, (3.18) 

z0, Xo E I,  (3.19) 

where f = a u X, ~(.,Ao) = Y<o>(X, Ao), a(*,~o, ao) = Y&o>(*,~o, Ao)~(ao)ZL the s~.ies eo'~,verge 
"with brackets," 

= lim E '  I ~ = I n { A ' [ A ] _ < R ~ } ,  
k - - + ~  

AoCI AOEIk 

and the circumferences ]A] = R~ are at a positive distance from the set I .  

P r o o f .  Using (3.2) and  (3.7) we obtain  

res 
p,=Ao 

(~(. ,  a), ~*(x, .)] _-;  ")}re(., = b(x, A, Ao)Ck(Ao)Zrv(x, Ao). 

Hence 

res  
/~=Ao 

(~(., a), ~* (:~, .)] i -~; ")}r<.~,, = ~(x, A, Ao)~(*, Ao). (3.2o) 

In the A-plane we consider a contour 7 = 7 + UT- ,  7 -~ = {A : + I m A  = Co, - o c  < ~ R e A  < oc} such 
that  I ,  I c  {A: [hnAI < Co}. Put & = C \ i n t %  Then the relation (2.41) is valid (the proof is the same 
as for the half-line). Using (3.20) and the residue theorem [72, p. 239] we obtain (3.17). Equali ty (3.18) 
follows from (3.17). Equality (3.19) is proved analogously. Lemma 3.6 is proved. 
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Denote  

Yk = diag[@~]~,=~,n_l, 

n - - 1  

k = l  

n - - 1  

~5~(~) = ~ ~;(x, a ~ )  ~ ,  
k = l  

n - 1  

k , k o = l  

A/ok = Ark, Al~k = Al~, 

k = l  

n - - 1  

?t~(x, a ) :  ~ ?~(x,~,a~)Y ~, 
k = l  

Y~oGe( x, Ato,so,ko, Atek)Yk, e, ~o = O, 1. 

Analogous ly  we define Ate, F ~ ( x ) ,  G(to,~o),(~,e)(x ). Let  V'  be a set  of  indices v = ( l , s ) ,  l > 1, e = 0, 1 (s 

changes  quicker),  and  V be a set of indices j = (v, k) = (l, s, k), x ~ V' ,  k = 1, n - 1 (k changes  quicker) .  

W e  in t roduce  the  mat r i ces  

~(~) [~(~)]~. ,  [~j(~)]~., ~*(~) [g~ 

G(x)  = [Svo,v(X)].o,~v,  = [Sjo,j(x)]jod~V, Vo = ( lo , ' o ) ,  No = (Vo,ko) = (lo,so,  ko), 

= diag[A~]~cv, ,  J = diag[(-1)eE]v~V ', J1 = [5to,zOvo,~]vo,v~v', 

O~v = E ,  0(~,o),(~,~) = - E ,  0(~,~),(~,o) = O, E = [6,~],,~=~,~_~. 

Ana logous ly  we define the  mat r ices  ~, G, A. D e n o t e  

W* l k - n + l  ( - x l  cot  - ~ ) ,  * * tk(x) = exp Wto~,(x) = ~lwu~(x ), Wllk(X) = wZk(x ), W ( x )  = diag[wj(x)] j~v.  

The  following e s t ima tes  are valid: 

~(,) , . 
~j  (x)] < Cl wlk(x) ,  j e IF, 

l /  * - -  ]- I < c l  , 

c ~'to,~o(X) I  o,j(x)l < 
[l - / 0 [  + 1 w ; ( x )  ' 

~ ( ~ ) 1  < ~0~(x) - C~zl 'w/k (x), 
N.(,) ,  , _ . 
glOk tx) -- g;(;)(Z)[ < C~'llU(Wlk(X)) -1 '  

~('+~), c(l to)" ~Zo,~o(X) la~o,J (x)[ < + ~ * ~ ( x ) '  

C~l WZo,~o(Z) 
I 1 - lol + 1 w[~(x)  ' 

C~to Wto,ko(~) 
II- lol + 1 w* (x) ' lk 

T h e  same es t imates  are valid for p (x )  and  G(x) .  

In view of our  no ta t ions ,  (3 .17)-(3 .19)  b e c o m e  

oo 

~(x, A) = ~(:~, A) + Z (P~o(x, A)~o(x) - ~ (~, A)~  (:~)), 
l=1  

~(x) = (E + 5(x)J)~(~),  

(E + ~(~)J)  (E - a(~)J) = E, 

(3.21) 

(3.22) 

(3.23) 
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and as above, the series in (3.22) and (3.23) converge "with brackets." Further, according to Lemma 3.5, 
we have 

Let 

Denote 

~-~(z) = X~(x ) ,  

5~(~, ~ ) - '  = ~(x, ~ ) ~ ( ~ ) , -  -* 5'(x) = ~(x)~* (x) , 
1 

(A(E + G(x)J) - (E + 8(x)J)A)F(x)  = (~(x), '~*(x))rJ~(x). 

Oo 

E ~/" ln-1 < oo. 
/=1  

c ~  

~-*(~)'x'~ (~)~' - a l  (~)~/1 (~)), 
l = 1  

The fimctions t j . (x),  ~.(x), and z.(x) are defined by (2.52) (2.54). 

u + s < n - 1 .  

(3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.2s)  

L e m m a  3.7. 
n - 1  

?s ~ E Zt~jatjv(a)' 
j = O  

a =0 ,  T. (3.29) 

Proof .  Differentiating (3.21) with respect to x and using (3.25), (3.28), and (2.52), we obtain 
r~ 

v ~ 0  

Oo 

l = l  

Further, in view of (3.21), (3.24), and (3.26), we have 
OO 

/----1 

From (3.31), in virtue of (3.30) and (2.22), as in the proof of Lemma 2.7, 
u = 0, n -  2. 

Denote 

It follows from (3.30) that 

,=0 \ j=0 

(3.30) 

(3.31) 

w e  o b t a i n  p . ( x )  = ~.(x)+r 

) 
~=t .=2 \ j = l  

\ j = l  

For a = 0, using Corollary 3.2, we compute U~o(~k) = 5~k, ~ <_ k, and consequently, U~o = U~o. 

Analogously we find that  U~T = ~f~Y. Lemma 3.7 is proved. 
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Denote 

It is obvious that 

~(x) = w-~(X)J l~(X) ,  

r = [u  

~I(x) = W-l(x)J1G(x)J,]llW(x), 
H(x)  = W-t(x)J1G(x)JJ~lW(x). 

< Cl I jo,j<x) < 

Analogous estimates are valid for r  and H(x). 
Then (3.22) and (3.23) become 

~(x) : (E + ~(~))~(x), 
(E + ~(x)) (E-  H(~)) = ~, 

]l- lo[ + 1' (3.32) 

jo , j  E V. 

(3.33) 
(3.34) 

and the series in (3.33) and (3.34) converge absolutely and uniformly fbr x E [0, T]. Interchanging places 
for L and L we obtain analogously 

~(x) = ( E -  g ( x ) )~ (x ) ,  (E - H ( x ) ) ( E  + i t(x))  = E. (3.35) 

We consider the Banach space m of bounded sequences a = [og]j~v with the norm ]lc~ll,~ = sup lajl - 
J 

It follows from (3.32), (3.34), and (3.35) that for each fixed x e [0, T] the operator E + Lr(x), acting 
from m to m, is a linear bounded operator, 

sup I Jo,j(x)I < c Z * ,  
~o j l 

and E + H(x)  has a bounded inverse operator. 

T h e o r e m  3.1. For a matrix 9~(A) E M to be the WM for L E V~v it is necessary and su~cient that 
the following conditions hold: 

(t) (asymptotics) there exists L e VjO such that 

Z ~ / l  "-1 < oc; 
/----1 

(2) (condition P) for each fixed x E [0, T], the linear b9unded operator E + [I(x) acting from m to m 
has a bounded inverse operator; 

(3) c , (x)  E W,+N, u = 0, n - - 2 ,  where the functions ~,(x) are given by (3.28), (2.52)-(2.54), and 

~(x) = J I ~ W ( x ) ( E  + [ I ( x ) ) - ~ ( x ) .  

Under these conditions the DE and LF L = (I, U) are constructed according to (3.29). 

The necessity part of Theorem 3.1 was proved above. The proof of sumciency is in [96]. 
The method described above allows also to study stability of the solution of the IP from the WM. 

Let L E V~ and choose L ~ VI~ such that 
O<3 

h o a~j ~ l l n - ~  < ~ 

l = 1  

The quantity A ~ will describe nearness of the WM 9)I(1) and ~(A).  

T h e o r e m  3.2. There exists 6 > 0 (which depends on L) such that if h ~ < 6, then 

max Ip}/)(x)- p~2)(x)l < CA ~ 0 < j < u < n -  2; lU~t'a - -  ~ ( p a l  < CA~ 
0 < x < T  
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where C depends only on L. 

The proof of Theorem 3.2 is in [96]. 

Sometimes it is more convenient to work in s T). We shall say that  L E V~2 if L E V~r and 

p('+N)(x) E s T). Similarly to Theoreln 3.1, we prove the following theorem. 

T h e o r e m  3.3. For a matr ix  9)I(A) E M to be the W M  for" L E V~v 2 it is necessary and sufficient that 

the following conditions hold: 

(1) (asymptotics) there exists L E V~v 2 such that 

(2) condit ion P is fulfilled. 

i ln+N-1 % 00; 
\ / = 1  

We note that  for "small" perturbations condition P is fulfilled automatically, i.e., the following 
theorein holds. 

T h e o r e m  3.4. Let L E V~v 2 be given. Then there exists ~ > 0 (which depends on L) such that i f  the 

matrix 9Y~(A) E M satisfies the condition 

A+ de__f (~_lln+N_X)2 < 6, 

/=1 

then there exists a unique L E V/v 2 for  which the matrix 9)I(A) is the WM. Then 

[Ip(j)(x) - < c a + ,  0 <_ j _<. + x ,  

where the constant  C depends only on L. 

3.3. Counterexample. 
For definiteness, let n = 3. Let us show that dropping ff-R13(A) from WM ER(A) leads to nonuniqueness 

of the solution of the IP. In the other words, WF 9:R12(A) and ff)223(A) do not uniquely determine DE 
and LF L. 

We consider L = (I~ 5)  of the form 

[y = Ill 
y , ~fsa(Y) = y"(a)  + aay'(a),  ~ a ( Y )  = y'(a) 

Let the functions -~k(x,A) be solutions of the equation y"' 
2~ ' - l ) (0 ,  k) = ~,~, z~,k= 1,3. Then 

u3o(y) = y(a), a=O,T. 

= Ay = p3y under the conditions 

1 3 
~ k ( x , A  ) = 3 ~ ( [ ) ] ~ j ) l - k  e x p ( p R j x ) .  

j=l 

xl~,, - i 

(k-l)! In particular, for A = 0 ~Y~ (x, 0) - 

It is clear that  for A = 0 

~ 1 1 ( 0 )  = ~22(0 )  = ~ 1 2 ( 0 )  = 0 

(3.36) 

(3.37) 

for any ~0 and ~T. We choose the coefficients 50 and ~T such that the functions All(A) and A29_(A) 
have only simple zeros. Let us show that such choice is possible. By symmetry, it is sufficient to consider 
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the function A22(A) = X I ( T , A )  + ~ "  8T)~[(T,A). Using (3.36) we obtain 

{ 7h2(5) = 
(3.38) 

3A22(A) = (22~2(T, A)+ TJ(I(T, A) )+  8T(J(3(T, A)+  T)(2(T, A)). 

Denote by B the set of zeros of the fimction 

A(A) %f AX2(T,I)(X3(T,,,k)+ T X 2 ( T , I ) ) -  l)(3(T, A)(222(T, A)+  T)(I(T, A)), 

2. 
and by = { a 0 :  i  (A0) = ZX 2( 0) : 0} the set of nonsimple zeros of  It is obvious that  

B ( ~ T )  is a finite set. If A0 E B ( ~ T ) ,  then, in virtue of (3.38), z~(10) = 0, i.e., B(~T)  C B. Further, if 
~o r 8T and A0 E B(ST) A B(80),  then (3.38) implies that 

Aogs A0) = ~o)(3 (T, Ao) = 2)(2 (T, A0) + TX1 (T, Ao) = ,~(T,  Ao) + T2e(T, Ao) = O. 

Since 2_~z(T, 0 ) +  TJ(~(T, 0) = 3T r 0 it follows that A0 r 0, and hence )(~(T, A0) = )(z(T, Ao) = 
)~a(T, A0) = 0. But this is impossible. Thus, if 8~ 7! ST, then B ( ~ )  [~ B(~T) = 0. From this and from 
the relation B(ST) C 13 and continuity of B(ST) we conclude that there exists 5T such that B(ST) = 0. 

We define the matrix 9)l(A)= [gJt.~(A)],~,~=l---2, 9Jtm~(A)= ~,~,~, m _> k, by 

9)I~(A) = ~ 2 ( A ) ,  grtea(A) = ~ea(A), 9)I~a(A) = , ~ a ( A )  + 0,  (3.39) 

where 0 is a complex number. It follows from (3.37) and (3.39) that for sufficiently small 0 9)l(A) ~ M 
and it satisfies the conditions of Theorem 3.4. Then, according to Theorem 3.4, there exists L ~ V~r2 for 
which 9)I(A) is the WM. 

3.4.  D i f f erent ia l  opera tors  w i t h  a "separate"  s p e c t r u m .  
We consider the IP of recovering DO's of the form (2.1) under the condition of "separation" of the 

spectrum. In this case, to construct the DO, we need not all tile WM but only its part. More exactly, 
the DO is uniquely determined from given n -  1 WF's. We provide a rule how to choose sets of the WF's 
which guarantee uniqueness of the solution of the IP. We give the solution of the IP from chosen WF's. 
It is shown that obtained theorems contain results of Leibenzon [52, 53]. Further, we give a solution 
of the IP of recovering the DO from a system of 2n - 2 spectra. It is shown that this problem can be 
reduced to the IP from the WF's.  

3.4.1. We consider DE and LF (2.1)-(2.2). For definiteness we confine ourselves to the case where 
T < oc. Let Am~, 1 _< m < k < n, be tile set of zeros (with multiplicity) of the entire function 

A~k(A) = ( -1)  "~+k det [UrIT(C~)Jrl:i,n_m;r,=~.__~,n\ k. 

The set Amk coincides with the set of eigenvalues of the boundary value problem S ,~  for the DE (2.1) 
under the conditions U~o(y)= U~T(y)= 0, ~r] = 1,~'t--~rt, ~ = 1, m -  1, k. In particular, A,,,~ = A,,. 

Let r (1 < r < n) be a fixed natural, 0m = max(r, m -  1). Assume that  

A,,,~ A A,~+l,o,~ = 0, m = 1, n - 2. (3.40) 

Everywhere in See. 3.4 we assume that the condition (3.40) of "separation" of tile spectrmn is fiflfilled. 
In this case for recovering the DE and LF we need n - 1 WF's. The IP is formulated as follows. 

P r o b l e m  3.1. Given the WF's  {gJ~,,,0~, (A)},,=T.n_ 1 construct the DE and LF L = (1, U). 

First of all we study the uniqueness of the solution of the IP. 

T h e o r e m  3.5. If ffJtm,o,~ (A) = ~,~,0m (A), m = 1, n - 1, then L = L. 
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For definiteness, we prove Theorem 3.5 ibr r = 2. In this case the "separation" condi t ion (3.40) 
means  t ha t  

A,,,~ n Am+l,,~+l = 0, m = 1, n - 2, (3.41) 

and  the  conditions of Theorem 3.5 become 

ff/~m,m+l(A) = 9Jlm,m+l(A), m = 1, n -  i. (3.42) 

To prove Theorem 3.5 we use the following auxi l iary s ta tement .  

L e m m a  3.8. Assume that .[or a certain m,  1 <_ m < n -  1, a number Ao is a zero of  Am~(A)  of 
multiplici ty x,~ >_ 1, and Am+l,,c+l(Ao) # 0. Then in a neighbourhood of the point A = Ao we have the 

representation 

a) = a) + 

where the function ~m( X, A) is regular at A = Ao. 

3C m 
C~m 

E ( a - -  .~0) u (I)rn+l(x' "~)' (3.43) 

P r o o f  o f  T h e o r e m  3.5.  Assume that  for a cer ta in  m,  1 _< m _< n -  1, a number  Ao is a zero of A,,,~,(A) 
of mul t ip l ic i ty  z,~,, i.e., A0 E A,~,~. Then it follows f rom (3.41) tha t  Ao ~ A,~+1,,~+1, i.e., A,~+<,~+l(A0) ~r 
0, and,  by Lemma 3.8, we have the representa t ion  (3.43) in a ne ighbourhood  of A = A0. Apply ing  the LF 
U,,,+~,0 to both  sides of (3.43) and taking into account  the relations U,~+I,0((I),,(x,A)) = 9JI,c,~+I(A), 

Um+l,o((I),,,+l(x,A)) = 1, we obtain 

r 
Cure 

= A)) + _ 

Hence c .m = [9ltm,m+i(A)] ( - ' )  By virtue of (3.42), we get c,m = c~r,~. It follows from L e m m a  3.8 and 
A=Ao" 

(2.35) t ha t  for each fixed A0 E A we have the  following representat ion in a ne ighbonrhood  of the  point  

A = Ao" 

[~(~-i), _ [f(~-1) 

where the  fimctions ~m(X, A) are regular at A = Ao, 

det [~};-~)(x, A)].,.~=I,~ - ( - 1 )  " ( ' -1 ) /2 ,  

and  0 , ~ ( A ) =  0,,~(A). Hence, for each fixed z E [0, T] the matr ix  P(x ,A) ,  defined in Sec. 2.1, is entire 
in A. Further ,  as in the  proof  of Theorem 2.2, we obta in  tha t  L = I,. Theo rem 3.5 is proved. 

T h e  counterexample  from Sec. 3.3 shows t h a t  omi t t ing  the requi rement  of "separation" of the spec- 
t r u m  leads to a violat ion of the uniqueness for the  solution of the IP. 

3 .4 .2 .  Here we provide necessary and sufficient condit ions and an a lgor i thm of solution of the  IP. For 
! 

simplicity, we confine ourselves to the case of L E V/v 2. 

L e m m a  3.9.  If  Ao E A,~ • . . .  N A~- l ,  Ao ~ A~, then 92r ~r 0, ~ = re, p -  1; fflCj(A0) = 0 for" 
j = ~ + 1 , n \ p .  

Indeed,  by the condi t ion of the l emma  ACe(A0) = 0 for ~ = m , # - l .  Denote  h~(x,A) = 
Ar162 It follows from (2.13) t ha t  the  functions h~(x,A) are entire in A. If h~(x, Ao) -- 0, 
t hen  from (2.13) follows tha t  Ar = Ar = 0, s = ~,n.  But  it is impossible, by vi r tue  of 
(3.4o). Thus he(x, ao) ~ 0 and hence (I)~,(_~}(X, Ao) ~ 0. According to (3.2) we obtain 

n 

Z 
j=(+l 

360 



Therefore 
n 

Z # 0. 
j=~A-1 

Further, since A._1, ._1( .~o)= 0, A..(Ao) # 0, it follows from Lemma 3.1 that 91"_ l j (Ao)=  0, j = 
# + 1, n; 9~-l,~(Ao) # 0. From this and from Lemma 3.2 we obtain the assertion of Lemma 3.9. 

By (3.40) and Lemma 3.9, for each l > 1, m = 1, n - 1, there exist natural #~, (m + 1 _< #~.,, _< 0.~) 
such that 

Akk(M~) = 0, k = m +  1,p~.~ - 1, A.,m,.,~(A~.d r 0. 

Furthermore, A.~m,0m(Al. 0 # 0, and consequently g2,,,.~,0m,Io)(Al~) # 0. It follows from Lemma 3.9 that 

91rn,p~.()~lrn)r 9~mj()~lrn)=O, j = m + l , n \ # l m .  (3.44) 

Further, from the equality 9~9)i(0 ) = 9J~(_11 we obtain 

k-1 

9%~k(.Xl~d=~.~k,i_~t(.Xl.d-- ~ 91my(Az.d~j~,Iot(Az.~). (3.45) 
j=m§ 

Hence 9)I.~,0m,<-1> (Az.~) = N.~,.,.~ (Al.~)9)ig, m,0.~,<o > (Alto) or 

9I,~,.,.~(.~1.~) = (gJ[.~m,0m,<0>(Al.0) -1" fll,m,Or~" (3.40) 

Relations (3.44) and (3.45) give us the connections allowing to find the WM ~(A) from the given WF's 
{gYG,,0m(A)}.~=I,~_~ (or, what is the same, from their poles and residues {A~.~, fl~,-~,om}~_>l). Thus, our 
IP can be reduced to the IP of recovering L from the given WM g)l(A). 

For simplicity, we formulate necessary and sufficient conditions for r = 2 .  I n  this case we have 

0m = m + 1, 91m,m+~ (Alto) : ~l~m,m+l,(_l} (Alto) # 0, 

9~mj (Aim) = O, j = m + 2, n. 

So, for r = 2 the numbers ~, defined in Sec. 3.2, have the form 

n - - 1  

r n : l  

where fl~.~ = g)im~,<_l>(A~.~). From (3.45) we obtain the equality 

fl~m~ = fl~,.~,m+~gJ~m+~,~,<0>(A~m)- (3.47) 

From the given {ffN.~,~,,+l(A)},~=l,n_ ~ (or, what is the same, from { ) ~ ,  fl~,","~+~ }~>1)' using (3.47), 
one can construct recurrently the WF's ~ .~ ( .~ )  for k > m + 1. Thus, the WM 9J[(~ is constructed. 
Furthermore, the properties $1 and $2 for g2(A) are clearly fulfilled. Thus, the following Theorems 3.6 
and 3.7 succeed from Theorems 3.3 and 3.4. 

T h e o r e m  3.6. For meromorphic functions {gJI.~,.,+~(A)}m=~.~_ ~ with simple poles {A~m}~_>~, A~m # 
Ato,.,.+l (l, lo > 1) and residues fit,.,..,.+1 # 0 to be the WF's for L ~ V/v 2 it is necessary and su~cient 
that the following conditions hold: 

< c{ l 

(2) there exists L ~ V~v ~ such that 

< 

1 

(3) condition P of Theorem 3.1 is fulfilled. 
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T h e o r e m  3.7. Let L E V~v 2 be given. Then there exists 5 > 0 (which depends on L) such that if the 

numbers  {~lrr,., /~l,m,m+l}l>l,r~ ~ 1,r~-l' /~lrn. # /~lo,m (/ # 10), /~/m # /~/o,m+l (l,/0 ~ 1), fll,rn,,rr?+l # 0 satisfy 
the condition 

A+ c le f  (~tl,~+x_l)2 < ~, 

/=1 
then there exists a unique L E V~r2 for which {Ate, /3t,~,~,~,~+~}t>~ are poles and residues of the WF's 
9J~,~,,~ + I ( A ) . In addition, 

[Ip~')(x)-~Y)(x)il~(o2T) < C A  + , 0 < u < j + N ;  l u ~ . a - ~ a l < C A  +, 

where the constant C depends only on L. 

We note that to solve the IP it is not necessary to find the WM 9Y~(A) since the main equation of 
the IP for r = 2 can be constructed directly fronl Aim and/3t,~,,~+~. 

Remark .  From Theorems 3.6 and 3.7 results of Leibenzon [52, 53] follow. Indeed, in [52, 53] the IP 
of recovering the DE and LF is studied from the given {At,,~, c~}t_>~,,~=x,~_ ~ under the "separation" 
condition (3.41), where c~t~ are "weight" numbers connected with the residues /3~,~,~,~+1 of the WF's 
9~.~,m+~(A) by the formula 

/3t,.~,m+~ : (imm(Atm))--1Am,m+l(Al,~)= (-1)n-m(at,~) -z. 

Thus, the specification of the numbers {Az,~,c~z~,~} is equivalent to the specification of the WF's 
{9)i~,,,,m+~(A)},,~=x,~_~, and the problem of Leibenzon is a particular case of Problem 3.1. 

3.4.3. We consider the IP of recovering the DE and LF (2.1)-(2.2) from a system of 2n - 2 spectra. 
Denote by {A~,~}l>_~ the eigenvalues of S,~,Or~. The IP is formulated as follows. 

P r o b l e m  3.2. Given the spectra {At,~, A~,~}~_>1,,~=1,~_ ~ construct the DE and LF L = (l, U). 

Let us show that this IP can be reduced to Problem 3.1 of recovering L from the WF's 

Let A,~k = {Al~k}l_>~, i.e., the numbers {At,~}l>~ are eigenvatues of S,~k. It follows from (2.21) 
that the function A,~(A) is entire in A of the order 1/n. Since A~,  is the set of zeroes of A,~(A), we 
have by Borel's theorem [55, p. 31] 

f i (  A ) B , , k = c o n s t  Amk(A) = B m k  " 1 Az~,~ ' 
l=1 

(the case where A = 0 is the eigenvalue of S ,~ ,  requires minor modifications). Then 

For (-1)~-~"+1A--+ oc, we have 

Bin,"" 1-I atm~ I=1 
and hence 

Amk(A) = ~mk(A) H 1 
l=1 

- J " 

--1, 

Abnt: - Almk 
UJ.-  / (3.4s) 

In particular, from this we obtain that  the characteristic fimction Amk(A) of the boundary value 
problem Sink is uniquely determined by its zeros. Furthermore, the flmction A.~k(A) can be constructed 
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by (3.48), where L = (1, 5 )  are known DE and LF (for example, with zero coefficients). Then, in view 

of (2.7) we obtain the following statement.  

L e m m a  3.10. / f  Am = Am, Amk = X~,,k, then  9)1,~(A) ~ ~mk(/~).  

Thus, the specification of two spectra of S,~,~ and Sink uniquely deternfines the  WF 9)i,,k(A). 
From Theorem 3.5 and Lemma 3.10 we obtain the following uniqueness theorem of solution of the 

IP from a system of 2n - 2 spectra. 

T h e o r e m  3.8. I f  Alto = "Arm, )~m = ~llrn, l _> 1, m =  1, n -  1, t hen  L = L. 

Thus, the DE and LF are uniquely determined from the given 2n - 2 spectra of the boundary value 

problems S m m ,  Sm,o~ ,  m = 1, n -  1. 

To solve the IP of recovering L from 2n 2 spectra {Alto, 1 - /~t,~} we can construct  the characteristic 

functions Arara(/~), Am,0.~(/~), and then the WF's  9)Im,0.~(A) by the formula 

and residues r of the WF's 9Jlm,0m (A) by the formula 

and use the results of See. 3.4.2. Thus, the IP from 2 n -  2 spectra can be reduced to the IP of recovering 
the DE and LF L = (l, U) from the WF's  {9)im,0,~ (A)},~=1,~-1 or, what  is the same, from the poles and 

residues of the WF ' s  {Al,~, /3l,m,o,~}t_>l,,~=l,,n_x. 

3.5.  S t a b i l i t y  o f  t h e  s o l u t i o n  o f  t h e  I P  f r o m  s p e c t r a .  

Stability of the solution of the IP from the WM was studied in Sec. 3.2. Things are more complicated 
for the IP from a system of spectra. Here we study stability of the solution of the  IP in the uniform 
norm from spectra. It is shown that  small perturbations of the spectra lead to small perturbations of the 
operator. Here we use a method which leads to a development of ideas of Levinson [56]. For brevity, we 
confine ourselves to formulations of results for fourth-order self-adjoint DO's with symmetric  coefficients. 
Analogous results are valid for DO's of an arbitrary order. 

Let {A~}n>~ and {'~}~>~ be eigenvalues of the boundary value problems Q~, i = 1, 2, for the DE 

- -  X i l y  ~ y(4) (G2(")Y)'-~- G o ( X ) y  : ~ y  : f l 4y ,  

tinder the boundary  conditions 

y(0) = y"(0) = y(~) = J ' (~ )  = 0 

y(0) = y'(0) = y"(0) = y(~) = 0 

qj(Tr - x)  = q j ( x )  (3.49) 

(for Q1), 
(for 

respectively. Here qi (x )  are real, and q} ' ) ( x )  are continuous on [0, 7r] for 0 < i - ,  _< 2. We shall assmne 
that the spectra of Q1 and Q.~ are simple, and A~ 5s 7m for all n, m _> 1. 

T h e o r e m  3.9. / f  An = An, 7n : ~n, n > 1, then  q,i(x) - ~ ( x ) ,  i = O, 2. 

T h e o r e m  3.10. There  exists 5 > 0 (wh ich  depends on Qi)  such  tha t  'if 

n : J _  

then 

m a x  (qi( t)  - ~ ( t ) ) d t  < C A ,  0 < i - ~ < 2, 
O<x<Tr - -  --  

0 
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where C depends only on Qi. 

We give an outline of the proof. Let the functions ai(x,A), b~(x, A), i = 1, 2, be solutions of 
(3.49) under the initial conditions a~ ' - l ) (0 ,  A) = bl'-l)(Tr, A) = 52/,~, u = 1,4, and let a3(x,A) = 
al(x,A)a2(77, A) - a2(x,A)al(Tr, A), b3(x,A) = a3(7c - x,A), A(A) = a"~Tra, ,A), ~(A) = a2(77, A). Clearly, 
ba(x,A~) = k~a3(x, An), where k~ = (-1)~+~signS(A~).  The eigenvalues {A~}~_>l and {7~}n_>~ of Q1 
and Q2 coincide with the zeros of A(A) and 5(A) respectively. 

Let f(x) e C2[0,77], f ( 0 ) =  f (Tr )=0 ,  and let FN = {A: IAI = RN} be circumferences in the A-plane 
with radii RN -+ ec such that  FN are e > 0 distant from the spectra {A~} and {Tn}. Then 

1 / 
lira max f ( x ) -  ~ y(x,A) = O, 

N-+~ 0<x<Tr 
FN 

( / / ) y(z,a) = (~(a))  -~ b 2 ( x , a )  "52(t,A)f(t)dt+a2(z,A) b2(t,A)f(t)dt 
0 x 

( /  J )  -(X(A)N(A)) -~ V~(x,a) "az(t,a)f(t)dt+az(z,A) bz(t,a)f(t)dt, 
0 x 

and consequently 

E ~Z~na3(x'~n) ---- E Ana3(X'~n) + y n ( X )  g3(t,A~).f(t)dt 
n=l n=l 0 

) --rn(x) f a2(t, ~n),f(t)dt- Wn(X) f b2(t, ~n)f(t)dt , 
0 x 

(3.50) 

where 

7r 

An = k~ (A(An)5(An)) -1 / f(t)~da(t,A~) t, 
0 

rn(x)=OPnlb2(x,~n)+cPn2bl(x,~.,), wn(x)=~nla2(z,~.,)+O2n2a~(X,~n), 

yn(x) = (A(A~)X(A~))-~ ( ( b 3 ( x , ? . ) - b 3 ( x ,  An)) - kn(a3(Z, An) - a3(x,A~))) ,  

e ~ _  ~,1(77,~,) ( a ~ ( 7 7 , ~ ) - ~ ( ~ , ~ ) )  end= ~(77'~')6(~') 

and the series converge absolutely and uniformly for [0, 7r]. 

Let now f(z)  satisfy the conditions f (x )  E C4[0, 71], lf(z) E C2[0,7c], .f(")(0) = f(~)(77) = 0, u = 0,2; 
(If)(O) = (If)(77) = 0. We aplly the operator ~ to  (3.50). On the other hand, we set If instead of f in 
(3.50). After the corresponding subtraction of tile obtained relations and comparison the coefficient for 
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f ,  f ' ,  and f " ,  we obtain formulas 

X x 

/ ) ~2_j(t) d t =  E Fj[yn(t), '53(t,~n)] - Fj[r~(t),~d2(t,~n)] + Fj[Wn(t),b2(t,~n)] dt, j = 0,2, 

0 n----1 0 (,~.OI) 
x 

'"+' S l) dxg+l q~(t) d t =  ~-~. [;~[yn(X),a3(x,~n)] - [ '~[rn(x),a2(x,~n)] H- F~[Wn(X),b2(x,~n) , # = 0 , 1 ,  
0 n : l  (3.52) 

Fo[y,z] = - 4 ( y z ) ' ,  F~[y,z] = - 6 y ' z  - 8y'z' - 2yz" + ~2yz, 

F2[y,z] = 4y"'z  + 6y"z'  + 4y'z" + 2 y z "  - 2q2Jz - q~yz - (q2 + q2)yz'. 

From here we obtain the assertions of the theorems. We omit a ra ther  complicated part  of the proof  

connected with  gett ing est imates  (with constants not  depending on l) for the f'unctions from the right- 

hand sides of (3.50)-(3.52). 

4. M e t h o d  o f  S t a n d a r d  M o d e l s  

4.1. F o r m u l a t i o n  o f  the  i n v e r s e  p r o b l e m .  I n f o r m a t i o n  c o n d i t i o n .  We consider the DE and LF 

L = (/, U) of the form (2.1)-(2.2) on the half-line or on the finite interval (T _< oc) and study the IP of 

recovering N (1 _ N < n -  1) coefficients of the DE from given N Weyl functions provided that  these N 

functions are piecewise analyt ic  (the rest of n - N - 1 coefficients of the DE are a priori known arbi t rary  

integrable functions). 

Let the  sets of positive integers x = { x j } j = ~ ,  I = {(ki, ' / i) ,  i = 1, N} ,  2 _< Xl < " -  < XN _< n, 

1 _< ki < ~Yi <_ n, be given. The  IP is formulated as follows. 

P r o b l e m  4.1. Given the WF's  {ff)ik~,~(;~)}i=~ and the coefficients p , (x ) ,  n -  y ~ x ,  construct the  

flmctions {P~-xj  (x)}j=I,N. 

For convenience, we number  the given WF's  in a different way. Let I = {(m~,7~v), T = 1,0, 

7 / = 1 , N  c}, 1 < m T <  7~1 < "'" < "Yt,Nr ~-- n,, N I - F ' - - - F  no = N ,  l~t T # ?Tt T, (v ~ T/). Denote  
ffJI~(A) = 97~m~,~,,(~), s = 1, N. Here and below, the  positive integer s has a unique representat ion 

s = N1 + .-- + Nr + ~, 1 _ ~ < Nr Then our IP can be wri t ten as follows. 

P r o b l e m  4.2.  Given the WF's  {9)l~(A)}s= ~ and the coefficients p , (x ) ,  n -  u f~ x ,  construct  the 

functions {p,~_xj (x) }j=i-~. 

Note tha t  using the given WF's  we can find not only the DE, but  also the coefficients of the LF. 

However we assume for brevi ty that  the LF are known. We also assume tha t  the enmnerat ion of R~ in 

(2.3) is chosen for the sector So = {p:  argp ~ (0, ~) }. Denote  

= ( - R )  ,o, 

. ) [ �9 ,)] ~t ( J l , . - .  ,jp = d e t  aJj,,(R~ ,,k=~,~' 

Let us give a classification of the IP. For this we consider the matrices Al = [A~sj]s=Lg;j=~.p, where 

p is such tha t  l E [Xp, ~p+Z), x0 = 1, ~r = cr (if I > ~N, then At is a square matrix);  here 

(_ l )n+m.+~. , ,+  1 m. n--m~ ( _ l ) , + , ~ m ( ~ ,  m~- - 1 ) ~ ( 1 ,  n - m r  \ n - %-,1 + 1) 

#=1 ~----1 
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Def in i t i on  4.1. If A~ # 0 for all l > 1, then the set {FJt~(A)}~=~ of the WF's is said to be a 
P~-system. 

This definition distinguishes the classes of WF's which have sufficient information for solution of the 
IP. We therefore call A~ # 0, l > 1, an information condition. It is easily shown that this condition is 
independent of the choice of a sector. 

4.2. So lu t ion  of the  i n c o m p l e t e  inverse  p r o b l e m s .  Let us study the IP for P~-systems. To solve 
the IP we use the so-called method of standard models in which we construct a sequence of model DO's 
of the form (2.1) "approaching" the unknown operator. The method allows to obtain an algorithm of 
the solution of the IP. We first formulate some auxiliary propositions. 

L e m m a  4.1. Let r(x) = (c~!)-~xa(h + p(x)), c~ > O, p(x) �9 C[O,b], p(O) = O, h(x,z)  = exp(-zx)(1 + 

z - ~ ( x , z ) ) ,  where the function ~(x,z) is continuous and bounded for x �9 [0, b], [z[ > Zo, z �9 Q ~f  {z :  
a r g z � 9  [ - 5 o ] ,  6o > 0 } .  Then for Izl -+ oc, z �9 Q, we have 

b 

f z(.T)g(x,z)dx = z-a- l (h  o ( 1 ) ) .  + 

0 
Denote 

, . ( . ,  a) = ~.~.(:~, a), 

Mrn 

where 

/3~-=m~-+N.~, 7 t o = m r ,  M ~ = { k : k = l , m r ;  7 r l , . . . , ~ - , N . } ,  

= {k" k �9 Mr, k # %v}, qr = det[R~]~=Z.+t,n;,=~.,~_~, Q = [qr 

q~, ( - 1 ) ' - Z ' + l  (q~) -1 d 

for ( = 1, ~,, ~ =/3~, n - 1 and @ = 5,,r otherwise. 
The following lemma allows to solve the IP in steps. 

L e m m a  4.2. For a fixed a �9 (0, T) the WS's r A), ~- = 1, 0, satisfy the boundary conditions 

u~\(r = ~ ( ~ ,  ~), ~ = 1,9~, 

wheTc 
n-- i Nr 

U~(y) E Qr 'a)Y(')(a)' 9l~(s = J~o(A,a) + E J~v (A, a)9)I~(A), 
w=O ~=1 

(4.1) 

(_ l )n-N~+~- i  
J~v(A'a) = A~(A,a) det [z(")(a,A),Ujo(Zk)]~=~.n;~:r 

Qr - A~(A,a) ' gjo(Zk)]~=~.,,;,=~_l.~.,,_l\,;jcM~, , ~, =/3~-,n-- 1, 

Q~.(~, a) = 5e,.-~, . o, Z~ - 1, 

A~(A, a) = det [z ( ') (a, A), Uyo(z~ )] ~=E~;,:Z..,.-1;jEM~,," 

Here {zk(x,A)}k=~.n, x �9 [0, a], 'is a certain FSS of the DE (2.1). For [A[ --+ co, argA = qo �9 (0, Tr) "we 
h.~e Q~.(~, ~) = / < - - q ~ . ( 1  + o(t ,<)) .  

Indeed, from the relation 
n 

~ ( x , ~ )  = Z b~.(~)~.(x, ~) 
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for x = 0 and x = a we obtain 

n 

/*=1 

n 

/ , = i  

v = 0 ,  n - 1 ,  j = l , m ~ - ,  ' t /=I,N~-.  

Solving this algebraic system for each T = 1,0 with respect to {b,-,(A)},=lTN, {~b~)(a,.k)}~ 0,/~r--l' w e  

obtain (4.1). Choosing z~(x, .~) = yk(z, p), where {y~(x, P)}~=17N is the FSS B0 and using the asymptotic 
properties (2.5) of the functions y~(x, p), we obtain the asymptotic fornmla for Q~,(A, a). We observe that 
the functions 9~(A,a)  and Q ~ ( , a )  are defined from L for x ~ (0, a) and from the WF's  {ffJ/~(.k)}~=~, N. 

We define U~a(y) = y(~-l)(a) for ~ =/~r  + 1, n and denote 

n- -1  

= 

b'=0 

~ =  1, n. 

The functions w~.~(R) are the characteristic polynomials for the LF U~a (they do not depend on a 
(0, T)). Define LF U~2* , { =  1,n, from the relation 

n 

~=1 

Denote 

n--1  
7 - I *  

u = 0  

the characteristic polynolnials for the LF ~'* ~'* " 5- U~  . It is clear that q~, = ( -1 )  D,~+l_~,~_l_,, where D~ = 
T - -  - - q "  [D~.].=l,~;.=o,~_ i is the matrix of algebraic minors of Q~. For ft~, 9t~,  O),* and 9t~}~* the same formulas 

are used as for ~, ~,,, ~*, and ~ with w~.~(R) and w{~ (R) replacing w{(R) and w~(R). 

Let us show that  

r a n k  - ( 4 . 2 )  

Indeed, [aJ~T(R)]~=i, n -- QS-[R~-I]~=i--Z. Since d e t Q r  = 1, det[R~-l]~,~=~ • 0, it follows that 

~2T(RI,.. . ,  Rn) # 0. However cz~_(R) = (q5-)-1 det [R' ,  R~T+s, . . . ,  R~] ,=~_l ,~+l ,n  (~ = 1,/~5-). Then 

cz~5-(R~) = 0. ~ = 1,/~r, k =/3~ + 1, n. Hence R,~) # 0, i.e., (4.2) is valid. 

~t~(zis-,... ,c,~,,5-) # 0. By (4.2), Let {c .#} j=~ denote a permutation of the numbers 1,/35- such that  1 
such a permutat ion exists. Let the functions g)~(x, A, a), a _> 0, z E (a, T) be solutions of tile DE (2.24) 
with the following conditions: U~o(r ) = 6~,~_~.,+1 (~ = 1, n -  m~) for a -- 0; U~*(~b;) = (~,~-e~+n,~+l  

(~ ---- 1 , n - / 3 r ,  n - a m , + l , ~ + l ,  . . . ,  n - c ~ , r + l )  for a > 0, and also U~*T(r ) = 0, ~ = 1, m~- for T < oc, 
* ,T, and Cs(' ,A,a)=O(exp(pR*-m~z)) x--+oc for T - - - e e  ( a > 0 ) .  Denote A~i (A, a) = - U  ~'* (~/J*] 

' - -  n - - ~ j r - t - l , a  ~ - z s  ] 
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a > 0. For 1 > 1, k 1, 2 we consider the matrices Af A ~ = = [ zsj], s = 1 ,N ,  j = 1,p, where 

R,~ ft(1, m , )  = ( - - l l ~ . ~ r - - l ~ * )  l + l - x J  

1 ' * ( 1  f l ~ ; n - - e m . + l . , + l ,  . , n  5 ~ . , , + l \ n  e m ~ + v . , + l )  
X 

~. '  (1, n - / 3 . ; n -  e .g .+l , .  § 1 , . . .  , n -  r  + 1) 

Az2s j = ft(1, m ,  - 1)(-1)m'-+'>,+lft*(1,n-m,~- \ n -  "7.. + 1) 

R ~  ~ ( 1 , - - ~ ) ( R ~ + ~  - R~.)t-~-~+~a*(1, n - m . )  

We shall write A[a,b] (PA[a,b]) for the set of functions analytic (piecewise-analytic) on [a,b]. Let 
a l--xd a a _ _  p~_~(x)  E PA[O,T), rtj = pn_~j(a + 0), r I = [rty]j=l.p. Denote by P~  the set of L, such that  p~(x) = 

~k(x), x > O ,  k # n - x j ,  j = I , N ,  and L = L  for x ~ (O, a). 

a ,a =~a =1,  I - 1 .  Then for [A I - + o %  L e m m a  4.3. Let p ._~j(x) ,  ~ _ ~ ( x )  ~ PA[O,T), L ~ P~, r~ u, P 
argA = ~ ~ (0, Tr), k = 1, 2, there exist finite limits 

Xt~(a ) = l i m P , ~ ( p , a ) ,  pt, 

where 

Moreover, 

Psl(p,a) = Bs(A,a)p v~(a) exp(-pRm a), 

Ps2(p,a) = J ~ s ( ~ ,  O)D vs2(a) exp(-p( /~mr -- Rmr 
?T~-- 

B~(A, 0) = ~.~(A), B~(A,a)=9I '~ ,~+, ,~(A,a)+EX;j (A,a)91~(A,a  ) 
j = l  

vsl(O)=vs2=~rm~,o--(7%,,O, vsl(a)=ermr162 + 1 

Az(R - ~ ) =  [Xls]~=l,N, 

Af(r~ ~'~) [X~(a)]8=l,N, 

P r o o f i  Let us show tha t  if L E P~,  then 

N T 

j = l  a 

Indeed, let L E po .  Then  

N T 

j = l  0 

It follows from (2.26) tha t  

T 

0 

From this we obtain 

N T 

~)r (~, ~, o) dz 
j = l  0 

x ~  = x ~ ( o ) ,  

a > O .  

= B~(A,a). 

(a > 0), 

( a > o )  

T 

) -* S (z~. ( . ,  ~) ~ ) ) .~ ( . ,  ~, o) d~. (~, A ) ~ ( . ,  A, o) & = - ~.,(x, 

0 

T 

(.,. (., ~), ,~,:(:~, A, o))~ + / r A)l? ~:(., ~, o) d.. 
0 

= u;~_,~+~,o(O~(.,.~, o)) + ~r 

(4.3) 

(4.4) 
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F o r / = l w e  have ~ ( A ) = - - U * _ m r §  , gild hence 

N T 

j = l  0 

Thus, for a = 0 (4.4) is proved. For a > 0 the proof is completely analogous. 
For definiteness, let T = oc. Let {y,(x ,p)} ,=~,~ be the FSS Bo. It follows from (2.8) and (2.10) 

that  

Similarly, 

mT 

p,=l 

cT.(p) = p-~.~.,o ((-X)m~-+t" f t~(1, m. ~ _ 1) + O(p-t)) 
n(T-~U~) 

(45) 

lpl-+ oo. (4.6) 

e~(x,a,a) = ~ ~(p ,~)y , (~ ,p) ,  ~ > o, (4.7) 

((-1)n-~/'--v+u+la*(1, n-- mr \ n-'Y-rv + i) - I -O(p -Z ) )  

cs,(p,a) = pt. ,  exp(-pR;a)  - 1 )  n- ;~ ,+ '+"  

(4.8) 1.* / x ft~i" ( l ' n - / 3 ~ - ' n - e r a ' + 1 ' "  + 1 " ' "  ' n - e ~ " ~ - + l \ n - e ' ~ ' + ' l ' ~ - + l )  

ftr (1, n - / 3 r , n - e m r  + O ( p  -1) a > 0 ,  

where t~-v = c%..~ + l - n ,  t ~  = e,~.+v,~- - n  , and y , ( x , p ) =  exp(pR;x)(1 + O(p-1))  is the FSS B0 for l*. 
Since r,a = ,F~' p = 1,1 - 1.. it follows tha t  

(l - x j ) !  (rt~ - r-~ + o(1 ) ) ,  

By Lemma 4.1 we get 

T 
(r~) - F~j) exp (p(R u + R*~)a) 

0 " ~ -  x, (x)y_-(2 xJ)( x, p)~;(x, p) dx = pZ+l_~n 2 ( - n .  - n~)'+l- ~ 

Substi tut ing (4.5) and (4.7) in (4.4) we obtain 

~?,r n - - m r  N T 

/~=1 L,=I 

In particular,  

.=i .=i j= l  

z - + a + O .  

�9 (1 + o (1) ) ,  Ipl --+ oc. (4 .9)  

= Bs(A,a), a > 0, f- E P~. (4.10) 

=Bs(A,O),  a_>0 ,  L E p a .  (4.11) 

From (4.10) and (4.11), in view of the asymptotic formulas (4.6) and (4.8), we obtain  the assertion of 
Lemma 4.3. 

L e m m a  4.4.  Let L E p O  k = 1 V 2, c~ E (0, T), and get Al ~r O, A~ # O, l > 1. I f  for I~1 -~ oc, 
argA = ~ E (0,~r) we have l imP~k(p,a)p l = 0 .for all l > 1, a E [0, c~), s = 1, N,  then L C pc~ 
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6~ ~ a  P r o o f .  Indeed,  if there exist a < c~ and 1 > 1 such tha t  L ~ P~, r~, = r~, p. = 1, l - 1, 'r~ ir ?r~, then it 

follows from (4.3) and the conditions of the lemma that  X~s ~ (a) r 0 for a certain so. This contradict ion 

proves the lemma.  

From the  propositions proved above we obtain the following theorem. 

T h e o r e m  4.1.  Let At # O, l >_ 1. Then Prvblem 4.2 has a unique solution in the class p , _ ~  (x) E 

A[0, T),  j = 1, N .  if, furt, her, A 1 t # O, t >_ 1, then Problem 4.2 has a unique solution in the class 
p~_ , ,  (x) E PA[O, T),  j = 1, N .  

The solution of Problem 4.2 can be found by applying the  following algorithm. 

A l g o r i t h m  4.1.  (1) Take a = 0. 

(2) Compu te  {r~}z_>l. For this we do 

L E P~  such that  ~a : r a r~ i*, /1' = 1, 

(3) Const ruct  L for x E (a, a)  by the 

successively for l = 1, 2 , . . .  the following operations: construct  

l - 1, and find rp from (4.3) for k = 1. 

formula 
Oo 

l+~.j,j l! ' j = 1, N. (4.12) 
l = 0  

(4) If a < T, then we put  a := a and go on to the step 2. 

R e m a r k s .  1. In Algorithm 4.1, the solution of the IP is sought in steps whose lengths are determined 

by bemma  4.4 as follows. Assume that  L for x E (0, a) and {r~}l_>l have been found. Construct L E P~, 

so that  r~ a = r~, l _> 1. Put  

c~ = sup {b > a :  l imPs~(p,b)p ~ = 0, 1 _> 1, s = 1, N} .  

Then L e m m a  4.4 implies tha t  L E P~, i.e., we found L for x E (a, c~). 

2. If the  conditions of Theorem 4.1 are not satisfied, t hen  a solution of the IP will not be unique. 

Indeed, let T < oc, n = 3, c~0 = cr~r = 3 -  {. Consider the  following IP: given the WF's  {92112(~), 

9:g2a(A)}, const ruct  the coefficients po(x) and ps(x). So, N = 2, z =  {2,3}, and I =  {(1,2), (2,3)}. It 

is easy to see tha t  in this case the information condition is not  satisfied, i.e., the set {g212(~). 93223(A)} 

of the WF ' s  is not a P . - sys tem.  It was shown in Sec. 3.3 tha t  a solution of this IP is not unique even 

in the class of analytic coefficients. 

3. Theorem 4.1 remains in force when the condition A} (r 0 is replaced by the condition A~ 4P 0. 

Then, Algor i thm 4.1 can be replaced by the simpler Algor i thm 4.2. 

A l g o r i t h m  4.2.  (1) Take a = 0. 
(2) Compu te  {r~}~_>~. For this we do successively for 1 = 1, 2 , . . .  the following operations: construct  

E P~  such that  :~ = r ~ r~ ~, p = 1,l - 1, and find r~ fl'om (4.3) for k = 2. 

(3) Cons t ruc t  L for x e (a, o~) by (4.12). 

(4) If c~ < T,  then we put  a := c~ and go on to the step 2. 

Algor i thm 4.2 is simpler than  Algori thm 4.1 since it does not require to compute the functions 

92~(A,a) and Q ~ , ( , a )  at each step. 

4. Theo rem 4.1 remains in force when the  condition of piecewise analyt ic i ty  is replaced by a more 

general condition,  ensuring tha t  an asymptotics for the integral  (4.9) exists. 

4.3 .  P a r t i c u l a r  cases .  

C a s e  1. We s tudy  the IP of recovering a single coefficient of  the DE (2.1) from one WF. For definiteness, 

let n = 2q, cr~0 = ~ -  1. Take a fixed integer z (2 < • < n).  
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P r o b l e m  4.3.  From the W F  ~0112(A) and coefficients p~(x), ~ # n - x, find the funct ion pn-~(x).  

In this case N = 1. The  in format ion  condit ion At # 0, l >_ 1, for Problem 4.3 is flflfilled (see [95]). 

Fur thermore ,  it is obvious tha t  A~ ~ 0, l > 1. Thus, the following theorem is proved. 

T h e o r e m  4.2.  Problem 4.3 has a unique solution in the class pn-~(x)  E PA[O, T) (the rest of p~.(x) E 
s T), k ~ n - x).  The solution of Problem 4.3 can be found by applying Algorithm 4.2. 

C a s e  2. We consider the IP  of recovering all coefficients of the DE (2.1) from the  first row of the  
WM. 

P r o b l e m  4.4.  Find the DE (2.1) f rom the WF ' s  {ffElk(A)}~=2, n. 

It is shown in [96] tha t  the  set {.r ~ of the W F ' s  is a P~-system for x =  { 2 , . . .  ,n},  and  

At # 0, A~ # 0, l > 1. Therefore, f rom Theorem 4.1 we obta in  the  following theorem.  

T h e o r e m  4.3.  Problem 4.4 has a unique solution in the class p~(x) E PA[O, T), k = O , n -  2. This 
solution can be found by Algorithm 4.1. 

The  counterexample  from Sec. 3.3 shows that  there are no P~-systems for ~ = { 2 , . . . ,  n} with the  
exeption of the first row of the WM. 

R e m a r k .  Let T < oc and let G~, k = 0, n -  1, denote  the  boundary  value problems for (2.1) wi th  
the condit ions y(k)(0) = y(T) . . . . .  y(n-2)(T) = 0. It was shown in Sec. 3 (see L e m m a  3.10) tha t  
the specification of each W F  9Y~lk(A) is equivalent to the specification of two spect ra  for problems Go 
and Gk-1.  Hence, for T < cc P rob lem 4.3 consists in finding one of the coefficients of the DE from 
the two spect ra  of Go and G1, and  Prob lem 4.4 consists in finding the  DE (2.1) f rom the  system of n 
spectra of Gk, k = 0, n - 1. L. Sakhnovich was the first who investigated an IP  of this type. In [77], 

he proved a uniqueness theorem for recovering of the two- term operator  lly = y(~) + po(x)y from the 
system of n spectra  of G~, k = 0, n - 1, in the class of entire functions. The  same result  is established 

in [88] in the class of piecewise analyt ic  functions. The  t ransformat ion  operator  m e t h o d  is used in [77, 
88]. Thus,  Theorems  4.2 and 4.3 essentially s t rengthen the  results from [77, 88]. We no te  tha t  an IP for 
the two- term operator  ll in ano ther  formulat ion was considered in [43]. 

C a s e  3. We consider the IP  of recovering a self-adjoint DE from the spectral  funct ion.  For n = 2, 
this IP was s tudied by Marchenko [60, 61]~ Gel ' land and Levi tan  [33], and  for higher-order  DE by 
L. Sakhnovich [78, 79] and Khacha t ryan  [44]. In part icular ,  in [44] the t ransformat ion  opera tor  m e t h o d  
for n > 2 is used to prove a uniqueness  theorem in the class of analyt ic  in a certain sector fimctions. 

The  IP  of recovering the self-adjoint operator  from the spectral  flmction can be reduced to the IP  
from the WF~s. So we can obta in  a uniqueness theorem and an a lgor i thm for the solut ion of the IP f rom 
the spectral  f lmction in the class of piecewise-analytic coefficients. For brevity, we consider only the case 
in which n = 4, U~a(y)= y(r a = O,T. 

Let #h(x,  A) and r A) be solut ions of the DE 

P " x "  " (4.13) ly _: y(4) + 2(. )Y +p~(x)y'  +po(x)y = Ay, 0 < x < T <_ oc, 

with the  condit ions r163 = 5~,3-t~, k,~ = 1,2, and also ' ~ ( T , A )  = r = 0 for T < oc and 

~p~.(:r,A) = O(1)~ x --+ oc, for T ---- oc. Denote  M(A) = [Mk,-(A)]~,~=I,2, M ~  = r A). It is known 
[69] tha t  if the DE (4.13) is self-adjoint, then  the specification of M(A) is equivalent to the  specification 
of the spectral  function c~(A) = [c~.(A)]~,~.=1,2 of the DE with  the conditions y(0) = y'(0) = 0 (and 
y(T) = y'(T) = 0 for T < oc). The  IP  is formulated as follows: given the matr i•  M(A) construct  the  
DE (4.13). 

Denote  d(a)  = [dk~((~, 0), d k ~ ( a +  1,1), d ~ ( a +  2, 2)]k,r=1,2, where dk,.(c~, v) = 1 + i a + 3 " + k + " - i  - ( 1 +  

i)~+~(K -1 - i~+3~-~). It is easy to see tha t  the informat ion condi t ion for this IP  has a form d((~) # 0, 
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a >_ 0, and it is clearly satisfied. Therefore, applying to this IP the method of standard models we 
obtain that  the specification of M(A) uniquely determines the DE (4.13) in the class p~,(x) E PA[O, T). 
In particular, if the DE (4.13) is self-adjoint, then the specification of the spectral %nction G(A) uniquely 
determines the DE in the class PA[O, T). 

4.4. A n  inve r se  p r o b l e m  of t h e  e l a s t i c i t y  theory .  The problem of determining the dimensions of 
the trm~sverse cross-sections of a beam from the given frequencies of its naturat vibrations is examined. 
Frequency spectra are indicated which determine the dimenions of the transverse cross-sections of the 
beam uniquely, an effective procedure is presented tbr solving the IP, and a uniqueness theorem is proved. 
The method of standard models is used to solve the IP. 

Consider the DE describing beam vibrations in the form 

( h " ( x ) S ) "  = lh(x)y,  0 < x <_ T. (4.14) 

Here h(x) is a flmction characterizing the beam transverse section, and # = 1, 2, 3 is a fixed number. We 
will assume that  the function h(x) is absolutely continuous in the segment [0, T] and h(x) > O, h(O) = 1. 
The IP for (4.14) in the case # = 2 (similar transverse sections) was investigated in [5] in determining 
small changes in the beam trasverse sections for given small changes in a finite nmnber of its natural 
vibration frequencies. 

Let {Akj}k_>~, j = 1,2, be the eigenvalues of boundary value problems Qj for (4.14) with the 
boundary conditions 

y(O) = yg)(O) = y(T) = y'(T) = O. 

The IP is formulated as follows. 

P r o b l e m  4.5. Find the function h(x), x r [0, T], f r o I n  the given spectra {A~j}~>z,j=l,2. 

Let us show that this IP can be reduced to the IP of recovering the DE (4.14) from the WF. Let 
O(x,A) be a solution of (4.14) under the conditions O(0,,k) = ~5(T,A) = O'(T,A) = 0, ~'(0,~) = 1. We 
set 92g(1) = ~"(0,  A). The function ff.R(A) is called the WF for (4.14). Let the functions C,(:c, I) ,  u = 0,3, 
be solutions of (4.14) under the initial conditions C (") (0, ,k) = 5~,, z~, > = 0, 3. Denote 

Ai(1) = Ca_j(T ,A)C;(T ,A)-Ca(T,A)C'a_j (T ,A) ,  j = 1,2. 

Then ~(x, t )  = (AI(A)) -1 det [C~,(x, k), C~(T, A), C'(T, t ) ] ,=<2,a , and hence 91R(A) = - (AI(1) ) - IA2(A) .  
The eigenvalues {A~,j}k_><a=l,2 of the boundary value problems Qj coincide with the zeros of the 

entire functions AO(t ). As in See. 3 (see Sec. 3.4), it is easy to see that the functions Aj(~) are uniquely 
determined by their zeros. Hence the specification of the spectra {A<j}~_>ld=l,z uniquely determines the 
WF ffJt(t). Thus, Problem 4.5 is reduced to the following IP. 

P r o b l e m  4.6. Given the WF 9)I(A), find h(x), z E [0, T]. 

We shall solve Problem 4.6 by the method of standard models. Let A = p4. Fo r  I/~t --+ OO, arg A = 
# 0, p ~ S, x E [0, T], the following asymptotic formula is valid: 

2 

(I)(.)(X, a) = pz.'--i E (]t~")//(;~))"g{0('T') exp (pR(T(x)) (1 + O(p-z)), (4.15) 
{=1 

where 
x )),_, 

0 
The functions g~o(X) are absolutely continuous, and g~o(x) ~ 0, gl0(0) = -g2o(0) = (R1 - R 2 )  -1. In 
particular, = p(R  + R:) (1  + 
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L e m m a  4.5. Let p(x) = h"(x) .  The following relation holds: 

T 

0 

P r o o f .  Denote lay = (p(x)y")"  = Ah(x)y,  s  z) = (py")' z - py" z' t py'  z"  - y(pz") ' .  Then 

T T 

= 

0 0 

Using (4.17) and the equality l,x~(x, A) = l;~2(x, A) = 0, we obtain 

T T 

0 0 

= ~'(0, a)~"(0, a) - ~"(0, a)~'(0, a) = - ~ ( a ) .  

On the other  hand, integrating by parts, we have 

T J T I"-- If I~ (l~ L)~(~,a) ~(~,a)dx o ((~(~)~ (:~'~)) ~(x,a) ~ " - '  . . . .  p(~)~  (x ,a )~  (x,a))  
0 

T 

0 

Since the  substi tution vanishes, we obtain (4.16). 

L e m m a  4.6. Consider the integral 

f(~) e C[0,T], X C~ 

f ( x )  ~ f~-~). 

~(x) e C~[0,T], 

a( ' ) (x)  ~ aox 1-" 

T 

Z(z) = i f(~)H(z, ~) dx, 
0 

(x -+ tO) ,  h(x, z) = e x p ( - z a ( x ) )  (1  + - -  

O < a ( x l ) < a ( x 2 )  ( 0 < x l  < x 2 ) ,  

( x ~ t 0 ,  , = 0 , 1 ) ,  a ' ( x ) > O ,  

~(~,z)), 

(4.16) 

(4.17) 

(4.18) 

where the function ~(x, z) is continuous and bounded for x E [0, T], z E Q = { z :  arg z E [ - ~  +5o, ~ - 5 0 ] ,  

5 0 > 0 } .  Then, as z -+  c% z E Q, 

J(z) ~ f~(aoz) -~-1. (4.19) 

P r o o f .  Tile fimction t = a(x) has the inverse x = b(t), where b(t) E C 1[0,T1], T1 = a(T),  b(t) > 0 
(t > 0) and b(')(t) ~ ao l t  1-", u = 0, 1, as t -+ +0. Let us make the change of variable t = a(x) in the 
integral in (4.18). We obtain 

TI 

(4.20) 
r  

o ( 

where g(t) = f(b(t))b'(t) .  It is clear that  for t --+ t 0  

t ~ 
g(t) ~ f~ (ao) -~ -~j , .  
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Applying Lemma 4.1 to (4.20), we obtain (4.19). 

Denote  
2 2 2 ( _ l ) { + S ( l _  #R{Rs)  

A~ = (R~ - R~) - :  Z (R{ + ~ ) - + ~  ' ~ -> 1. 
~ , s = l  

Let us show that A~ r 0 for all a > 1. For definiteness, we put argp E (0, �88 i.e., {R~,R2} = { -1 ,  i}. 
Then 

Aa = - ( t ~ l  - R2)-2( -2) -a- lac~,  

where a~ = (# - 1)(1 + i ~+1) + 2(# + 1)(1 + i) ~+1. Since I1 + i~+11 < 2, I1 + it ~+1 = (v/2) ~+1, it follows 
that  a~ 7 ~ 0, ~ _> 1. Hence Aa ~ 0 for all a > 1. 

L e m m a  4.7. As x --+ 0 let h(x) ~ h ~ ( a ! ) - l x  ~. Then as IAI -~ ~ ,  argA = ~ 5s 0 there exists a finite 

limit I~ = l i m g - t g ) I ( A ) ,  and 

A~h~ = I~. (4.21) 

P r o o f .  Since p(x) = h"(x),  and by virtue of the conditions of the lemma, we have, as x -+ +0, 
~(x) ~ ph~(a!)-~x ~. Using the asytmptotic formulas (4.15) and Lemma 4.6 we find, as IAI - ~  oc, 
a r g A = q o r  p c S :  

2 (_1)(+ s 
~(x)Ar A) dx ~ p~-"~.(R~ - R~) -2 ~ (R{ + R~)~+~' 

0 ~ , s = l  

T 

/ ~(~)e"(~, a)~"(~, A) 
0 

2 ( _  ] ~ - k s  /22 /22 

~ , s = l  

Subst i tut ing the expressions obtained in (4.16), we obtain the assertion of the lemma. 

From tile facts presented above we have the following theorem. 

T h e o r e m  4.4. Problem 4.6 has a unique solution in the class h(x) E A[0, T]. This solution can be 

found according to the followin 9 algorithm: 

(1) we calculate ha = h(~)(0), a > 0, h0 = 1. For this we successively perform operations for  ~ = 

1 , 2 , . . . :  we construct the function h(x) e A[0, T], h(x) > 0 such, that h( ')(0)  = h , ,  • = 0, a -  1, 
and arbitrary in the rest, and we calculate ha from (4.21); 

(2) we construct the function h(x) front the formula 

cx? 2go~ 

h ( x ) :  ~ h ~ ,  0 < x < ~ ,  
ct=0 

where 
- 1  

If R < T, then for R < x < T the fimction h(x) is constructed by analytic continuation. 
We note that the IP in the class of piecewise-analytic functions can be solved in an analogous 

i n a n n e r .  

4.5. N o n l i n e a r  d i f ferent ia l  equations .  Consider the nonlinear DE 

- y " ( x )  + q(x)y(x) + p(x)y2(x) = Ay(x), x > 0, (4.22) 
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where q(x), p(x) e g(O, 
s tudy of the IP. In this 

utilized m e t h o d  c~/n be 

Let us cons t ruc t  a 

[[qHc(0,oo) + 4[[Pllc(0,~). 

oc) are complex-valued flmctions. The  nonl inear  term qual i ta t ively modifies the 
section, we formulate  and solve the IP  for the  model  nonlinear  DE (4.22). The  

applied to IP ' s  for a wide class of nonl inear  equations.  

Iost- type solut ion of (4.22). Let A = p2, I m p  > 0, and G = {p " I m p  _> 0, IPl >- 

We introduce the  functions {z~(x, P)}~_>0 by the  recurrent formulas zo(x, p) = 1, 
OG 

- 2 zk+l(x,p) = 1 + ~zpl ( exp (2 ip ( t_x ) )_ l ) (q ( t ) z k ( t , p )+exp ( zp t )p ( t ) z k ( t , p ) )d t  ' k > 0 .  

:g 

The est imates Izk(x,p)l < 2 and ]zk+~(x,p) - zk(x,p)[ _< 2 -k -~  are valid for x > 0, p E G; therefore the 

series z(x,p) = 1 + ~ ( z~+l (x ,p ) -  zk(x,p))  is absolutely and un i formly  convergent for p E G, x _> 0. 
k = 0  

In addition, Iz(x,p)l _< 2, lim z(x,p) = 1 (uniformly with respect  to p E G), and z(x ,p)  = 1 + O(p -~) 
x---~ oG 

(uniformly wi th  respect  to x > 0) as Ipl -~ ~ .  The  fimction p (x ,  p) = z(x, p)exp(ipx) is a solution of 
the integral equat ion  

~ ( x , p ) = e x p ( i p x ) + ~  ( e x p ( i p ( t - x ) ) - e x p ( i p ( x - t ) ) ) ( q ( t ) ~ ( t , p ) + p ( t ) ~ 2 ( t , p ) ) d t ,  

x 

and therefore p is a solut ion of (4.22), ~ is regular with respect  to p E G for each fixed x _> 0, and 
lira p(x ,p )exp ( - ipx )  = 1, ~(x,p) = exp(ipx)(1 + O(p-1)) ,  Ipl -~ ~ -  Denote m~(p) -- ~(J-l> (0, p), 

x --+oo 

j = 1, 2. The  IP  is formulated  as follows. 

P r o b l e m  4.7.  Given the  functions 92j (p), j = 1, 2, and p(x), find the  function q(x). 

We give the solut ion of Problem 4.7 for the case in which q(x) and p(x) are analyt ic  for x _> 0. 

Denote by M the set of analytic funct ions f (x )  for x _> 0 such t ha t  f(J)(x)  E s oc) for all j _> 0. 

L e m m a  4.8.  Let p(x) ,  q(x) E M.  Then the asymptotic formulas 

o o  (2~ l] 

l ~ ' - ~ g  (") ;x~ = 0,2, (4.23) ~( ')(x ,p)  = E exp ((s + 1)ipx)(ip)" E (iP)-~ E CUu(s + ' k- , ,s t  ,, " 
s = 0  k = 2 s  # = 0  

(3<3 

91j(p) = (ip) j - 1 E ( i p ) - k 9 2 k j ,  glOj = 1, j = 1,2, goo(X) = 1 (4.24) 
k = O  

are 'valid as ]p[ ~ 0% p E G. The functions gks(x) are analytic for x > O, and g~s(x)q(x) E hi,  
gks(x)p(x) E M.  Moreover, the .following relations hold: 

(8 2 -t- 2S)gk+2,s(X) + 2(8 + 1)glk+l,s(X) + g;s(X) = q(x)gks(X) 

k-2~+2.___, ~-- . . . . ~  (4.25) 
+p(.~:) 2_, ~gj§ s >_ o, k >_ 2 s -  2, 

j = 0  i = 1  

[k/21 It,/2] 

92kl ---- E g~s<0), 9~.,2 = E ((s + 1)gks(0) + g;_l,~(0>). (4.26) 
,S=0 8 = 0  

Here and below, gk.~(x) - 0 for k < 2s. 

P r o o f .  Let us show tha t  
N [k /2 ]  

- N - 1  z(~, ;) = ~ ( i p )  -~ Z g~(x) exp(isp:~) + p ~+~(:~, p) 
k = 0  s = 0  

(4.27) 
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for any N _> 0, where [-] denotes the greates t  integer in the nmnber ,  and I~N+~(x,R)I ~ CN+~ for all 
x > 0, p E G. We prove this fact by induc t ion  on N.  For N = 0, (4.27) is obvious.  Assume tha t  
this formula holds for some N = No. By  construct ion,  the funct ion z(x, p) is a so lu t ion  of the integral 
equation 

OO 1/ 
z(x,p)= 1 + ~ip ( exp (2 ip ( t - x ) ) -  1)(q(t)z(t,p)+p(t)z2(t,p)exp(ipt))dt. (4.28) 

x 

For N = No, we have 

N [k/2] 
Z2(x'P) = E (ip)-k E hks(X)exp(ispx) + p - N - l x N + I ( x , p ) ,  

k=0 s : 0  
(4.29) 

where the funct ions hks(x) are analytic for x > 0 and hks(x)p(x) E M, IXN+~(X,p)I <_ for all 
x _> 0, p E G. Then ,  subs t i tu t ing  (4.27) and  (4.29) into the  r ight -hand side of (4.28), we obtain 

N [k/2] 

z(x,p) = 1 +  k=0 ~ 2 - 1 ( i p ) - k - 1  ~=0 ~.  ( exp (2 ip ( t - x ) ) -  1) 

x (q(t)g~(t)exp(ispt) + p(t)hk~(t)exp((s + 1)ipt)) dt 
o o  

1 -N-2 ]" + ~ p  (exp(2ip(t--x))--l)(q(t)~N+l(t,p)+p(t)xN+l(t,p)exp(ipt))dt. 

Integrat ing by par ts  the k th  te rm -~o - k + i t imes we obta in  (4.27) for N = No + 1. 

Thus, the  asympto t ic  formula 

[k/2] 

z(x, p)---- E ( i p )  -k E gas(x)exp(ispx) 
k=0 s=0 

holds uniformly wi th  respect  to x _> 0 as ]Pl --+ oc, p E G. Therefore (4.23) is proved for ~ = 0. If ~, > 0, 
then the considerat ion is similar. Since glj  (p) = p(J-~)(0, p), t hen  (4.24) and (4�9 are obvious corollaries 

of (4.23). Now by subs t i tu t ing  (4.23) into (4.22) and equat ing  the coefficients for p-k exp(ip(s + 1)), we 

obtain (4.25). The  l emma is proved�9 

Differentiate (4.25) ~, t imes with respect  to x and set x = 0. We obtain 

28 ~ ( ' )  2(8 ( .+1)  ~(.+2) E C J q ( J ) [ o ~ " ( ' - J )  ( 82 -~- )gk+2,s(O) -~- ~- 1)g/c+l,s(O) -~- Yks (0)  = ~ ~ ]yks  (0)  
j=o  

tJ k--2s--2 s m, 

L tJinYj+2i--2,  i - 1 (  )gk--j--2i+2, s-i(o)' S >_ O, k >_ 2s - 2, ~ > O. 
m=O j=O i=1 p=O 

(4.30) 

For l k 0 we consider linear algebraic sys tems Xl tha t  consist of (4.26) for k = l § 2 and (4.39) for 
= _ _ -- g ! l - k + 2 ) l  O' s=O,[( l+2) /2] ,k+~ 1,~>O,k>max(O,  2s 2), wi th  respect to the unknowns  q(0(0), ~.~ ~ ), 

s = 0, [(l + 2)/2], k = max( l ,  2s) , l  + 2. Since for each I _> 0 the matr ix  of the sys tem Xt is tr iangular 
with nonzero elements  on the main diagonal ,  the  de terminants  of the  systems Xt are nonzero�9 By solving 

�9 = g (') ;O~ and,  consequently, tile funct ion  q(x). Therefore, the systems Xz for l 0, 1, 2 , . . . ,  we find q(0(0),  a.~ ~ j, 
the following s t a t emen t  holds�9 
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T h e o r e m  4.5. Let p(x), q(x) E M. Then the solution, of Problem 4.7 is unique and can be found by 
the .following algorithm: 

(1) calculate gio = 92ii = 9ii2; 
(2) for l = 0, 1, 2, . . .  successively solve the linear algebraic systems Xz and find q(0(0), g!/-k+2) (o), 

s = 0, [(l + 2)/2], k = max(l,  2s), l + 2; 
(3) construct the ]:unction q(x) by the formula 

q(x) = Z q(t)(x)~ 
l=O 

5. Dif ferent ia l  Operators w i th  Local ly  Integrable Coeff ic ients  

We investigate here the IP for the non-self-adjoint differential operator (2.1) on the half-line with 
locally integrable analytic coefficients from the so-called generalized Weyl functions. To solve the IP we 
use connections with an IP for pm'tial differential equations, and also use the Riemann-Fage formula 
[28] for the solution of the Cauchy problem for higher-order partial differential equations. 

5.1. D i s t r i b u t i o n s .  Let us introduce the space of generalized functions (distributions) by analogy with 
[62]. Let D be the set of all integrable entire flmctions of exponential type on the real axis, with ordinary 
operations of addition and multiplication by complex numbers and with the following convergence: z~ (#) 
is said to converge to z(#) if the types ~k of the functions zk(#) are bounded (supcrk < ec) and 
]]zk(#) -z(#)II~(_oc,~ ) --+ 0 as k -+ oc. The linear manifold D with such convergence is our space of test 
functions. 

Def in i t ion  5.1. All additive, homogeneous and continuous functionals (z(#), R} defined on D are called 
generalized functions (GF). The set of GF is denoted by D'. The sequence of GF R~ E D' converges to 
R E D' if lira (z(p), R~:) = (z(p) R} for any z(p) E D. A GF R E D' is called regular if it is determined 

]r ~ 

by the following formula: 
o o  

= / 

Let the function f(t) be locally integrable for t > 0 (i.e., it is integrable on every 

z(#) ~ D, (5.1) 

Def in i t ion  5.2. 
finite segment [0, ~r]). A GF nf(p) E D' defined by the equality 

O(3 OO 

{z(p),Lf(.)} d~=f / f ( t ) d t  / z(p)exp(ipt)d., 
0 - - o o  

is called the generalized Fourier-Laplace transformation for tile function f(t). 

Since z(p) E D in (5.1), z(p) E s oc). Therefore, by virtue of the Paley-Wiener theorem, the 
function 

o o  

z(p)exp(ipt) dt 
- -  0 0  

is continuous and fiifite. Consequently, the integral in (5.1) exists. We note that  f(t) E/2(0, oc) implies 
o o  (ND 

(z(#),L.f(#)} = f z(#)dp f f(t) exp(ipt)dt. 
- - ~  0 
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Consequently,  in this case, Lf(iz ) is a regular GF and coincides with the  ordinary Four ier -Laplace  

t ransformat ion  for the funct ion f(t). 
Since 

O o  

1 S 1 - cospx  
7r #2 

- - O O  

the following inversion formula  takes place: 
X 

X --t, t < X, 
exp( i#t )  d# = 0, t > x, 

f ( x - t ) f ( t ) d t = {  1 --~ ,L f (# ) } .  (5.2) 

5.2.  S o l u t i o n  o f  t h e  I P  fo r  t h i r d - o r d e r  D O ' s .  In this section, in order to simplify calculations,  we 
give formulat ion and solut ion of the  IP for DO's of the th i rd  order. The  general  case of a rb i t rary  order 

operators  will be described, in brief form, in Sec. 5.3�9 

Let us consider the DE 

ly ~- yttt 4- pl (x)y t -~- po(x)y = .~y = (i#)3y, x > 0. (5.3) 

Denote  qo(x) = --Pl (X), ql (X) = p O ( X )  - -  PI(X), ~ = { X :  I argx[ < ~ }, R~ = exp (2(k - 1)%~), k = 1,3, 
a n d  assume tha t  the funct ions q~,(x) are regular for x E B,  x = 0, and cont inuous  in B. Let us consider 

the following integral equat ion:  

1 1 (s - u)" i.-i [ \ l -~ [ ,~ V "~ 
~ x ' ~ J  = ~ x ' ~  + z - ,  - 5  -~i q,(t)Q(t, u) dt 

l ] : O  0 0 

Z Rk du q, - - + x  Q - - + x , u  
+ 3(1 - Rk) u! 1 - Rk 1 - Rk 

k=2 0 0 

where 

~=0 

(5.4) 

3 u! q'(t) d t + Z  R~ - - + x  - q ,  de . 
�9 - -  3 ( 1 - Z R k )  u! q" 1 -  Rk  1 Rk 

0 k=2 0 

(5.5) 
By the me thod  of successive approximat ions  it is easy to show tha t  in the  domain  s _> 0, x E B,  the 
integral  equation (5.4) has a unique solntion Q(x, s). The  function Q(x, s) is continuous and,  for any 

fixed s _> 0, is regular with  respect  to x E B. 
Moreover, if the functions q,(x) are regular for Ixl < 5, then  the f lmction Q(x, s) is regular  in the  

domain  7~ = {(x, ~):  Ixl < ~, I~l < 4 ~ ,  ]~ + ~(1 - R~)-~I < ~, ~, = 2,3}. 
Let the function Q(x,s) be a solution of (5.4). Denote  u(x,t) = Q ( x , t - x ) ,  0 _< x _< t < ~ ;  

u(x, t) = 0, t < x, and consider the  GF 

O(x, #) = e x p ( i # x ) +  L~(#), 

(z(p),(b(x,#)} = / z(p) exp(i#x)d# + fu(x,t) 
--00 X 

o o  

dt f z( ,)  exp(i~t) d, ,  
- - O O  

(5�9 

4 . )  e D. (5.7) 

i.e., 
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Pu t  also 

r = ( ( iv )~(v) ,  ~(x,v)>, 
# 

(~(~),~(J)(~,~)) = dL-~3 (z(~), ~(~,~)) ,  ~ =  ~,3, 

for z(#) ~ D, #3z(#) ~ s  ~).  

T h e o r e m  5.1.  The following relations hold: 
Z~(x, ~) - (i~)~4(x, ~) = o, �9 (o, ~) = 1. 

Proof.  Equal i ty  (5.4) can be t ransformed to the following form: 

3 
u = 0  k = 2  0 

(s - ( I -  Rk)(~ - x)) ~ 

u! q~(~)d~ 

s s x q  I~_-R~ 17k (s-(1 ~R~)~)~q~(~)d~+ id, a i ((s --u) -- (1-Rk)(77--x))~ q~ (,DQ07, ~,) d,~ 
0 0 0 

8 l--Rk 

.! q,('q)Q(zl, u) d~l �9 
0 0 

(5.s) 

Indeed, first we can t ransform Ql (x ,  s). Via the changes of variables in the  r igh t -hand par t  of (5.5), 
z] = ((1 - R~) -~ + x and ~ = ((1 - R~) -1 respectively, we obta in  

[ X X-[ s ~(  ls~'/ ~ R ~ ' - ~  1 /nk(s- ( l -Re)(~-x) )"q~(z l )dz  , 
Q~(x,s)= 3 . !  q~(t)dt + 3 ,! 

u = 0  0 k = 2  \ x 

, / k  ( s -  ( 1 -  R~)~) ~ 
- u! q~,(~l) d~l �9 

0 

Using the  regular i ty  of the integrand,  we can make the  change 

x+ i=~k x~ i-~k x 

/ : / - / .  
x 0 0 

Since 

j = 1, 2, 

) ~;5~ (s - (1 - Rk)~]) ~ 
q~(,D d~ . 

0 

3 

ZR :0, 
k = l  

x 

the integrals  f can be canceled, and (5.9) has the form 
0 

3 
~ : 0  k = 2  

( 5 . 9 )  

(8  - (1 - R / ~ ) ( ' q -  x ) )  ~' 
~! q~(~D dv - 

The  rest t e rms  in tile r ight-hand par t  of (5.4) can be t ransformed in analogous way. 
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Differentiating (5.8) we obtain 

xH s 
1 - -R k 

f qlOl)d ~ 
0 

8 8 

qo x+ fZR-  k Q x+ l_R~ ,u  du§ du 
0 0 o (5.10) 

R~ s Rk ql(71) d~ 
Q,(x,s) = 3(1 ----Rk)q~ x + 1 + 3 -  

h = 2  0 

1--~R k 

/ 3 
0 

+ ~  / d u  f ql(~l)Q(~?,u)&, 
0 0 

3( l~Rk)q~  1--Rs 

8 

r~ f du 
3 

0 

8 

k S - - ~ t  S - - U  

3(1-R~)  qo x +  i-~-~ Q x +  1--Rk 'u du 
0 

8 

R~ s - u  s - u  

0 

x -  u / J--/~k X 

0 0 

du 

(5.11) 

Q=(x, s) = ~ R~ ,  s 
~-% X + l J - R k  + 

k = 2  

8 

+ q~o x+f--~k Q X+l_R---~,u +qo x+~-R--  k Qx x + - -  
0 

( -~ ~ ql X + l _ R k ) Q  X + l ~ - , u  du , 
0 

Rk - R ~ ) q ~ ( x + S )  ( 1  1 -  R~ 

S - - U  

1 - R k  

(5.12) 

exs(:~,~)=Z 3(1-R~) x+--z%, + q, x + ~  1 1 
k 2 

t S - - U  S U 

3(1 - ~ ) .  qo x + f ~ - - ~  Q �9 + 1 -  R~ 
o 

S 

o 

,~) +qo ( x + - -  8 - - U  

i - Rk 

1 - Rk 'u du + qo(x)Q(x, s) 

,@) d,~ 

(5.13) 
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From this we obtain 

oao(x's) 3oao(:~'s) aaO(x's) (OO(.,s) 
&~ Ox20 ~ +a ax&~ -vo(x)Q(* ,~)+w( , ) \  o~ 

Moreover, it follows from (5.8) and (5.11) that 

OQ(., ~)) 
Ox 

x 1/ 
Q(0, s) = 0, Q(x,O) = -~ pl(t)dt, 

0 1( j 
Q~(~,~),~=o= 5 w(x ) -w(o ) -  (po(t) 

0 

Since u(x,t) = Q(x,t - x), 0 < x < t, (5.14) and (5.15) imply 

-v~(t)Q(~,o))dt,) . 

Consequently, 

o~u(x,t) o~(x,t) O~(x,t) 
ot~ + o.3 +pl(.)  o ~  +vo(.)u(x,t)=o, 

~(o, t)=o, 
X 

i f  u(x,x) = ~ p~(t)dt, 
0 

Ux(X' l~) l t=x = 5 pl(O) -~- ( P o ( ~ ) -  p l ( ~ ) u ( ~ . , ~ ) ) d ~  . 

o 

ad~(:~, x)= ~(.), 

Further, using (5.7), we calculate 

aA 
dx (~(z,t),,:~) + w(x)u(x,.) =vo(*). 

- -  (:X~ 

d 2 d ~ ) 
+ po (x ) -p s ( x )u ( x , x ) -  ~x2u(x ,x ) -  dx (ux(x't)rt=x) - ux~(x't)lt:x) exp(ipx)d# 

/ 

(o3~(x,O o~,(x,t) 
+ f \  o~, +vl(x)~-x  +vo(~>(x,t)),t f ~(,)exp(i~,),,. 

X - - ( X 3  

On the other hand, the integration by parts gives 

- - 0 4 )  X - - 0 0  

= f z(#)(_ (i#)3 + (,i#)2,,(:~, ~)_ (i#)~)t(x, t)l~:x + u.(:~,t)l~:.) exp(i~x) d. 
- - 0 0  

O 0  O 0  

+ f Oau(x, t) Ot a dt / z(#)exp(ipt)d#. 
X - - 0 0  

(5.14) 

(5.15) 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.21) 
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Since 

d 
~(~,t),~=~ + ~(x , t )  ~__~ = ~ ( ~ ,  ~), 

d 2 
d ~  ~(~' ~) + ~x(~, t),~=x - ~(~ ,  ~),~=~ = 2 d  d~ (~(x,~),~:x), 

from (5.16), (5.19), (5.20), and (5.21) it follows that 

( x )  

O o  

0 t 3  + 
x 

<z(#), l~2(x,  #) -- (i#)3~2(x, # ) }  

3 d u ( x , x ) ) +  @o(X) 3 d p l (x)u(x ,x) ) )exp( ipx)  - d x ( ~ ( ~ ' t ) l ~ : ~ )  - d,  

o O  

Ox 3 +pl(x)~-~x  +po(x)u(x,t) dt z(p)exp(ipt)d# = 0 .  

From (5.7) for x = 0 and (5.17) we obtain 

<4,) ,~(0, , )}  = f z(,)@, 

i.e., r #) = 1. Theorem 5.1 is proved. 

D e f i n i t i o n  5.3. The  GF ~5(x,p) is called the Weyl generalized solution of the DE (5.3), and the 
functions Tdl,(p) = qh(~)(0, p), u = 1, 2, are called the Weyl generalized functions (WGF). 

(2O 

Note that if P ~  d e f  [ r(y) dy < cxD, r(y) def - -  - -  m a x  s u p  Iq.(x)], then lu(x,t)l < Cexp(Ct), a n d  t h e  
.] u Re x=y function 0 yEu 

c o  

m ( ~ , . ) :  exp ( ~ )  + f ~(., t) exp(e~t) de, argp E (6 ,  56~-), 
X 

is the ordinary Weyl solution. 
The IP for the DE (5.3) can be formulated as follows: 

P r o b l e m  5.1. Given the WGF's  {9)l,(#)},=1,2, construct the functions {pk(x)}l,,=o,1. 

For this IP let us prove the uniqueness theorem. 

T h e o r e m  5.2. If 9Jt,(#) = 9Y~,(#), • = 1, 2, then p~,(x) = ~k(x), x >_ O, k = O, 1. 

Proof .  We denote 
0 - 

h~(t) = oL-T~ ~4x, t),~=o, , = 1,2, t _> 0. 

Taking into account (5.18), from (5.7) we deduce that 

9Y~1 (,) = (i#) + Lhl (#), 9N2(,) = ( i # ) 2  _ 2hi (0) + Lh2 (#). 

Using tile inversion fornmla (5.2), we calculate 

d2 

d 2 <1  
h2(t) = h-~2 ~"  

1 - cospt ~ } ' [ 1 ( # )  - -  i# \ 

1 -- COS #t \ 
#2 , [IiR2(#) - -  (i#)2 _4_ 2h1(0) / �9 

(5.22) 
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If the condi t ions  of the theorenl are flflfilled, we obta in  from (5.22) tha t  h, ( t )  _= h . ( t ) ,  v = 1, 2. But  

(5.16) and (5 .17 ) imp ly  

oa~(x,t) Oa~(z,t) O~(z,t) O~(z,t) 
Ot~ + Ox~ +P~(~) O~+P~ +~~ 

O'~(x,t) ~=0 Ox" =0 ,  v = O, 1, 2. 

For this Cauchy  problem we use ~he R iemann-Fage  formula (see [28]) in the  vicini ty of the  point x = 
t = 0, and  obtain:  

0 0 0 k v = O  

• o, ~3, x - ~1, ~1 - ~2, &) d&, 
O- 

where V is the  Riemann  Fage function,  u~(x,  t) = ~TxU(X, t). By changing the  order  of integration, we 

obtain 

where 

v = O ,  1. Since 

it follows f rom (5.23) tha t  

x 1 

~(x,t) = f z~.(~)~.(~,t,~)d~, 
0 v = O  

(5.23) 

+ �9 + (R~ - R~)~ + ( R ~ -  R ~ ) & -  R~)V(O, o, r ~ - ~ ,  ( ~ -  ~,~2) d~ ,  

Oi+JB ' (x ' t '~ )  OxiOtj ~=x = 0, i , j  = 0,1, 

- / 2_.,~.(~) ~ d~, 
OxiOtJ Jo ,=0 (~x cTr 

Using (5.19), we obtain 

~ ( x )  = 3 d ~ ( x ,  x), 

~o(x) = 3 --d ( ~ ( ~ ,  t)~t:~) + p~(x)~(:~, ~) + 3~(:~, 
dx 

From this and  from (5.24) follows t ha t  

x 1 

P ' : 0  0 

where 

d 
A1. = 3 ~ x B . ( x ,  t, ~), 

3 ~ ( ~  ) 
Ao, = dx Ox t=x 

i , j  = 0 ,1 ,2 .  (5.24) 

:~)d~(~,x) 

k = 0, 1, 

+ pl(x)S/x, .~) + 3,~(x, x)dB,(x ,  ~, O. 
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Consequently, iga.(x) = 0, k = 0, 1. Theorem 5.2 is proved. 

S o l u t i o n  o f  t h e  IP. Let the W GF  9Jt,(#), u = 1, 2, of the DE (5.3) be given. We construct the 
functions h,(t) ,  , = 1, 2, by (5.22). Since u ( x , t ) =  Q ( x , t -  x), Q(0, s ) =  0, we have 

h 1 ( 8 )  = Qx(o, s), h 2 ( 8 )  = Qxx(O, 8) - 2Qxs(O, 8). (5.25) 

Note that  the functions h,(s) are regular at the point s = 0. More precisely, if the functions qt~(x) are 
regular for Ixl < 5, then the functions h,(s) are regular for Is I < ,~5.  

f X Q 1  Denote q~(x)= qo() ,  (z ,s)  = Qz(x,s) .  Using (5.25), (5.10), (5.12), and (5.13), we calculate 

1 ~ ~k q~ s . s 
h~')~" = -3 1 -  R~ 1 - Rk + R~ql  1 - - ~  

k = 2  

~+1 / (ql ( 8__ U ) O ( 8_U 7~) _~_qo Q 8__,~ ) Q1 ( 8__7s ))  
~ f ~-R~ o 1---- Rk ]_ 2-R---~ 1 - Rk 1 - Rk ' u du (5.26) 

+R~ ql 1 - R k  Q 1 - R k ' u  du , 
0 

u =  0,1. 

Having solved (5.26) with respect to the functions q~(x) and ql (x) ,  we obtain 

3 x 

ql(X) -- E t~2k f (G~(~t)Q(u, (1  - -  / ~ k ) ( X  - -  U) )  -t- G 0 ( ~ ) Q  1 (~t, (1 - Rk)(x -- u))) du 
k = l  0 

3 x 

q~(x) + 3 E R ~ / q l ( u ) Q ( u ,  (1 - Rk)(x - 
k=2  0 

u)) du = •  

= I i ( x ) ,  (5.27) 

(5.28) 

where 

I1(x) = 
3 

3 E ( R ~  - Rk) -1 (Rkh i ((1 - Rk)x) - h2((1 - Rk)x) ) ,  
k=2  

3 

I2(x) = - 3  E R2(  Rkhrl ( ( 1 -  Rk)x) -- h2((1 -- RIo)x)). 
k=2 

Since q0(0) = - p l  (0) = -3h i (0 ) ,  we obtain 

qo(x) = - 3 h 1 ( 0 ) +  

X 

f q~(~) 0 
du. (5.29) 

Equality (5.10) can then be rewritten as follows: 

~ ~ -31~1(0) + q~(~)d~ 
h:=2 0 

+ R~(1 - R~) 

8 8 

s - u s - u , u)  d u + R ~ ( 1 - R ~ ) /  

0 0 

s 
X-~ 1 - - R  k 

/ 
0 

ql (fl) d~] 

du 

x-~ 1%\ ) 

f ql(~f)Q(~,~)@ �9 
0 

(5.30) 
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Let us consider the sys tem of nonlinear integral equations (5.8) and (5.27)-(5.30) with respect  to the 

functions qo(x), q~(x), ql(x),  Q(x, s), and Ql(x ,s ) .  We solve this sys tem by the  method  of successive 
approximat ions  insuff ic ient ly  small  ne ighbourhood  of the point x = s = 0. T h e n  we obtain the following 

obvious result. 

L e m m a  5.1. Let, for a fixed 5 > O, the functions h,(s) ,  ~ = 1, 2, be regular .for Isl < ~ .  Then there 
exist "unique .functions qo(x), q~ (x), and ql(x), which are regular for Ixl < 5, and unique functions Q(x, s) 
and Q~(x,s), which are regular in ~5, where all the functions satisfy the system (5.8), (5.27)-(5.30),  
i.e., the system (5.8), (5.27)-(5.30) is uniquely solvable in a neighborhood of the point x = s = O. The 
solution of the system (5.8), (5.27)-(5.30) can be found by the method of successive approximations, and 
q~(x) = q~(x), Ql(x ,s )  = Q~(x,s) .  

Thus  we can construct  the  solut ion of the  IP  via the following a lgor i thm.  

A l g o r i t h m  5.1.  The  W G F  9)l , (#) ,  u = 1, 2, of the DE (5.3) are given. 

(1) By formulas (5.22) we cons t ruc t  the functions h,(t),  L, = 1, 2. 
(2) Having solved the  sys tem (5.8), (5.27) (5.30), we find the funct ions qo(x), q~(x): ql(x),  Q(x,s) ,  

and Ql(x,  s). 
(3) We construct  the funct ions  p l ( x ) = - q o ( x ) ,  po(x)= q l (x )= q~(x), Ixl < 5. 
(4) By means of analyt ic  cont inuat ion  we obta in  the functions po(x) and  p~(x) for x > 0. 

5.3.  Similar results are also valid for the DE of an arbitrary order 

n-2 
ly _-- y(~) + ~ p ~ ( x ) y ( ~ )  = ~ - - ( i , ) %  x > o. (5.31) 

k:=0 

In this case, 

v 
q,(x) A .~  J ~_2_jy~_2_jv~j, L, = 0, n - 2, 

j=O 

B = x" l a rgxl  < ~ - n ' Rk = exp 

The  function Q(x, s) can be de t e rmined  by the integral  equation 

n-2 /-7-~1f (8-~L)v~i 
Q(x, ~) = Q~(x, s) + 

t~=0 0 

Z ,,(i + 

k=2 0 0 

x 
du / q~(t)Q(t, u) 

o 

k - -  1,n. 

dt 

1 - R ~  
~- X, U) 
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where 

n " ~,~.. q/2(t) dt 
L,=0 0 

s q ) 
~k - -  + x - q .  d~ . 

+ z--~ n ( 1 -  Rk) ,!  1 - R k  1 
k = 2  0 

The funct ion  u(x, t) defined by the equalities u(x,  t) = Q(x,  t - x), 1 < x < t < oc, u(z,  t) = 0, t < x, 

satisfies the  following relations: 

where 

0n~(~, t) n-~ o/2~(x, t)  ~o~(~,t) 
Ox n + E p ~ , ( x )  ~ -- (--1) 0 -~  , u(0, t) = 0, 

/2=0 

n--j  d n _ m _  j n -  2 /2-j  d/2_rn_ j 

- -  C v _  m d x / 2 - m - j  Z Z Z 
m = l  u : j + l  m = l  

+ ( - 1 )  ~- j  o n - J - l u ( x ' t )  = pj(x) ,  j = 0 ,  n - 2 ,  
Ot~-J - t  t=~ 

0/2 k! 
u/2(x,t) = -~x U(X,t) ,  c3~ - j ! (k  - j)!" 

The Weyl generalized solut ion ~(x,  p) is d e f n e d  by the  formula q~(x, p) = e x p ( i p x ) + L u ( # ) ,  and l ~ ( x ,  p ) -  
( i p ) ~ ( x , # )  = 0, ~(0, p) = 1. The  functions 92R/2(#) = g)(/2)(0, p),  , = 1, n - 1 ,  are called the  W G F  

of (5.31). 
The  IP  is formulated here as follows: find the  coefficients {p~(x)}k=0,n_ 2 of (5.31) via the  given 

WGF {~/2(#)}/2=1,n--1" Solution of this IP can be obtained in exact ly the  same way as in the  case 

~ % ~ 3 .  

P A R T  2 

H I G H E R - O R D E R  D I F F E R E N T I A L  O P E R A T O R S  W I T H  A S I N G U L A R I T Y  

6 .  D i f f e r e n t i a l  O p e r a t o r s  o n  t h e  H a l f - L i n e  

6.1.  F u n d a m e n t a l  s y s t e m s  of  s o l u t i o n s .  Let  us consider the DE 

7%--2 

j = 0  

oil the  half-line x > 0. Let # 1 , . . .  , pn be the roots  of the characteristic polynomial  

j - - 1  

5 ( , ) : ~ - j I ~ ( p - k  ), - n - - i ,  -~ 1 = 0 .  
j =0  k = 0  

It is clear that  #1 + " "  + P~ = n ( n -  1)/2. For definiteness, we assume tha t  # ~ -  #j # sn  (s = 
0 , + 1 , •  R e # l  < " "  < R e p n ,  #k # 0, 1 , . . . , n - 3  (other cases require minor  modifications).  Let 
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0~ = n -  1 - a e ( p n  - > s ) .  Denote  qoj(X) = qj (x)  for x _> 1, and q0~(:~) = uS,"~(x~xmin(0"-i'0), for X _< 1, and  

assume tha t  qoo (x) E /2(0 ,  oc), j = 0, n - 2. 

In this section, we cons t ruc t  special FSS's for the DE (6.1) and use t h e m  to investigate the IP. 

The  presence of a s ingulari ty in the  DE introduces essential quali tat ive modif icat ions in the invest igat ion 
of the  operator .  Basic difficulties arise when n > 2. In the construct ion of the  special FSS's for (6.1) 
the  e lementary  solutions of the  simplest equat ion  are no longer exponentials ,  bu t  functions t ha t  are 
generalizations of the  Hankel  solutions of the  Bessel equation. An impor t an t  and  technically difficult 

problem is the de te rmina t ion  of the  asymptot ic  behaviour  of the Stokes mult ipl iers  for the cons t ruc ted  
FSS's.  Using propert ies of the  FSS's  and the Stokes multipliers,  we in t roduce and s tudy the WS's  and  
the  W M  for (6.1), and invest igate  the  IP: to cons t ruc t  the operator  l f rom its WM.  

We ment ion  tha t  DE's  wi th  singularities arise in various areas of ma thema t i c s  as well as in applica- 
tions. In addit ion,  various DE 's  wi th  a turning point ,  for example, the equa t ion  

z(~)(t)  = ~r ( t ) z ( t ) ,  t > 0 ;  r( t )  ~ a t  "~, t ~ +O, 7 > 0 ,  

and other  more general equat ions,  can be reduced to (6.1). We also note t ha t  for n = 2 IP 's  for opera tors  
wi th  a singulari ty have been s tud ied  by several au thors  (see, for example, [18, 32, 82]). 

First  of all, we consider the  DE 

n - - 2  

l o y - -  y(n) + E r'j , ( j )  = y. (6.2) 
X n-j 

j=O 

Let x = r exp ( i~ ) ,  r > 0, p E (-7c,7r], x" = exp ( , ( l n r  + i7))), and II_ be the  x-plane with a cut along 
the  semiaxis x _< 0. Take numbers  Cjo, j = 1, n, f rom the condit ion 

n 

H Cjo : ( d e t  [ / t y - 1 ] j , , : g Z )  -1 
j = l  

T h e n  the fimctions 

O4) 

cj( ) = Z 
k = l  

are solutions of (6.2), and det [CJr'-l)(:E)]j,u=l~ ---- 

- 1  

  =cjo ,63, 

1. Furthermore,  the funct ions Cj (x) are regular  in H_.  

D e n o t e  ek = exp \ n , S~, = x " a r g x  E n ' ; / ' S1  = S n - - l '  S k * = S n - 2 k + l  [.-J 

- { [ ( ( S~-2k+2, k = 2 ,  n; Q ~ =  x : a r g x E  max - T r , ( - 2 k + 2  , inin 7 r , ( 2 n - 2 k + 2  , k = l , n .  For 

. (k~-l) x E S k there are solutions of (6.2) ek(x), k = 1, n, of the form e (x) = c~r e x p ( c k x ) z ~ , ( x ) ,  ~, = O, n - 1, 
where z k , ( x )  are solutions of the  integral equat ions  

zk,,(x) + 1 + - X - ' e ~ + l e 2 "  m m - n  

: \ m = 0  

(here a r g t =  a rgx ,  Itl > txl). Using the FSS { C j ( x ) } j = ~ ,  n we can write 

dt 

n 

= ~  kjcj(x). (6.4) 
j = l  

In part icular ,  this gives the  analyt ic  cont inuat ion for eL(x) on II_.  
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L e m m a  6.1.  

The asymptotics 

det [e(k"-l)(x)lk,,:l,n - det ~'-1 

e~("-~) (.) = ~ -~  e x p ( ~ ) ( ~  + o ( ~ < ) ) ,  >I -~ ~ ,  x ~ Q~, (6.~) 

are valid. 

We observe that the asymptotics (6.5) holds in the sectors Q~ which are wider than the sectors S~. 
Next we obtain connections between the Stokes multipliers/~0. 

L e m m a  6.2.  

;3oj no . j  (6.6) = p l j ~  , j, k = 1, n, 

n - - 1  

= # J  _ _  

j = l  

M e e d ,  fo~ arg~ e ( - ~ , ~ -  2 ~ / n ) ,  by virtue of (6.3) and (6.4), we h~ve 

e~<x)  = ~ 9~j(~')"Jcj(~). (6.8) 
j = l  

It is easily seen from the construction of the functions ek(x) that el@Sx) = e~+l(x). Substituting (6.4) 
and (6.8) in this equality and comparing the corresponding coefficients, we obtain (6.6). After this, (6.7) 
becomes obvious. 

Now we consider the DE 

loy = Ay = pny, x > 0. (6.9) 

It is evident that if y(x)  is a solution of (62), then y(px) satisfies (6.9). Define Cj(z,  ~) by 

k=0 

The functions Cj(x,A) are entire in A, and det [C~'-I)(x,A)Ij, ,  E~ ~ 1. From Lemmas 6.1 and 6.2 we 
get the following theorem. 

T h e o r e m  6.1. In each sector S~ o = {p :  argp E (k07r/n, (k0 + 1)Tr/n} Eq. (6.9) has a FSS  Bo = 
{yk(x ,  p) }k=l-~ such that yk(x, p) = y~(px), 

y 2 " ) ( z , p ) ( p I ~ )  - "  exp(pR~:c)  1 < M o ( l r i x )  -~ - _ , p ~ S k o ,  I p l x > l ,  v = 0 , n - 1 ,  (6.10) 

~ ( n - 1 )  clef v - 1  
det LYk ix, f))] k,,J=l,n 

7~ 

j = l  

wh, ere the constant 2Flo depends only on {~j }. 

The functions y~(x, p) are analogs of the Hankel functions for the Bessel equation. Denote 

c;*.(~, ~) = det [c~(~) (x, ~)] ~:0 ~ _ ~ , ~ : ~ > _ j ,  ~ , 

y j ( x , p )  ( -1)  ~ j (p (~-~J'~-~! ft) - t det �9 = [~("> (x, ~ ) ] . :0 , .~_~ ,~ :~ \  ~ , 
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Fku(px)= { /~exp(f lRk:c) ,  ]fl]x>l, F s  {exp(--pRkx), [ p [ x > l ,  

(px) "'-~, Ipl= <_ 1, (p~)~-~-"~, Iplx <_ 1, 
0 ,~.(x,p) : ~ ) ( ~ , p ) ( p ' e ~ . ( p x ) )  -~ 0, . .  . * x F*  , ~ t~,oJ = y~( ,p)(~(px)) -~, 

~t n 

g(x, t, A) = E ( - 1 )  n - j  Cj(x, A)Cn_j+ 1 (t,A) = pl-n E yj(x, p)y;(t, p). 
j = l  j = l  

The function g(x,t,),) is the Green function of the Cauchy problem t oy -  Ay = f(x), y(")(0) = 0, 
= 0, n - 1. Using (6.10)-(6.12), we obtain 

I~t~u(X,p)[ _< M1, u k ix, p)[ <_M1, x >_ O, p ESko, 

O~x~g(z,t,a ) _< M~ ~2 1 ~"~ - "  < - ' - " ~  I, Ipxl _< Co, t _< x, 
j = l  

where M1 depends on {uj}, and M2 depends on {uj} and Co. 

Let us now construct FSS's of Eq. (6.1). Denote 

J(P) = Z lPl ~~ f 
m=0 0 

O<3 

d~ + Ipl m-n+1 f [q~(t) l dt. 

Ipl -~ 

(6.13) 

(6.14) 

L e m m a  6.3.  
n--2 

J(P) <- ~fi~], IPl-> 1, Q dej E oo[qom(t)l dt. 
m=0 0 

We construct the functions Sj(x, A), j = 1, n, from the system of integral equations 

ix, A ) -  K2v~,g(x,t,A) q,~(t)Sr dt, u = O , n -  1. (6.15) 
0 \ m = 0  

By (6.14), system (6.15) has a unique solution; moreover the functions SJ')(x, A) are entire in A for each 

the functions {Sj(x,a)}j=~,~ form an FSS for (6.1), det [SJ'-~)(x, a)lj,.=~, ; 1, and X > 0, 

SJ')(x,A)=O(x'J-~'), (Sy(x,A)-Cj(x,A))x-'J =o(xU~- '~) ,  x ~ 0 .  (6.16) 

Let Sko,a = {P : P E Sko, IPl > ct}, Po = 2M1Q + 1. For k = 1, n, p E Sko,oo consider the system of 
integral equations 

n--2 c~ 

u~,(x,p) = u~ + E / A~,~,~(x,t,p)u~,~(t,p)dt, 

where 

Ak..~(x,t,p) = q.~(~)Fk.~(pt) 

x > 0 ,  u = 0 ,  n - 1 ,  (6.17) 

h 0 . 0,* - j E  Fj.(px)u~.(~:,p)F~(pt)~j (t,p), t <_ x, 

E Fj,(px)u~176 t > x. 
j=k+l 
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Using (6.13) and Lemma 6.3, we obtain 

n--2 oc 

f [Ak, ,~(x, t ,p) tdt  <_ ~JiJ(P) <_ 2~I1QIP1-1- E 
m = O  0 

Consequently, system (6.17) with p E Sko,oo has a unique solution and, uniformly in x >_ O, 

uk , ( x ,p ) -u~ , ( x ,p )=O(P-1 ) ,  PE Sko,po. (6.18) 

T h e o r e m  6.2.  For x > O, p E S~o,po there exists an FSS of (6.1), B = {Yk(x,p)}~:~, n of the .form 
yk( ~ ) (x, p) = p'Fk,(px)uk,(x, p), where the functions uk,(x, p) are solutions of (6.17), and (6.18) is true. 

The functions Y.,(') ~x k ~ ,p), considered for each x > O, are regular in p E S~o,po, continuous in p ~ S~o,po 

and 
n ( n - - 1 )  

det [VF-1)(x,~)]~,~=~,~ - ~ ~ a(1  + O( ; -1 ) )  as I~1-+ ~- 
The functions Y~(z, p) satisfy the equality 

* - ~PE ('~)/t Yk(x,p) = yk (x ,p ) -p  ~-~ y j (x ,p)y j ( t ,p  q,,~k ) ~ k ,P dt 

0 

+pl-~ f ~ yy(x,p)y;(t ,p) q,~(t)Y('~)(t,p) dr. 
\ / = ~ + l  

Moreover, one has a representation 
7~ 

y~(~, ~)= ~ v~(~)s~(x, a), (6.1m 
j = l  

where 

b~j(p) = b~ "~ (1 + O(p-1) ) ,  Ipl -~  ~ ,  t) ~ ~ ,o  (6.20) 
The only par t  of the theorem that  needs a proof is tile asymptotic formula (6.20). Let p be fixed, 

x < lpl -s.  Then  (6.12) and (6.19) become 

{ u~ = ~ b~ 6 (x, ~), 
j=l (6.21) 

u~o(x, ~) = ~ b~j(~)p-'~x "~-'1 ~j(x,~), 
T ~  

j = l  

where Cj(x,A) = x-"JCj(x,;~), Sj(x,A) = x - " J S j ( x , a ) ,  Sj(0, A) = Cj(0,,~) = Cjo / 0. It follows from 

(6.21) that  
7% 

u~o(x, p) - .~  p) = ~ (b~j(r))p -'~ - b~ "~-'~):~'~-"~ ~j(:~, a) 
j=l (622) 

+ Z b~ (~x) "~-"~ (sJ (:~:, a) - dj(x, a)). 
j 1 

Denote 

f~l(x,p) = u ~ o ( x , p ) - U ~ o ( X , ~ ) ,  

s = l , n - 1 .  
(6.23) 
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L e m m a  6.4. 

bk~(P)P -"~  - b ~  "~-"1  ~ o  = 5=k~(0, ~), 

8--1 ) 
tc 3 t" ] ~3 \~' 

j=l  

s =  1, n, (6.24) 

(6.25) 

P r o o f .  W h e n  s = 1 equality (6.24) follows froIn (6.22) for x = 0, while (6.25) is obviously true. Assume 
now that  (6.24) and (6.25) have been proved for s = 1 , . . . ,  N -  1. Then 

N-1 ) 

j=l 

j=l  

--(bk,N-I(P)P ~ - t " ~  ~UN-~--Ul)SN--I(X,A)X"X-~--UN --UkX(x,p) uk, N-1U ] - -  

which gives (6.25) for s = N.  We now write (6.22) as 

n 

j=l  
n 

+ Z v~J(~) '~-"1 (sJ (~, a) - d~. (x, a))x, ,~-~.  
j=l  

Hence, using (6.16), we obtain a~kN(O,p)= (bkN(p)p -"1 --bONp"N-Ul)CNo, which gives (6.24) for N 8 
/ 

and completes the proof of Lemma 6.4. 

Now write  (6.17) for u = 0 as 

where 

Since for t _< x _< [p[-i 

S-hi(z, p) = p l - n  

f 0 0,* + Ujo(X,p)u j (t,p)Fj(pt) v~(t,p) dt , 
0 j=k+l 

we have 

77--2 

7N,~O 

n 
E 0 0,* ~jo(~,p)% (t,p) 
j=l  

= pu~-U~x-U~tl-~+u"g(x, t, A), 

V~(t,p)dt 

(6.26) 
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it follows from (6.14) that 

~=@ ~ o , ~)~o,.(t,~ ) < Ujo9X, _ Ar I , o < t < ~ ~ Ipl -~ .  (6.27) 

L e m m a  6 . 5 .  

j( o. ~k~(O,p) = p '~-"~-n+lCso bjsF~ j (pt)uj  (t, p) Vk(t ,  p) clt, (6.28) 
0 j = k + l  ( ') _ o ~)~o , . ( t  ' v~(~, 7 ~ ( x , p )  = p~ ~ ~ , ~ - ~  ~jo(X, p) (pt) " ,-~-,~ p)dt 

o J=J / 

- (pt)uj  (t,p) V~( t ,p )d t  (6.29) 
l=1 0 j = k + l  

+ b~162 ~r F~(p t )u~  V~(t ,p)  d t ,  x < tpl - i  
o j=~+~ \~=s 

Proof .  For s = 1, (6.28) and (6.29) follow from (6.26), in view of (6.21). Assume now that (6.28) and 
(6.29) have been proved for s = 1 , . . . ,  N. Then, using (6.23), we obtain 

( ,) = _ / - ~  _ x , l - , N + l  U~ , o,*(t ' ( p t ) n - l - , n V , ~ ( t , p ) d t  p)Uj p 

0 

E,~P'I--,N+I A n ,~P'l--~l - - A) )F)(p t )u j"  ( t ,p)  V,~(t,p) dt 
l=1 0 j = k + l  

--~N -- b j xP  Cx(x,  A) 
0 j=k+l ~=N 

I I )  C ( p t ) ~ j  (t, ~) vk(t ,  p) dt 

( ) ~- tOl--rt __ :E /Zl - -pN+I  0 , 0,* 

0 j = l  

- -  d F *  0 , .  E X,U~I--P,N-~-I ]a 0 f~Pl--~I 

l = l  o j~=k+l 
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/(s163 ) ), + ~j~. j (p)uy  t~, P) V~(t, p) dt 
0 j = k §  ~ = N + I  

giving (6.29) for s = N + 1. We now let x -+ 0 in (6.29) for s = N + 1. Using (6.27), we obta in  (6.28) 
for s = N + 1. This  proves Lemma  6.3. 

It  follows from (6.24) and (6.28) tha t  

b~s(p)p -"~ - b~ = pm-n __ 

0 j = k + l  

Using (6.30), (6.13), (6.18), and L e m m a  6.3, we obta in  

b~s(p)p - '~ - b~ = O( J (p) ) = O(p-1), 
i.e., (6.20) is valid. Theo rem 6.2 is proved. 

Note  tha t ,  as a consequence of (6.10) and (6.18), 

Y(~')(x,p)(pRt~) -~ e x p ( - p R l ~ x ) -  1 _< M4lpl -~, 

0 �9 O,j | by~rj (pt)uj (t ,p) Vk(t ,p)dt .  (6.30) 

[ p [ ~ o c ,  p E S ~ o ,  

x > 1, p E Sko,po- (6.31) 

6 .2 .  T h e  W e y l  m a t r i x .  S o l u t i o n  o f  t h e  i n v e r s e  p r o b l e m .  Let the functions ~,~(x, A), m = 1, n, 
be solut ions of (6.1) satisfying the condit ions q),~(x,A) ~ CmoX ~'~, x -+ O; ~,, ,(x,A) = O(exp(pR,~x) ) ,  
x -+ oc, p E Sko. We call ~,, ,(x,A) the WS's  for (6.1). Let {Y~(x ,p ) }k=~,  ~ be the  FSS B of (6.1) in 
Sko,po- We will look for the  WS's in the form 

n 7"~ n 

k:l j:l k:l 

The  condit ions imposed on the WS's,  combined wi th  (6.16) and (6.31), imply tha t  for tP[ -> 2M4 
m 

amk(p) = O, k > m; E b k j ( p ) a ' m ( P )  = 5j,~, j = 1, m. 
k = l  

Hence we obtain 

(I),~(x, A) = E amk(p)Y~(x,p) ---- S,~(x, A) + sumj=m+19YCmj(A)Sj(x,A), (6.32) 
k = l  

amk(p) = ( - 1 ) " ~ - k ( A , ~ ( p ) )  - '  (let [b#,(p)]~=l,m\k;,=l,m_z, (6.33) 

m 

~,,~(a) = ~ b~,j(p)a~(p)= (A.~.,(p))-hX.~(p), 5 > -~, (6.34) 
k = l  

where 6mj(p) = det [bk,(p)]k=l,,,.;" 1,m-l, j '  Denote  A~ = 1. A ~ = det [b~.,] , 77~ 3 -- -- k=L,,~;,=l, ,~-i\j ,  J > m > 
0 m - k  0 - 1  1, a~~ = det [b~.]~=~,.~\~;.=~,,._~(-1) ( A )  , and n• i s the  A-plane with the cut +a>0 ._  Since 

0 0 (Z~rr~rn,) - I  0 b ~ = ~ ~  we have A ~  0 r  Cleary, a t o m =  k, , A.~_1,m_ l r 0. Using (6.20), (6.32)-(6.34), we 
see tha t  for [p[ ~ ec, p E S~o, a rgp  = ~, 

~,,~(p) = p-"~176 + o (p -b ) ,  
0 --1 0 g)Imj(A) = p"J-"'~92~~ + O(p-1) ) ,  9)l~ 0 = (Am, , )  Amj ~ O, 

~5(~')(x, A) = p - " m a ~  ) "  e x p ( p R m X ) ( 1  + O(p-Z)) 

(6.35) 

(6.36) 
(6.37) 

393 



for every fixed x > O. 

Repeat ing  the preceding  arguments  for the FSS B~,~ = {ymk(X, P ) } k = l - ~ '  w e  obtain 

n 

y.~(x, p)= Z B.~j(p)S~(x, a), 
j = l  

~.~(~) 1 - i  1 1 = (:x.~.~(p)) :Xmj(p), A..~(p) = act [B~j(p)]~=l,.,;~=l,.,_~,j. 

Denote G = p : arg p E 2~ , 2-g // . The doma in  G is the union of two sectors with 

the same {R~}~=~--~. Consequently,  the funct ions A ~ j ( p )  are regular  for p E G, IPl > P~, and  continuous 
for p E G, IP] 2 p~. We have thus proved 

T h e o r e m  6.3.  The WS's  #~m(X, ,~) can be written as 
n 

�9 .~(x,~) = & ( x , ~ )  + Z ~ . ~ j ( A ) s ~ ( ~ , ~ ) ,  (6.38) 
j = m §  

where the .functions 821,~4(A ) are regular in II(_l) . . . .  with the exception of an at most countable bounded 
set of poles A'~O, and continuous in II(_l)  . . . .  with the exception of bounded sets A,~j. The WS's 

{~,~(x, A)},r form, an FSS  for (6.1), such that det [~(~-l)(x,  A)],~,,=I,~ = 1. For Ipl ~ oo, p E Sko, 
argp  = 7~, and fixed x > O, we have the asymptotic formulas (6.36) and (6.37). 

The  flmctions 93~,~j (A) are called the  WF ' s ,  and the matr ix  ~R(k) = [92R,~j(A)],~,j=iT~ , 9JI,~j (A) = a,~y 
(m _> j)  is called the W M  for 1. 

The  IP is formula ted  as follows: given the  WM ff.R(A) const ruct  the  DO l. 

Let us prove the uniqueness  theorem for the  solution of the IP. 

T h e o r e m  6.4.  / f  ~ ( A )  = tiff(A), then 1 = 1. 

P r o o f .  Denote S ( x , A ) =  [S5")(x,A)], ~ ( x , A ) =  [~5")(x,%)]. (6.38) becomes 

~2(x, /~ ) = S(x ,  .~ )gJIT ( )~). (6.39) 

Moreover, d e t r  = d e t S ( x , ~ )  - 1 Define a matrix P ( . , ~ )  = [ 5 ~ ( ~ , ~ ) l j , ~ _ - ~  by the formula 

P(x,A)  = r162 - i  or 

= . ,  . ,  ( 6 . 4 0 )  

From (6.40) and the a sympto t i c  propert ies of the WS's  ~m(X, A) and  ~,~(x, A) we see t ha t  for a fixed 

x > 0 and I AI --+ 

Pj~:(x,A) = O ( / - ~ ) ,  P ~ ( x ,  A) - 5~a, = O(p-~).  (6.41) 

Using (6.39), we t r ans fo rm the matr ix P(x,/~) as follows: 

P(:~, ~) = < x ,  ~ ) ( ~ ( . ,  ~)) -~ = s(.,~, ~ ) ( g ( ~ ,  ~)) -~ 

Hence we conclude t ha t  for each fixed x > 0 the functions Po~(x, A) are entire in k. Using (6.41) and 
the Liouville theorem, we obtain P n ( x ,  A) -- 1, P ~ ( x ,  A) - 0, k = 2, n. But  then ~m(x ,  A) =-- ~,~(:r., A) 
for all x, A, m,  and hence l = L Theorem 6.4 is proved. 

Using the results ob ta ined  above, and  the  contour  integral m e t h o d ,  one can obtain an a lgor i thm for 
the solution of the IP  f rom the WM, along with necessary and sufficient conditions of its solvability, in 
analogous manner  as in Sec. 2. 
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7. Boundary Value Problems for Equations with Singularit ies  on a Finite  Interval 

7.1.  The asymptotics  of  the  spectrum. The  inverse problem. Consider now tile DE (6.1) on a 

finite interval x E (0, T).  As in Sec. 6, let # 1 , . . -  , p,, be the roots  of the  characteristic polynomial .  For 
definiteness, we will assume tha t  n = 2m, #k # #j  (rood n), R e p l  < --. < Repn ,  Pk # 0, 1 , . . .  , n -  3. 

Denote  0n = n -  1 -  R e ( p n -  #1). We assume tha t  the functions qj~('), p = 0 , j  - 1, are absolutely 

cont inuous  and qJ')(x) . x ~ E s u = O,j. 
In this section, we s tudy  the boundary  value problem L for the  DE (6.1), x E (0, T) ,  wi th  the 

b o u n d a r y  conditions 

y(x) = O(x  "~+~ ), x ~ O, 

~p - -  1 

Vp(y)--y~v(r)+ ~v;ky(k)(T):O, p=l,m, O<~-;<n-1, Tp#~-~ (p#s). 
k:O 

Theorems on the completeness and expansion in eigenfunctions and associated functions of L are 
obtained.  The  equiconvergence theorem is provided,  and  the IP is s tudied.  Our considerat ion essentially 

uses the  results obta ined in Sec. 6, where special FSS's of (6.1) are constructed and analyt ical  and 
asympto t i c  propert ies of the  Stokes multipliers are investigated. 

Denote  A ( A ) =  det [Vp(Sj(x,A))]p=I--~;j=~-~,~, where [Sy(x,A)]j=~,~ is the FSS of (6.1) cons t ruc ted  
in Sec. 6. The  zeros of A(A) coincide with the  eigenvalues of L. 

T h e o r e m  7.1. The boundary value problem L has a countable set {Al} of eigenvalues, and for l -+ oc 

l l=(_ l )~n , ( ( l+O)7~T L +O( l -1 ) )n ,  O : O ( p l , . . . , p ~ ) .  

All eigenvalues, starting with some eigenvalue, are simple. 

Let us define LF V; for p : m + 1, n. Let the  functions 9~(x,  A), k : 1, n, be solutions of (6.1) under  

the  condit ions ~k(x,  A) ~ e~x "k, x -+ O, and Vp(%k) : O, p =  1 , n -  k. T h e n  det [(I)('-l)(x, l ) ]k , ,=x,~ _-- 1 
and  

n 

= + 

The  functions ~ ( x , A )  are called the WS's,  and  the matr ix  ff2(A) --- [gYt~nk(A)],~,k=17s , 9~m~(A) --- 6ink, 
m > k, is the W M  for the opera tor  I. The  WS ' s  and WM are convenient  for s tudying b o t h  direct  and 
inverse problems for l. Let us formulate  the uniqueness  theorem for the  solut ion of the IP using the WM. 

T h e o r e m  7.2. I f  9~(A) = ~ ( A ) ,  then l = ~,, Vp = Vp. 

7.2. The  Green function.  
{ 

C(x, t, A) = I 
I. 

We pu t  p~. = n - 1 - fi,,-~:+i- 

L e m m a  7.1. 

Let us define the  Green function G(x, t, A) for L using WS's  of L and L*, 
n 

E x_>t,  
k = m  + l 

~Tt 

E (x, X), �9 _< t. 
k = l  

Let f(t)t~:,+ 1 C s T), A(A) • 0. Put 

T 

y(x) = f G(x, t, A)./(t) 

o 

dr. 
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Then 

l y -  ay = f ,  y ( . )  = o ( J ~ ) ,  . -+ 0; 

V p ( y ) = O ,  p = l , m .  

The  converse is also valid. We note  t ha t  the function G(x,  t, A) is meromorphic  wi th  respect to 
with poles at the points  A = At. 

L e m m a  7 . 2 .  Let )~z be a simple zero of the function A(A). 

)~=At 

T h e n  

- 1  

where ~t(x)  and ~ ( x )  are eigenfunctions of L and L*, respectively. 

Let .~ p ~  s (_1) .~( ( l  +O)TrT-1) n, ~o o = = = (Pl) , eo > 0. Denote  Go = {p:  I P -  p~ > eo}. 

T h e o r e m  7.3. Put 
T 

O"+JG(x, t, A) y~j(x, ~) = / Ox"OtJ f ( t )  dr, 
0 

where f ( t ) t  ~ E s  for x <_ R e # ~ + l  - j .  Then .for p ~ Go, Ipl > po and 0 < x < T,  we have 

y~j(z,)~)i <_ w(p)lpl "+j-m+l+(x),  Iplx >_ 1, 

y. (x,A)l <_ (IpJ + atx":,,-' Iplx < 1, 

where <~) = ma~(~, 0), 

f t = [  0, z < R e p ~ , ~ - j ,  
[ 1, x > Re#~,~ - j ,  

and w(p) = o(1) as Ipl -+  o~. 

7.3.  C o m p l e t e n e s s ,  e x p a n s i o n  a n d  e q u i c o n v e r g e n c e  t h e o r e m s .  Applying Theorem 7.3 and the 
me thod  of contour  in tegrat ion,  we come to completeness,  expansion and equiconvergence theorems.  Let 

a be a real number  and  1 < p < ec. Consider  the Banach spaces ~ , p { f ( x )  : f ( x ) x  -~ ~ s T)} wi th  

the  norm Ilfll~,p = I I f (x)x-al lL~(o,r)  . 

L e m m a  7.3.  For l < s < p < c% ~ 3 - a < - - -  

Let us in toduce no ta t ions  

~/~ = Re # . ~ + 1 ,  ~ = r a i n ( 0 ,  - Re p,~), 

1 1 the space ~ , p  is densely embedded into ~ , , .  
8 p~ 

~ =  min(0, Re ~;~§ ~ = n l a x ( 0 , - R e , m + 1 )  

T h e o r e m  7.4.  The system of eige~functions and associated functions of boundary value problem L is 
i complete in the space (P~,, for 1 < s < oc, /3 < ~ + ~. 

C o r o l l a r y .  The system of eige~functions and associated ,functions of L is complete in s T)  .for 
Re Pm+l > - k 

8 

T h e o r e m  7.5.  Let a function f ( t )  be such that f ( t ) t  ~ is absolutely continuous on [0, T], . f ( t ) t~- i  E 

/2(0, T),  and if 7-~ . . . . .  7,~ = O, th, en f ( T )  = O. Put 

T 

y(x,  A) = / G(x, t, A)f( t )  dt. 
. J  

0 
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T h e n  

lim max y ( x , A ) d A + f ( x )  = 0 ,  
N-+oc  0 < x < T  2 - ~  

FN 

w h e r e  F N  = { A  " IAI = rN} are circles of radii rN --+ ~c  at a positive distance .from the spectrum of L. In 
particular, if L has a simple spectrum, then 

lira max f ( x ) -  c~l~l(x) f(t)~(t)dt 
N--+ oc 0 < x < T  /=1  0 

---- 0,  (~/ = 

--1 

Theorem 7.6. 

In conclusion, we formulate the equiconvergence theorem for L and L on the whole segment [0, T]. 

T 

Let f(t)t  ~ ~ s Put ~(x ,A)=  f G(x , t ,~) f ( t )d t .  Then 
0 

lira max x ~J 1 f ~ ( x , A )  dA = 0 .  
N - ~  0<x<T 2~ri J 

FN 

In particular, if L and L have simple spectra, then 

lira max c~l~l(x) f(t)~;(t) 
N--+ oc 0 < x < T  /=1  

- / dt - ~l~l(x) f ( t )~ ( t )  dt 

0 

= 0 .  

PART 3 

N O N L O C A L  I N V E R S E  P R O B L E M S  

8. An Inverse Prob lem for Integro-Differential Operators 

In this section, perturbation of the Sturm-Liouville operator by a Volterra integral operator is 
considered. The presence af an "aftereffect" in a mathematical model produced qualitative changes in 
the study of the IP. The main result of the section are expressed by Theorems 8.1 and 8.3. Note that 
the IP for integro-differential operators in various formulations has been studied in [23, 58, 91, 92]. 
Among other things, in [91] a connection is pointed out between the IP under consideration here and 
the completeness of the eigen- and associated functions of a bundle of fourth-order integro-differential 
operators. 

8 . 1 .  

L = L(q, Al) of the form 

X 

ly(x) - -y"(x)  + q(x)y(x) + / M(x - t)y(t) dt 

0 

y ( o )  : = o .  

Consider the following problem. 

Problem 8.1. 

T h e  uniqueness  theorem. Let {A,~}~_>I be the eigenvalues of a boundary value problem 

 y(x) = = p : y ( z ) ,  

Given the function q(x) and the spectrum {An}n_>1, find the function M(x).  

(8.1) 

(8.2) 
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P nt 
2~ 

Mo(x) = (~r - z )M(x) ,  M~(x) = / M ( t ) d t ,  Q(z) = Mo(x) - M~(x). 
o 

0 

We shall assume that q(x), Q(x) E s ~r), Mk(x) E s k = O, 1. 
Let S(x, A) be the solution of (8.1) under the initial conditions S(0, A) = 0, S'(0, A) = 1. Denote 

A(A) = S(7c, A). The eigenvalues {A~}n>_~ of L coincide with the zeros of A(A) and as n ~ oc 
7r 

A1 *~ 1 f p n = ~ n = n + - - +  - { x n } E l 2  A l =  (t) dt. (8.3) 
n n '  ' ~ q 

0 

The folowing assertions could be proved by well-known methods. 

L e m m a  8.1.  The representation 
,T 

S(x, A ) -  sinpx + f K ( x , t ) s i n p t  
P P 

0 

holds, where K ( x , t )  is a continuous function, and K(x,  O)= O. 

dt (8.4) 

L e m m a  8.2. The .function A(A) is uniquely determined by its zeros, and 
~ 0  

A(A) = ~ I-I An_ _- ~ (8.5) 
r t = l  

We shall now prove the uniqueness theorem for the solution of Problem 8.1. Let {~}n_>l be the 
eigenvalues of the boundary value problem L = L(1, M). 

T h e o r e m  8.1. If An = ~n, n >_ 1, then M(x)  de=f M(x),  x E [0, ~r]. 

Proof.  Let the function S*(x, A) be the solution of the equation 
5T 

l* z - - z ' ( x )  + q(x)z(z) + f M ( t -  x)z( t )dt  = Az(x) 
X 

under the conditions S*(Tr, A) = 0, S*'(Tr, A) = -1.  Put A*(A) = S*(0, A). Then 

Tr X 7r 

0 0 0 

s + (Y(~,A)S*'(x,A)-Y'(x,A)S*(x,a)) 

For i~= l we have A*(A)- A(a), and consequent]y 
7~ X 

o 0 

7( 

0 x 

7r 

A). g(x, A) dx - f S*(x, A). ~(~, A) dx 
0 

=a*(A) -5 (A) .  

at = s  

x,~)dt = s  

(8.6) 

(8.7) 

Transform (8.6) into 
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Denote ~(~,  a) --- S * ( ~ -  , ,X) ,  N(:~) = M(~ - ~), 
X 

~(x ,a)  = f ~ ( t , a ) ~ ( ~ -  t ,X)dt .  
0 

Then  (8.7) takes the form 

L e m m a  8.3.  The representation 

= - -  - x  cos px + V(z, t) cos pt dt 2p 2 
0 

(8.8) 

(8.9) 

(8.10) 

(8.11) 

holds, where V(x, t) is a continuous function. 

Indeed, since w(x, ),) = S*(Tr- x, ),), the function w(x, ;k) is the solution of the Cauchy problem 

X 

-w"(x,,~) + q(Tr - x)w(x,)~) + f M(x - t)w(t,a)dt = Aw(z, A), 

0 

w'(O, ~) = 1. w(0,~) = 0, 

Therefore, by Lemma 8.1, the representation 

w ( x ,  )~) - sin p z  

P 

X 

+ f K ~ (x, T) sin pt dr, 
P 

0 

holds, where K~ t) is a continuous function. Substituting (8.4)and (8.11) into (8.8), we obtain (8.10). 
Let us return to the proof of Theorem 8.1. Since A~ = An, 'n > 1, we have, by Lemma 8.2, 

A(A) ~ A(A). Then, substituting (8.10) into (8.9), we obtain 

/ ( / ) c o s p ~ - ~ g ( x ) +  V ( t , . , ) ~ ( t ) d t  d x - O ,  
0 x 

and consequently, 
71" 

-xN(x)  + l V(t ,x)N(t)dt  = O. (8.12) 
2: 

For each fixed c > 0, (8.12) is a Volterra homogeneous integral equation of the second kind in the 
interval (e, 7r). Consequently N(x) = 0 a.e. in (e, 7r) and, since c is arbitrary, in the whole interval (0, 7:). 
Thus, M(.~) = M(x) a.e. in (0, 7r), and the theorem is proved. 

8.2. S o l u t i o n  o f  t h e  i nve r se  p r o b l e m .  Relation (8.9) also makes possible to obtain an algorithm 
for solving Problem 8.1 in the case when M(x) ~ PA[O, 7c]. Consider L(q, M) and L(q, M), and assmne 
that  q(x) E s ~r), M(x) and M(x) E PA. Let for some fixed a > 0 

2~(x) = O, x ~ (a, 7c), (8.13) 

~(.~) ~ ~2(~!)-~(a  - ~)~, x ~ ~ - o. 

It follows flom (8.10) that  as Ipl--~ oc, argp ~ [8,~r- d], x ~ (c, Tr), d > 0, c > 0, the asymptotic formula 

~(:,~, •) = -~(4p2) -~ exp(-ip:~)(1 + o(, ,-~)) (8.1~) 
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holds. Furthermore, it ~bllows from (8.10) that 

I (x, A)I < -= exp(- ipx)[ ,  

Using (8.15) we obtain the estimate 

xE[0 ,  zr], hnp_>0 .  

< clp -~ exp(- ipc) [ ,  h n p  > 0. 

(8.15) 

(8.16) 

Using (8.13), (8.14) and Lemma 4.1, we obtain for Ipl --> ~ ,  ~rgp ~ [~,~ - 5] 
a 

f a exp ( - ipa ) (N  a + o(1)) (8.17) ]V(x)~(x, A)dx - 4(_ip)~+ 3 

Since 2V(x)=0  for x e (a, Tr), from (8.9), (8.16), and (8.17) follows that as I~l-+~, a r g p e  [5,7c- 5], 

s = 4 ( - i p ) - a - 3  e x p ( - i p a ) ( N  a + o(1)), 

A a 4 
N2 = - l ims  a+3 exp(ipa), 

a 

and consequently 

Thus we have proved the following theorem. 

I~l-+ ~ ,  a~g~ ~ [5 ,~ -5 ]  (8.18) 

T h e o r e m  8.2. Let {An}~>_l be the eigenvalues of L (q ,M) ,  where q(x) C s M(x)  E PA .  Then 
the solution of Problem 8.1 can be found by the following algorithm: 

(1) From {An}n_>1 construct the function A(A) by formula (8.5). 
(2) Take a = rr. 

(3) For (, = O, 1, 2 , . . .  carry out successively the operations: construct a function M(x)  E P A  so that 

N(x)  = O, x E (a, Tc); 2V(~)(a-0) = 0, k = 1 , (~ -  1, andfind N 2 = ( - 1 ) ~ N ( ~ ) ( a - 0 )  from (8.18). 
(4) Construct N(x)  for x e (a +, a) by the formula 

(2<) 

a! 
o t t O  

(5) If  a + > O, set a := a + and pass to step (3). 

We shall now investigate the question of solving Problem 8.1 "in the small," and the question of 
stability. First, let us prove an auxiliary assertion. 

L e m m a  8.4. Consider in a Banach space B the nonlinear equation 

O(3 

r = f + y ~  Wj(r), (8.19) 
j = 2  

IlCj(r)ll -< (CIIrll) j, II~j(r) - ~j(<)ll  <- l i t -  < l l (Cmax( l l r l l ,  I1<11)) j-~ 

There exists 5 > 0 such that if Ilfll < 5, then in the ball Ilrll <- 25 nq. (S.19) has a unique solution r E B,  

for which, llrll -< 2IlflI- 

C 0 = 2 C  2, 5=(4C0)  -1. 

P r o o f .  Assume that C > 1. Put 
o o  

~(r)  = Z ~ 5 ( r ) ,  
j = 2  
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If Ilrll, IIr*ll ~< (2Co) -~ ,  then 

{ 1 
II~(r)ll ~< ~ (CIIrll) j ~ Collrll ~ <~ ~llrll, 

j=2 
OG 

I I ~ ( r ) -  ~(r*)ll  ~ lit - r*ll ~ (C(2Co) -1 )  j - 1  
j=2 

1 
_< ~ I1~ - r* I1- 

(8.2o) 

Let [If t[ -< 5; const ruct  ro = f ,  r'k+~ = f + 0(rk) ,  k _> 0. By induction, using (8.20), we obtain the 
estimates 

Ilrkll <_ 211/11, IIr~+l - rkll _< 2-~-~l l f l l ,  k _> 0. 
Consequently, the series 

0(3 

r = ~o + ~ ( r k + ~  - r~ )  

k=O 

converges to the solution of (8.19), and Ilrll _< 211Ill. Lemma 8.4 is proved. 

T h e o r e m  8.3. For the boundary value problem L = L ( q ,  M) with the spectrum {An}n_>1, there exists 
> 0 (which depends on L) such that if the numbers {A}n_>t satisfy the condition 

1 

X def i)tn ~nl2 = - < 5, 
'rt~l 

then there exists a unique L = L(q,M),  for which, the numbers {X~}~_>~ are the eigevalues, and 

IIo(x)- CA, 

IIM (x) - -< CA,  k = 0, 1 

Here and below, C denotes various constants dependent on L. 

Proof .  For brevity, we confine ourselves to the case when all the eigenvalues are simple. The Cauchy 
problem ly(x) - Ay(x) + f (x )  = 0, y(0) = y'(0) = 0 has a unique solution 

x 

y(x) = f g(x,t,a)f(t)dt, 
0 

where g(x, t, )0 is the Green fimction satisfying the relations 

Denote 

x 

-g~x(x,t,~) + q(x)~(x,t,~)- Ag(x,t,~) + f M ( x  - r162 t, A)de  = O, 
t 

g(t,t,A) = 0, gx(x , t ,  ~),x=~ = 1. 

x>t, 

G ( x , t ,  A) = 9,~(x,t, A), 

f w ' r  - x - t, Xn), 
Vn (X, t) [ O, 

a~(x , t , s )  = 
G(x,s  + t , ~ ) ,  

[ O, 

O < t < z r - - x ,  

7r--x <t <~r, 

s+t <_x, 

s + t > x ,  
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71- 

0 0 
11, t '/1, n 

~)n(X) = x~)n(X), ano(X) = :~-~ s i n f l n x , , ) , ,  ?In(X)- - - ~ n ( X ) .  
"~'n 7c - x 

Let g~l be the space of functions f ( x )  absolutely continuous on [0,77] and such that f ' ( x )  E /%(0,77), 

with the norm [IflIw~ = Ilfll~.(o,~)+ IIf'l[~=(o,~), and let W~o = {f(x) ~ W~: f (0 )=  f(77)=0}. 

L e m m a  8.5. The functions {r  constitute a Riesz basis in s and the biorthogonal basis 

{~)*(x) }n>l possesses the .following properties: 

(1) ~;(~) ~ ~o ,  
(2) Ir < C, n _> 1, x E [0,7c], 
(3) for any {0~} e L2 

1 

0(gg) def ~ ~ , f f ) n ( X ) E  W21O, II0(x>ilw  c 10 1 = 
n=l  n l 

To prove, we shall use the well-known results for the Sturm-Liouville IP. Since A < oc, from (8.3) 
follows that 

P'n = = n + - -  + - - ,  {Xn} r 12. (8.21) 7L 7~, 

Consequently, there exists a fimction g(x) (not unique) such that  the numbers {A~}~>_~ are the eigenvalues 
of the Sturm-Liouville boundary value problem 

-y"  + ~(x)y = ~y, ~(o) = y(77) = o. (8.22) 

Let sn(x) be the eigenfunctions of (8.22) normalized by the condition ~n(0) = ~t/2. The functions 
{~(x)} , ,>l  constitute a Riesz basis in t;2(0, 77), and 

7~ 

0 

d x  = ~ . ~ .  (8.23) 

Using Lemma 8.1, we obtain 

X 

sn(x)  = r + / B 2 ( x ,  t)ZbnO(t)dr, 

0 
K(x, 0 ) = 0 .  (8.24) 

In particular, from (8.24), (8.23), and (8.21) follows that 

l s i n n x ~ _ O ( 1  ) Sn(X ) = 2 

7r 

~ n  = s ; ( z )  d x  = 8 + 0  , n --+ o c .  

0 

Due to (8.24), the functions {~b,,o(X)}n>l constitute a Riesz basis in s Denote 

7~ 

~ ; ( x )  = ~n(~) + f R(t,  :~)yn(t) dr. (8.25) 
x 

402 



From (8.23)-(8.25) follows that 

f ~no(X)e,*20( ~ ) 
0 

/ ( /  ~- "Sin(X) ~)nO(X) ~- K(X,  t)~)n0(t ) 
o o 

Further, we compute 
X 

dx : f ~2nO(X ) "Srn(X) -~ f f((t ,x)"Sm(t)dt dx  

o x 

dt  = x )~ .~(x)  dx = 5 ~ . ~ n .  

0 

Since 

~(~) = 2x f ~(t, L J ( x -  t,X.)dt 
0 

(8.26) 

(8.27) 

x 

S'(x, A) = cos px + f KI(x, t) cos pt dr, (8.28) 

0 

we obtain, substituting (8.28) and (8.11) into (8.27), as in the proof of Lemma 8.3, 

x 

~n(x) = ~no(X) + f Vo(x, t)~no(t) dr, (8.29) 
0 

where Vo(x, t) is a continuous function, Vo(x, 0) = 0. Solving the integral equation (8.29), we find 
x 

@n0 (X) = ~)n (X) -~- f V1 (X, t )r  n (t) dr, Vl (x, 0) = 0. (8.30) 
0 

Consider the fimctions 

dr. (8.31) 

7r  

~ (x) = ~nO(X) + Vl ( t , z )~o( t  ) ! 
2g 

From (8.26), (8.30), and (8.31) follows that  
7r 

0 
dx = (~nra~n. (8.32) 

By virtue of (8.29) and (8.32), the functions {~n(X)}n> 1 constitute a Riesz basis in s and the 

biorthogonal basis {r has the form r  ~-1r Substituting (8.25) into (8.31), we have 

7r 

~;*(x)=~.~(x)+fv~ V~ 0) = 0 
X 

Hence we obtain the required properties of the biorthogonal basis. Lemma 8.5 is proved. 
Since ~]n(X)= '(Jn(TC- X), Lemma 8.5 implies 

Coro l la ry  8.1. The functions {~/n(X)}n> 1 constitute a Riesz basis in s and the biorthogonal 
basis {X~(x)}n>l possesses the properties: 

(1) Xn(X) e W~o, 
(2) Ixn(x) < c ,  n _> 1, x e [0, ~], 
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(3) fo,. ~ y  {@~} e 12 

ec On 
O(X) de f E ~ xn(x) e Wlo, 

1 

II0(~)ll~ < c 10hi ~ 
n----i 

Let us return to proving Theorem 8.3. Put  
(DO 

~'n 
~0 = Z 7x~(~) -  (8.33) 

n = ] .  

Using Lemma 8.1, the relations A(A) = S(~-,A), A(A~) = 0, and formulas (8.3), (8.21), we obtain 
the estimate Ic~l = n 2 l z x ( ~ ) -  ~(~n)l <-- C i ~ n -  ~I-  Now by Corollary 8.1 we have c(x) E W~lo, 

ilc(x)llw~ <_ ca .  
Consider in W~o the nonlinear equation 

OC 

r = c + E g)j(r), (8.34) 
j=2  

where e(x) is defined by (8.33), and the operators zj = r act from W~0 to W21o according to the 
formula 

 (JJ ) Zy(X)=- ~ ... r(tl)...r(ty)B~j(t~,... ,tj)dt~...dty X~(x), 
n : l  0 0 

J 
7r 7r 

n / . . . /vn(~1,81)~n( .S1,~9, , s2) . . .Gn(Sj_l ,~ j , s j )yn(s j )d .s l . . .d .s j  ' 
B n j ( t l , . . .  , t j )  = (71"-- t l )  - (71"-- 7j) 

0 0 

5 

and 

Ll, ( /llw < ( ll ll j) 

By Lemma 8.4, there exists # > 0 such that for A < # Eq. (8.34) has a solution r(x) r W~o , 
IIr(x)llw~ _< CA. Put ~-'/(z) = M(x)-  ((7c- x)-lr(x)) ', and consider the boundary value problem 

= L ( q , ~ )  Clearly 0 ( x ) - - Q ( , ~ ) -  ~'(x) ~ C2(0,~), IIQ(~)- 0(x)il~2(o,~) -< CA Since 

7r 

A(~(x)- ~-~1 f ~(t)a~, ~o(x)=0(~,)+-Z(:,,), 
x 

we have 115~,(x)- M~,(:~)ll~(o,~)-< CA, k = 0, 1. 

It remains to show that the immbers {An}n>_X are the eigenvalues of the problem [,. To do this, 
consider the fllnctions ~'~(x) which are solutions of the integral equations 

7r 7r 

~(x) = y~(x) + / Ml(t)dt / G~(x,t,s)~(s)ds, (8.35) 

0 0 
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or, which is the same, 

x X--t 

~ ( x )  = yn(X) + M~(t) dt G(x ,  

0 0 

After integration by parts, (8.36) takes the form 

S+t,~n)~n(~)~ 

x x 

0 t 

Reverse the integration order, 

Integrate by parts, 

x t 

0 0 

~)d~. 

x t 

~(~) = y~(x)- f g(x,t,?~)dt f ~(t- ~)~.(~)d~ 

It follows from (8.37) that 

0 0 

~(~n(x)- y~(~))= 
x 

f ~(t-  s)~n(~)ds = (l- ~0~(~), 
0 

(8.36) 

(8.37) 

and consequently, l~n(x)= Any~(x), ~ ( 0 ) =  0, ~ ( O ) =  1. Since the solution of the Cauchy problem is 
unique, we have y n ( X ) =  S(x , /~n) .  

Write (8.7) in tile form 

~l(Z)dx w(~- 
0 0 

x - t , A ) g ( t , A ) d t  = F~(A). 

IntegTating by parts, we obtain for A = An 

l a x  / M ( x )  v n ( x , t ) ~ n ( t ) d t =  A(A~). 

0 0 

(8.38) 

Solving (8.35) by the method of successive approximations, we have 

~n(~)=Yn(")+Y~(~), 

( j j  E~(x) = E " '  s  . - .  Gn(x ,  

j = l  0 0 0 0 

J J 

• G n ( S l , t 2 , 8 2 ) . . . G n ( S j _ l , t j ,  s j ) y n ( s j ) d s l . . . d s j  

tl, 8 1 )  

) d h  �9 �9 �9 dtj .  

(8.39) 
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Further,  multiplying (8.34) by 'qn(x) and integrating from 0 to re, we obtain 
T" 7r 7g 

OO 

0 j = 2  0 0 

J 

Since r(x) = (rr- x)MAI(x), r/~(x) = n(rr -- x)-l~n(X), we can transform (8.40) to the form 

x)~(x )dx  + ... t l ) . . .M l ( t j )  "" vn(tl ,sl)  
0 j = 2  0 0 0 0 

a 3 

Hence, taking (8.39) into account, we obtain 
7r 7r 

0 0 

d t l . . . d t j  = ~2" 

(8.40) 

dt = A(~n). (8.41) 

Comparing (8.38) with (8.41), we find that  A ( ~ ) =  O. Hence the numbers {~n}n>_s are the eigen- 
values of the boundary value problem L. Theorem 8.3 is proved. 

9. One-Dimensional  Perturbations of  Integral Volterra Operators 

9.1. Formulations of the results.  
A = A(M, g, v) of the form 

A f  = f M(x, t ) f ( t )dt  
0 

In this section, we investigate the IP for the integral operator 

7r 

+ g(x) f f(t)v(t) dt, 
0 

0 _< x _< 7r. (9.1) 

Let M(x, t,A) denote the kernel of the integral operator M~ = ( E -  AM)-~M, where E is the 
2: 

and M f  = / M ( x ,  t)f(t)dt.  Let us set identity operator 
d 
0 x 

P 

g(x,A) = g(x) + )~ / M(x,t ,A)g(t)dt.  (9.2) 

0 

Then  the characteristic numbers {Ak} of A coincide with the zeros of the function 
7r 

~ ( A )  = 1 - A / v(x)9(z, A) d:c , (9.3) 

0 

which is called the cllaracteristic function of A. The eigen- and associated flmctions g~ (x) of the operator 

have the  form 
0~ 

if r~: is the multiplicity of A~ (Ak = ~ + ~  . . . . .  Ak,+rk--~)- Let /3k = gk(rc). We will call the set of the 
numbers {Ak,/3k} the spectral da ta  of A. 
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We consider the following IP's. 

P r o b l e m  9.1. 

P r o b l e m  9.2. 
and v(x) 

Given the spectrum {tk} and the functions M(x , t ) ,  g(x), construct the function v(x). 

Given the spectral data {tk,/~k} and the flmction M(x ,  t), construct the functions g(x) 

ou+J 

Ox.OtJ M(x, t), Let the function M(x ,  t) satisfy the following condition (condition M~): the functions - -  

u , j  = O, 1, are continuous for 0 < t < x < 7c, and M ( x , x )  = - i ,  O M(x, t ) l t=z = O. 

Then the operator D = M -1 has the form 
X 

y ( 0 ) = 0 ,  

0 

where H(x,  t) is a continuous function for 0 < t < x < 7c. 

Def in i t ion .  We will write A E A~o ), if the function M(x,  t) satisfies the condition Mr, the functions 
g(x) and v(x) are absolutely continuous for 0 <_ x <_ 7r, g'(x) and v'(x) E s and aobo r O, where 

0 

bo = 

For simplicity, we solve Problems 9.1 and 9.2 for operators of the class A(o~ ). 

T h e o r e m  9.1. 

have the form 
Let A E A~ ). Then the spectral data {tk,/3,,}, k = O, +1, 5:2,. . . ,  of the operator A 

A k = 2k -~- OL -~- )~'k, /~k = O~1 -~- Nkl,  

"~k r 0, O/1 r 0, {24"k}, {24"kl } E 12- (9.5) 

Let the functions M(x,  t) and g(x) be given such that M(x ,  t) satisfies the condition M~, T h e o r e m  9.2. 

g(x) is absolutely continuous, g'(x) C s 0, g(O) # O. Further, let the numbers Ak, k = O, i l ,  +2 , . . . ,  
are of the form A~ = 2k+c~+x~, A~ ~= 0, {xk} E 12. Then there exists a "unique operator A ( M , g , v )  E A(o~ ) 
for which {Ak} are the characteristic numbers. 

T h e o r e m  9.3. I f  a function M(x , t )  satisfying the condition 2~I1 and numbers {A~,/3k}, k = 
0 , + 1 , + 2 , . . . ,  of the form (9.5) are given., then there exists a unique operator A ( M , g , v )  E A(o~ ) for 
which {Ak,/3~} are the spectral data. 

9.2. P roofs  of  t h e  t h e o r e m s .  Let us first formulate several auxiliary assertions. 

L e m m a  9.1. Let the numbers {1~}, k = 0 , •  of the form I~ = 2k+c~+x~, A~ ~ 0, {x~} E 12 
be given. Denote 

c(a)=exp(pa) l-[ l - a  exp a , (9.6) 
k=--cx~ 

where  

P = P o +  E Ak Ao , po=iTcexp(io~Tc), A ~  
k=-oc  k 
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(the case where c~ is an even integer brings insignificant changes). Then the following representation is 
valid for" E(a): 

7C 

s  

0 

f i  a~ w(t) < c2(o, ~). 7 -- a~' 
l~=--oo 

(9.7) 

Proof .  

Therefore, 

The function s  1 -  exp (i(c~- a)Tc) has zeros {a ~ and admits the representation 

Co(A) = exp(poa) l-I 1- a exp 
--oo 

/ :(a) = 7s  F(A) = H 1 + a 4 ~  (9.8) 
k = - ~  A ~ - a " 

Let us show that IF(a)I < ca in the domain Ca = {a :  [ a -  a~ >_ d} for a fixed ~ > 0. We choose an 
a for IkJ > N. Then, for a E Ga integer N such that I~kl _< ~ 

F ( a ) = e x p ( H N ( a ) )  H ( 1 +  ~ '  ) (9.9) 
Ikl< N a ~ -- a ' 

where 

Since 

HN(A)=  ~ i n ( l +  x ,  ) x ,  ~ 0 ( - 1 ) "  ( _ 3 ~  ; "  
IkJ >N ao----_---A_ A = JkI>-NE ao _-----~ = ~ + 1 \ a~ -- a 

Izkt ~ 1 
IH'(a)l <- ~ la~-  al :Y -< c 

lkl_>N ~=0 

from (9.9) follows that IF(a)I < c~ for a E Ga. 
Further, it follows from (9.8) that 

I.X=xo 

i.e., {s176 E 12. We consider the function 

1 

I 12 + -al ' 

H 0--7o- , bn = 1 + ak _ a~ 
k : - - o o  

A(A) = s  7s (9.10) 

Denote 0~ = A(A~ It is obvious that {0~} E /2. Let us construct a function w(t) E /22(0, 7c) such 
7r 7r 

~ =  

0 0 

( /20(k))- ' (0(A)-  A(A)). The function S(A) is entire of A. We have ICo(X)l > c(1 + exp(ImATc)) in the 
domain Ca. From (9.8) and (9.10) follows that  A(k) = vCo(a)(r(a)- 1). Using the maximum modulus 
principle for analytic functions, we see that  S(A) is bounded, hence, S(A) - C. Since lim S( ix)  = 0 for 
x --+ -oc,  we have C = 0, and we arrive at (9.7). Lemma 9.1 is proved. 

By the method of successive approximations one can prove the following assertion. 
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L e m m a  9.2. The integral equation 

P(~,t,~) =i  
x--t+a x--t+a t 

a a 0 

O < t < x < _ r r - a ,  O<_a-<rc ,  

(911)  

D D 
has a 'unique solution P(x , t , a )  and the functions P(x , t , a ) ,  - ~ P ( x , t , a ) ,  - f fs  are continuous 

'with respect to all the variables. 

L e m m a  9.3. Let A ~ A~o ). Then the following statements are valid: 

(1) The characteristic function s of A has the form 

9T 

s = 1 - A f , ~ ( t )  ~xp ( - i A r  t)) dr, 
0 

(9.12) 

where 

(2) 

t 

, , , ( t )=g (o>( t )+  f~(~)O(t ,~)d~,  ~ ( t ) = , r  
0 

Q(t,r)=~ g(t-r)+ Pr . 
0 

(9.13) 

The function P(x, t, a) is the solution of (9.11). The function re(t) is continuous, m'(t)  e s ~r), 
1 + im(rr) = ao, re(O) = -ibo, where ao, bo have the form (9.4). 
The .following representation is valid for g(rc, )0; 

7r 

g(rc,) 0 = g(O) exp(-i)wr) + f f  7 ( t )exp( - iA t )d t ,  
0 

(9.14) 

where -~(t) = #'(t) e s 

, ( ~ - t )  = - g ( t )  - 

t 

f e e  - t , t -  7, ~)gr  
0 

( g l s )  

P r o o f .  It is clear that M ~ l y  = Dy - Ay, y(O) = O, and the flmction z(x) = M ( x  + a,  a,  A) is the 
solution of the Cauchy problem 

32 

,i~'(:,:) + f H(:~: 
0 

+ a , t  + a)z ( t )d t  = Az(x), z ( O ) = - i ,  O ~ x < r r - a  (9.16) 

for fixed a E [0, rr]. Consequently, 

M(x +c~,a,A) = -i (exp(-iAx) + f P(x,t,c~)exp(- iA(x- t))dt) (9.17) 
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since the right-hand side of (9.17) is also a solution of the Cauchy problem (9.16). We substitute (9.17) 
in (9.2) and obtain 

J ( ; g(x ,A)=g(x)- i ,~  exp(-iAt) g ( x - t ) +  P( t+r , r ,  
0 0 

x - t - r  - t - ~) d e )  dr. (9.18) 

From this we obtain (9.14). Further, we substitute (9.18) in (9.3) and obtain (9.12), where re(t) is defined 
by (9.13) and is a continuous fnnction. Let us show that m'(t) E s For this, we write re(t) in 
the form 

t 

.~(~) = g(0)~(t) + f ~(t - ~)n(t, ~)&, 
0 

T 

R(t ,  ~-) = g'(~-) + P ( ~  - t + ~-, ~-, o)g(o)  + f g'(~- - s ) P ( ~  - t + ~ , ~ ,  ~- - ~) d~ 
0 

7" 

+ f g (~  - ~ ) ~ ( ~  - t + s, ~, ~ - ~) ds, 
0 

By virtue of (9.11), we obtain 

~ r - - t §  S 

T - s  0 

Thus, R(t,T) is continuously differentiable with respect to t, hence, m'(t) ~ s The lemma is 
proved. 

P r o o f  of  T h e o r e m  9.1. By virtue of Lemma 9.3, the characteristic function s of the operator A 
has the form 

7r 

s = a0 - bo exp(-iATr) + f w(t) exp(-iAt)dt = a0s + s (A), (9.19) 

0 

where 

71" 

Z:o(~) = 1 - e x p  ( i (a -A)~) ,  & ( ~ ) = / w ( t ) e x p ( - i , X t ) d t ,  
0 

d 
exp(-iaTc) = aobo 1, w(t) = i-~m(Tc - t) E s 

The estimate 112o(A)[ > C(1 + exp(imATr)) is valid in the domain G0 = {A : [A-  A~ _> 5}, where 
A~, = 2k + c~ and, consequently, la0s > Is for sufficiently large IA[. Therefore, by tile Rouche 
theorem, 2N + 1 zeros A~, k = 0,-t-1,... , i N ,  of s lie inside the contour FN = {A: la-~l = 2N + 1} 
for sufficiently large N, and exactly one zero ak of s lies inside the contour 7k(5)=  { A: la-a~ = 5} 
for sufficiently large A~, i.e., Ak = 2k + a + z~, :4~ = o(1). Substituting this expression in (9.19), we 
obtain {xk} E 12. Using (9.14), we now easily obtain the desired asymptotic formula for fl~. The theorem 
is proved. 
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P r o o f  of  T h e o r e m  9.2. From given numbers {A~} we construct s by (9.6). According to 
Lemina 9.1, the representation (9.7) is valid for s Let us set 

t 

V0 = 
0 

Further, let u(t) be a solution of (9.13). It is clear that u(t) is continuous, u'(t) ~ s and u(O) r 
0. Denote v(t) = u(~r- t) and consider the operator A(M,g,v)  of the form (9.1). Let s be the 
characteristic function of A. Then, as in the proof of Lemma 9.3, we obtain 

71- 

C*(A) = 1 -  A / m(t)exp ( - i.k(Tc - t)) dr, 
0 

or, after integrating by parts, 
7r 

s = 1 + im(7~) - im(O)exp(-iA~) + / w(t)exp(-iAt)dt .  
[a 

0 

Comparing this equality with (9.7) and taking into account the relations ~(0) = s = 1, ira(O) = 
7exp(iaTc), we get s = s 1 + im(Tr)= 7, and consequently, A C h~ 1), and (Ak} is the spectrum 

of A. If it is assumed that there exists an operator A(M,g,5) E A(t0 ) with the same spectrum {s then 
it would follow from Lemma 9.3 and the uniqueness of the solution of the integral equation (9.13) that 
v(t) = 5(t), t E [0, 7c]. The theorem is proved. 

P r o o f  of  T h e o r e m  9.3. For simplicity, we confine ourselves to the case where all Ak are different. 
As in the proof of Theorem 9.2, we construct g(s re(t), and P(x , t ,a )  from given M(x, t )  and {.~k}- 
Denote p~ = A ~ -  c~, g = c~1 exp(ic~Tc), /~k = r gexp(-iA~Tr). It is clear that {/3%} E 12. The system of 
the functions exp(- ip~t)  forms a Riesz basis in s ~r), since it is complete and quadratically close to 
the orthogonal basis exp(-2kit). Let h.(t) ~ s be such that 

7r 

= / h(t)exp(-ipat) dt 
( 2  

0 

and set 
7r 

, ,(t) = - g -  / exp(i  ) 
t 

Let the function 9(t) be a solution of (9.15). It is clear that g(t) is continuous, g'(t) E s and 
g(0) = g ~ 0. As in Theorem 9.2, we now find the flmction v(t). Thus, we construct the operator 
A(M,g,v)  of the form (9.1), and tt~e numbers {Ak,~} are the spectral data of A. As in Theorem 9.2, 
the uniqueness follows obviously from Lemma 9.3. In the case of multiple A~:, the system of the flmctions 
t" exp(-i#kt),  y = 0, r~ , -  1, where r~ is the multiplicity of Ak, is a Riesz basis. The theorem is proved. 

R e m a r k .  Results, analogous to the above ones, hold also for other classes of operators, e.g., for the 
A ('~') max(~, p) < m. whose characteristic functions have the form operators A E .# , 

k = 0  0 

w.,(t) a.b.#O, a  =bj=0, 
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Let us observe that  similar results are also valid for the case where M -1 is an integro-differential operator 
of second order. 

9.3. C o n n e c t i o n s  w i t h  IP ' s  for DO ' s .  In spite of the qualitative difference of the above-considered 
problems from the IP's for DO's, there are connections between them. In this section, by the example 
of the Borg theorem [16] we show how the IP for DO's can be reduced to Problem 9.1. For this, we give 
here a general uniqueness theorem for the solution of Problem 9.1. 

Let us consider an operator A of the form (9.1) under the assumption that the function M(x , t )  is 
the Hilbert-Schmidt kernel and g(x), v(x) E/22(0, 7r). 

T h e o r e m  9.4. Let th, e system of the eigen- and associated functions gk(x) of the operator A(M, g, v) 
be complete in s and let {A~} and {Ak} be the spectra of A = A ( M , g , v )  and ,A = A(M,g,v~ 
respectively. I f  Ak = ak .for" all k, then v(x) = g(x) a.e. on [0, 7r]. 

Indeed, under the conditions of the theorem, from (9.3) follows that 

7r 

f(~(x)- ~(~))g(x, ~) d/= X-~ (f(~)- ~(A)) 
77 0 

Therefore / (~(~)- ~(x))g~(z)dx = 0, and, consequently, ~(x)= ~(x) a e on [0,~] 
r  

0 

Let us consider the boundary value problems Li = L(q(x),  h, Hi), i =  1,2: 

-y" + q(~)y = ~y, q'(~) e ~ ( o ,  ~), 

y'(O) - by(O) = y'(Tc) + Hiy(~) = O, H1 r H2. 
(9.20) 

Let the functions ~(x, A) and '@i(x, A) be the solutions of (9.20) under the initial conditions ~(0, A) = 
'(J,i(~r, A) = 1, ~'(0, A) = h, @~(Tr, A) = -H.i, and let M(x ,  t, A) be the Green function of the operator 
y" - q(x)y - Ay, y(0) = y'(0) = 0. Then the eigenvalues {Pni}~_>0 of Li are tile zeros of the functions 
Ai(A) = ~P~(0, A ) -  h@i(O, ,~), and the functions Ai(A) are determined uniquely by their zeros. It is known 

that if a function G(x, t) satisfies the conditions 

{ ~ G~ t) ~ 
Ox 2 q(x) x, -- Ot 2 ~(x)G(x, t ) ,  O < t < x <_ Tc, 

1 i (o.(.,,) ),:o G ( x , x ) = h =  ~ ( q 9 t ) - ~ ( t ) ) d t ,  \ ~ hG(x, t )  = 0 ,  

0 

(9.21) 

then 

where 

~(~,~) = (E + c)~(x,: ,) ,  M~(E + a)  = (E + a)M~,, 

(E + G)f  = F(x)  + 

x x 

i a ( x , t ) f ( t ) d t ,  2~Sx.f = S M ( x , t , A ) f ( t )  
0 0 

Let us consider the family of the operators L~,~(q(x),h, H2, H2): 

dt. 

(9.22) 

L~#y = y" - q(x)y + o~y, - o o  < ct < oc, 

y'(O) - hy(O) = y'(~) + g~y(~) = O. 
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The inverse operators Aa,i = L2,~ have the form 
X 

A~,if  = J M(x,  t, a) f ( t )  
0 

dt + - -  

7r 

p(x, a) f *p~(t, a) f ( t )  dr, 
0 

and { I t n i  - -  O~} is the spectrum of Aa,i. Analogously, the operators 

X 71- 

A, , i f  = M(x,  t, a) f ( t )  d t+ -~,i(a) 
0 0 

are inverse to the operators L~,i(~(x),h, H1,H2) and have the spectrum { P h i - a } .  Now we show that 
the Borg theorem [16] can be obtained as a corollary of Theorem 9.4. 

Theorem (Borg). If ].tni = ~tni , i = 1, 2, then q(x) = ~(x), h = h, H~; = TI~. 

Proof .  Let G(x,t)  satisfy (9.21). Denote B~,~ = ( E + G ) - ~ A , # ( E + G ) .  Then, using (9.22), we obtain 

X 7r 

0 Ai(a) 0 

where 
7r 

v~(x,a) = (E + G*)~b~(x, c0, ( E + G * ) f = f ( x ) +  t G ( t , x ) f ( t ) d t .  
) 

x 

Under the conditions of the theorem,  the operators Aa,i and B~,i have identical spectra and, consequently, 
by Theorem 9.4 we have r a) = (E + G*)~bi(x, a). Since 

~(x, ~) = (ss~ - H~)-~(a~(~)w(~, ~ ) -  &(~)r  ~)), 

we have ~(x, a ) =  (E + G*)F(x, a), which, together with (9.22), gives (E + G*) = (E + G) -1. This is 
possible only in the case where G(x, t) = O. Consequently, q(x) = ~(x), h = h, Ha = Hk. The theorem 
is proved. 

PART 4 

N O N L I N E A R  I N T E G R A B L E  D I F F E R E N T I A L  E Q U A T I O N S  

A N D  T H E  I N V E R S E  P R O B L E M  M E T H O D  

10. A Mixed  Problem for the Boussinesq Equat ion 

We study a mixed problem for the nonlinear Boussinesq equation on the half-line. An algorithm 
for the solution and necessary and sufficient conditions of solvability of this problenl are obtained, and 
uniqueness is proved. 

Let us consider the following problem: 

ut=i(2v:~-uxx), vt = i vo:x - ~uxxx - uux , 

~1~=o = uo(*) ,  ~1~=o = ~o(x),  

~1~ o = U l ( t ) ,  

x > o ,  t > 0 ,  (10.1) 

uo(x),vo(x) E 12(0, oo), (10.2) 

(10.3) ~ l~ - -o  = ~2(t),  vt,=o = ~ ( t ) ,  v ,  lx=o = ~2(t). 
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System (10.1), after el iminat ion of v(x, t), reduces to the Boussinesq equation 

3Utt = ~txxxx + 2 ( U 2 ) x z .  

In this section, the mixed problem (10.1)-(10.3) is solved by the inverse problem method. For this we 
use the results of the IP for third-order DO's on the half-line by its WM, obtained in Sec. 2. We note 
that  in [3, 13, 68, 80], using the IP for second-order equations, evolution of spectral data  for difference 
and differential nonlinear equations on the half-line is obtained, and in [21, 47] the Boussinesq equat ion 
on the line is studied by the inverse scattering method.  

Let D = {(x,t)  - x _> 0, t > 0}, and let Jn be the set of functions z(x, t)  such tha t  functions 
oj-t-k 

OxJOtgz(z, t), 0 <_ j + 2k <_ n, are continuous in D,  integrable on the half-line x ~ (0, ee) for any fixed 

t > 0, and x \Oxn ] ~ s oc). We shall write {u(x , t ) , v (x , t ) }  ~ M, if u(x,t)  ~ Ja, v(x, t)  ~ &. We 

denote by Aij, Bij, . . . ,  elements of matrices A, B,  . . . ,  where i is the number of the row, and j is the 
number of the column. 

10.1. A u x i l i a r y  s t a t e m e n t s .  Let {u(x , t ) , v (x , t ) }  E M. For a fixed t k 0, we consider the DE with 
respect to x 

ly - y'" + uy ~ + vy = )~y = pay. (10.4) 

Let ~(x , t ,~ )  = [~2(J-1)(x,t,~)Jj,~:=~,3, where e2~(x,t,,~) is tile solution of (10.4) under the condit ions 

(I)(kJ-1)(0, t, ~ ) = 5 j k ,  j = 1, k, ~ : ( x , t , s  O(exp(pr~x)),  x -+ ec. Here r~ are the roots of the equat ion 
r 3 - 1 = 0 s u c h t h a t  

Repr l  < Repr2 < Repr3. (10.5) 

We set 9Jr(t, A) = ~(0, t, A), i.e., 

= = ( j  < ( 1 0 6 )  

where gJikj(t, A) = (I)(~J-~)(0, t, A), k < j .  Functions 92;~j(t, )~) are the WF's ,  and the matr ix 9Jr(t, A) is 

the W M  for l. 
* / / * Let ~i* = 9)l -1, q)j = (I)l~j+l - ~ j + l ( I )  1, j = 1, 2. It is clear that  the functions ~Sy are solutions of 

the equation 

I* z - - z ' "  - ( u z ) '  + v z  = 5 z .  

For fixed t > O, k =  l,3, j = [ k @ ] ,  p =  [~2 k ] w e c o n s i d e r t h e f u n c t i o n s  

( J ) = % ( x ,  t, t, -- , 

x 

where [-] denotes the greatest  integer in the number.  In [103], the following completeness theorem is 
proved. 

T h e o r e m  10.1. If 

then f (x )  = 0 a.e. 

J 'VJ~ (x, A)f (x) . fx  = O, k = 1,3, 

0 

f (x)  = ( f l (x) , f2(x))  T E s co), 

(10 .7 )  

414 



Let us now denote 

Then 

C(x, t ,A)  = [ ] 10] 0 1 0 5u 0 
2 1 0 0 1 , F ( x , t , A ) = i  A - v + S u  z - s u  

A - v - u  0 - vx A - v + Sux 1 

Q = Gt - F~ + G F  - FG,  q=[Q1,Q2]  T, 

( 2 2 ) 
Ql - Ov~ + i vzz - 5 ' ux~  - Suux  , Q2 = - u t  + i(2vx - uxx). 

[~176 0 ( ~ , t ) =  0 0 , 
Ol Q2 

i.e., system (10.1) is equivalent to the equality Q = 0. We define the matrices W ( x ,  t, A) and S(x ,  t, )0 
from the relations 

w~ = C(x,  t, ~ )w ,  

st  = F(x,  t, X)S, 

where E = [d3k]j,~=lZ~ is the identity matrix. Then 

Wlx=o = E,  (10.s) 

Sl~=o = E,  (10.9) 

e (x , t ,A )  = w ( x , t , A ) ~ ( t , a ) .  (10.10) 

Consider the matrices 

C~ = (9)It(t, A) + 9)i*(t ,A)F~ F~ A) = F(O,t, A), 

x 

d ( x , t , A ) =  F~ - / W  l ( s , t , A ) Q ( s , t ) V V ( s , t , A ) d s ,  

0 

x 

C ( x , t , A )  = C~  - / ~ - l ( s , t , A ) Q ( s , t ) ~ ( s , t , A ) d s .  

0 

(10.11) 

(10.12) 

(10.13) 

L e m m a  10.1. The following equality holds: 

q?t(x,t,;~) = F ( x , t , ; ~ ) ~ ( x , t , ; ~ ) - q ~ ( x , t , A ) C ( x , t , A ) .  (10.14) 

Proof .  By virtue of (10.8), we have ( W t - F W ) x - G ( W t - F W  ) = Q W ,  ( W t - r W ) [ x :  o 
Consequently 

W~(x,t,A) = r ( ~ , t , : q w ( x , t , ~ ) -  W(~, t ,A)d(x , t ,A) .  

Hence, according to (10.10), we obtain (10.14). 

= - F ~  A). 

(10.15) 

L e m m a  10.2. The following relations are valid: 

o o  

C~ A) = (-1)  k-1 / !pk+j -2 (x , t ,A )q (x , t )dx ,  

0 

l ~ j < k < 3 ,  (10.16) 

where Pk (0kz, ' = %2), k = 1, 3. 
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Proof. Rewriting (10.13) in coordinates and using properties of the flmctions ~/r we obtain in particular 
that with fixed t, 5 

and 

Cl,~j(x,t,A)=O(1), k> j ;  C12(x,t, 5)=O(exp(p(r2-r2) 'c)) ,  x--+oc, 

X 

Ck/(x, t, 5) o f = C~j(t, 5) + ( - 1 )  k ~+r  t, 5)q(s, t) ds, 1 < j < k < 3, 

0 

k 

(~(J--1)[Xk \ , t ,  5 )  = Dl-k E (Pr'~)/-z exp(pr,~x)(akm + o(1)), I~l~ --+ oc, am,~ r O. 
m = l  

Now, by virtue of (10.14), 

(10.17) 

(lO.lS) 

3 3 

+~-~)(x,t,5)c,,~(x,t,5) =--a  +(J-'>~, t, 5)+ ~ rjm(x,t,5)+~-l)(x,t,5). Ot k 
m = l  m=l 

Hence, using (10.17) we calculate with fixed t, A (Im5 7~ 0) 

lim Ckj (x, t, 5) = 0, j < k. 
X --+ (x~ 

Together with (10.18) it implies (10.16). Lemma 10.2 is proved. 

Rewriting (10.11) in coordinates, substituting into (10.16) and solving with respect to ~--~gJtjk(t, A), 

we obtain 
3- - j  

E o _ + +2F1o2+m(_ + 
0 
N gXjk = 

o o  

+ (-1) k / (F~,+j-2 - 5~-j,29)t23~l)qdx, 
0 

0 ~ j < k ~ 3 .  

(10.19) 

10.2. Solution of the problem (10.1)-(10.3). 
respect to t is obtained. 

In the following theorem evolution of the WM with 

Theorem 10.2. Let {u(x,t),v(x,t)} be the solution of the problem (10 .1 ) - - (10 .3 ) .  
u3(x,t) =Uxx[x=O and 9)I~ = 9Jtj~(0,5) are the WF for {Uo(X), vo(x)} and 

~(t) o 1 ] 
~ ( t , 5 )  = i 5 - ~ 1 ( t ) + ~ 2 ( t )  - ~ ( t )  o . 

~(~)-~2(t)  5-~1(~)+~-~2(t) --~u~(t) 
Let the matrix R(t, 5) be the solution of the Cauchy pwblem 

~,,(t,5) = -R( t , 5 )~ ( t , 5 ) ,  Rl~:0 = E 

We define 

/ ,~(t,5) = R3~,(t, 5) - ~x~ 5) + (~x~176 - ~~  

~ ,~ ( t ,  5) = det IRj,(~, 5 ) -  ~~  5)]~:2,3~p=,~,~. 

We denote 

(lO.2O) 

(10.21) 

(lO.22) 
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Th, en 

~ ( t , : ~ )  - zx~(t, A) zx~(t,  A) 
zx~(t, x)' ~ ,~ ( t ,  ~) - zx~(t,  ~)' ~2~(t,  ~) - 

0 3-j  

E 
m : 0  

A~(t,A) 
(10.23) 

0 _ < j < k < _ 3 .  
(10.24) 

Proof .  Since {u(x, t ) ,v(x , t )}  is the solution of (10.1) (10.3), then Q(x , t )=0 ,  q (x , t )=0 ,  F( t , , ~ )=  
F~ Consequently, by virtue of (10.12)-(10.16), we have 

o t c ~ j ( ,  ~) = 0, 1 _ j < k _< 3, 

w~(x,t,A) = F(x, t ,A)W(x,t ,A)-  W(x,t,A)F~ 

�9 t(x, t ,a)  = f(x,t ,A)O(x,t , ,~) - 02(x,t,A)C~ 

(lo.25) 

(lo.26) 

(lO.27) 

It follows from (10.26), in accordance with (10.9), (10.10), and (10.21) that 

W(x,t, ,~) = S(x,t,A)W(x,O,,~)R(t,~) and ~(x,t , )~)= S(x,t,A)(F(x,O,~)B(t,A), (10.28) 

where 

B(t, ~ ) =  ~*(0 ,  ~)R(t, A)~( t ,  ~). 

Differentiating (10.28) with respect to t and comparing with (10.27), we obtain 

Bt(t,A) =-B( t ,A)C~ B(0, A)= E. 

(10.29) 

Hence, from (10.25) we find Bkj(t,A) ---- 0, j < k. Rewriting now (10.29) in coordinates for j < k 
and solving with respect to ~YAjk(t, ),), we obtain (10.23). Equalities (10.24) follow from (10.19), since 
F~ A) = _P(t, ~), q(x, t) = 0. We note that (10.24) can be obtained directly from (10.23) by differenti- 
ating with respect to t. Theorem 10.2 is proved. 

Using evolution relations (10.23) and the solution of the IP for equation (10.4), we obtain the 
following algorithm for the solution of the mixed problem (10.1)-(10.3). 

A l g o r i t h m  10.1. For x _> 0, t k 0 continuous functions u0(x), Vo(X), ul(x), vl(x), u2(x), v2(x) are 
0 

given. Let Uo(X), Vo(X)e/:(0, oc), Uo(0)= ut(0), Vo(0)= vl(0), and ~u l ( t )  be continuous. We then: 

(1) compute the flmction u3(t) = 2v~(t). +~.-~ui(t);" 0 

(2) ~nd the WF's ~o j (~ ) ,  1 _< k < j _< 3 for {'~o, ~o}; 
(3) find the matrix R(t,A) from (10.20) and (10.21); 
(4) compute the matrix 8)I(t, A) using formulas (10.6), (10.22), and (10.23); 
(5) find the functions {u(x, t) ,v(x, t )}  by solving the IP by the method described in Sec. 2. 

Let us now find the conditions of existence of the solution of (10.1)-(10.3). The following theorem 
shows that existence of the solution of (10.1)(10.3) is equivalent to solvability of the corresponding IP. 

T h e o r e m  10.3. Let the matrix 9J~(t,A) be constructed from the given functions ui, Vy, j = 0,2, 
according to steps (1) (4) of Algorithm 10.1. We assume that there exist functions {u(x, t), v(x, t)} E M 
.for which. 9Jt(t,A) is the WM. Then {u(x,t), v(x,t)} is the solution for (10.1)-(10.3). 

Proof .  From (10.23) with t = 0 we find gJljk(0, A) --= 9)i~ j < k. The coefficients of the DE (10.4) 3 ~ 

are uniquely determined from its WM. Then we have u(x,O)= Uo(X), v(x,O)= vo(x), i.e., u(x,t), v(x,t) 
satisfy the initial conditions (10.2). 
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Differentiating (10.23) with respect to t, we obtain (10.24). Comparing (10.24) with (10.19), we 
obtain 

{ h21(t)-~- (h22( t ) -  tztl(~))~12(t,,~)Av TI(~,,~)= h32(~)- T3(t,/~) = 0, (10.30) 

haz(t) + ha2(t)92812(t,A) + (haa(t) - hll(t))92813(t,A) - T2(t, A) = 0, 

where 

h(t) = F~ A) -  P(t, ~), 
oO 

0 

Using the above-mentioned asymptotic properties of the functions ~ ,  we compute with fixed t > 0 

9)tjk(t, A) = (--1)J-l(pr2j_l)k-J(1 + o(1)), j </~, 

T~(t, A) = o(1), IAI--+ c~. 

Then (10.30) yields 

and consequently 

From (10.32) we have 

ha2(t) = h22(t) - h,l(t) = haa(t) - h,s(t) = h2z(t) = h31(t) = 0, 

{ i ( i ,  t) = ul(t),  'ux(O,t)=1z2(t), V(0,  t )  ~ Vl(~)~ 

~xx(0,t)- ,~(t))- (~(0,~)- ~2(t)) = 0, 
o o  

/ 9~k(x,t,A)q(x,t)dx=O, k =  1,3. 

0 

(10.31) 

(10.32) 

o o  

f ~ ( . ,  ~)y(x)d. + f%~2(0, ~)=0, k= 1,a, (10.33) 
0 v ~ 7 T 

with fixed t > 0, where .f(a:)= [Ql(x,t), ~-TzQ2(x,~)/, f~ = Q2(0, t). If [~[-+ oc, then from (10.33)one 
gets fo = 0, i.e., 

k { . ]~  J 

(x) 

f ~ ( , ,  A)f(,) dx = 0, k = 1, a. 
0 

Hence, by virtue of Theorem 10.1, we conclude that f(x) = 0 or Ql(x,t) = Qu(x,t) = 0. Thus, the 
functions {u(x,t),  v(x,t)} are the solutions of system (10.1). Finally, since 

u**(O,~)=2vx(O,t)+iut(O,t), Ua(t)=2vg~(t)+iOu,(t), 

then in accordance with (10.31) we obtain vx(O, t) = v2(t). Theorem 10.3 is proved. 

It follows that problem (10.1)-(10.3) has a solution if and only if the solution of the corresponding 
IP exists. Necessary and sufficient conditions of solvability of the IP from the WM and algorithm for 
the solution are given in Sec. 2. 
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11. Integrable Dynamical Systems Connected with Higher-Order Difference Operators 

For a fixed q _> 1 we consider the following Cauchy probletn for the nonlinear semi-infinite system 
of nonlinear DE's: 

i~j(t)  = a,,~x (t)a~+l,j_l ( t) - an+j-Ll (t)an,j-z (t), (11.1) 

a~j(O) = anj.~ (11.2) 

Here - q + l _ < j _ <  1, n > q  for j = l ,  a n d n _ > q - j  for j _<0 ;  a ~ _ q = l ,  aq-l,1 = 0 ,  aq+j-1,- j=O for 
j = 1, q -  1; a~ are complex mnnbers, and a~ ~ O. System (11.1) is a difference analog for equations 

like the KdV equation, and it is equivalent to the Lax equation L = [A, L], where A = [an~Sn,j-~]n,j>_q, 
L = [an,j-n]~,j>_q, a~j = 0 for j > 1 and j < -q .  Thus, integration of the Cauchy problem (11.1)-(11.2) 
is connected with investigation of the spectral properties and the solution of the IP for higher-order 
difference operators: 

q §  

For q = 1, system (11.1) is the Toda chain, which has been studied fairly completely (see [2, 13, 59, 
86] and references therein). Things are more complicated for q > 1, and integrable dynamical systems 

connected with higher-order difference operators have not been investigated enough. In this direction, 
we mention the papers [14-15], in which important integrable systems are pointed out, connected with 
two-term difference operators of the form (11.3) for q > 1, where a~_j = 0 for j = 0, q - 1. 

In the first part  of this section, we provide the solution of the IP for tile difference operators (11.3). 
Here we place no restrictions on the growth of the coefficients anj at infinity. As the main spectral 
characteristic, we introduce and s tudy tile WM for the difference operator. In the second part  of the 
section, we obtain the solution of the Cauchy problem (11.1)-(11.2) by the inverse problem method. We 
find the evolution of the WM with respect to t, provide an algorithm for the solution of the problem, 
and obtain necessary and sufficient conditions for solvability of the problem (11.1)-(11.2) in the classes 
of analytic and meromorphic functions. 

11.1. For a fixed q > 1, we consider the difference equation 

q §  

(ly).~ =-- ~ an,.-qYn+.-q = Ayn, 
p,=O 

where y = [Y-,]~>0, any are complex numbers, an,-q = 1, an1 

n - q + l  < _ j < q - 1 ,  q<<_n<2q-2 .  

n _> q, (11.4) 

0 for n > q, and an,-j = 0 for 

Denote by AR (MR) the set of analytic (meromorphic) for It I < R functions. Let A = [ .JAR, 
R>0 

M = [_J _M•, and let A' be the set of sequences {a~}k_>l such that a~ = O for a certain 
R>0  

5 > 0. We shall write {h(t)},,~,>l ~ A (A ~ if there exists R > 0 such that  f~(t) ~ A R  (.fk(t) r 0, 
It[ < R) for all k. 

Let A be the set of polynomials of the form F(A) = ~ F k A  ~, - i  _< /r _< j ( i , j  > 0 depends on 
k 

the polynomial).  Denote by )c the set of linear fimctionals on A. We call the elements of 9 c generalized 
flmctions (GF's). If P ~ 5 c, the numbers P~,+I = (A ~, P)  are called the moments  of P.  Here (-, P)  
denotes the action of P.  It is clear that  tim GF P E 5 c is uniquely deternfined by its moments via the 
fbrmula (F(A), P)  = E F~P~+I, F(A) E A. It is convenient to represent a GF P C )c in the form of 

k 
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the formal series P(A) = ~ :~z. A GF P E )c can be multiplied by elements of A using the formula 

(F(A) ,G(A)P)  = (F(A)G(A) ,P) ,  F(A),  G(A) ~ A. Denote by 9rt the set of GF's  P E 5 c for which P~ = 0  
for k < l. If {Pk}~_>l ff A', we can define the GF (7(A, t) = exp(At)P(A) with the inoments 

ec tj 

j = 0  

i T Let ~ n ( A ) =  [(I)n(A)]~=l- ~, n _ 0, be the solutions of (11.4) under the conditions 

�9 = ( . ,  = = q .  

k=O 

i T Here T denotes transposition, i.e., [~5~(A)]i=i- ~ is a row vector. The solutions qs~(A) exist, are unique, 
and can be constructed from the relations 

q + l  

= an,~-q~,,~+~_q, n >_ q, i = 1, q, k > O, 

�9 k_>l, 

We introduce the WM 9Jr(A) [9)1 i Y = (A)]i=T;-~ by the formula 9)I'i(A) = ~q(A). The IP is formulated 
as follows: given the WM 9)I(A), construct the operator  I. Denote 

Ak = det[#i~]i,~=0-~, #i~ = (1,Aig)I(A)Rn(A)), (11.5) 

where R~(A) = [R~(A)]i__i-q, Rqs+m(A ) = 5i,,~+lA ~, m =- 0, q -  1. In particular,  #0o = 1, Pin -= 0 for 
O < i < n < _ q - 1 .  

L e m m a  11.1. Ak # 0 for all k >__ O. 

t A T  Denote by M ~ the set of matr ices 9)I(A) = [9)l ( )]i=~,q' 9)ti(A) E 51, for which Po0 = 1, # ~  = 0 for 
0 < i < n < q - 1 .  

T h e o r e m  11.1. For" a matrix 9Jr(A) E M ~ to be the WM for I of the form (11.4), it is necessary and 
sufficient that Ak r 0 for all k >>_ O. The operator I is uniquely determined by the W M  and can be found 
by the following algorithm. 

Algorithm 11.1. Given a mat r ix  9)~(A) E M ~ 

(1) Construct cik, 0 < i < k, by the formula 
--1 k-i c~ = A k ( - 1 )  det[pj,]j=~,k\i;,~=o,k_ 1, 

(2) Compute any by the formula 

(cn+J-q,-,+J-q) -1 ( : Cn+j--q--l'n--q -- E anj 
\ p , = j + l  

COO = i. 

ant~Cn§ �9 

11.2. Consider the Cauchy problem (11.1)-(11.2). Let = ~gJti(A)Ji_~ be the W M  for the 
O 

operator  lo of tile form (11.3) constructed from the initial da ta  o i , {anj }. Let {gJtj}j>_l be the moments  
O 

of 9)I~(A). Suppose that  there exists an analytic solution {any(t)} E A at t = 0 of the Cauchy problem 
(11.1)-(11.2). We consider the corresponding difference operator l = l(t) of the form (11.4). In part icular ,  
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it follows from (11.1) that a,~(t) # O, and consequently, Ak(t) # 0, k _> 0. In the following theorem 
evolution of the WM with respect to t is obtained. 

T h e o r e m  11.2. We have 

{ ~ ~}~1 -~- ( , ~ -  aq0)~t~ l  _ 1,  

O 

~j[i = ()~ _ aqO)~.j~i _ aq+i_2,1~;~i-1,  i = 2 ,  q. 
(11.6) 

O 

Let us now integrate the evolution equations (11.6) with the initial conditions g2~(0, A) = 93I~(A). We 
note that in addition to 9)Ie(t,A), the functions aqo(t), aq+~,_2,1(t), i = 2, q, in (11.6) are also unknown. 

(0J) Denote B(t)  = exp aqo(S) ds . 

T h e o r e m  11.3. We have 
t 

~ / B(t )Ti*( t ,X)  =exp(At )g2 t (A) -  exp( )~( t -  r ) ) B ( r ) d r ,  

0 

t o ] 
B(t)gJl*(t,),) = exp(),t)gJte(~\) - exp ()~(t-  r))B(r)aq+~_2,1(r)9)i~-~(r,A)dr, 

0 
oc o t j 

J~(t) E 1 = 9)Io+ ~ j ! ,  
j = 0  

aq+i_2,1(t  ) = .~(t)  1-I  aq+j , l ( t )  

- 1  

~176 U t J  
J+ jt  

j=O 

i = 2, q, 

(11.7) 

i = 2, q, 
(11.8) 

(ll.9) 

(Ii.lO) 
j = 0  

O 
i where {gJlj }2>_1 E A',  i = 1, q. 

Thus, we obtain the following algorithm for the solution of the problem (11.1)-(11.2) by the inverse 
problem method. 

A l g o r i t h m  11.2. Let {a~ o a~l # 0 be given. We then 
0 

i (1) construct {9)Ij}j>l, i =  1, q; 

(2) compute B(t ) ,  aq+i-<i(t) ,  i =  2, q, by (11.9) and (11.10); 
(3) find 9:R~(t,A), i = 1, q, by (11.7)-(11.8), and calculate Ak(t), k > 0, by (11.5); 
(4) construct the functions {a,, j( t)} by solving the IP with the help of Algorithm 11.1. 

R e m a r k .  Algorithm 11.2 also works when anj(t) E M ,  i.e., in tile class of meromorphic functions. 

T h e o r e m  11.4. For the Cauchy problem (11.1) (11.2) to have a solution a~j( t ) ~ M it is necessary and 
0 

sufficient that {9)i} }/> 1 ~ A',  i = 1, q. This solution is unique and can be constructed with Algorithm 11.2. 
In addition, a , j  (t) E MR ~f and only if 

oo o J 
= E i t ~ i ( t  ) d e f  }~J~jq-,i~ E MR, i --- 1, q. 

j = 0  
j .  

The following theorem gives necessary and sufficient conditions for solvability in the narrower classes 
A and AR. 
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Theorem 11.5. For the Cauchy problem, (11.1)-(11.2) to have a solution {a~j(t)} E A it is necessary 
0 

92il i and sufficient that { J}j>_l E A', i =  1,q, and {Ak(t)}k>_o E A ~ In addition, any(t) E An if and only 

i f~te(t) ~ AR, 9~(t) # 0, Ak(t)  # 0 ,  It] < /~, i = 1,q, k _> 0. 
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