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INVERSE PROBLEMS OF SPECTRAL ANALYSIS
FOR DIFFERENTIAL OPERATORS AND THEIR APPLICATIONS

V. A. Yurko UDC 517.984

Introduction

Inverse problems (IP’s) of spectral analysis consist in recovering operators from their spectral charac-
teristics. Such problems often appear in mathematics, mechanics, physics, electronics, meteorology, geo-
physics, and other branches of the natural sciences. IP’s also play an important role in solving nonlinear
evolution equations of mathematical physics. Interest in this subject has been increasing permanently
because of the appearance of new important apllications, and nowadays the IP theory is intensively
developed worldwide.

The greatest success in the IP theory was achieved for the Sturm-—Liouville differential operator (DO)

~y" +q(2)y. (0.1)
The IP for DO (0.1) was studied by many mathematicians (see [1, 4, 6, 7, 16, 20, 24, 25, 31, 33-37,
39-41, 48, 49, 56, 57, 60-63, 65, 67, 71, 73, 75, 76, 81, 85, 89, 93] and references therein). The first

result in this direction belongs to Ambarzumian [1]. He showed that if the eigenvalues of the boundary
value problem
' +a@y=xy, qz)€C0,x], y(0)=y'(x)=0

are A\, = k%, k > 0, then ¢(z) = 0. But this result is an exception from the rule, and the specification
of the spectrum does not determine the operator (0.1) uniquely. Afterwords Borg [16] proved that the
specification of two spectra of Sturm-Liouville operators uniquely determines the function g(z). Levinson
[56] used a different method to prove Borg’s results. Tikhonov [85] obtained the uniqueness theorem for
the inverse Sturm-Liouville problem on the half-line with the given Weyl function.

An important role in the spectral theory of Sturm-Liouville operators was played by the transfor-
mation operator. Marchenko ([60-61]) first applied the transformation operator to the solution of the
IP. He proved that a Sturm—Liouville operator on the half-line or a finite interval is uniquely determined
by specifying the spectral function. Transformation operators were also used in the fundamental paper
of Gel'fand and Levitan [33], where they obtained necessary and sufficient conditions, and established a
method for recovering the Sturm-Liouville operator from its spectral function.

Let us briefly formulate the main results of Borg, Marchenko, Gel’fand, and Levitan for the self-
adjoint Sturm-Liouville operators on a finite interval.

Consider the boundary value problem L = L{g(x),h, H) of the form

—y" + q(x)y = Ay, O<zx<m, q(z) € L(0,7), (0.2)
Uly) =y (0) —hy(0) =0,  V(y)=y'(m)+ Hy(r) = 0.

Translated from Itogi Nauki i Tekhniki, Seriya Sovremennaya Matematika i Ee Prilozheniya. Tematicheskie Obzory.
Vol. 54, Functional Analysis-7, 1998.

1072-3374/00/9803-0319 $25.00 (¢) 2000 Kiluwer Academic/Plenum Publishers 319



Here g(z), h, and H are real, and A is a complex parameter. Let ¢(z, ) be a solution of (0.2) under
the initial conditions ¢(0,A) =1, ¢'(0,\) = h. It is known (see, for example, [62]) that the following
representation is valid:

z T

o(z,A) = cospr + /K(m,t) cos pt dt, A= p? K(z,z)=h+ -;— /q(t) dt. (0.4)
0 0

The operator (Af)(z) + f(z) + / K(x,t)f(t)dt is called the transformation operator.
0

The eigenvalues {Ax}r>0 of the boundary value problem (0.2)—(0.3) are real and simple, and coincide
with zeros of the characteristic function A(X\) = ¢'(m, A) + Hp(n, A). For k — oo we have

1 1 r
VA :k+c~;—+o(——>, w=— h+H+l/q(t)dt

k 2
0

The function A(X) is uniquely determined by its zeros:

A — A

A(/\) = 7T()\0 - )\) k2

k=1

s

1
Denote o = /g02(x,>\k)d:1:. It is easy to see that ap > 0 and ax = g +o (-];) as k — oo. The set of
0

the numbers {Ag, o }i>o is called the spectral data of L.

Let the functions ®(x, ) and S(z, \) be solutions of (0.2) under the conditions U(®) =1, V(®) =0,
S(0,\) =0, §’(0,\) = 1. Clearly ®(z,\) = S(z, A) + M(N)p(x, A), where M(A) = &(0, ). The function
() is called the Weyl function. It is meromorphic with simple poles at A = A, and
= 1
M) = ; PR

We now formulate two uniqueness theorems of the solution of the IP.

Theorem 0.1 (Marchenko [60, 61]).  The specification of the spectral data { Ay, an}r>0 uniquely deter-
mines the potential g(x) and the coefficients h and H.

Theorem 0.2 (Borg [16]).  The specification of two spectra {\;} and {1} of the boundary value
problems L = L(g(x),h, H) and L = L(q(x),h, H1) (H # H,) uniquely determines the function q(x) and
the numbers h, H, and H;.

A method for constructing the Sturm-Liouville operator from its spectral data is based on the
following theorem.

Theorem 0.3 (Gel’fand and Levitan [33]).  For each fized x, the kernel K(x,t) of the transformation
operator (0.4) satisfies the linear integral equation

K(z,t)+ F(z,t) + /K(az, s)F(s,t)ds =0, 0<t<u, (0.5)
0
where
flx,t) = i (—1~ 08 v/ Apz cos v/ Apt — L cos kx cos k:t) al = { /2 k>0,
’ Qg af) ’ F mk=0.

k=0
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The potential q(z) and the numbers h and H can be constructed by the formulas q(x) = Z%K (z,x),
h=K(0,0), H=nw— K(m, 7).

Equation (0.5) is called the Gel'fand-Levitan equation. Using the Gel’fand-Levitan equation one
can also obtain necessary and sufficient conditions for the solvability of the IP (see [57, 62, 63]).

The IP of recovering the Sturm-Liouville equation from two spectra can be reduced to the IP from
spectral data, since the numbers {ay}g>0 can be computed by the formula

1 .
= g, A1) A0,

Ok

where A(\) = %A(/\), and A1(A) = ¢ (m,A) + Hip(m, A) is the characteristic function of L =

L{g(z),h, Hy). It is also clear that the specification of the Weyl function M()) is equivalent to the
specification of the spectral data {Ax, a}r>o0.

The transformation operator method allows us to investigate also IP’s for the Sturm-Liouville op-
erator on the half-line and on the line (see [4, 62, 63, 57] and references therein).

Many works are devoted to the IP theory for partial differential equations and its applications. This
direction is reflected fairly completely in [8, 12, 17, 50, 70, 74].

In recent years there appeared a new area for applications of the IP theory. In [29] G. Gardner,
J. Green, M. Kruskal, and R. Miura found a remarkable method for solving some important nonlinear
equations of mathematical physics connected with the use of the IP theory. This method has been
described in [2, 26, 51, 59] and other works.

In contrast to the case of Sturm-Liouville operators, the IP theory for higher-order DO

n—2
ly=y™+Y  pr(z)y™® (0.6)
k=0
is nowadays far from its completeness. For n > 2 the IP becomes essentially more difficult, and for a
long time there were only isolated fragments of the theory not constituting a general picture. However
in last time there appeared new results which allow us to advance in this direction.

IP’s for (0.2) were studied in [9-11, 19, 21, 22, 42-46, 52, 53, 66, 77-79, 83, 84, 87, 88, 90, 95-100,
102, 105, 107] and other works. In recent years there has been considerable interest in investigation IP’s
for higher-order DO’s as a result of emerging of new applications in various areas of the natural sciences,
in particular, in the elasticity theory, for integration of nonlinear equations of mathematical physics, and
SO on.

Fage [27], Leont’ev [54], and Hromov [38] determined that for n > 2 the transformation operators
have a much more complicated structure than for the Sturm-Liouville case, which makes it more difficult
to use them for solving the IP. However, in the case of analytic coefficients the transformation operators
have the same “triangular” form as for Sturm-Liouville operators ( see [46, 64, 77] ). Sakhnovich [78-79]
and Khachatryan [44-45] used a “triangular” transformation operator to investigate the IP of recovering
self-adjoint DO’s on the half-line from the spectral function, as well as the scattering inverse problem.
The scattering inverse problem on the line has been treated in various settings in [10, 11, 19, 21, 22, 42,
84] and other works.

Leibenzon in [52-53] investigated the IP for (0.2) on a finite interval under the condition of “sepa-
ration” of the spectrum. The spectra and “weight” numbers of certain specially chosen boundary value
problems for the DO’s (0.2) appeared as spectral data of the IP. However it was found that the “sep-
aration” condition is rather a hard restriction, since removing it leads to a violation of the uniqueness
for the solution of the IP and to appearance of essential difficulties in the method. Things are more
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complicated for DO’s on the half-line, since in the non-self-adjoint case the spectrum can have a “bad”
behavior.

The present review is devoted in the main to investigations IP’s for DO (0.6) on the half-line and
on a finite interval and their applications. The main results in this direction obtained in last years are
provided. The paper consists of 4 parts.

In Part 1, we study DO (0.6) with integrable coefficients. Sec. 1 is devoted to applying the trans-
formation operator method to IP’s for higher-order self-adjoint DO’s with analytic coeflicients. Results
by Khachatryan constitute the base of Sec. 1.

In Sec. 2, we provide the solution of a general IP for non-self-adjoint DO (0.6) on the half-line with an
arbitrary behavior of the spectrum. We introduce and study the so-called Weyl matrix 9(A) = [, ()]
as the main spectral characteristic. The uniqueness theorem for the solution of the IP with a given Weyl
matrix is proved. We give a derivation of the main equation of the IP, which is a singular linear integral
equation

~ AT ﬁ 7/\7
B ) = Fple ) + o [T o di, Aey, 220,

with respect to ¢(z,A). Here ¢(z, A) is a vector-function constructed from special solutions of the dif-
ferential equation lu = Ay. The functions @(z,A), N(A), and H(z, A\, 1) are constructed from the given
model DO

n—2
ly=y™ +Y Br(z)y™®
k=0

and from the Weyl matrix M(\) of DO (0.6). We give a constructive procedure, as well as necessary
and sufficient conditions on the Weyl matrix when the behavior of the spectrum is arbitrary. Further, we
consider a particular cases,namely, DO’s with a simple spectrum and selfadjoint DO’s. For second-order
DO’s we establish connections between the main equation of the IP and the Gel’fand-Levitan equation.

In Sec. 3, we study DO (0.6) on a finite interval. In this case there are specific difficulties connected
with nontrivial structural properties of the Weyl matrix in neighbourhoods of the points of the spectrum.
We provide an algorithm for the solution of the IP, as well as necessary and sufficient conditions of
solvability of the IP. A counterexample shows that dropping one element of the Weyl matrix violates the
uniqueness of the solution of the IP.

Section 4 is devoted to investigations of the so-called incomplete IP’s, when some part of the coeffi-
cients of DO (0.6) is known a priori or there is another information about the operator. Such problems
often appear in applications. As a rule, incomplete IP’s are more difficult for studying. In Sec. 4, we use
the so-called method of standard models, in which we construct a sequence of model DO’s “approaching”
the desired DO. The method allows us to obtain effective algorithms for the solution of a wide class of
incomplete IP’s. We also apply the method of standard models to solve an IP of the elasticity theory.

In Sec. 5, we provide the solution of the IP for DO (0.6) on the half-line with locally integrable
analytic coefficients. To solve this problem, we introduce the so-called generalized Weyl functions and
use connections with an IP for partial differential equations. We also use the Riemann-Fage formula [28§]
for the solution of the Cauchy problem for higher-order partial differential equations. Note that for n = 2
generalized functions for solution of IP’s were applied by Marchenko [62].

Part 2 consists of two paragraphs and is devoted to investigation of higher-order DO’s with noninte-
grable singularities. In Sec. 6 we consider DO’s with singularities on the half-line, and Sec. 7 is devoted
to boundary value problems on a finite interval. The IP is studied, and completeness, expansion, and
equiconvergence theorems are obtained.

In Part 3, the so-called nonlocal IP’s are considered. In contrast to IP’s for DO’s, nonlocal IP’s, be-
cause of their complicacy, have not been investigated yet. We consider two model nonlocal IP’s. In Sec. 8
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an IP for integro-differential operators is studied. and in Sec. 9 we consider an IP for one-dimensional
perturbations of integral Volterra operators. In Part 4, we provide applications of the constructed IP
theory to investigations of nonlinear integrable equations of mathematical physics.

Notations.

1. If we consider a DO [, then along with | we consider a DO I of the same form, but with different
coefficients. We agree that if some symbol ¢ denotes an object relating to I, then 1/1 denotes the analogous
object relating to I and zb Y — ¢

2. One and the same symbol C' denotes various positive constants in estimates.

3. A matrix A with elements a;;, i = 1,7, j =1, s, will be written in one of the following ways:

T
A= laglitry=1s = [0, Giliety = g, anljs,

where i is the row index, j is the column index, and T is the sign for transposition. If A has the
maximum rank, we shall write A # 0.
4. By FE we denote the identity matrix of the corresponding dimension or the identity operator on

the corresponding space.
5. If for A — Ag

FO) =Y - (A= o) +o((A = do)?),
k=—g
then

(k def
[F()‘)]p\):/\ = F<k:>(/\0) = Q.

PART 1

DIFFERENTIAL OPERATORS WITH INTEGRABLE COEFFICIENTS

1. Transformation Operator Method

1.1. Formulation of the inverse problem. Let us consider the self-adjoint boundary value problem

(zn)+z uc)) (k) _ jany (1.1)

on the semiaxis (0,00) for certain boundary conditions at the point x = 0. If the coefficients py(z) are
summable on the semiaxis (0,00), then (1.1) has a bounded solution u(z,p) (p > 0) for x — oo which
satisfies the boundary conditions and generates the Fourier expansion with respect to the eigenfunctions
of the boundary value problem for (1.1). Let y(x, p) be a solution of (1.1) that has the asymptotics

y(z, p) = exp(ipz) - (1+ o(1)), x = 00. (1.2)
Let us assume that the function y(xz, p) is holomorphic with respect to p in the upper half-plane and

7
is continuous on the real axis. Then u(z, p) = (27)" 2 S Sp(p)y(x, pwi), p > 0, where wy, = exp(imh/n).
k=0
The solution u(z, p) can be normalized by the condition S,(p) = 1. For brevity, let us agree to call the
functions Si(p) phases. In Sec. 1, we consider the inverse scattering problem which consists in the

reconstruction of the coefficients of (1.1) and the boundary conditions from the given phases

SO(:”)? Sl(p)v R Sn—l(p) (13)
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(for simplicity, it is assumed for the present that the point spectrum is absent).

We shall assume that the coefficients of (1.1) are holomorphic in the sector |arg z| < g - —27—T~ Under
n

this assumption, there exists a triangular transformation which transforms the function exp(ipz) into
the solution (1.2) of Eq. (1.1), and is holomorphic with respect to p for Tmp > 0. As shown below,
the kernel K(z,t) of this triangular transformation satisfies the Gel'fand-Levitan—-Marchenko integral
equation with a kernel F(t,&) which is constructed in a special manner from the phases (1.3). The
solution of the considered IP is the result of analysis of this integral equation, which will be called in
the sequel the main equation.

A more detailed investigation of the main equation enables us to find necessary and sufficient condi-
tions under which given functions (1.3) are the phases of a certain self-adjoint boundary value problem
for (1.1).

In Sec. 1.6, we give the theorem that the boundary value problem for (1.1) is determined uniquely
from its spectral matrix.

We note that the problem of reconstruction of boundary value problem for (1.1) with n > 1 from the
spectral matrix-function, and the problem on conditions for the existence of the triangular transformation,
have been considered in a series of articles by Sakhnovich. In particular, a local (in a certain sense)
solution of the IP has been obtained in [78] by the Gel’fand-Levitan method.

1.2. Auxilary propositions. Let us consider the following self-adjoint differential expression, which
is more general than (1.1):

ly = (—1)" (on)+z Py ) ® (_1)k; <(p2k+l( Yy <a>)<k+1>(p%H(x)y(kH))““))_ (1.4)

Throughout this section, we will assume that the coefficients py(z) are real for x > 0 and satisfy the
following conditions for a certain o (0 < o < 00):

/x:’”*l‘klpk(m)l dz + / |pk(z)] dz < oo, k=0,2n—2. (1.5)
0

Following [69, p. 182], let us define the quasiderivatives y*/(z) (k = 0,2n) of the function y(z)
corresponding to the expression (1.4) by the equalities

yM=y® k=0m;

SR L _
y["M] 2p2n—2l~c—1y(n "D 4 pop_ary "M
3199 2k 1y(”_"’“) - -d—(y[”“%_l]) k=1,n-—1;
2 n—2k-4 d:I‘ y 9 ’

d
[2n] _ _ = [2n—1]
= poy 2p1y 7 (y ).

We will assuine that ly has sense if all quasiderivatives of y(xz) of orders upto and including 2n —1
exist and are absolutely continuous on each segment [a, 5] C (0, 00); then ly = y27.

Let y(z) and w(x) be functions for which (1.4) has sense. The Lagrange formula
B e}
/zy-Zw(x))dx—/ (z) - lw(z) dz = {y,w}g — {y,wla, O0<a<f<on, (1.6)

«x e
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where

n—1

wwke = Y (s TH) - g9 ) (7)) (L.7)

k=0
is valid. We will also use the symbol {y,w}, , for the functions y and w depending on a parameter .

Remark 1.1. Tt follows from (1.6) that the expression {y,w}; , does not depend on x for the solutions
y(x, 1) and w(z, 1) of the equation ly = py for real pu.

Remark 1.2. We can prove that each solution of the equation ly — py = f is continuous at the point
x =0 for f € L£2(0,00).
For each nonzero p the equation
ly = p*y (1.8)

has solutions yi(z, p) (k = 0,2n — 1), for which the following asymptotic formulas hold for z — oo (see
(69, p. 320)):

yi(z, p) = exp(iwgpz) - (1+ o(1)), k=0,2n—1, (1.9)
where
wy, = exp(irk/n), k=0,2n—1, (1.10)
and, in addition,
y,[:] (z,p) = (iwgp)? exp(iwgpz) - (1+ o(1)), v=0,n—1, (1.11)
y,[f}(x, p) = (—1)""(iwp)” exp(iwgpz) - (1 + o(1)), v=mn,2n—1. (1.12)

Let D denote the set of all functions y € £5(0, 00) such that ly € £5(0,00) and let Dy denote the
set of all functions y € D§ such that y¥1(0) = 0 (k = 0,2n — 1). Let us define operators L} and Lo
(Lo C L§) on the linear manifolds Dj and Dy by setting Ly = ly for y € D{. One can prove that
Ly is a symmetric closed operator and L is adjoint to Ly (see [69 ,p. 202]). By virtue of Remark 1.2,
it follows from (1.9) that the deficiency index of Ly is (n,n) and, consequently, Lo admits self-adjoint
extensions. The following two propositions are proved by the methods used in [69].

Lemma 1.1. The domain D of each self-adjoint extension L of Lg is the set of all those functions
y(x) from D§ which satisfy the boundary conditions

{y,wr}o=0, k=1n, (1.13)
where wy(x) (k= 1,n) are certain functions from D§ which are linearly independent modulo Dy and are
such that

{'UJj,u?k}() = 0, ],k‘—’:m (114)

Conversely, for arbitrary functions wy, € D (k = 1,n) that are linearly independent modulo Dy and
satisfy (1.14), the boundary conditions (1.13) generate the domain of a certain self-adjoint extension of
the operator Lg. In particular, the Dirichlet boundary conditions y*)(0) = 0, k = 0,n— 1, are of this
type.

Everywhere in the sequel, L denotes the self-adjoint extension of the operator Lo determined by the
boundary conditions (1.13).

Theorem 1.1.  The following statements are valid:

(1) The continuous spectrum of the operator L coincides with the semiazis [0,00). The point spectrum
of the operator L is bounded from below and does not have any nonzero finite condensation points. The
multiplicity of nonpositive eigenvalues does not exceed n, and the multiplicity of positive eigenvalues does
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not exceed n— 1. In addition, the set of positive eigenvalues of multiplicity n — 1 is bounded (in the case
of the Dirichlet boundary conditions, the point spectrum is bounded).

(2) If (1.5) is fulfilled for o = 0, then the point spectrum of the operator L is bounded.

(3) If (1.5) is fulfilled for o = oo, then the point spectrum of the operator L does not contain the
origin. Moreover, the number of the negative (positive) eigenvalues of multiplicity n —1 (n > 1) of the
operator L are finite.

Let Agx(p), k = 0,n, denote a minor of order n of the rectangular matrix [{y/,,wj }o, p] —Om=Th
which does not contain the kth row of the matrix, where yi(x,p) is a solution (1.9) of (1. 8) and the
functions w;(z) are the same as in (1.13). Then the solution

=Y (D Aulp)yr(z, p) (1.15)
k=0

of (1.8) satisfies the boundary conditions (1.13).

Note that the minors Ag(p), —7 < argp < 0, and An(p), 0 < argp < T, do not depend on the
choice of the solutions yi(z, p) with the asymptotics indicated in (1.9)—(1.12); moreover, these minors
are holomorphic in the indicated open sectors and are continuous upto the boundary (p # 0).

Lemma 1.2.  The zeros of the minors Ao(p) and Ay(p) coincide on the semiazis (0,00). Moreover,
the number p** (p #0, —Z < argp < I) is an eigenvalue of the operator L if and only if Ag(p) =0 for
—T <argp <0 or Ay(p) =0 for 0 <argp < Z. Forp>0
20(0)] = [An(p)- (1.16)
Let T* (T~) denote the set of all the numbers p > 0 (argp = —Z) such that the numbers p*" are
the eigenvalues of L, and let T'=T7TUT~. We set

Ar(p)
Si(p) = (=1)VHF 2R >0, T+, k=0n. 1.17
k(p) = (1) A (o) p pé (1.17)
By virtue of (1.16), we have
S0(p)| = Sn(p) =1, (1.18)
Denote
u(z, p) = ZS’“ P)yr(z, p), p>0, p¢Tt. (1.19)

For each p >0 (p ¢ T™) the function u(:z:, p) is the unique (upto a constant factor) bounded solution of
(1.8) that satisfies (1.13). By virtue of (1.9), we have v27u(x, p) = exp(—ipz) + Sp(p) exp(ipx) + o(1)
for + — oco. The functions u(z,p) and Sp(p) do not depend on the choice of the solution (1.9). The
functions Si(p), 0 < k < n, depend on the choice of the solutions of (1.9) and will be defined below. For
each p € T let m(p) denote the multiplicity of the eigenvalue p*7, and ¢ (x, p), k = 1,m(p), denote the
corresponding orthogonal system of eigenfunctions.

Theorem 1.2.  Let f(z), g{x) € £2(0,00). Then the integrals
— [ fayate pyde, Glo) = [ gayuts, ) ds
0 0

are convergent in the sense of the metric of L£5(0,00) and

/f g(z) dz —7 p)dp+ ;i)jf @iz, p)d 7?(%)%(%0) dz. (1.20)
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It is easily verified that the integral operator with the kernel

m(p)

d(z,t,0)= > or(z,0)B(tp), pET, 0<z,t< 00,
k=1

is the orthoprojection onto the eigensubspace of the operator L corresponding to the eigenvalue p?*. It
is obvious that, by virtue of (1.9), the kernel ®(z,t, p) can also be represented in the form

®(z,1, p) Z Ny (0)yr(z, p)y;(tp),  peT, p#0, (1.21)
k,j=1

where Ni,(p) = Nui(p) =0 (k=1,n) for p € T". Denote

Sis(0) = 5-Se)Si(e),  p>0, K j=0m (122)

and introduce the nonnegative Hermltlan matrices
N(p) = [Nej(0)], 10 PET, p#0, (1.23)
S(p) =[Sk ()]} jo7» P> 0. | (1.24)

The rank of the matrix N(p) coincides with the multiplicity of the eigenvalue p°* of the operator L, and
S(p) is a matrix of rank one.

Let E, (—oo < u < o) be a left-continuous spectral function (a resolution of the identity) of the
operator L. Since the spectrum is bounded from below, it follows that E,, is an integral operator whose
kernel will be denoted by E(x,t,p) It is obvious that ®(z,t,p) = E(x,¢, p**+0) — E(z,t,p°"), p € T. Tt

d
can be concluded from Theorem 1.2 that the derivative ¥(z,t, p) = — FE(z,t,p?"), p > 0, p & T, exists,

dp
and
(2,1, p) Z Ski(P)yx(z, p)T;(t, p), p>0.
k,j=0
1.3. A triangular transformation.  Let us now assume that the coefficients pr(z) in (1.4) are
holomorphic in the sector
T ow
Q, = {M : —a)| < - — —} .
z: |arg(z — a)| 5~ o (1.25)

and satisfy the conditions

/mQ”_l“klpk(z‘)‘ dx —1—/:172"’1"“ < sup ’pk(x)|> dx < oo, k=0,2n—2, (1.26)

Rez=z
0 0

for a certain finite @ > 0. Then for all p such that Imp > 0 Eq.(1.8) has a solution y(x, p) which can be
represented on the semiaxis [a,o0) in the form

y(z, p) = explipz) + /K(m, t) exp(ipt) dt, a < x,00, (1.27)

where K (z,t) does not depend on p, and for each ¢ > 0 the function
Ko(z,8) = K(z,2+§) (1.28)

is holomorphic with respect to z in £2,, and

|Ko(z,8)| < h (Rez + g) (1.29)
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with a certain function h(z) which is nonincreasing and summable on the semiaxis (a,00).

The validity of the triangular representation (1.27) has been obtained in [46] and other papers. To
obtain (1.27) we essentially use the analyticity of the coefficients in the sector (1.25).

By virtue of (1.29), it also follows from (1.27) that

0
exp(ipz) =Y (z,p) + /H(m,t)y(t,p) dt, a <z < oo, (1.30)
where H(x,t) is a solution of the integral equation
¢
K(z,t)+ H(x,t) + /H(m,g)K(g,t)dg =0, a<z<t<oo. (1.31)
T

It follows from (1.31) that for each £ > 0 the function
Ho(z,§) = H(z,2 +§) (1.32)

is holomorphic with respect to z in the sector Q, and, by virtue of (1.29), satisfies the inequality

‘Ho(z,é)l §C~h<Rez~|—%> , C >0. (1.33)

We note that, by virtue of (1.27) and (1.29), for each z > 0 the solution y(z, p) is holomorphic with
respect to p in the half-plane Imp > 0 and continuous on the real axis. For x — oo, uniformly with
respect to p in the domain Imp > 0, we have

y(x, p) = exp(ipz) - (1 + o(1)). (1.34)

Remark 1.3. If, under conditions (1.5), Eq. (1.8) has two solutions v;(z, p) and vs(z, p) which, for
each * > 0, are holomorphic with respect to p in the half-plane Imp > 0 and have the asymptotics
vi(z, p) = exp(ipz) - (1 + o(1)) for z — oo for each p, then vi(z, p) = va(x, p).

By the remark made above, under conditions (1.26) Eq. (1.8) has only one solution y(z, p) which
can be represented for Imp > 0 in the form (1.27) with the kernel K(x,t) satisfying the condition

lim /}K(:E,t)\dt = 0.
T— 00

xz

The kernel K(z,t) is unique in representation (1.27).
In conclusion, we show that deletion of the condition of analyticity of the coefficients leads, in
general, to loss of the triangular representation. Let us consider the equation

()Y —gz)y = p™y, 0 <z <00, (1.35)

in which g(z) is the characteristic function of the interval [0,1). Let us assume that the solution y(z, p)
of (1.35) can be represented in the form (1.27) for all # > 0 and Im p > 0. Then y(z, p) must be bounded
in the domain = >, Im p > 0; and, by Remark 1.3, for z > 1 we must have y(z, p) = exp(ipz). Extending
this function as the solution of (1.35) to the segment [0,1], we obtain the formula

»  b(p) explip) 2l g exp (iwib(p)(z — 1)) B ot
y(mp) = 2n(p*" +1) kzzo wib(p) — p b =TV AL

Since Re(iwy,) < 0 for k = 1,n—1, it follows that the function y(z,p) is unbounded for 0 < z < 1,
p — +o0o. We have obtained a contradiction.
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1.4. Scattering data. Let the coefficients py, () be holomorphic in the sector (1.25) and satisfy (1.26).
By Theorem 1.1, 0 ¢ T.. Using (1.27), we can introduce the following solutions of (1.8):

yk(z, p) = y(z, pwi), Im(pwi) >0, k=0,n. (1.36)

It is obvious that (1.9) is valid for solutions (1.36) by virtue of (1.34). It is also obvious that for p > 0
solutions (1.36) form a basis of the subspace of bounded solutions of (1.8).

Everywhere in the sequel, we will assume that the functions Si(p) introduced via (1.17), and also
the matrices N(p) and S(p), introduced via (1.21)—(1.24), correspond to solutions (1.36).

Let us consider the data set

(T, N(p)(p€T). S(p)(p>0)), (1.37)

which we agree to call in the sequel the scattring data.

1.5. Inverse scattering problem. Let us consider the IP of recovering L from the data set (1.37).
To solve this problem, let us consider the function

F(r t,r,R) = /// Z Si; (p) expiwkp€) exp(—iw;pn) dndsdp

k,7=0

+ Z /f Z N (p) expliwyp€) exp(—iw;pn) dndg, a<lz,t<oo, 0<r<R.

peT L, . kJ=1
r<|pl<R

Theorem 1.3.  For arbitrary z,t € [a,00) the limit 17“(:1:, t) = 111:% F(m,t,r R) exists and is finite.
r—
R—co

Moreover, the function ﬁ(x, t)—min(z,t) has continuous partial derivatives of second order in the domain

0 ~
a < xz,t < co. The derivative F(x,t) = pren (F(z,t) — min(z,t)), a < x,t < oo, satisfies the relation
F(x,t) = F(z,t) and, in addition,
F(x,t) = H(z,t) /Hrn (t,m)dn, a<z<t, (1.38)
F(x,t) + K(x,t) + /K(m,n)F(?}, t)dn=0, a<z<t. (1.39)

The proof of this theorem can be carried out with the help of the Parseval equality (1.20) and the
formulas (1.27) and (1.30) in the same way as in the case n =1 (see [63, pp. 185-188]).

Equation (1.38) shows that the function F(z,t) is the same for all self-adjoint extensions of the
operator It follows from (1.38) that for each £ > 0 the function Fp(z,£) = F(z,z+&) can be analytically
continued with respect to z from the semi-axis (a,00) into the sector 2, and satisfies the inequality

|Fo(#, )| < Ch (Rez + g) (1.40)

where h(z) is the same as in (1.33).
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For each z € (), we define the integral operators H,, H}, and G,:

00 £
H. (€)= / Ho(z+ €0~ &) f(ydn,  H:f(€) = / Ho(z+mé—mfm)dn,  0<¢< oo,
£ 0

FU(Z+§777—£)7 fSUa

CHE = | G fm)dn,  Glen) =1
) O/(zén)f(n)n N

By virtue of (1.33) and (1.40), the operators H,, H}, and G, are completely continuous in each space
L,(0,00), 1 < p < oo, and by virtue of (1.38) we have

E+G,=(F+H,)(E+H}). (1.41)
It follows from (1.41) that for each z € Q, the operator E + G, has an inverse in L,(0,00), 1 <p < 0.

Theorem 1.4.  For each z € Qg the kernel Ko(z,£), as a function of &€ > 0, satisfies the integral
equation

Fo(z,€) + Kolz€) + / Ko(z, )Gz, m,€) dy = 0 (1.42)
0

and is the unique solution of this equation in L£1(0,00).

Integral equation (1.42) is obtained from (1.39) by a change of variables, and its unique solvability
follows from the invertibility of the operator E + G, and from the relation G(z,¢,7) = G(%,£,7).

Theorem 1.5.  The data set (1.37) uniquely determines the corresponding self-adjoint operator L with
the coefficients pi(x) which are holomorphic in a certain domain, containing sector (1.25) and the interval
(0,a] and satisfy (1.26).

Proof. By Theorem 1.4, the data set (1.37) uniquely determines the kernel Ky(z,&), z € Qq, £ > 0,
and, consequently, the kernel K(z,t) also (@ < z < ¢t < o0). By (1.27), for Imp > 0 the solution
y(z, p) of (1.8) is uniquely determined on the semiaxis (a, co0) which, in its turn, uniquely determines the
coefficients pg(x) of (1.8) on the semiaxis (a,oc). We note that the functions pg(z) can be determined
immediately with the help of the kernel K(z,t). By virtue of analyticity, the coefficients py(x) are
uniquely determined for all z > 0. But then the solution u(z,p) of (1.8) which satisfies the boundary
conditions (1.13) for all p > 0 is uniquely determined by (1.36) and (1.19). It remains to consider the
fact that in the boundary conditions (1.13), generating the desired operator L, we can take as wy(x)
an arbitrary function from Dg that coincides with the function u(z, pi), where p1, ps,. .., p, are certain
positive numbers, in a neighborhood of the origin. This fact can be proved easily.

1.6. Recovery of the operator from its spectral matrix. Let the operator L with the domain
D and the spectral kernel E(z,t,u) be the same as in Sec. 1.2. Let us define the matrix o(u) =
[0k (/.L)]k jeTe 00 < p <00, by the formula

71y (1) = {on(8), {vy (), B, 1,10)} |

where vi(z) (k = 1,n) are certain functions from D} that are lineary independent modulo D. Then
o(p) is the spectral matrix of the operator L (see [69, pp. 255, 273]), corresponding to the system of the
solutions ug(x, 1) (k =T, n) of the equation lu = pu, and satisfy the conditions

l:l::t:(]’

{Ukn’wj}o,u = 07 {uka Uj}O,;J, = 6k]7 k77 - ma

where w;(z) are the same as in the boundary conditions (1.13).
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Theorem 1.6. A self-adjoint differential operator L with the coefficients which satisfy (1.26) for a =0
is uniquely determined from its spectral matriz o(u).

The proof of this theorem is based on the fact that the data set (1.37) is determined uniquely from
the matrix o(u).

2. Recovery of Non-self-adjoint Differential Operators
from the Weyl Matrix

2.1. The uniqueness theorem.

2.1.1.  We consider a differential equation (DE) and linear forms (LF) L = (I,U) of the form

n—2
y=y"™+) ple)y =Xy, 0<z<T <o, (2.1)
v=0
Oea—1
Uealy) =y (@) + ) uaay®(a),  €=Tm (2.2)
v=0

on the half-line (T = oo) or on the finite interval (T' < oc). Here p,(z) € £(0,T) are complex-valued
integrable functions; a =0 for T'= oo, and a = 0,7 for T' < 00; 0 < 0¢e <1 — 1, 0¢a # opa (EF ).
Let A = p™. It is known (see [69, p. 53]) that the p-plane can be partitioned into sectors S of angle

I (argp € (5”7—’, %), v =0,2n — 1) in which the roots Ri,..., R, of the equation R™ — 1 = 0 can

be numbered in such a way that
Re(pR1) < Re(pR;) < --- < Re(pR,), peS. (2.3)
Let the functions ®(z, \) = [®m (2, A)] _i— be solutions of (2.1)satisfying the conditions Ugo(®m) = d¢m,

m

¢ =T,m, and Uyr(®m) =0, n=Ln—m (for T < ), ®p(z,A) = (exp(pRpz)), 2 — 00, p € S (for
T = 00). Here and in the sequel, d¢ , is the Kronecker symbol. Denote M1 (A) = Uo (P, ), k =m + 1, n.
The functions ®,,(z, A) and M, (A) are called the Weyl solutions (WS’s) and the Weyl functions (WF’s),
respectively. The matrix M(A) = [Mnpr(N)], = Mmi(X) = G, k =1, m, is called the Weyl matrix
(WM) or the spectrum of L. Thus, MM(A) = Up(®(z,A)), where U, = [Uia]g:ﬁ' We note that

O(z, ) = MA)C(z, A), (2.4

S’

where C(z, A) = [Cpn (2, A)] m—T7 re the solutions of (2.1) under the conditions Ugo(Cy,) = dgm, € = 1, 1.

Formulation of the inverse problem. Given the WM 9t(A), construct the DE and LF L = (I,U).

In 2.1, we study the properties of the WE’s and prove the uniqueness theorem of recovering the DE
and LF (2.1)—(2.2) on the half-line and on the finite interval from the given WM 9t(A) when the behavior
of the spectrum is arbitrary. Below, in Sec. 3, we provide a counterexample showing that dropping one
element of the WM violates the uniqueness of the solution of the IP.

2.1.2. Let a € (0,7), pa = 2n - max|p,||L(e,T). It is known (see, for example, [69, p. 58 ])

that in each sector S with the property (2.3) there exists a fundamental system of solutions (FSS)
B, = {yk(:z:, p)}k:ﬁ of the DE (2.1) of the form

o () = (pRe)” exp(pRiz) - (1+0(p™1)), ol =00, 20, (2.5)
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where for x > o and 7, = k the functions y;. (i, p) satisfy the equations

Lo T n
yr(z, p) = exp(pRix) — /Z R exp (/)R]'(.’L' - t))Mt(y;{,) dt +- / Z Rjexp (pRj(x - t))]\/[t(yk) dt,

a 171 v J=rEe+l

n—2
1,
Mi(ye) = —p ™" Dty (¢, )-
pu=0

(2.6)
The functions y,(cu)(:r, p), v = 0,n— 1, are regular for each x > 0 with respect to ¢ € 5, = {p tp el
lp| > pa}, are continuous for > 0, p € S, and have the estimate

(. 0)- (PRe) " exp(—pRiz) — 1| < pa-lpl ", 2@, peSa.

As |p| = o0, p€ S,

n(n-—-1)

(v—1) = p = -det [Rz—l] bl (1 + O(T‘_l)).

det [ylg (‘7’.7 P)} k-,,j

Moreover, we require the FSS Bap, = {90(x,0), ..., yo(x,0), Ym+1(,p), ..., yn(z,p)} of the DE
(2.1), where yi(z,p) € By, k = m+1,n and the functions y{(z,p), k = 1,m are solutions of (2.6) for

z > « and rp = m. Furthermore, the functions yg(”) (z,p), v =0,n — 1 are continuous for z > 0, p € S,

are regular with respect to p € S, for each z > 0, and yg(v)(x,p) = O(p” exp(pRmz)), 7 > o, |p| = o0,
pEeS.

2.1.3.  Let we(R) = R,

Q(jla s 7j17> = det [wju (Rk)} v,k=1,p’

Q.1 --- 5 Jp) = det [ij(RkHl/:H;k:l—,p—ﬁ\,u’

po = (Q(m))_l - Q(1,m—1,k),
a’?nk = (—1)m+k(ﬂ(17m))#l : Qk(177n - 1)»

and also I' = {)\ I A = O}, Py = {)\ kA > 0}. Let IT and I1i; are the A-plane with the cuts I' and
['4; respectively.

Theorem 2.1. (1) Let T < 00. Then the WF’s M, (\) are meromorphic in A and
—1
DMk (A) = (Amm (X)) - Amk(N), 27
def m—k ’

AmilA) = (=1)"F det [UfT(Cv)ngm;u:m\k'
(2) Let T = oco. Then the WE's Mpyp(A) ore regular in IL_1yn-m wilh the exception of an at most
countable bounded set Al , of poles. For (=1)""™X > 0 the following limits ezist and are finite

off the bounded sets Aik :

Mo (V) = lim Do (A £ i2).
Rez>0
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Proof. Let T = oo, {yr(z,p)};—15 be the FSS By of (2.1). Using the boundary conditions on @, (x, A)
we obtain

B, (z,A) = }r_% ami(P)yK(2, ),

Gmi(p) = (=)™ (A8, (p)) " det [Ueo(®)] e _rommr.o T (2:8)

mk(p) = det [Ufo(y’/)}v T,m;é=1,m,k’
Since Mk (A) = Upo (P (2, A)), it follows from (2.8) that

Using the asymptotic properties (2.5) of the functions y, )(a: p), we have for |p| — oo, p€ S:

amk(p) = p~7™° (agm + O(P_l))»

Pn(z,A) = p7mO 1551 exp(pRyz) - (a2, + O(r™1)), (2.10)
{ A?nk(p) = porot om0 00 . (1 'm — 1, k) - (1 + O(p‘l)), @.11)
Mai(A) = p70 =m0 pip - (L+O0(p7)).
Repeating the preceding arguments for the FSS B,,, we get that
{ M (N) = (Db (0)) ™ Al (0), _—
mk(p) = det [U€0(yu)]y Tmie=T,m—1Lk"

Let
G = {p cargp € (((-—1)"‘7"’ — 1)%, (=)™ + 3) %)} .

The domain G consists of two sectors S with the same collection {R;} ¢=Tm- Consequently, the functions
Al (p) are regular for p € G, |p| > p, and continuous for p € G, |p| > p,. The theorem is obtained
from this, in view of (2.9), (2.11), (2.12), and the arbitrariness of «.

Let A, = A/ LRUA RUA . and A = |J Ay, We say that the spectrum of L has finite multiplicity,

m,k
if for some p > 1 we have that M(\) = O((A — /\g)‘p), A = Ao, Ao € A. For example, if p,(z) exp(ex) €
L£(0,00), € > 0, then the spectrum of L has finite multiplicity. It is known that, in general, the spectrum
can have infinite multiplicity.

Let T < oco. Using the boundary conditions on @,,(z, ), we obtain

O, (2,0) = (Amm(N) 7' - det [Co(z, A), Urr(Co), -+, Unem,7(C)] (2.13)

and consequently, the relations (2.7) are valid. Theorem 2.1 is proved.
For T' < oo we denote by Ay, = {Aim}i>1 the set of zeros (with multiplicities) of the entire function
n-—1

Apm(A) and A= J Ap. The numbers {\;,, } coincide with eigenvalues of the boundary value problems
m=1

S for the DE (2.1) under the conditions U,7(y) =0, E=1,m, n=1,n—m. For I = oo

Aim = (—1)7"™ . (% (sin %2)‘1 (z +Xmo + O G)))n (2.14)
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n—1
Denote by Gs., the A-plane without circles [A — Ag| < 8, Ag € Ay, Gs = [) Gsm. Let

m=1

n(n — 1) . iy
Smk = 0o — 5 + Z oo + Z TnT, (2.15)
1 n=1 .

Ani(p) = det [Uo(y), .-, Um—1,0%0), Uso(), Uiz (4); -+ s Unem 2 ()], 120

m—
=

where {y,(z,p)},_1 is the FSS By in a sector S with the property (2.3). Then
N =" ami(p)yr(z, p),
k=1
(_1)m+k

ami(p) = m det [Ulo(y,,), ooy Un1,0(90), Uit (y), - - 7Un—m,T(yu)]u:1—,ﬁ\k'

(2.16)

Since Apm(A) = AL (o) - <det [Ueo(ys)] éﬂ/zfﬁ) then, using (2.15), (2.16) and asymptotic properties
(2.5) of the functions y,(:)(:zz,p), we obtain for |A] — oo, arg((—1)" ™A\ =F#£0, pe S:

{%m@%ar%%#m+0@*D7 k=
amik(p) = O(,o_"’"O exp (p(Rpm ~ Rk)T)>, k=m+

1,m—1,k)
Q(1,n)

Api(A) = pmk

j=ln-m j=m+1

1,n
det [R77],_ T XD (Tp Z R) (1+0(p™ 1)), (2.18)

Mni(A) = p7h0~7mopd - (14 0(p™)),

m 2.19
Pz, A) = p~m0 3 exp(pRiz)(al,, + O(p™Y),  z€[0,T), (2.19)
k=1
and also
‘Amm | > C'|pSmm exp (Tp Zj:m+1 Rj)l , AEGsm, (2.20)
’@%)1 < C|p*~ 7m0 exp(pRpx)], A€ Gsm
App(A) =0 | pFexp | Tp E R; ; [A] = o0. (2.21)
j=m+1
2.1.4.  Denote by W, the set of functions f(z), 0 <z < T, such that f(z), f(z), ..., f¥ D (z) are

absolutely continuous and f*)(z) € £(0,T), k = 0,v. Let N > 0 be a fixed integer. We say that L € Vy
if p,(x) € W,oin, v =0,n ~ 2. We shall assume below that L € V. We define p,(z) =1, pp_1(z) =0,
and Ugyq = byopy, V = O¢q- Let

(), ()1 = Z Lo;(2)y ()29 (2), (2.22)
v,7=0
n—v—1 A 4 .
{ Loi(x) = ; (~1°CIpl @), vej<n—1, (2.23)
£.j(@) =0, vEizn
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We consider the DE and the LF L* = (I*,U*):

n—2
Pz=(-1)"2" +3 (1) (pu(2)2)” = Az, (2.24)
v=0
of,—1
Uga(2) = 2096 (a) + Z uzuaz(”) (a), Oég =n~1=0n41-¢4, (2.25)
v=0

where the LF Uy = [(—=1)""1"%kalr_, +1,a] jTm 1€ determined by the relation

n

<ya Z>l|m:a = Ua(y)U;(z) = Z(—l)nﬁl_mﬂz Uka(y)U:;—k+1,a(z)'

k=1

It is clear that L* € Viv. Thus, for any sufficiently smooth functions y(z) and z(z)

d
ly-z—y-l"'z2=— ) )
yrz—ylz= -y, 2) (2.26)
In particular, if the functions y(z, A) and z(z, ) are solutions of the DE’s ly = Ay and [*z = uz, then
d
%@’Zﬁ = (A= pyz. (2.27)

For definiteness, it will be assumed below that oz =n —¢&.
Assume that the functions @7, (z,A), m =1,n are solutions of DE (2.24) under the conditions

U(8%) =dem,  E=Tm (T < o),
:;T(q):n) = 07 n= ]-7n —m (T < OO),
O (2, A) = O(exp(pRyx)),  z—00, p€S (T=00), Ry=—-Rnmir
T

Let M . (A) = Uk (®5,), ®*(2,A) = [(—1)’“‘1@;_“1(.@,)\)]k:ﬁ, P*(A) = Ug(®*). We introduce the

FSS C*(z,\) = [(—l)k_IC:L_kH(:E,)\)]Z:m of DE (2.24) under the conditions Uzo(Cyy,) = dem, € = 1, n.
Then

@*(z, A) = C* (z, )IMM*(A). (2.28)
The properties of the WF’s 7 . (A) are completely analogous to those of the WF’s 9M,,,1()\). For T < oo

k() = (Ahm () AL,
r(N) = (=1)™** det [UZ(C3)]

E=1,n—m
v=rm,n\k.

For T' = oo the WE’s M, (A) are regular in II_;)» except for an at most countable set A%/, of poles,
and for (—1)™A > 0 the following limits exist and are finite off the bounded sets A:;f:

M () = lim My (A £ 42).
Rez>0

Lemma 2.1.  9*(\) = (In(N)) .

d
Indeed, it follows from (2.27) that d—(@;\,,(a:,/\),(b‘;(m,)\» =0. Hence, for k+ 5 <n

n

D (LTI, ()M, (V) =0, (2.29)

v=1

Le., MA)M*(\) = E.
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Let y(x) be a sufficiently smooth function. We write
Y(‘T) = [y(U) (m)]uzo n—1
Lemma 2.2.  Assume that the functions yy(z), k = 1,n — 1, are solutions of DE (2.1), and z;(z) =

detfyy” (@) o1 T0—57T\n_j_1- Then

J
Z —1)® (pr—s( zg(a:))(] 8), j=0,n-1, (2.30)
Fao(z) = Azo(l‘ . det[yi(x),...,yn1(2),y(z)] = (y(x), 20(2))1- (2.31)
Lemma 2.3.
&+ (1, ) = det [@,(f)(x,k), LB (@A), B (2,0, ,‘IJ(ls)(x,)\)} L (232)
s=0,n—2

Proof.  Denote the right-hand side of (2.32) by vy’ (z,A). It follows from (2.31) that I*yf (z,\) =
Ayr(z,A) and

det[ (2N, B (2, )y B (2, N - ,@1(x,x>,y(m)]lz:a
n (2.33)
= (@), ym (@ N)ijz=a = Y (=1 k@)U 1,0 (Uim)-
k=1

In (2i3), we take y(z) = @, (7, A), ..., Y(2) = Pp_mi1(7, A) successively, and obtain that U, (yy,) = dem,
£ =1,m. For T < oo, a =T we take y(z) = ®1(z,\), ..., y(z) = ®p_m(z, A) successively, and obtain
Urr(Ym) = 0, 1=1,n—m. For T'= oo, from the definition of the functions y;,(z,A) and the asymptotic

properties of the WS’s @(S)(n A), we obtain that
yp (2, A) = O( exp(pR},x)), xr—+00, peS.
Consequently, y* (z,A) = &} (z,A). Lemma 2.3 is proved.

2.1. 5 In this subsection, we obtain the uniqueness theorem for the solution of the IP. Let Cps(z,\) =
[Con(2, L _—, ®ur(, X) = [@p(2, A)]T _—. Then (2.4) takes the form

m=1,n’
®pr(z,A) = Cos(z, NIMT(N). (2.34)
Since det M(A) = 1, (2.34) and the Ostrogradskii-Liouville theorem imply

det 1y (w, A) = det Cag(z,\) = (1) 7. (2.35)
Let L, L € V. We define the matrix P(xz, \) = (Pjk(x, M)l =17 by the formula P(z, A} = @n(2, A) -
(®ar(z,A)) ~ or

P =det |7V (z,\),..., 80 (2, A), 89~ D(z, A), 8F D (x, A), ..., D, (z, \)
J v

= ZTn_:(~1)”*’““—1<I>,(j*1)(;zc, A) (2.36)

x det [iigf)(x, N 8 (@0, 80012, 0), - 8 ()]

We remark that the idea of using mappings of the solution spaces of DE’s for solving the IP is due
to Leibenzon [52-53].
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From (2.36) and the asymptotic properties of the WS’s &,,(z, A) and im(x,A) we obtain the esti-
mates

Pii(z, A)| < Clpf ™, |Pu(z, A) = dui| < %, jk=1mn (2.37)
(A€ Gs for T < 0. Let
(v )y=tm= [23),=0m=1), = Eoﬁyj(x)yuzj-
vj=
Lemma 2.4.  Let y(z) be a sufficiently smooth function. Then
P () = 31 (50, B s 2.0) Bul, ), (2.38)

k=1
((P@,N) = P, m)Bu(a, A), &5(r,m)) = (@il V), 852, 0), — (Bl ), Bz, ) (2:39)

Proof. Let us use (2.36). We have
P(z, NF(z) = 3 (~1)F 1@y, \) det [én(a:,m D1 (2, N), Brr (2, N), -, Bu (2, N), T (z )]
k=1

From this, using Lemmas 2.2 and 2.3, we obtain (2.38). Furthersince P(z, A)‘ik(x,)\) = dp(z,\), it
follows that

(Pl NBa, ), @3, 1)), = (i, N, 83 (0, 0), (2.40)
By (2.38),

(P(z, 1), Bel, A), 8} (z, 1)) = Z 1)* (B2, N), &,y (2,10))7- (B, 1), DYz, 1)),

According to (2.27), <<I>8 z, 1), @7 (x, >z does not depend on x. Using the conditions on the WS’s for
z=0and x =T, we find that

<q)5(37’ V’)? (D;(QZ’ ,u))i = (_1>s_158,n—j+1-
Thus,
(P(z, 1) ®s(z, A), @;(w,u»l = <tI>k(m,)\),<§;(x,u)>l~,
which together with (2.40) yields (2.39). Lemma 2.4 is proved.
Theorem 2.2. If9M(A\) = ﬁ(z\), then L = L.
Thus, the specification of the WM 91(\) uniquely determines DE and LF (2.1), (2.2). We remark
that the deletion of a single element from the WM leads to nonuniqueness of the solution of the IP.

Proof. We transform the matrix P(z, ). For this we use (2.34). Under the conditions of the theorem,

— —1,~ __ ~ —

Pz, A) = ®ar(z, \)(Bar (2, 1) ™" = Cor(, VT (A) (T (N) ™ (Cor (2, M) ™ = Cor(m, M) (Corr (2, 1)) ™
In view of (2.35) this leads us to conclude that for each fixed z the matrix-valued function P(z, A) is entire
analytic function in A. Using (2.37) and Liouville’s theorem ([72, p. 209]), we get that P1.(z,\) = 1,
Py, =0 for k = 2,n. But then &,,(z,)\) = ®,,(z, ) for all z,\, and m, and hence [ = L. Theorem 2.2
is proved.

2.2. Solution of the inverse problem on the half-line.
We consider the DE and LF (2.1)-(2.2) on the half-line (T' = o0). In 2.2, we present a solution
of the IP of recovering L from the WM 91(A) when the behavior of the spectrum is arbitrary. We
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give a derivation of the main equation of the IP, which is a singular linear integral equation. We obtain
necessary and sufficient conditions on the WM and algorithm for the solution of the IP. The main results
of 2.2 are contained in Theorems 2.3 and 2.5.

2.2.1. We formulate some auxiliary assertions.

Lemma 2.5. The functions
mmk(/\) - SﬁM,m—H()‘)merl,k(/\)’ ;;~m,k(/\) m; m,n— m—l—l()‘)mn m+1, k()‘)
(I)m(l‘, >‘> - EDTm,m%—l()‘)(E'WL-H (:1:7 >‘)7 @:_m(m, )‘) - mm,m+l(>‘)q>;—m+l(£a /\)

are regular for A € T'(_qyn-m \ A.

Let L, Le Vy. In the A-plane we consider the contour v = v_ 1UvnUm (with counterclockwise
circuit), where vy is a bounded closed contour encircling the set A U AU {0} (ie., AUAU {0} C int ),
and 711 is the two-sided cut along the arc {A: %X >0, A ¢ int 70}. Let J, = {)\ A ¢ yUint 70}.

Lemma 2.6.  The following relations hold:

d T, A ,5* T, ) Yy
( i_; Mhﬂ@@dm Ne T, (2.41)

5@J):@@J)—£§/<

(B(,\), & (2. 1)), (@(x,\), (2, 1)) L/ (B(z,\), 8*(x,))7 (8(x,6), 2" (1)), i
A—p A—p - 2mi A E—pu &
ANped,. (242)

In (2.41) (and everywhere below, where necessary) the integral is understood in the principal value
sense ([30, p. 27)).

Proof. Using Cauchy’s theorem ([72, p. 166) and (2.37), we obtain

mﬂam=5m+%a/5é%?dg Ne g,
Y
(2.43)
Pip(z,A) = Pulz,p) 1 Pju(z,§) A
Py “2wi!(A—£)(£—u)d§’ HE Ty

By (2.38) and (2.43),

2w
2

" 7)), & (x, ) )+
S PN ) =) + g [ ) O D ).

Setting here j(z) = ®(z, \), we obtain (2.41). Similarly, by (2. 38) and (2.43)

Pz, i I;(z DETH ) =5 /Z< 1yt ) o })E“ ”f”i 4(z,8) dé

From this, by (2.39), we obtain (2.42). Lemma 2.6 is proved.
Let
Y = [ hmjmtrraarm Ao(N) = MM,
Ao(X) =MANMIRN), Ma(N) = diag( M m 41 (Vs
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For real A we define the matrices
* C— 3 T
f($7 A) = [fk(xaA)}kzz—nv f (IL‘, )‘) = [(_1)5» lfn—lc—{»l(xa /\)] k=T,n—1
according to the formulas
Felz, 2) = x (D" F N @k (2, A), S, A) = x((-D)F 1A @5(x, A),
where x(\) is the Heaviside function. For A € v let
1
a(A) = x+1(Ax-1(NY4NYT, NN =E+ 59N,

G = e AWY BYT, Ny =B~ Za(),

where x11(A) =1 for A € v U~vyx1 and x41(A) =0 for A € Yx1- For A, i € v we define the matrices

oz, ) = [or(@ )], 57 g (2, A) = [gi(z, )] _ i
* T
G ($7 /\) = [Gk(xv )‘)] k=I,n’ T(mv /\7 /L) = [rkj(xv /\5 /'L)] k,j=2.n
according to the formulas
Y‘I)(:L‘, )\), AE Yo, N —q)*(l‘, /\)Ao(/\)YT, A€ o,
f@,N),  Aemury, — [, NMa(N),  AeEm U1,

(o, ), g%( :I:M)>l
A—p

Similarly, we define the matrices &(z,)), §*(z, A), é*)m,/\) and 7(z, A, u) with &, f P+, f*, and
Ay instead of ®, f, ®*, f* and Ag. Finally, the matrices F()\ ) = [ ju(A, u)] v—17 and A( ) =

[ij(u)]j LT3 M €7, are defined according to the formulas
L\ 1) = —(@(2, ), G (@, 1))y, o
A () = 85 1X(-1yn—s (WM 1 (1), pEM U,
Ap) = Ao(u),  me.
Since Ag(A) — Ag(A) = Ao(A\)Ag(N), then a(A) —a(X) = a(N)a(A). From this we obtain

G*(z,A) = g"(z,\)Y, r(z, A\, p) =

FOYNQ) - %&'(/\)a(/\) B, N(Na(d) =GN =0. (2.44)

Theorem 2.3.
3z, \) = N(V)o(z, ) + 2%/“’\“ (w0 dp,  AcH, (2.45)
N, A, ) — 7, A, )N () + 77 7, N, E)r(a, &, 1) d€ = 0. (2.46)

Equation (2.45) is the desired main equation of the IP.

Proof. By (2.4), (2.28), Lemmas 2.1 and 2.5, relations (2.41) and (2.42) give us

Bz, \) = B(z,\) + 2m/<q> H)> Lole, ) du,  Xe . (2.47)
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By continuity, it follows from (2.47) that

VA, G, 1))y
A—p

@A) = fz,A) + =— 57 / <f ’ oz, 1) du, A€y Unvs. (2.48)

For A € 7y, we have from (2.47) by the Sokhotskii formulas [30] that

Y®(z,\) = Y®(z, ) — %5(/\)90(:1:, A+ — /

which together with (2.48) yields (2.45). The relation (2.46) is proved analogously.

We shall assume below for simplicity that L,E € Vy are chosen so that

—

DMm,mt1(A) = O(p™7?), Al = o0 (2.49)
Then
570 (2, )| < C|0" 7" exp(=0R;z)|,  p=10",
7 (@, w)® (@, p)| < CIOF72", pem Uy, (2.50)
Igojs)(:zz,uﬂ < C|07+57" exp(6R;z)).
Let
1
(o) = g [T @, ves<n— (2.51)
o
J
ti(r) =— CPCY g1 iglz), §>v, —
(@) ﬁ§+1 § Cp129-v-1,4-p(7), ] j,v="0mn; (2.52)
tj,/ IE) - (Sjy7 ] S v,
n—v—1 n-—s
FOEID DD DI (¢ e MY TNC PRNC
s=0 j=v+1
j—v—1 )
-1y Z C;_Vﬂg?g.r”_l_’")(:c)%,.o(:r)>, v=0,n—2; (2.53)
n-—2
e (1) =6,97) — Y gi(@)t(x), (2.54.)
j=v+1

The following lemma establishes a connection between the coefficients of the DE’s and LF’s L and L.

Lemma 2.7.

p,/(.’E) = 51/(*1') + €V($)7

I
A

n—1
0 = Y _ tigjolj(0)- (2.55)
j=0

Proof. Differentiating (2.47) with respect to x and using (2.27), (2.51), and (2.52), we get

. Oz, ), 5" (z, 1)) .
Zt],, )3 (2, \) = <I>(9)(;1:,)\)+—1—_/< @G @0 o pydn, Ae . (2.56)
2mi A—p
Y
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It follows from (2.47) that

13z, A) = 18z, \) + 2; / @("E’AA)?Y’#»?%@(:C,M) dp + %m / (®(x, 1), (2, 1)) (. 1) dp,
' | A€ J,. (2.57)
By (2.57), in view of (2.56) and (2.22), we have
(z,)\) = Zp] Z o (2)3W) Z L, ()0 (2, A)s¢50(z)
v=0 v,5=0
and hence
n n—1
(@) =B(2) = Y Py}t () Zﬁw z)sjo(e

j=v+1
Using (2.23), (2.52), and (2.53) we get p,(z) = ¢,(x), and the first relation (2.55) is proved. The second
assersion of the lemma is proved analogously.

Let
v = {A tA € Uvog, inf X —pl > do, p 670}, dbo>0 A =v\7"
Thus, v =+"U®".
Lemma 2.8.
C’x] exp((pRy — QRj)x)’
lpI"=F[th" T (|p — 8] + 1)

‘?kj($7 /\nu)’ <

forpe~', Xevyorforucy, X€v”, and

Ce| exp((pRy — OR;)z))|

ﬁgﬂ)(m A )| < P (Io] +16])"

for pey, v=0n—1.
Assume for definiteness that argp € (0,27 /n). Denote

Oz, A) = diag [p* " exp(pRsz)],

=2
Tz, A) = Q7 Nz, N, r(a, A p) = 1( , (2, A, 1) QU 1),
T, A) = Q Nz, Na(N)Qz, \), NT(z,A) = Q7 Yz, ) NN)Q(z, \).
We define the matrices ¥ (z, A), 7 (x, \, ), @+ (z, A), and N (z, A) similarly. Then
1772, < Clol, ey, v=0n-1,
~ C
R (x, A\ )| < a , A€, e~ or Aen, € 7,
|R{ (A )] (R CEGEE v, HEY Y, men
?HVH) (2, A, )| < Colth] 2 (Ip} +10])" AMpey, v=0n-1,
kj
and the functions 7 (x, A, u) are continuous for A€y and A p € y_q, while for A\, € g
ki 7
SN~
(L )‘/‘L) __gf_)—‘“H—‘r('T?/\hu)a

where H T(z,A, p) is a continuous function. The functions 7*(x, A, u) and @*(z, A) have analogous prop-
erties. It follows from (2.44) and Theorem 2.3 that the following theorem is valid.
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Theorem 2.4.

l -

T (z, N = N+(a: N (z, ) + Pz, N\, )Tz, p)du, Ne; (2.58)

[\)

7L
Y
1

N, rt(z, A, p) — 75 (2, A, )N (2, 1) + 5

[Frenor@end=o spern (25)
/

Nt (z Tz, ) - Lo+ z,Nat(z,\) =
]if (2, YNt (z,\) 1 (z,Na"(z,\)=E, (2.60)
Nt (z,Na™(z,\) —at(z, )NT(z,)\) = 0.

We introduce the Banach space B=Li"'(y)@®LE(y”) of vector-valued functions
2(A) = [2;(A)];=t=1> A € 7, with the norm

n—1

l2le =3 (Nasllear + 23l can ).

=1

For fixed z > 0 we consider on B the linear operators

) = N0 + o= [ 7@ metu)dy, A€,
2mi J (2.61)

Az()) = NT(z,\)z(A) — é—lyr—@/ (, A\, 1) z(p) dus, AEn.

Lemma 2.9. For a fized x, the operators A and A are bounded linear operators on B, and AA=AA=E.

Proof. The boundedness of A and A4 is obvious. Using the formula for interchanging the order of
integration in a singular integral ([30, p. 60]), we obtain that

1 ~ 1
o [T ds g [ (o () du
o v
1. 1 ~
:Zcﬁ(m’,/\)a (z, /\)+§%/ 27”/ FH(z, A\ E)rt(w, &, ) dE | 2(p) dp.
0 o

Then it follows from (2.59)—(2.61) that
AAz(N) = <N+(m,/\)N+(x,A) - %Zﬁ(x, Nat(z, A)) z(\)

- L (N+<x, M (A ) = 7 (A )N )+ 5 / (A O (2,6, dE | 2(0) dps = 2(N),
Y

2m
¥

ie., AA=E. Similarly, AA=E.

Corollary 2.1.  For x > 0 the main equation (2.45) of the IP has a unique solution Q™" (x, \)p(z, \)
in the class B and sup |27 (z, A)p(z, M)l < o0.

2.2.2. Denote by M the set of matrices M(A) = [Mk(A)],,, p17 such that (1) Mpie(A) = ks
m >k, and Mur(A) = O™ F), |A| — oo, m < k; (2) the functions My,x(A) are regular in ¢ jyn-m
with the exception of an at most countable bounded set A/ . of poles, and are continuous in II_jyn-m
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with the exception of bounded sets An,k; (3) the functions My, (A) — My, mt1 (A) M1 £(N) are regular
for A€ ['(_yyn-m \ A, A= {J Ay (in general, the set A is different for each matrix J(\)).

m,k
Theorem 2.5. A matriz (X)) € M is the WM for L € Vi if and only if the following conditions
hold:

(1) (asymptotic) there exist L € Vi such that ﬁm,mH(A) =O0(p™™ %), |A| = oo;
(2) (condition P) for z > 0 Eq. (2.45) has a unique solution in the class Q' (xz,\)p(z,)\) € B and
sup ||z, Nz, M| B < oo;
T

(3) eu(z) € Wyan, v=0,n— 2, where the functions €,(z) are defined by (2.51)—(2.54).
Under these conditions the DE and LF are constructed according to (2.55).

It can be shown by a counterexample that conditions (2) and (3) in Theorem 2.5 are essential.
The necessity part of Theorem 2.5 was proved above in 2.2.1. The proof of the sufficiency is in [100].

2.3. Differential operators with a simple spectrum.

We consider DE and LF (2.1)-(2.2) on the half-line (T = o0). If the spectrum of L has finite
multiplicity, then the main equation obtained in Sec. 2.2 cab be contracted to the set ' U A. For
convenience we confine ourselves here to the case of a simple spectrum. For DO’s with a simple spectrum
the main equation can be transformed to the form (2.68)—(2.70), and the WM is uniquely determined
from the so-called spectral data (see Definition 2.2). In particular, if only the discrete spectrum is
perturbed, then the main equation of the IP is a linear algebraic system (2.73). For n = 2, from the
main equation, using Fourier transform, we obtain the Gel'fand-Levitan equation.

2.3.1. Definition 2.1.  We shall say that L has a simple spectrum if for each \g € A’ & A{o}cII
there exist finite limits

M1y (ho) = AEHAIO(A = A0)IN(A), (—1y(Ao) = Al_g&lo(/\ — Ao)IM*(A)

and

Mni(A) = 0™ F), A=, (2.62)
Lemma 2.10. If L has a simple spectrum, then A is a finite set, and

o o]
1 MO () Q(Mo)
= — —=d Im A .
M(N) E+2m,/ oA et > e m A # 0, (2.63)
— oo AgEA’

where
Mo(\) = I (\) — M= (),
Q(Ao) = { 1M1y (h), Ao € A, & A AT,
M1y(Ao), Ao € Ay def AV AL

‘Z\/[O</\) = [Mgzk,()\)]m,k:m7 Q()\O) = [Q’mk(/\o)]m,,k‘:l,—n'

Thus the WM is uniquely determined from {M°(A)}ser, {Ao, M_1y(Ao)}roea- But really to con-
struct 9(A) we need less.

Definition 2.2.  Assume that L has a simple spectrum. The set
where M () = diag[M,n(N)],,—17=1, Mm(A) = m* (A=

m,m-+1 m,m-+1

(), is called the spectral data of L.
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The specification of the spectral data uniquely determines the WM 9(A). Indeed, by virtue of
Lemma 2.5, the functions My, (A) — My 11 (A)Mmy1 () are regular for A € I'_1yn-m \ A and hence
M (A) = My, (AN)Myi1 £(A). Then it follows from (2.63) that

ka: /\0
M, M., E , k . 2.64
k(A = 5 / Mm+1,6(1 + v D " >m ( )

Thus, the specification of the spectral data uniquely determines the WM 9t(A). To construct L from

M’ we can construct M(A\) by the recurrent formulas (2.64), and then use the method described in

Sec. 2.2. But if there is more precise asymptotics of M(A) in the neighborhoods of the points of A/, we

can contract the main equation to the set I'U A and solve the IP directly from the spectral data 9.
Assume that for each Ag € A’ the following asymptotics are valid for A — Ag:

Sm( )(/\ ) (2.65)
M (\) = )\_,\—__ Moy (Ao) + (A = XMy (Ao) + o(A = Ao)-

We shall say that L € Vy if L € Vy and (2.62) and (2.65) hold.

Let L,L € Vi, Ao € A'. For simplicity, we assume that M()) = O(p~""2), |A\] = oo. Denote
N(Xo) = 9ﬁ<_1>()\0)(9ﬁ<0>(>\0))_l, J=NUN, Jo=JNT, oz, ) = Y®0)(z, ), Mo € J; Qi(Xo) =
MN(Ao) (Mo € S\ Jp), Q1(Ng) = %‘ﬁ(/\g) (Mg € JO). For Ag € J, s = —1,0, we define the matrices

7 3 (s)
I~)s(x,/\,/\o):_[<( A) (, )>} <f(x,>\),¢>(gg,p,)>q

A—p
Lemma 2.11.  The following relations hold:

*

) Js(vavAO):_ [

[p=Xo l=Ao

7 (A}E*(U) Z, /\0 N /\0 {T\t /\Q YT s
o) = 5 {f ), ) M (12) £, 0+ 3 (=27 . f);i)z) o) )soioi(x,x())}du
- Z *(” (z, Xo) Ql()\O)YT)goggi (z, Aa), v+s<n-—1, (2.66)
Ao€J
~ O(z, N), f*(z,
d(z,\) = &(z, /\)+% / {< A)_fu ‘)>’M( ) f(z, 1)

+ Z :tD .T A )\o)m(/\o)YT) . M}d + Z DO T /\ /\o)Ql()\Q)YT) < (.’L’,)\()),
Mo€Jo (1= 2o)? Ao€J (2.67)

where we write + (—) when X lies on the upper (lower) side of the cut.

Denote
V' =0k jctmmme—ta Yo = Bie-iljpetmmn x(&,2) =Y f(z,4),
Vi{z0) = Yo (7@—1)(20) + ]Vfw)(ZO)Ym(Zo)YT) , 2o € Jo,
Va(zo) = Yo (Mg (20) + My (20)Y R(z0)YT ), 20 € o,
Va(zo) = YoM, _1y(20)Y'T, 20 € Jo; Vi(z0) =0, z€J\Jo, k=1,3.

Theorem 2.6.
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~ 7 ~:c,/\ , A, A))r ~
Flan) = i@+ o [ {<f SR ey YT

ot 5 Y200 (:E’ A0)
+ AOZE;O (£d_1(z, X 20)N)YT) - W} du

+ Z (JO(*/B?)U AO)@I(/\O)YT)SDQ)) (:Ba )‘0)7 AE ]-_‘7 (268)
AoEJ

——

M(p) f(, 1)
=20

<Y&)(“fc7 )‘)7 f*(.f, U)>l~
A—p

~ 1
@0y (x, 20) = @0y, 20) + i /

—00

Vi(z0)p0y (2, 20) ~ - 7 20y (2, Ao)
-+ E +YD._ L,20, A0)N(N)Y " ) ————- > d
(1 — 20)? Ao€o { 1100 (820, 20) 7o) ) (1 — Ao)? s

1
¥5 (Va(20)(0) (2, 20) + V3(20)x (1) (, 20))
+ 2 (Yﬁo,m) (:E7 ZO7AO)@1(/\0)YT)SO<O)(337 )‘0)7 Zp € Jv (269)

00 ~ ~ (1)
z, A), (e, 1))+ —
a2 20) = X 20) + 5 [ {{ X 2), 1( “”l} () f (2, 1)

211
— 0 l)\ZZO

'y T :E’/\
—+ Z (:tYd;L(l)(ZE,Zo,/\o)m(/\Q)YT)%)L‘L)}d/,L

_ 2
Ao E€Jo H /\0)

+ Z (Y’&;L(l)(l', Zo,)\o)él(/\())YT)(p(O) (1‘,)\0), 2y € JQ, (270)
AoEJ

Relations (2.68)—(2.70) are the main equations of the IP with respect to {f(z, A)}xer.
{010y (2, 20) }z0es, {X1) (2, 20)}2z0c0o- They allow us to solve the TP of recovering the DE and LF L € Vy
from the given spectral data 9. For constructing L we need solve the main equations (2.68)-(2.70) for
each fixed z > 0 and then find the DE and LF via (2.55), where the functions ¢,(z) and ¢;,(z) are
defined by (2.66) and (2.52)—(2.54).

2.3.2.  Consider a perturbation of the discrete spectrum. Let L, Le Vi and

Z Qm m+l /\O
_ /\O ’

m m+1
do€J

ie., Z/L?()\) = 0. Denote

]5(1'7 /\7 )‘O) = 50 (J’)’ )‘a )‘O)Q\l(AO)YT7 é(’La Z0, )‘0) = [Yﬁ)(‘l‘a )‘a )‘0)] <0>

|A:ZO7
g (%, Ao) = 45?0)(37’/\0)@1(/\0)YT, o(@) = [po) (2, 20)] 5, 0
7 (@) = [7(z,20)],, G(x) = [C(z, 20, %)), 1 s
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Theorem 2.7.

%us(a:) =7 (2)0")(x), (2.71)

B(z,\) = Z P(z, M\ o) )0y (2, Aa), (2.72)
AoEJ

P(x) = (E+ G(2))e(z). (2.73)

We note that (2.71)-(2.72) is the particular case of (2.66)-(2.67) when the integrals in (2.66) and
(2.67) are equal to zero. Further, multiplying (2.72) by Y at the left, we obtain

D0y (x, 20) = @0y (x, 20) + Z G(z, 20, A0)#0) (T, Ao),
Ao &J
i.e., (2.73) is valid.

Equation (2.73) is the main equation of the IP. For each fixed > 0 (2.73) is a linear algebraic
system with respect to ¢(z) and det[E + é(x)] # 0. To solve the IP we must find ¢(z) from (2.73) and
then construct the DE and LF L via (2.55), where the functions ¢, (z) and ¢;,(z) are defined by (2.71)
and (2.52)—(2.54).

2.3.3. Connection with the Gel’fand—Levitan equation. @ We consider the DO

hy=—y"+4q(x)y, z>0  y'(0)—hy(0)=0, (2.74)

where g(x) and h are real. Let ¢(z, A) be a solution of the DE [;y = Ay under the conditions ¢(0,\) = 1,
©'(0,A) = h, and let o(\) be the spectral function of the DO (2.74), which can be uniquely expressed in
terms of the WF [57]. Then the main equation (2.45) of the IP becomes

B, \) = ol \) + / [ N3t dt | oo, a5 )
o 0

after contraction of the contour to the real axis. Assume for definiteness that g{z) = 7 = 0. Then
@(z,\) = cosv/Az. Using the transformation operator (0.4) we get with the help of the Fourier cos-
transformation the Gel’fand-Levitan equation

K(z,t)+ F(z,t)+ /K(rc,T)F(t,T) dr =0, F(x,t) = /cos Vi cos /it do ().
0 o

2.4. The self-adjoint case.

We consider DE and LF L = (I,U) of the form (2.1)-(2.2) on the half-line x > 0 (T = o). In
Secs. 2.1, 2.2, we obtained a solution of the IP for the general non-self-adjoint case. The central role
was played there by the main equation of the IP. One of the conditions under which an arbitrary matrix
M(A) is the WM for a non-self-adjoint DO is the requirement that the main equation must have a
unique solution. It is difficult to verify this condition in the general case. In connection with this, an
important problemn is that of obtaining sufficient conditions for solvability of the main equation, and
extraction of classes of operators for which unique solvability can be proved. One of such classes is the
class of self-adjoint operators. Here we investigate the IP for the self-adjoint case. We prove unique
solvability of the main equation, and obtain necessary and suflicient conditions, along with a procedure
for construction of an operator from its WM. Some difference in the notations is pointed below.
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2.4.1.  For definiteness, let n =2m and o¢g = n — £ We assume that L = L*, where the adjoint pair
L* = (I*,U*) is defined by the relations

n—2
Pz = 2" 4 Z(—l)" (py(x)z)(y),
v=0

(@), 2(@)) oo = Y _ (=1 Vo W)U ¢y, (2),

£=1
where
i), 2@ = 3 (=1)°CIp 0 (2)y® ()20 ().
v+ji<n—1

It was proved in Sec. 2.1 that the WE’s 9c()\) are regular in II_;y, and are continuous in
L) \ {0} with the exception of the bounded sets Aye. We have Mye(A)pf~F = O(1) as |A] — co. Let

A= UAk;g, Ni(A) = 1 (WZ}H—I(’\) M, k:+l(’\))

fmfg(/\) =lmMee(A+i2), z—0, Rez>0, —oo< <00

To simplify the computations we confine ourselves to the case where there is no discrete spectrum. For
definiteness, let p,(x) = Ugo = 0.

Definition 2.3. L is said to be in Vi if p,(z) € Woyn, L = L*, A = 0, Mpe(N)pt* = O(1) as
|A] = 0, and M (A) = O(p™™72) as |A| — co. We solve the IP in the classes V.

Theorem 2.8.  Assume that L € Vit. Then the WM has the following properties:

(1) mk;g(/\) = 51‘»{, }v 2 f,‘ .

(2) the functions Mye(N) are regular in I _yyx and continuous in II_yy \ {0};
(3) the functions Mye(X)p ¥ are bounded;

(4) the functions Mre(X) — My k11 (MM y1,6(A) are regular for A€ T'(_qy;

(5) M(A) = O(p™™2) as |A| = oo;

(6) Mk, kr1(A) = mk,k%—l(x)y k=1,m

(7) (1) (A) >0, A€ T'_qym.

We remark that 9, (\) = 0 for A € [(_yy%-1, and the functions p9%,(A) are continuous and bounded
for A € F(_l)k.

Theorem 2.9. Assume that L € V. Then the WM is uniquely determined by the specification of the
functions My (A), ..., M (N) according to the formulas

Nuss(N) = M,N), j=Tm—T; My; (A / U ’“‘m"“f( Mo ek
( 0k

We set
Pl ) = (1" N2 )] s

(a column vector),

72, 0) = (1 X (1R N B2 (@ VTN s
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(a row vector) (here T' is a sign for transposition, and x(A) is the Heaviside function),

W@ = [ @@ VA, ale) = [ 06 a0 d
j
(@) =— > CICh v vrjp(@), §>v,  tu(z)=04, j<u (2.75)
B=v-+1
n—v—1
fv(m):(_l)u'}’n‘v—lo Z CrCy s 1 Vn—s—v— 15(5’3)

Y (z) =&, (z) — i p;(x)t (), v=0,n—2. (2.76)

j=v+1

Theorem 2.10.  For a fized x > 0 the vector-valued function o(xz, \) is a solution of the linear integral
equation

T3z, ), q(z, 1))2
&(x,k)=so(x,/\)+/<(’0( A)_qi )7

oo

o(z, p) dp. (2.77)

Equation (2.77) is called the main equation of the IP.

Theorem 2.11.  The following relations hold:

n—1

pu(7) =¥, (2), Ugpo + Z ugjot;,(0) = 0. (2.78)

j=v+1

2.4.2. In this section, we give a solvability theorem for the main equation, along with a solution of
the IP. Notation: M is the set of matrices MM(A) = [Mye(N)],, (-7 With the properties (1)—(7) in The-
orem 2.8. Assume for definiteness that argp € (0,27/n). We let Q(z, \) = diag [p"_’“ exp(— kax)] T
and introduce the Banach space B = L7 !(—~00,00) of vector-valued functions z(A) = [2z;(A)];=15
2j(A) € Loo(—00,00) with the norm

n—1
1215 = > 1121l coe (=s0.00)-
=1

Theorem 2.12.  Let M(AN) € M. Then for each fized © > 0 equation (2.77) has a unique solution in
the class Q(z, N)e(x, \) € B.

We indicate briefly the scheme of proof of Theorem 2.12. It suffices to prove that the homogeneous
equation

o0 ~r T g
h{z, \) + / e ))\\),_qi Ll h{z, pu)du =0, Q(x, \Mh(z,\) € B, (2.79)

has only the zero solution. We consider the function

(s

(2, X) = > (=1)7" Hy(2, N Hp 1 (, V),

Jj=1
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where the vector-valued function H(z, \) = [H;(z, )] is defined by the relation

j=Tm
7 <5:L'7/\,q z, 1))
H(a:,/\):—/< ( A)—L I ) d

For each fixed z > the functions H(z, ) and B(x, A) have the following properties:

(1) the functions Hy(z,A) are regular in I(_yye; Hy(z, ) = hy(z, A) for k = 2,n and ) € L_pye-1,
and the function B(z, ) is regular in IT(_yym;

(2) the functions Hy(z, A) =My r+1(A)Hg11(A) are regular for A € I'_qyx, and the function B(z, \)+
(=1)™ M 1 (A) His1 (2, \) Himg1 (2, A) is regular for A € D(_yym;

(3) the following equalities hold:

1 1
lim — / B(z,A)dA =0, lim — / B(z,\)d\=0.

R—o0 271 e—=0 271
IN=R |Aj=¢

From these properties it follows that
>0
/ |1 (2, V2PN (A) dA = 0,
—OoQ

hence Apy1(z,A) = 0. From this, using (2.79) and the properties of the functions Hy(z,\), we obtain
h(z,\) =0.

Theorem 2.13. A matriz 9M(X\) € M is the WM for an L € Vi if and only if

supy, () < oo, Yy(x) e Woan, v=0,n-2,

z>0
where v, (x) and P, (x) are constructed according to the formulas (2.75) and (2.76), and ¢(z,)) is the
solution of the main equation (2.77). Under these conditions the DE and LF L = (I,U) are constructed
according to the formulas (2.78).

3. Inverse Problems on a Finite Interval

We consider DE and LF L € Vi of the form (2.1)-(2.2) on a finite interval (T < 00). In Sec. 3, we
provide a solution of the IP of recovering L from the given WM 2%()). We use the notations and the
results of Sec. 2.1. For IP’s on a finite interval there are specific difficulties connected with the properties
S1 and Sz of the WM 9()\) (see Lemmas 3.1 and 3.2). We obtain necessary and sufficient conditions
on the WM, a procedure of constructing coeflicients of the DE and LF from the given WM 9()), study
the stability problem. A counterexample in Sec. 3.3 shows that dropping one element of the WM leads
to nonuniqueness of the solution of the IP.

3.1. Properties of the Weyl solutions and the Weyl matrix.

We shall say that L € Vi, if L € Vy and the functions A,,,,,(A), m = T,n — 1, have only simple
zeros. If L € V3, then the WM 91()\) and 2*(A) have only simple poles. For simplicity, in the sequel
we shall assume that L € V.

Denote Gymi = §es Mpmr(A). It follows from (2.7), (2.20), and (2.21) that
Im
[Mmk(X)| < Clo™*, X e Gs, (3.1)
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(Gs is the A-plane without the circles |A — Ag| < d, Ao € A), and hence

> ﬁlmk Amk(/\lm)
mk A) = 5 mk —
M (A) = P Bk =
=1 Amm()\lm)

Thus, the WF 91,1 () is uniquely determined by its zeros and residues {)\lm, ﬁzmk} >

For A\g € A we define the matrix M(Xp) = [mj}g</\0)]j et Via MAg) = 932(_1>(/\0)(9ﬁ<0>(/\0))_1.

Since Mypni(A) = O, m > k, it follows that Mir(Ae) =0 for j > k. The following relations hold:
M) o) =0,
1y (2, Ao) = N(Ao) @ o) (2, Xo), (3.2)
71y (2, 20) = =gy (z, A0)N(Ao)-

It follows from [®,,(x,\) = A®,,(z, ) and (2.13) that

-1

Un—m+1,T (q)m(x> /\)) - (_1)n—m (Amm()‘)) Am~1,m—1(/\)v (33)

Z(I)m:<_1>($, /\0) = /\Oq)m,<_1)(:l’,‘, )\0), (3 4)
1D 10y (2, A0) = Ao®pm, 10y (T, Xo) + o (1) (2, Ao)- '
We prove two important properties of the WM. Define Ag = A, = 0.
Lemma 3.1 (property S1). If Ao & Am, then Ny mi1(do) = = MynlAo) =0, 7 = 1, m. If, moreover,

Ao € AV+1 ---N Am—l; Ao é Au, I1<v+1<m<a, then mu+1’m(/\g} % 0.

Proof. The first assertion of the lemma will be proved by induction. Since A\g & A,,, it follows from
(2.13) that ®,, _1y(z, Ao) = 0. On the other hand, in view of (3.2), we get

ém,(—l> (337 )\O) = mm,m—}—l(AO)q)m—kl,(O) (x’ AO) + -+ mmn()\ﬂ)@n,(()} (177 A— O)

Applying here the LF Up,41,0,-..,Uno, we find successively My m+1(Ao) = -+ = Npn(Ao) = 0.
Assume that M pi1(Xo) = =Mp(Xo) =0, j=m—s+1,m, s > 1. According to (3.2), we have

(I)m—s,(—l>(x7 /\0) = mm~s,m—s+1(/\0)<bm—s+l,(0) (377 /\0) +oo sﬁm—s,n(/\O)q)n,,(o) (LL’, )\0)

or

s
D -1y (T, Ao) — Z M —s;m—s+1(20) Prm—sti,00) (5 Ao)

=1
n—m-s def (35)
= Z mm'—s,m*s—i—i()\o)@m—s—i-i,(O)(mv)\O) = ¢(£)
i=s-+1

Since @, (—1y(, Ao) = 0. (3.4) implies that the functions ®,,,_; (_1)(z, Ag) and @, (g)(z, Ao) are solutions
of the DE ly = A\gy. Further, using (3.2) and the assumption of the induction, we obtain

s—1

Z <J‘(m-é:,m—s+'i(/\0)@m—s+71,(—1) (377 A0)

=1

s—1 m
= mews,m—s—ki(/\O) Z mnz—eri,u(/\O)(I)u,(O) (:I;: )\O)
i=1 v=m—s-+it+l

v—m-+s—1

m
= Z (I)V,(O) (337 /\0> Z mm—&m—s—}—i(/\D)mm—s—}—i,u(/\o) = 0,

v=m—s+2 i=1
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s—1

and consequently, the function Z ‘ﬁm_s,m_sﬂ(Ao)@nl_sﬂ’<O> (x,Ag) is a solution of the DE ly = Agy.
i=1

This and (3.5) imply that l(z) = A¢y(z). Using (3.5) again, we compute Ug(¥) = Upr(¢) = 0,
¢ =1,m, n=1,n—m. Since Ag is not an eigenvalue of S,,, we conclude that (z) = 0. Applying the
LF Upm+1,05 -+ -, Uno to (3.5), we find successively Ny, s x(Xo) =0, k=m + 1, n.

Let us go on to the second assertion of the lemma. Since A, (M) # 0, Ags(Xg) =0, s =v +1,m — 1,
it follows from (3.3) that Up—si1,7(®s 0y(z, A0)) # 0, s = v+ 2,m— 1, D, i1,0-1)(%,X0) # 0. Assume
that 9,11 m(Ae) = 0. Then

‘I)u+1,<—1>(l’, o) = mu+1,u+2(/\o)‘1)u+2,(o) (@, Ao) + -+ mu+1,m—1(>\0)(1’m4,<0>($, Ao).

Applying the LF Uy—mi27,... ,Upn_p_1,1 successively, we obtain M, 11 m-1(Xo) =+ = Npsy paa(Xo) =
0, i.e., ®,4q(-1)(x,A) =0. Lemma 3.1 is proved.

Denote As(Xo) = [‘th,,(/\o)]j:m;yzm, s=1,n-1.

Lemma 3.2 (property S3).
rank A;(N\g) < 1, s=1,n-1

Proof. We will prove the lemma by induction. Let us show that rankA;(Xg) < 1. In-
deed, if Ap_op-2(Xo) = Ap_1n-1(Xo) = 0, then from (3.3) we have UgT(@n_¢1’<_]_>(fL‘, )\0)) = 0,
UgT(<I>n_1,<0>(m,)\o)) # 0. Applying the LF Uz to the equality ®(_1y(z, o) = M(Ao) Py (2, Ao), we
obtain

mj,n;l(/\o)UQT((I)n_l’m) (Zl?, /\0)) + mj,n()\o)UzT (fl)n,m) (.’E, )\o)) = O, j = 1,n - 1,
and hence rank A;(Ao) < 1. I Ay no1(Ao) # 0 or Ay_s,_2(Xg) # 0, then, by Lemma 3.1, MNin{ro) =0,

j=1,n—-1, ie, rank A;(Np) < 1.
Assume that the relations rank Ag(Ao) <1, k = 1,5 — 1, have been proved. If Ap,__1 5 1(Ao) =
Ay sn-s(Ag) =0, it follows from (3.3) that

Usr1,7(®r—s,—1)(z,X0)) =0, Usy1,7(®n-s,0y(w, Ao)) # 0,
hence
n
Z mjk(AQ)Us+l’T((bk’<Q>(x, /\0)) = O, j = 1,n — 8. (3.6)
k=n-—s
We take a fixed nonzero row of the matrix A {)\g)
[Mn—s(X0),- - s Mun(Aa)] #[0,...,0].
Since rank A;_1(Ao) < 1, it follows that Mjk(Ao) = @;MNue(Xo), k = n— s+ L,n. Then from (3.6) we
derive
(mj,n~s()\0) - CYj‘ﬁl/,n—s(/\onUvs—l—l,T (Cbn—s,(o) ('r7 )\O)) = 07
or N n—s(Xo) = &Ny n—s(Ao). Hence rank A;(Ag) < 1. If Ap_s_14-s-1(A0) # 0 or Ay_gpns(No) # 0,
we obtain from Lemma 3.1 that
mj7n~3+1(/\0) e m]'n()\o) = O, ] = 1, n-—s,
i.e., rank A;(Ag) < 1. Lemma 3.2 is proved.

Denote by M the set of meromorphic matrices MM(N) = [zmmk(A)]m T Mpi(A) = 6 (M > k),
having only simple poles A (in general, the set A is different for each matrix 9t(A)) and such that (3.1) is
valid, and for each Ag € A the matrix 99t()\) has the properties S; and S, where the sets A, = {Am i1,
Aim # Alg,m (I =# ly) are defined as follows: if A\g € A, My;(Ng) #0, then \g € AN ---N Ay

It is clear that if 9M(A) € M, then N(Ag)N(Ag) =0 for Ag € A. If L € V}; and IM()) is the WM for
L, then 9M(A) € M.
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Lemma 3.3. Assume that the matriz MM(A) = [mmk(A)]m.k:T—n’ Mie(A) = Ok (m > k), has a simple

pole at a point Xo. For the matriz I*(A) e (m ()\))_l to have a simple pole at Ao it is necessary and
sufficient that M(Ag)M(Ag) = 0.

Proof.  The necessity part of the lemma is obvious. We prove the sufficiency. Let M(Ao)M(Ag) = 0.
Denote by X, the set of matrices A = [A,;], ;_77 such that A,; =0 for j —v <n—p. It is clear that
it Ae X, Be X,, then AB € Xp,,_,. Since EIH()\)EUI*()\) = F, it follows that

n—k—1

M(N) = D (A= 0)" My (No), S oMy ()Mp () =0, k=Tn—1.

k=1—-n j=-1

From this, in view of the relation 9t(Ag)J(Ag) = 0, we obtain

n—k—1
* —1
M_jy (Ao) = —IM7; gy (Ao) N ( Z My (A0) D5 (Ao)) (M) (M)
Jj=1
* -1 P —
MGy 4y (R0)N(No) = Z% i—er (A0)M5 (Re) | (Mg (R0)) ™ N(ho),  k=2,n—1.

Since N(Ng) € X1, SW’Z_D(AO) € X,,_i, we can find 0, k)(/\o)‘ﬂ(Ao), - k)(/\e) € Xp_p_o, k=
2,n — 1. Repeating this procedure several times we obtain SI)I(_k>()\0) =0, k =2,n—-1. Lemma 3.3 is
proved. :

Corollary 3.1.  If M(A) € M, then the matriz M*(A) = o (( /\))_1 has only simple poles.
Let L € Vi, M(X) € M. Denote

_<€><m,A>,$*<z,u>>z} “

5(.’2?, )\, )\0) = N 0 y 5([@ (:E, 20, /\0) [D(.L' A /\O)L/\ % k= 0, —1.
IIJ«:/\O
Using (2.27), (3.2), and Lemma 2.1, we obtain the following fact.
Lemma 3.4.
- (f):r,A,@*_ T, o) )7
Bz, A Ao R(o) = (D(z, ), @7_ 0)>l’
A=A
(3.7)
~ ~ i) T, 20), ®*(x, 1)
m(ZO)DU))(x’ZUv/\O) = { < - 1> > »
29— [
lu=Xo0
E(——l) (mn 29, AO) = m(zo)ﬁm) (’IB, 20, )‘0) - 5(ZO7 )‘O)E7 (38)
~ = ~ <&’<—1>($720),‘T)?_n(ib‘?/\o)%
Z 4 = d /\
‘ﬁ( O)D<0> (£, 205 )\O)m(/\[)) 20 — )\0 (ZO ?é 0) (3'9)

N(z0) Doy (2, 20, Aa)N(Ag) = N(Ao) — (B(_1y(w, M), Blgy (2, 00) )7 (20 = do),
where 6(z0, Ao) =0 (20 # o), 0(20,A0) =1 (20 = Ag)-
From Lemma 3.4, in virtue of the equalities

(B, A), &, 1) ), = TN (1),

(B(x, \), & (2, 1) ),y = Ur (B, \) U5 (8" (2, 1)),
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we obtain

Corollary 3.2.

D (0, X, Xo) = — A‘;’“”AO, k> v,
Dy (0,0, 00) = Fio (M jysis = Lv—kij=Tn—1), k<,
Dy (T, X, Xo) = (D(T, X, 20)0(No)),, = (M(z0) Dioy (T 20, Mo)) ., = k<,
(M(20) Do) (T, 20, A0)N (X)), = (20, ho) Mk (20), & < v
Denote Y = [6jak—1]j:1,n~l;k:1,_n7 No(Ao) = (), N1 (Xg) = 9’1()\0) then
P.(z, M A0) = D(z, A, A0)M(Mo)YT, £=0,1, Pz, 2 Ao) = D(z, A, A)N(Ao)Y T,
Ge(@,20,M0) = Y Doy (2, 20, )M (M)Y T, e=0,1,  G(, 20, Ao) = YDy (2, 20, Ao) (o) Y7,
gz (2, M) = <o>($ 20)N(X)YT, e=0,1, g (x, M) = —52‘0>(:ﬁ,/\0)‘ft(/\0)YT,
AXo) = ME + YR(N)YT, A(Xg) = X E +YN(N)YT,

Pz, M) = YB gy (z, Ao)-

Lemma 3.5.

13(z, o) = AX0)@(, M), (3.10)

Pz, Ao) = Bz, N3z, ho),  Gllz, 20, M) = 32, 20)57(z, o),  €=0,1, (3.11)
P, \, M) (AE = A(Xo)) = (B(z, 1), 7" (z, ho) )5 (3.12)

K(20)G(x, 20, o) — G (2, 20, Ao)A(Xo) — 6(20, 20)YR)YT = (3(z, o), 7" (2, o) )7 (3.13)

If M(A)N(Ao) = 0, then

Po(z, 2, 00) - (AE — A(Xo)) = (®(z, ), 57 (x, X)) e=0,1, (3.14)
A(20)Ge(x, 20, ho) = Ge(, 20, Ao)A(ho) = (20, o) Y R (M) YT = ($(x, 20), T (2, 20))7s e=0,1.
(3.15)

Proof. In virtue of (3.2) and (3.4) we compute
1) (2, 20) = (M E + RN(A0)) B0y (, Ao)-
This implies (3.10). Using (2.27) we derive E’(m,A,AO) = —5(:1:,/\)52‘@(:17, Ao), and consequently,
(3.11) is proved. Further, it follows from (3.7) that (A — Xo)D(m, A, Ao) + D(z, A\, Ag)M(Ng) =
—<<I>(.r, A), 7oy (, ’\0)>T' Multiplying this equality by M.(Ae)Y?, we obtain
Po(w, 0, 20) (AE = A(X0)) + P, A, 20)YN(Ao)Y T = (B(2,A), (2, M) £ =0, 1. (3.16)
This yields (3.12) and (3.14). It follows from (3.8) that

Y Pl A A0 5 2L = Y 0R(a0) [Pl A M) . — 820, A0)Y R (A)Y 7.

Using (3.16) we arrive at

ée(:l',Zo,)\o)(ZoE — A()\Q)) +Y[f~) 1’ )\ )\0)] f;:l; + Gl(l Zo,)\())Y‘n()\Q <<,0 ”E ZO gs(v /\0)>

From this, in view of the equality

Y0(20) [P, A, 20)] L. = YR(20)Y T Ce(z, 20, No),
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we have

AM20)Ge (2, 20, Ao) — Ge(2, 20, Xo)A(Ao) + G1 (2, 20, Ao) Y N(Ag) YT
— 8(20, M) YN (M) YT = (P(x, 20), 92 (2, /\0)>

This yields (3.13) and (3.15). Lemma 3.5 is proved.

3.2. Solution of the IP. Necessary and sufficient conditions.
We consider L, L € V};. Denote

n—1 n
. fl = Z (D\lm - )\lml + Z ‘mmk()\lm) - "ﬁmk(xlm)‘ . ]) -n
m=1 k=m-+1

In the sequel we shall assume that the numbers A;, and )\lm are numbered in such a way that A, ;é
Alo.mos /\lm + )\go,mo, A, 7 /\lo me for I # lg, |m —mg| = 1. This is possible and it means that “common”
poles have the same number [.

Lemma 3.6.

B(x,\) = B(z,\) + Y Pz, ), Ao)e(x, Mo), (3.17)
Ao€l
F(xz,¢) = o(z,20) + Y Gz, 20, Mo)p(m, o), 20 €1, (3.18)
Ao€ET
é(IL‘, Zo,}fo) - T y 20, 70 Z G ZL’ 20, )\0 ’E Ao, Z()), Zo, 79 € 1, (319)
A€l

where T = AU A, o(z, Ao) = Yy (2, Mo), G(z,20,)0) = YD<0>(r£,zo,)\o)‘ﬁ()\o)YT, the series converge
“with brackets,”

!

Yo=tim Y, L=In{A:]A <R,

k—o0
A€l Aol

and the circumferences |\ = Ry, are at a positive distance from the set I.

Proof. Using (3.2) and (3.7) we obtain

o T, A ,~* T, ) ~ -
res {— o ))\ . “)>l¢>(m»u) = D(z, A\, A0)N (o) Y T (z, Ao)-

m=2Xo —H
Hence
5:1@,/\,:13* T, ) )r ~
res I:—< ( ) ( H)>‘l (I)(.’L‘, u) = P(x, A, )\O)go(:L’, /\0). (3.2())
/,l,:/\o )\ - /1/

In the A-plane we consider a contour v =~ U~y ", v& = {A: £Im A = Cy, —0o < FRe\ < oo} such
that 1,7 C {\:|ImA| < Co}. Put J, = C\int~y. Then the relation (2.41) is valid (the proof is the same
as for the half-line). Using (3.20) and the residue theorem [72, p. 239} we obtain (3.17). Equality (3.18)
follows from (3.17). Equality (3.19) is proved analogously. Lemma 3.6 is proved.
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Denote

Yy, = diagduk],—17 Aok = Atkes ALk = Mk,
_ n—1 - n—1
A = Yek(Aek), Bie = Y Yap(, Ne),
k=1 k=1
n—1 N n-1
51*5(517) = ﬁ:(x, )\lak)Yka ]Dla($7 )\) = P, (ZL‘ )\ )\lrk) ,
k=1 k=1
G(IO’EO ):(1, 5) Z Yko %‘ Alo,co,koa )\lsk)Yk, E, &0 = 0, 1.
k,ko=1

Analogously we define A, ¢1-(2), Gg,e0),(1c) (). Let V' be a set of indices v = (l,¢),1>1,e=0,1 (¢
changes quicker), and V be a set of indices j = (v, k) = (I,¢,k), x € V', k=1,n — 1 (k changes quicker).
We introduce the matrices

&(z) = [Bo(@wev = [Bi(@)]jev, T (@) = 35 (@))Ter = [07 (2)]jev

é(m) = [évo,v($)]vo7v€V’ = [éjo,j(fv)]jo,jew vo = (lo,€0),  Jo = (o, ko) = (lo, €0, ko),

K = diag[KU]UEV’a J = diag[(—l)aE]UEV’v Jl = [6lo,l9vo,v}vo,v€V’a

0’0’[} = E) 9(1,0)7(l11) = ——E7 9(171)7(170) = O’ E = [6Mk]ﬂvk:m'
Analogously we define the matrices ¢, G, A. Denote

wiy () = 1" exp (—zlcot BT}, wior(z) = Guii(x), wnk(z) = wii(z), W(z) = diaglw;(z)]ev-

The following estimates are valid:

5 (2)] < Clwi(z), eV, Bior(@) — B ()] < Cal wjy(x),

~x (1 v % —1 ~x (v ~x (v e -1
lgj( )(ZE)‘ < Cl (’wzk(m)) ; glo(k)(fE) gll(k)(‘ )l <Ol (wzk(ﬂf)) )
- C kao.,ko(ﬂ?) ‘G(u—i—l) )’ < C’(l+l0) . wfo,ko(:r)

G
‘ JoJ( )‘ 'l—lol—i—l U}z‘k(’l?) ) Jo,J wl*k,(lr,') y

~ ~ C¢ Wi ko (%)
o 108) () = G121 (2) | < =g - =2

wi(x)
~ ~ Cc§ (L (z)
‘G(l0107k0)7j(’r) - G(lo,l,ko)vj (Zl?)' U _ l0|0+ 1 U?EK]CE:E) )
The same estimates are valid for ¢(z) and G(z).
In view of our notations, (3.17)-(3.19) become
O(w,A) = 0(x,A) + >_ (Polz, New(@) = Pz, Nen(z)), (3.21)
I=1

Bx) = (B +C(x)])pla). (3.22)
(E+ G(x)J)(E — G(x)J) = E, (3.23)
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and as above, the series in (3.22) and (3.23 ) converge “with brackets.” Further, according to Lemma 3.5,
we have

13(z) = Ap(x), (3.24)
Pl(z,\) = ®(z, Njr(z), C'(z)=3(2)§" (2), (3.25)
Z ) (Plel, VOB = M) = (B(,0), 5 (2))7 ) e () = 0, (3.26)
(K<E +G(x)J) = (B +G(z)))A)¢(z) = (3(z), 5" (z) )1 e(x). (3.27)
Let
ng I < o
=1
Denote
stys(z) = G (2) T Z (~*(V @Eé) z) — 911 (JT)(,O(S)( )) v+s<n-—1 (3.28)

I=1
The functions t;,(x), &.(x), and £,(z) are defined by (2.52)-(2.54).

Lemma 3.7.

po(z) =pu(x) +e,(z), Ugpa = Z ugjatju(a), a=0,T. (3.29)
=0

Proof. Differentiating (3.21) with respect to 2 and using (3.25), (3.28), and (2.52), we obtain

Zmu 18 (@, 3) = (2, 0) + 3 (Polw, Neff () = P, Nl () ). (3.30)

I=1
Further, in view of (3.21), (3.24), and (3.26), we have

o0
Bz, \) = 19(x,\) + Y (Pm(z, Nigo(z) — Palz, A)z%(@) + (B2, 0),5°(2));- Jo(x).  (3.31)
=1
From (3.31), in virtue of (3.30) and (2.22), as in the proof of Lemma 2.7, we obtain p, (z) = p,(x)+e, (),
v=0,n-2.
Denote

- S

=0 \ j=0
It follows from (3.30) that

5(5&(:13, /\)) = Uga <¢‘1‘~,(.’E, /\)) -+ Z Z ( (Z ﬁkj (CL, )\, )\l,,,l)‘ﬁjy(/\g,,,_l)) Uga (‘I)L,’<0> (ZIJ, /\1,1,,_1))
=1 v=2

v—1
- (Z ﬁkj(aa)\af/{l,u—l)‘ﬁju(xl,u—l)) UEa( )(T /\I v— 1))) .

For a = 0, using Corollary 3.2, we compute (750(5;;) = 0gr, € < k, and consequently, [750 = [750.
Analogously we find that U T = U'gT. Lemma 3.7 is proved.
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Denote

Y(@) = W (2) 11 3(x), H(z) = W™ (2)J.G(2) LI W (),
W(z) = W a)Jre(z), H(z) = WY (z)J1G(x)JJ; W (x)
It is obvious that
@) <Oy (o) <
I—lo|+1 (3.32)
B (@) <0 +10)’a, jojeV.
Analogous estimates are valid for ¢(z) and H(z).
Then (3.22) and (3.23) become
Y(z) = (B + H(z))v(z), (3.33)
(E+ H(2))(E - H(z)) = E, (3.34)

and the series in (3.33) and (3.34) converge absolutely and uniformly for z € [0,T]. Interchanging places
for I and L we obtain analogously

V()= (E - H(z))¥(@), (E-H(z)(E+Hx)=E. (3.35)

We consider the Banach space m of bounded sequences o = [o;];cv with the norm ||e|,,, = sup oyl
J

It follows from (3.32), (3.34), and (3.35) that for each fixed z € [0,T] the operator £ + H(x), acting
from m to m, is a linear bounded operator,

[H @), = S;lpZ |Hjyi(z) < CY g,
o J

and E + H (z) has a bounded inverse operator.
Theorem 3.1.  For a matriz M(A) € M to be the WM for L € V}; it is necessary and sufficient that
the following conditions hold:

(1) (asymptotics) there exists L € Vi such that

]

Z&ln_l < 00;

=1

(2) (condition P) for each fized = € [0, T, the linear bounded operator E + H(z) acting from m to m
has a bounded inverse operator;

(3) eu(x) € Wypn, v = 0,n— 2, where the functions ,(x) are given by (3.28), (2.52)-(2.54), and
_ ~ 17
o(2) = IT W) (B + H(z) ' §(@).
Under these conditions the DE and LF L = (I,U) are constructed according to (3.29).

The necessity part of Theorem 3.1 was proved above. The proof of sufficiency is in [96].
The method described above allows also to study stability of the solution of the IP from the WM.
Let L € V}; and choose L € V}; such that

0 def o=, 1
A E Zgll < 0.
(=1

The quantity A° will describe nearness of the WM 901()\) and ﬁ(/\)

Theorem 3.2.  There exists § > 0 (which depends on E) such that if AY < &, then
p,(,j)(ac)—;f)f,j)(x){ < CA®, 0<j<v<n-2 g — Teval < CA®,

max
0<e<T
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where C' depends only on L.

The proof of Theorem 3.2 is in [96].

Sometimes it is more convenient to work in £2(0,7). We shall say that L € V{, if L € V}; and

p,(,V+N)(x) € L£5(0,7T). Similarly to Theorem 3.1, we prove the following theorem.

Theorem 3.3.  For a matriz IM(X) € M to be the WM for L € Vy, it is necessary and sufficient that
the following conditions hold:

1) (asymptotics) there exists L €V}, such that
N2

oo 2
(zkm““g < 00;
=1

(2) condition P is fulfilled.

We note that for “small” perturbations condition P is fulfilled automatically, i.e., the following
theorem holds.

Theorem 3.4. Let L € Viro be given. Then there exists 6 > 0 (which depends on Z) such that if the
matriz M(N) € M salisfies the condition

0o 1/2
A+ d_ﬁ_f <Z (é'lln—l—N—l)Q) < 6,

=1

then there exists a unique L € Vi, for which the matriz IM(X) is the WM. Then

16 (z) - B ()|
’Ugya — agya} < CA+,

< CAT, 0<j<v+N,

£2(01T)

where the constant C depends only on L.

3.3. Counterexample.

For definiteness, let n = 3. Let us show that dropping 9%,3(\) from WM 90t(\) leads to nonuniqueness
of the solution of the IP. In the other words, WE M1;5(A) and 9Mo3(A) do not uniquely determine DE
and LF L.

We consider L = (I,U) of the form

ly=vy", U =v"(a)+dy' (), Uswly)=y(a), Usly)=yl), a=0,T.

Let the functions )Z'k(.'z:, A) be solutions of the equation y” = Ay = p?y under the conditions
X7(0,A) = 85, v,k =T,3. Then

3
1

Xp(z, \) gz pR;) * exp(pR;z). (3.36)

i=1

. .’I,’k*l
In particular, for A =0 X (z,0) = G 1!
It is clear that for A =0

A11(0) = Ay (0) = Ay2(0) =0 (3.37)

for any &g and &r. We choose the coefficients ap and @r such that the functions &11()\) and 522()\)
have only simple zeros. Let us show that such choice is possible. By symmetry, it is sufficient to consider
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the function Ag(\) = )Z'{’(T, A) + &T)zi(T, A). Using (3.36) we obtain

Aga(A) = AXo(T, A) + GrAX3(T, ),

~ - - N B (3.38)
3Ag3(A) = (2X2(T, A)+TX (T, /\)) + ar (Xg(T, A) + TXo(T, /\))

Denote by B the set of zeros of the function

A € AX (T, N (Xa(T, A) + TXo(T, A)) — AXs(T, \) (2Xs(T, A) + TX, (T, ),

and by B(ar) {)\0 Aog()\g) = A22(/\0) = 0} the set of nonsimple zeros of 522()\). It is obvious that
B(dr) is a finite set. If Ay € B(&r), then, in virtue of (3.38), A(Xg) = 0, i.e., B(Gr) C B. Further, if
&% # ar and Ao € B(ar) N B(&%), then (3.38) implies that
Mo X2(T, Ao) = AoXs(T, Ao) = 2Xo(T, Ao) + TX1(T, \o) = X3(T, Ao) + TXo(T, Ag) = 0.
Since 2Xo(T,0) + TX1(T,0) = 3T # 0 it follows that Ay # 0, and hence Xi(T, o) = Xo(T, Ag) =
X3(T, Ag) = 0. But this is impossible. Thus, if &% # &, then B(&%) N B(&r) = 0. From this and from

the relation B(ar) C B and continuity of B(ar) we conclude that there exists &g such that B(ar) = 0.
We define the matrix I(\) = [immk(/\)]m o130 Dk (A) = S, m >k, by

~ ~ ~ 0
Mia(A) = Pa(N), Maz(A) = Mas(N), Miz(A) = Mg () + N
where 6 is a complex number. It follows from (3.37) and (3.39) that for sufficiently small § 9(\) € M
and it satisfies the conditions of Theorem 3.4. Then, according to Theorem 3.4, there exists L € V., for

which 9(\) is the WM.

(3.39)

3.4. Differential operators with a “separate” spectrum.

We consider the IP of recovering DO’s of the form (2.1) under the condition of “separation” of the
spectrum. In this case, to construct the DO, we need not all the WM but only its part. More exactly,
the DO is uniquely determined from given n—1 WF’s. We provide a rule how to choose sets of the WF’s
which guarantee uniqueness of the solution of the IP. We give the solution of the IP from chosen WF’s.
It is shown that obtained theorems contain results of Leibenzon [52, 53]. Further, we give a solution
of the IP of recovering the DO from a system of 2n — 2 spectra. It is shown that this problem can be
reduced to the IP from the WF’s.

3.4.1.  We consider DE and LF (2.1)-(2.2). For definiteness we confine ourselves to the case where
T < oco. Let A, 1 <m <k < n, be the set of zeros (with multiplicity) of the entire function

Ami(A) = (=1)™* det [Uyr(Cy)]

n=ln—m;r=r,m\k"
The set A,,; coincides with the set of eigenvalues of the boundary value problem S,,; for the DE (2.1)
under the conditions Ugo(y) = Upr(y) =0, n=1,n—m, £ =1,m — 1, k. In particular, A,,,, = A,,.

Let r (1 <r <n) be a fixed natural, 6, = max(r,m — 1). Assume that

A N Ai10,, =0, m=1,n—2. (3.40)

Everywhere in Sec. 3.4 we assume that the condition (3.40) of “separation” of the spectrum is fulfilled.
In this case for recovering the DE and LF we need n —1 WF’s. The IP is formulated as follows.

Problem 3.1.  Given the WE’s {90,,9,.(A) } - construct the DE and LF L = ([,U).

First of all we study the uniqueness of the solution of the IP.

m=1

Theorem 3.5. If Mg, (A) = Mpe, (A), m=T,n—1, then L= L.
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For definiteness, we prove Theorem 3.5 for r = 2. In this case the “separation” condition (3.40)
means that

Amm N Am+1,m+1 = q’v m=1,n-2, (3'41)
and the conditions of Theorem 3.5 become
Mipmi1(A) = DMmmir(A), m=T,n—L (3.42)

To prove Theorem 3.5 we use the following auxiliary statement.

Lemma 3.8. Assume that for a certain m, 1 < m < n—1, a number A\g is a zero of Apun(N) of
multiplicity »m > 1, and App1,my1(Ao) # 0. Then in a neighbourhood of the point A = Ay we have the
representation

By (2, 0) = Em (2, \) +Z C”m B, (2, \), (3.43)

where the function &, (xz, A) is reqular at A = Ag.

Proof of Theorem 3.5. Assume that for a certain m, 1 <m < n—1, a number Ay is a zero of A, ()
of multiplicity s, i.e., Ao € Apm. Then it follows from (3.41) that Ao & Aps1 mt1, 1€ Apg1 my1 (o) #
0, and, by Lemma 3.8, we have the representation (3.43) in a neighbourhood of A = A\g. Applying the LF
Um+1,0 to both sides of (3.43) and taking into account the relations Uy, 119 (@m(m,)\)) = M mt1(A),
Um+1,0 (<I>m+1(:1:,)\)) = 1, we obtain -

Com
9ﬁm,m+1(/\) = m+1 O(gm Z, /\ +Z )\ )\O)V

Hence ¢,y = I:mm’m_}_l(A)}i /\> By virtue of (3.42), we get ¢,m = Cum. It follows from Lemma 3.8 and
(2.35) that for each fixed Ao € A we have the following representation in a neighbourhood of the point
/\ = )\02

v v—1
(@5, N)], s = 60T @), s [om )],
where the functions ,,(z, A) are regular at A = Ao,

det [57(::_1)(;17, /\)] — _l)n(n—l)/z’

vym=1,n (

and 6,,(A) = gum()\). Hence, for each fixed x € [0, the matrix P(z, ), defined in Sec. 2.1, is entire
in X. Further, as in the proof of Theorem 2.2, we obtain that L = L. Theorem 3.5 is proved.

The counterexample from Sec. 3.3 shows that omitting the requirement of “separation” of the spec-
trum leads to a violation of the uniqueness for the solution of the IP.

3.4.2. Here we provide necessary and sufficient conditions and an algorithm of solution of the IP. For
simplicity, we confine ourselves to the case of L € V.

Lemma 3.9. If Xy € Ay, N---NA, 1, Ao & Ay, then MNeu(Ao) # 0, € = m,pu—1; Nei(Xo) =0 for
j=&+1,n\ i

Indeed, by the condition of the lemma Ag(Xg) = 0 for € = m,u—1. Denote he(z,A) =
Age(N)Pe(x, N). It follows from (2.13) that the functions h¢(z,A) are entire in A. If he(z,Ao) = 0,
then from (2.13) follows that Ag_1 ¢ 1(Ao) = Ags(Ng) =0, s = & n. But it is impossible, by virtue of
(3.40). Thus he(z, Ag) # 0 and hence, ®¢ (_1y(x, Ag) #Z 0. According to (3.2) we obtain

B (1y(z,h0) = Z MNe; (Ao) @50y (25 Ao)-
j=£+1
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Therefore

379 (M0)| #0.

J=E€+1
Further, since A,—1,-1(Ao) = 0, Auu(Ao) # 0, it follows from Lemma 3.1 that 91,1 ;(Xo) =0, j =
p+1,n; My_1 ,(Ao) # 0. From this and from Lemma 3.2 we obtain the assertion of Lemma 3.9.
By (3.40) and Lemma 3.9, for each [ > 1, m = 1,n — 1, there exist natural g, (m+1 < gy, < 0,)
such that

Akk()\lm) =0, k=m-+ 1, iy, — 1, Amm,mm (/\lm) 75 0.
Furthermore, Ay, 0,. (Atm) # 0, and consequently 9, 4. oy (Aim) # 0. It follows from Lemma 3.9 that
mm,mm(/\gm) #? 0, ‘J?mj()\lm) =0, j =m-+1n \ Uim- (3.44)
Further, from the equality 910 = 9_;, we obtain

k—1
mmk:()\lm> = mmk,(—l)()\lm) - Z mmj (/\lm)mjk,m)(/\lm)- (345)
j=m-+1
Hence mmﬁm,<—l>(/\lm) == ‘Jtm,mm()\lm)i)ﬁm"“gm,m)()\lm) or
-1
mmfﬂlm()‘lm) = (mtmm,ém,w)(/\lm)) . ﬂl,m,&m- (346)

Relations (3.44) and (3.45) give us the connections allowing to find the WM 9t()) from the given WF’s
{zmm,gm(A)}m:m (or, what is the same, from their poles and residues {\ym, 5,m.0,, }1>1). Thus, our
IP can be reduced to the IP of recovering L from the given WM 9t(\).

For simplicity, we formulate necessary and sufficient conditions for » = 2. In this case we have

Om =m+1, Nynymr1(Aim) = M g1, (-1 (Aim) # 0,
‘ﬁmj()\lm) =0, j=m+2n.

So, for # = 2 the numbers §;, defined in Sec. 3.2, have the form

n~1

fl = Z (‘)‘lm - lel + ‘ﬂl,m,m+l - Bl,m,m—l—l‘ . l) . ll_n,

m=1

where Byt = Mk, (—1)(Aim). From (3.45) we obtain the equality
Bimk = Bimm+1Mm41,k,0) (At ) - (3.47)

From the given {zmmmﬁ(,\)}m:m (or, what is the same, from {)\lm, ﬁl’m,’m+l}l>l)7 using (3.47),
one can construct recurrently the WE’s 9,,,x(A) for k¥ > m + 1. Thus, the WM 9(}) is constructed.
Furthermore, the properties S; and S for 9(\) are clearly fulfilled. Thus, the following Theorems 3.6
and 3.7 succeed from Theorems 3.3 and 3.4.

Theorem 3.6.  For meromorphic functions {Dﬁmm,ﬂ()\)}m:l_nwl with simple poles {Aim }i>1, Aim #
Ag.m+1 (I lo > 1) and residues By m41 # 0 to be the WF’s for L € Vi it is necessary and sufficient
that the following conditions hold:

(1) !mm,m,—i—l(/\)l < C]pl-17 )‘ € G(S{
(2) there exists L € V5 such that

Z (&ln+N—l)2 < 00

!
(3) condition P of Theorem 3.1 is fulfilled.
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Theorem 3.7. Let L € Vs be given. Then there exists 6 > 0 (which depends on Z) such that if the

numbers {Alm; 6l,m,m+1}l>1’m:m: Aim, F Alg,m (l % ]/O); Alm, :7£ >\lo,m+l (l7l0 > 1)7 ﬁl,m,m—l—l 7é 0 satisfy
the condition a

oo 1/2
At def (Z (&ln+N—1)2> <4,

=1
then there ezxists a unique L € Vi, for which {)\I,m, ﬁhm,mﬂ} 1>, @re poles and residues of the WF’s
M m+1(A). In addition, -

HP(U) (z %U) szz(o T < CAT, 0<v<j+N; ‘uﬁl/a - ﬂﬁ”“‘ < CAT,

where the constant C depends only on L.

We note that to solve the IP it is not necessary to find the WM 9t(\) since the main equation of
the IP for 7 = 2 can be constructed directly from A, and B m m+1.

Remark. From Theorems 3.6 and 3.7 results of Leibenzon [52, 53] follow. Indeed, in [52, 53] the IP
of recovering the DE and LF is studied from the given {\,, alm}z>1.m:i,n—-1 under the “separation”
condition (3.41), where qy,, are “weight” numbers connected with the residues Bi,m,m+1 of the WE’s
M m+1(A) by the formula

X ~1 —m _
ﬁl,m,m-i—l = (Amm(/\lm)) Arrl,,'rrz,~i—1()\lrn) = (_1)n (alm) l-
Thus, the specification of the numbers {A;,,q;n} is equivalent to the specification of the WF’s
{Wm)mﬂ()\)}m:m, and the problem of Leibenzon is a particular case of Problem 3.1.

3.4.3.  We counsider the IP of recovering the DE and LF (2.1)—(2.2) from a system of 2n — 2 spectra.
Denote by {)\llm}1,21 the eigenvalues of S, 9,,. The IP is formulated as follows.

Problem 3.2.  Given the spectra {\m, A, }is) o177 construct the DE and LF L = (I,U).

Let us show that this IP can be reduced to Problem 3.1 of recovering L from the WEF’s

{mm"gm(A>}m:T,n—l'
Let Ak = {Aimkti>1, le., the numbers {Ani}i>1 are eigenvalues of Sy,. It follows from (2.21)

that the function A,,,()\) is entire in A of the order 1/n. Since A, is the set of zeroes of A,,x(N), we
have by Borel’s theorem [55, p. 31]

Amk = B - H (1 -

(the case where A = 0 is the eigenvalue of Smk, requires minor modifications). Then

Arnk:(/\) _ Bmkz . /\lmk H (1 . /\lmlc - Almks) )

> , B,k = const
)\lmk:

Zimk:()\) B Emk; =1 /\lmk lek - A

For (—1)""™*1A — oo, we have

=1

>/?

I

Imh
and hence
N = /\Iml. /\lmk
AN = DM ] | 1 - =222 (3.48)
=1 )\lmk‘ - A

In particular, from this we obtain that the characteristic function A,,,(A) of the boundary value
problem S, is uniquely determined by its zeros. Furthermore, the function A,,;(A) can be constructed
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by (3.48), where L= (T, U ) are known DE and LF (for exanple, with zero coefficients). Then, in view
of (2.7) we obtain the following statement.

Lemma 3.10.  If Ay = Ay, Ak = A, then Mop(A) = Myni(A).

Thus, the specification of two spectra of S, and Sy, uniquely determines the WE 9,,;.()).
From Theorem 3.5 and Lemma 3.10 we obtain the following uniqueness theorem of solution of the
IP from a system of 2n — 2 spectra.

Theorem 3.8.  If Ay = Aim, AL, = =

lm?

[I>21, m=1,n-1, then L = L.

Thus, the DE and LF are uniquely determined from the given 2n — 2 spectra of the boundary value
problems Sy, Sme,., m=1,n—-1.

To solve the IP of recovering L from 2n — 2 spectra {\;,, /\}m} we can construct the characteristic
functions Ay, (A), Ay, (A), and then the WFE’s M, 4. (A} by the formula

mmﬁm (/\) = (Amm(/\))_lAm,@m (/\)v
and residues [3; ,,, 0,, of the WE’s M, o (A) by the formula

1

Bl,m,em = (Amm()\lm))h Am,em ()\lm)

and use the results of Sec. 3.4.2. Thus, the IP from 2n—2 spectra can be reduced to the IP of recovering
the DE and LF L = ([, U) from the WF’s {9, 4 ()}
residues of the WE's {Aim;, Bim, 0 }i>1m=T7T

_—— or, what is the same, from the poles and
m=1l,n—1

3.5. Stability of the solution of the IP from spectra.

Stability of the solution of the IP from the WM was studied in Sec. 3.2. Things are more complicated
for the IP from a system of spectra. Here we study stability of the solution of the IP in the uniform
norm from spectra. It is shown that small perturbations of the spectra lead to small perturbations of the
operator. Here we use a method which leads to a development of ideas of Levinson [56]. For brevity, we
confine ourselves to formulations of results for fourth-order self-adjoint DO’s with symmetric coefficients.
Analogous results are valid for DO’s of an arbitrary order.

Let {An}n>1 and {n}n>1 be eigenvalues of the boundary value problems Q;, i = 1,2, for the DE

ly=yW — (@@)y) + @@y = =rp'y,  glr—2)=q) (3.49)
under the boundary conditions
y(0) =y"(0) = y(m) = y"(7) = 0 (for Q1),
y(0) = y'(0) = y"(0) = y(m) =0 (for @),

respectively. Here g;(x) are real, and qz(”)(z) are continuous on [0, 7] for 0 <i— v < 2. We shall assume

that the spectra of Q; and @ are simple, and A, # 7, for all n,m > 1.
Theorem 3.9. If A, = Xn, Yo =Yn, 1 > 1, then g;(z) = g (x), i =0,2.
Theorem 3.10.  There exists § > 0 (which depends on Q;) such that if

Adﬁfi(u = Ra| + 1 -l ) <5,

n=1

then

/ - dt<C'A 0<1—-v <2,

0

0<m<ﬂ dx”
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where C' depends only on Q).

We give an outline of the proof. Let the functions a;(x,A), bi(z,A), i = 1,2, be solutions of
(3.49) under the initial conditions al”’""(0,)) = bg”_l)(w,)\) = 621y, v = 1,4, and let ag(z,\) =
ar(z, Naz(m, A) — az(z, N)ai(m, A), bs(z,A) = as(m — =z, A), A(X) = a5(m,A), 6(A) = az(7, ). Clearly,
b3(z, \n) = knas(z,\,), where k, = (—1)""1signd(\,). The eigenvalues {\,},>1 and {yp}n>1 of Q1
and @, coincide with the zeros of A(X) and §(A) respectively.

Let f(z) € C?0,x], f(0) = f(x) =0, and let Ty = {X: |A] = Ry} be circumferences in the A-plane
with radii Ry — oo such that 'y are ¢ > 0 distant from the spectra {\,} and {v,}. Then

. 1
i e 1160 5 [ e yay =0
'~

€T

y(z,A\) = (’g()‘»_l (b2 (z,7) /62<t7 A f(t) dt + az(x, ) /52 (t, A () dt)
0

~(BMAN) ! (b3 z,\) / as(t, A)f(t) dt + as(z, \) / ba(t, AV f(2) dt),

z

and consequently

> Ands(r, An) = (ﬁnag( ) + Yn(@ / 3(t, ) f(2) dt
n=1 n=1

i} 0 (3.50)
() / G (7o) F(£) dt — wn (2) / 52<tﬁn>f<t>dt) ,
Q

T

where

Ao = T (AR50) / F (Ot A
0
Tn(flj) - (I)nlb2('1'7?n) + (I)nle (ﬂfﬁn), wn(%‘) = (I)nla‘7( ) + ¢ 2‘11(3j Vn)
Yn(z) = (Z(AH)S(X,L))‘I ((bg(.«p,Xn) —b3(2, An)) = kn(aa(z, \) —a (m,)\n))>,
By = T (0 3y A), g = T T)I0R)
3(Fn)A(Fn) 3(Fn) A(Fn)

and the series converge absolutely and uniformly for [0, 7].

Let now f(x) satisly the conditions f(x) €~C’4{O, 7, If (z) € C?[0,7], f¥(0) = f)(r) =0, v =10,2;
(1f)(0) = (If)(x) = 0. We aplly the operator [ to (3.50). On the other hand, we set /f instead of f in
(3.50). After the corresponding subtraction of the obtained relations and comparison the coefficient for
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f, ', and f”, we obtain formulas

/ G-j(t) dt = Z / £),ds(t, An)] = Fy[ra(t), @a(t,50)] + Fy [wn (), Bolt. 5] Jdt, 5 =0,2,

(3.51)
getF R oo . o -
m/ 2(t)dtzz (Fu[yn(x)va?)(xa/\n)] _Fu[Tn(w%aQ(mv’Yn)} +F,u[wn($)ab2(x77n)])7 u=0,1,
v 0 n=1 3.52)
FO [yv ] = —4(312)'7 F [yv ] = _Gy”Z - 89’2/ - 23/2” + 21\2?!27

Fg[’y, ] _4y/112+6yllzl+4yl /I+2yzlll ’_Zqzy,Z_QQyz_ (q2+a2)yzl.

From here we obtain the assertions of the theorems. We omit a rather complicated part of the proof
connected with getting estimates (with constants not depending on {) for the functions from the right-
hand sides of (3.50)—(3.52).

4. Method of Standard Models

4.1. Formulation of the inverse problem. Information condition. @ We consider the DE and LF
L = (1,U) of the form (2.1)—(2.2) on the half-line or on the finite interval (T' < co) and study the IP of
recovering N (1 < N <n—1) coeflicients of the DE from given N Weyl functions provided that these N
functions are piecewise analytic (the rest of n— N —1 coefficients of the DE are a priori known arbitrary
integrable functions).

Let the sets of positive integers s = {s;}, 15, I = {(ks,7:), i = T,W}, 2<m << xy<mn,
1<k; <v; <n, be given. The IP is formulated as follows.

Problem 4.1.  Given the WF’s {9y, ,.(})},

functions {pn_., (x) }jzl—]—\,-.

TV and the coefficients p,(z), n — v ¢ >, construct the

For convenience, we number the given WF’s in a different way. Let [ = {(mT,fym), r = 1,0,
n=LN}, 1<m <7y <-<yn <n Ni+--+ng =N, my # my (1 # 7). Denote
Ms(A) = M, 4., (A), s = 1,N. Here and below, the positive integer s has a unique representation
s=Ni+---+N_14n, 1 <n<N,. Then our IP can be written as follows.

Problem 4.2.  Given the WF’s {E)ﬁs(/\)}s:m and the coeflicients p,(z), n — v ¢ », construct the
functions {pn_}{j (z)}

Note that using the given WF’s we can find not only the DE, but also the coefficients of the LF.
However we assume for brevity that the LF are known. We also assume that the enumeration of Ry in
(2.3) is chosen for the sector Sy = {p:argp € (0,Z)}. Denote

j=1n’

S (R) = (<R,
(1,2 Gp) = det (] (R, 1
Q;(jlv - 7jp) = det [w;u (RZ)J v=1,pik=1p+1\p"

Let us give a classification of the IP. For this we consider the matrices A; = [Aj;], 17 i=Tp» Where
p is such that [ € [, 50,41), 20 =1, sepr41 = 00 (if [ > 52y, then A; is a square matrix); here

(—1)n¥metyentl I nimr (=) Q (T,my — DT, 0~ my \ 1~ Yy + 1)

A =
T QT m) (Tn = my) R (=R, — Ry)l +1

u=1 v=1
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Definition 4.1. If A; # 0 for all [ > 1, then the set {m8</\)}s:1‘ﬁ of the WF’s is said to be a
P,.-system.

This definition distinguishes the classes of WEF’s which have sufficient information for solution of the
IP. We therefore call A; # 0, [ > 1, an information condition. It is easily shown that this condition is
independent of the choice of a sector.

4.2. Solution of the incomplete inverse problems. Let us study the IP for P,-systems. To solve
the IP we use the so-called method of standard models in which we construct a sequence of model DO’s
of the form (2.1) “approaching” the unknown operator. The method allows to obtain an algorithm of
the solution of the IP. We first formulate some auxiliary propositions.

Lemma 4.1.  Let r(z) = (a!) 2% (h + p(z)), o > 0, p(z) € C[0,b], p(0) = 0, h(x,z) = exp(—z )(1 +

27 Y (x, 2)), where the function &(z,z) is continuous and bounded for x € [0,0], |z| > 20, 2 € Q = et
arg z € [=5 +do, 5 — do], do > 0}. Then for |z| = o0, z € Q, we have
b
/Z(T)H(:E z)dz = 27" (h +o(1)).
0
Denote
Yo(2, N) = @py (2,8),  Br=m;+N;,  vo=my, M. ={k:k=Tm: v1,...,¢rnN |
M., = {k ckeM:, k# 'Vrn}7 = det[R Jie =Bt Lnp=Br -1’ Q= [qu]g:m;y:()—,m,

where

v—3B:+1 -1 —
QEV - (_1) bt (Q'r> det{Rll:]k:BT+1,n;u:5_1’57_7n*1\,,

for £ =1,6,, v=0;,n—1and ¢, = b, ¢-1 otherwise.
The following lemma allows to solve the IP in steps.

Lemma 4.2.  For a fired a € (0,T) the WS’s v, (z, ), 7 = 1,0, satisfy the boundary conditions

Ul(-) =0 (N a),  &=1,0, (4.1)
where
n—1 N,
UZ(y) Z% (N a)y®(a), NI\ a) =TGN a)+ Y TN @) M(N),
n=1

(_1>n—NT+n 1

AT(/\, a) det [ ) (a’ )\), UJO(Zk)]

T — T
J&n(Av“) - k=Tn;p=£—1,6, ,n—1;je M’

(_1)”4BT+1 .

Qe a) = =Xy det (270, N Usoeb)] e s rmvvgens,r V= Pron =1,
Qi (A a) = b1, v=20,0 -1,

Ar(A a) = det [ (a, A), Ujo(1)]

k:m;ﬂzm;jEMTn.
Here {z.(%, \)};—17, = € [0,a], is a certain FSS of the DE (2.1). For |A| = oo, arg A = ¢ € (0,7) we
have QF, (3, a) = p* 777, (1 + O(p™1).

Indeed, from the relation

(2,)) = wa )z (2, A)
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for x =0 and x = a we obtain

3 b2 (@N) =@, N, S b0 (2 (2 N) = B
p=1

k)
me()\)UMﬂo(zH(:E, A)) = M (N), v=0n-1, j=1,m,, n=1,N,.
p=1

Solving this algebraic system for each 7 = 1,0 with respect to {b,,(\)} YT {@b&'/) (a, A)}V:m, we
obtain (4.1). Choosing zi(z, A) = yx(z, p), where {y(, p) };_17 is the FSS By and using the asymptotic
properties (2.5) of the functions yi(z, p), we obtain the asymptotic formula for ng()\, a). We observe that
the functions ME (A, a) and QF, (A, a) are defined from L for z € (0,a) and from the WF’s {Ms(N} 1w

We define U7, (y) = y&1)(a) for £ = B, + 1,n and denote

we, (R Z %R, {=TLn

The functions wg, (R) are the characteristic polynomials for the LF U/, (they do not depend on a €
(0,7)). Define LF U, £ = 1,n, from the relation

|a: a Z —£+1, a .f;‘a (Z)

Denote

ng Z qT *Rl/

the characteristic polynomials for the LF U . It is clear that q =(-1)"D} 1 ¢pn_1_,» Where D =
(D7) =TT is the matrix of algebralc minors of QT For Ql Ql 1, Q0% and Q1 the same formulas
are used as for Q, Q,, Q*, and Q with w; (R) and ng "(R) replacing we(R) and wf(R).

Let us show that

1
rank |:LU£T<Rk)iI ‘S:m;k:m =M. (42)
Indeed, [wf (R)], 1 [RS~Y,_17. Since detQ, = 1, det[R; '|, ;57 # 0, it follows that
Q-(Ry,..., R,) # O However wi (R) = (g-)~" det [RY, RE 1o, Rz]uzf—l,m (& =1,8;). Then

wng(R;;) =0,&=1,8,, k=03, +1,n. Hence QL(R1,...,Rp. ) #0, ie., (4.2) is valid.

Let {e;i},_75; denote a permutation of the numbers 1, 3 such that Q(etry. .oy Em, ) # 0. By (4.2),
such a permutation exists. Let the functions ¢¥*(z, A,a), a > 0, z € (a,T) be solutions of the DE (2.24)
with the following conditions: Uy (¥5) = 0¢n—r,,+1 (§ = 1,n —m,) for a = 0; UT’*( V3) = Ot n—em, +n741
E=Ln-0Fr,n—em. 41+ ....n—cg r+1) for a >0, and also U (¢;) =0, { = 1,m, for T < o0,
and ¢ (xz, A, a) = O(exp(pR},_,, 2)), * = oo for T = 0o (a > 0). Denote A7 (A, a) = -U" (1),

n—ejr+1,a
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a>0. For [ >1, k=1,2 we consider the matrices A} = [A,SJ] s=1,N, j=1,p, where

T, m, —1) iy (—1)n—F-tuty

1
Ay = Ry QT,m;) 1/2::1 (=R, — Rz )15
y O (Ln—Brin—éemy1r+ Lo ,n—cg r +1\n—epm yyr + 1)
O (Tn=Prin—emt1r+1,...,n—eg +1) ’
Alsg UL, m, = (Do <m \N = Yo + 1)

Ry QUT,m) (R, 11 — Ry )&= H105 (1,0 — my)

We shall write Ala, b) (PA[a b]) for the set of functions analytic (piecewise-analytic) on [a,b]. Let
Pn-x,;(z) € PA[0,T), rf; = pf1 2 (@+0), v} = [rii];_75- Denote by P, the set of L such that py(z) =
pre(z), x>0, k#n—3;, j=1,N, and L = Lforze (0,a).

Lemma 4.3.  Let py_,. (), Pn_x,(z) € PA[0,T), Le PS, ry =74, u=11-1. Then for |A\| — oo,
arg A\ =@ € (0,7), k = 1,2, there exist finite limits

Xlkjs(a’) = hmPSk(p7a’) ’ p17

where

P.i(p,a) = By(X,a)p" ) exp(—pRm, a),

P82 (P, CL) = BS()" O)IOUSZ(a) eXp(‘ﬁ(Rmr-i-l - RmT )CL),

m,
By(A,0)=Ms(A),  BuNa)=9_ . (Na)+ > AT,(\a)N (Na) (a>0),
Usl(o) = Vs2 = 0,0 = Or,p0,0, Usl(a') =Om.,0 — Em,.+n,7 +1 ((l > 0)
Moreover,
{Al(R? ) = Xisletmr  Xis = X£5(0), @3
Af(rf =77 = [X{(0)] oy @ >0,

Proof. Let us show that if L € P¢ ., then

Z/pn /] (” "J)(a )\)N;k(.r Ay a)dx = Bs(A, a). (4.4)

Indeed, let L € PY. Then

T
Z / oy (10 2, V53 A O = [ (1) = T N) B3, 0) o
0

It follows from (2.26) that
T

T
/in(r MU (z, A, 0) da ‘ (thr(z, ) ), (, A 0)> /gb (z, N9 (2, A, 0) de.
0 0

From this we obtain

2/ sy ()0 (2, N (@, 0,0) d = Uiy (3 (2,2, 0)) 4+ ().
=1
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For | =] we have {Dv?s(/\) ==U;_m. 11, O(w:(a:, A, O)), and hence

.
Z/ s, ()57 (2, M2 (2, A, 0) dr = ().
0

Jj=1

Thus, for a =0 (4.4) is proved. For a > 0 the proof is completely analogous.
For definiteness, let T = oco. Let {yu(x’P)}M:m be the FSS By. It follows from (2.8) and (2.10)
that '

mr

U (z,N) = ZCW Pyuz, p), (4.5)
N
erp(p) = p~7mm oy ebme =D +00™) ), ol = oo (4.6)
Similarly,
_ n—ms,
Ui, Na)= > T (pa)fi(x.p), a>0, (4.7)
v=1

(_1)n—’yﬂ,+y+l

~k O — trn
CSI/(p? ) p <Q*(_1,n—m-_’,-)

0 (L= \n =10y + 1) + 057 ).
Cu(p,a) = p'm exp(—pRja) ((—1)"““’7“
(4.8)
Qr(1,n-Br,n—¢ s+1,...n—¢eg »+1\n—¢cp1pr+1
v ( 1/6* m,+1, 67‘7 \ m.—+1, ) _|_ O(p—l) a > 0
Qr (1 n—0rn—em 41, +1,... ,n—s/gﬂ.r—l—l)

where t,, = cr7 +1-n, t1, = em, 41nr—n, and §5(z, p) = exp(pR;z)(1 + O(p~1)) is the FSS B, for T*.
Since 7y, = =72 pu=1,1-1, it follows that

l,l,’
~ (:E - a)l_}{j a ~a
By Lemma 4.1 we get
2_: aQ wa *
R (e 53) Y _ (rlj - rlj) exp (p(Ru + Ry)a)
/pn_x,( . (@, p)ys (2, p) da = TR (< Ry — ) (14o(1),  |pl—=oo. (49
0
Substituting (4.5) and (4.7) in (4.4) we obtain
Mr N—Mr N T _
Y > culo)lpa Z/ yi 7 (@, 075, p) dz = Bo(\a),  a>0, LePl (4.10)
p=1 v=1 _7:1

In particular,
T

/ Prsey (2)y 7 (2, ), p) d = By(A,0),  a>0, LeP% (4.11)

a

My B—r

Z Z Cru(P)E{:u(Pa O)

p=1 r=1

-

LY
il
i

From (4.10) and (4.11), in view of the asymptotic formulas (4.6) and (4.8), we obtain the assertion of
Lemma 4.3.

Lemma 4.4. LetLeP%, k=1Vv2 ac(0,T), and let A # 0, Ak # 0, 1 > 1. If for |\ — oo,
arg A = ¢ € (0,m) we have im Py, (p,a)p' =0 for all 1 > 1, a €[0,a), s =1, N, then L € P%.
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Proof. Indeed, if there exist a < a and [ > 1 such that L € Pe r =75, p=11-1,r} #77, then it
follows from (4.3) and the conditions of the lemma that X l"fSO (a) # 0 for a certain so. This contradiction
proves the lemma.

From the propositions proved above we obtain the following theorem.

Theorem 4.1. Let A # 0, 1 > 1. Then Problem 4.2 has a unique solution in the class Do, (z) €
Al0,T), 7 = 1,N. If, further, A; # 0, 1 > 1, then Problem 4.2 has a unique solution in the class
Pn—s,(x) € PA[0,T), j=1,N.

The solution of Problem 4.2 can be found by applying the following algorithm.

Algorithm 4.1. (1) Take a = 0.
(2) Compute {r{};>1. For this we do successively for [ =1,2,... the following operations: construct

L € Pg, such that r, = 7§, p=1,0—1, and find r{ from (4.3) for k = 1.
(3) Construct L for z € (a,a) by the formula
S (z —a)f
pn~zj (:E) = ZT?"_%J'JZ—" .] = m (412)
=0

(4) If « < T, then we put a := « and go on to the step 2.

Remarks. 1. In Algorithm 4.1, the solution of the IP is sought in steps whose lengths are deteimined
by Lemma 4.4 as follows. Assume that L for 2 € (0,a) and {r]};>; have been found. Construct L € P%,
so that ¥ = r#, [ > 1. Put

azsup{b>a:limPsl(p,b)pi =0,1>1, s= 1,N}.

Then Lemma 4.4 implies that L € P2, i.e., we found L for z € (a,q).

»?

2. If the conditions of Theorem 4.1 are not satisfied, then a solution of the IP will not be unique.
Indeed, let T < oo, n = 3, 0¢g = o¢r = 3 — §. Consider the following IP: given the WF’s {9.7(12(/\),
Ma23(A)}, construct the coefficients po(z) and pi(z). So, N =2, » = {2,3}, and I = {(1,2), (2,3)}. It
is easy to see that in this case the information condition is not satisfied, i.e., the set {93?12()\), Sﬁgg(A)}
of the WE’s is not a P,-system. It was shown in Sec. 3.3 that a solution of this IP is not unique even
in the class of analytic coefficients.

3. Theorem 4.1 remains in force when the condition A} # 0 is replaced by the coudition A7 # 0.
Then, Algorithm 4.1 can be replaced by the simpler Algorithm 4.2.

Algorithm 4.2. (1) Take a = 0.
(2) Compute {r{};>1. For this we do successively for [ = 1,2,... the following operations: construct

L € P, such that 7, =rf, p =1, -1, and find r from (4.3) for k = 2.
(3) Construct L for z € {a,a) by (4.12).
(4) If o < T, then we put @ := o and go on to the step 2.

Algorithm 4.2 is simpler than Algorithm 4.1 since it does not require to compute the functions
NE(X a) and QF, (A, a) at each step.

4. Theorem 4.1 remains in force when the condition of piecewise analyticity is replaced by a more
general condition, ensuring that an asymptotics for the integral (4.9) exists.

4.3. Particular cases.

Case 1. We study the IP of recovering a single coefficient of the DE (2.1) from one WF. For definiteness,
let n = 2q, oo = £ — 1. Take a fixed integer x (2 < »x < n).
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Problem 4.3.  From the WF 91;5()) and coefficients p,(z), v # n — 5, find the function p,—,(z).

In this case N = 1. The information condition A4; # 0, [ > 1, for Problem 4.3 is fulfilled (see [95]).
Furthermore, it is obvious that A? # 0, [ > 1. Thus, the following theorem is proved.

Theorem 4.2.  Problem 4.3 has a unique solution in the class p,—..(x) € PA[0,T) (the rest of pp(z) €
L£(0,T), k#n— x). The solution of Problem 4.3 can be found by applying Algorithm 4.2.

Case 2.  We consider the IP of recovering all coefficients of the DE (2.1) from the first row of the
WM.

Problem 4.4. Find the DE (2.1) from the WF’s {Emlk(/\)}k:ﬁ.

It is shown in [96] that the set {9MM1x(\)}, 5 of the WF’s is a P,-system for = {2,...,n}, and
A, #0, A} #0, 1 > 1. Therefore, from Theorem 4.1 we obtain the following theorem.

Theorem 4.3.  Problem 4.4 has a unique solution in the class pr(x) € PA[0,T), k = 0,n—2. This
solution can be found by Algorithm 4.1.

The counterexample from Sec. 3.3 shows that there are no P,-systems for » = {2,... ,n} with the
exeption of the first row of the WM.

Remark. Let 7 < oo and let G, k = 0,n — 1, denote the boundary value problems for (2.1) with
the conditions y®)(0) = y(T) = --- = y™=2/(T) = 0. It was shown in Sec. 3 (see Lemma 3.10) that
the specification of each WF 9y,(A) is equivalent to the specification of two spectra for problems Gy
and Gjp_;. Hence, for T < oo Problem 4.3 consists in finding one of the coefficients of the DE from
the two spectra of Gy and G1, and Problem 4.4 consists in finding the DE (2.1) from the system of n
spectra of G, k = 0,n —1. L. Sakhnovich was the first who investigated an IP of this type. In [77],
he proved a uniqueness theorem for recovering of the two-term operator I,y = y™ + po(z)y from the
system of n spectra of Gy, k = 0,n — 1, in the class of entire functions. The same result is established
in [88] in the class of piecewise analytic functions. The transformation operator method is used in [77,
88]. Thus, Theorems 4.2 and 4.3 essentially strengthen the results from [77, 88]. We note that an IP for
the two-term operator /; in another formulation was considered in [43].

Case 3. We consider the IP of recovering a self-adjoint DE from the spectral function. For n = 2,
this TP was studied by Marchenko [60, 61], Gel’fand and Levitan [33], and for higher-order DE by
L. Sakhnovich [78, 79] and Khachatryan [44]. In particular, in [44] the transformation operator method
for n > 2 is used to prove a uniqueness theorem in the class of analytic in a certain sector functions.

The IP of recovering the self-adjoint operator from the spectral function can be reduced to the IP
from the WF’s. So we can obtain a uniqueness theorem and an algorithm for the solution of the IP from
the spectral function in the class of piecewise-analytic coeflicients. For brevity, we consider only the case
in which n =4, Ug,(y) = y¢"Y(a), a =0,T.

Let ¢1(z, A) and ¥a(z, A) be solutions of the DE

ly =y + Py(z)y” + pu(a)y +polz)y = My, 0<z<T <0, (4.13)

with the conditions w,(f‘”(o,A) = e.3—k, k,§ = 1,2, and also (T, \) = ¢Yp(T,A) =0 for T < co and
Yiu(z,A) = O(1), © = o0, for T = oco. Denote M(A) = [Myr (Mg r=1,2, Mpr = @Z)E,&l)(O,A). It is known
[69] that if the DE (4.13) is self-adjoint, then the specification of M ()) is equivalent to the specification
of the spectral function ¢()) = [ogr(A)]r,r=1,2 of the DE with the conditions y(0) = 3’(0) = 0 (and
y(T) = y'(T) = 0 for T < o). The IP is formulated as follows: given the matrix M ()) construct the
DE (4.13).

Denote d(a) = [dkr(a,O), digr(a+1,1), di(a+2, 2)]16’7,:1’27 where di, (o, v) = 144et3vthir=1_ (14

i)t (m =1 — §#+3v—1) Tt is easy to see that the information condition for this IP has a form d(a) # 0,
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a > 0, and it is clearly satisfied. Therefore, applying to this IP the method of standard models we
obtain that the specification of M(A) uniquely determines the DE (4.13) in the class pi(z) € PA[0,T).
In particular, if the DE (4.13) is self-adjoint, then the specification of the spectral function o(\) uniquely
determines the DE in the class PA[0,T).

4.4. An inverse problem of the elasticity theory. The problem of determining the dimensions of
the transverse cross-sections of a beam from the given frequencies of its natural vibrations is examined.
Frequency spectra are indicated which determine the dimenions of the transverse cross-sections of the
beam uniquely, an effective procedure is presented for solving the IP, and a uniqueness theorem is proved.
The method of standard models is used to solve the IP.

Consider the DE describing beam vibrations in the form

(P (z)y")" = Ah(z)y, 0<z<T. (4.14)

Here h(x) is a function characterizing the beam transverse section, and p = 1,2, 3 is a fixed number. We
will assume that the function h(z) is absolutely continuous in the segment [0,7] and h(z) > 0, h(0) = 1.
The IP for (4.14) in the case p = 2 (similar transverse sections) was investigated in [5] in determining
small changes in the beam trasverse sections for given small changes in a finite number of its natural
vibration frequencies.

Let {Agj}e>1, § = 1,2, be the eigenvalues of boundary value problems Q; for (4.14) with the
boundary conditions

y(0) =y (0) = y(T) = y/(T) = 0.
The IP is formulated as follows.

Problem 4.5.  Find the function k(z), = € [0,T], from the given spectra {Ag;}i>1,5=1.2-

Let us show that this IP can be reduced to the IP of recovering the DE (4.14) from the WF. Let
®(z, ) be a solution of (4.14) under the conditions ®(0,\) = (T, \) = &'(T,\) =0, &' (0,A) = 1. We
set M(A) = ®"(0, A). The function IM(N) is called the WF for (4.14). Let the functions C,(z, ), v =0, 3,
be solutions of (4.14) under the initial conditions c )(O, A) = d,,, v, =0,3. Denote

Aj(X) = Cs_j(T, N)C5(T, N) — C3(T, \)Cy_,;(T, N), j=1,2.

Then ®(x,\) = (A1(A) "t det [Cy (2, \), Cu(T, A), CL(T, N)] y—1,2,3> and hence M(N) = —(A(A) A (N).

The eigenvalues {A;;}i>1,j=1,2 of the boundary value problems Q; coincide with the zeros of the
entire functions A;(A). As in Sec. 3 (see Sec. 3.4), it is easy to see that the functions A;()) are uniquely
determined by their zeros. Hence the specification of the spectra {Ay;}r>1,;=1,2 uniquely determines the
WF M(A). Thus, Problem 4.5 is reduced to the following IP.

Problem 4.6.  Given the WF 9()), find A(z), z € {0,T].

We shall solve Problem 4.6 by the method of standard models. Let A = p*. For |\ — oo, arg\ =
0#0,pe S, ze€|0,T], the following asymptotic formula is valid:

2

(2, A) = p" > (Re' (%)) geo(x) exp (pRey(x)) (14 O(p ™)), (4.15)
£=1
where
v(z) = | (h(t)) 1‘Tudt.
/

The functions geo(z) are absolutely continuous, and geo(z) # 0, g10(0) = —g20(0) = (R — R2)~'. In
particular, MM(N) = p(Ry + R2)(1+ O(p™1)).
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Lemma 4.5.  Let p(z) = h*(x). The following relation holds:

T
/ ( )AB(z, \)B(x, A) — B(z) 8" (2, )" (z, /\))dm = M(N). (4.16)
0
Proof. Denote lyy = (p(x)y")"” = A(2)y, L(y,2) = (vy") 2z — py"2 + py'z" — y(pz")". Then
T ) T
[ e o= [ L@, + [vhate) da. (4.17)
0 0
Using (4.17) and the equality [y ®(z, A) = 1,®(z, \) = 0, we obtain
T , T
0
0 0

= &(0, A)2"(0,\) — (0, \)®'(0, ) = —M(N).
On the other hand, integrating by parts, we have
T
/ (I = T)®(z, \) - B(z, \) dT_{ ()" (2 0) Bl 3) — B2)8" (2, )F (2, 1))

0
T

+/ (ﬁ(m)@”(x, )\)&)"(:L', A) - /\71(:10)@(30, /\)E)(I, A)) dx.

Since the substitution vanishes, we obtain (4.16).

Lemma 4.6.  Consider the integral

T
J(z) = /f(z)H(’c,z) dz, (4.18)
0
f(x) e Cl0,T), f(x)~ fag? (x — +0), Mz, z) = exp(—za(x)) <1 + i@) ,
a(z) € CH0,T], 0<a(z) <alza) (0<z1 < x2),
a¥(z) ~agz'™ (z — +0, v=0,1), a'(z) > 0,

where the function {(z, z) is continuous and bounded for x € [0,T], z€ Q = {z : argz € [-Z 48y, T — o),
0o > O}. Then, as z — 00, z € (),

J(2) ~ falagz) @7 (4.19)
Proof.  The function ¢ = a(x) has the inverse z = b(t), where b(t) € C*[0,T1], T\ = a(T), b(t) > 0

(t > 0) and bW(t) ~ ag't'7¥, v = 0,1, as t — +0. Let us make the change of variable ¢ = a(z) in the
integral in (4.18). We obtain

T

J(z) :/g(t) exp(—zt)/l+z_1§(b(t),z)) dt, (4.20)
(

0

where g(t) = f(b(t))V'(¢). It is clear that for ¢ — +0

@

9(t) ~ falao) 15
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Applying Lemma 4.1 to (4.20), we obtain (4.19).
Denote
= (=1)**(1 - uRERY)

Ay = (Ry — Ry) ™2
1 2) s’g::l (R€+Rs>a+l

Let us show that A, # 0 for all o > 1. For definiteness, we put argp € (0, §), i.e., {Ry, Ra} = {—1,4}.
Then

, o> 1.

Ay = '_(Rl - R2>_2(_2)ﬁa_laaa

where ag = (g — 1)(1 4%t +2(u 4 1)(1 + )2+, Since |1+t <2, |1 +4]et = (v/2)2*, it follows
that aq # 0, @« > 1. Hence A, # 0 for all a > 1.

Lemma 4.7. Asx — 0 let iAL(:c) ~ Tla(a!)*lzta. Then as |\| = 00, arg A = ¢ # 0 there exists a finite
limit I, = lim p®~19M(N), and

Aphe = I (4.21)

Proof.  Since p(z) = h¥(z), and by virtue of the conditions of the lemma, we have, as z — +0,
p(z) ~ phy(a!) 'z®. Using the asytmptotic formulas (4.15) and Lemma 4.6 we find, as |A] — oo,
argA=p#0,peSs:

(_1)€+s

2
n(@)AD (2, \)®(z, \) dz ~ p*~ *ho(Ry — Ro) > Z (Re + Ro)ot1’

£,5=1

\

0
T 2 2
(—1)¢Ts RZR?
” " l—o -2 £7s
/ (z)®"(x, A) @ (z, A\)dz ~p ,&h (Ry — Ry) gzlm'
0 o

Substituting the expressions obtained in (4.16), we obtain the assertion of the lemma.

From the facts presented above we have the following theorem.
Theorem 4.4.  Problem 4.6 has a unique solution in the class h(z) € A[0,T]. This solution can be
found according to the following algorithm:

(1) we calculate hy = h{®)(0), a > 0, hg = 1. For this we successively perform operations for a =
1,2,...: we construct the function h(z) € A[0,T], h(z) > 0 such that ) (0) = h,, v =0,a—1,
and arbitrary in the rest, and we calculate hy from (4.21);

(2) we construct the function h(x) from the formula

0 I
h(x):Zha%, 0<z <R,
a=0 "

R= (m Q ’ffa_’)
a— 00 o!

If R<T, then for R < x < T the function h(x) is constructed by analytic continuation.
We note that the IP in the class of piecewise-analytic functions can be solved in an analogous
manner.

where

4.5. Nonlinear differential equations. Consider the nonlinear DE

~y"(z) + q(x)y(z) + p(z)y*(z) = Ay(z), =0, (4.22)

374



where q(x), p(x) € L(0,00) are complex-valued functions. The nonlinear term qualitatively modifies the
study of the IP. In this section, we formulate and solve the IP for the model nonlinear DE (4.22). The
utilized method can be applied to IP’s for a wide class of nonlinear equations.

Let us construct a Iost-type solution of (4.22). Let A= p* Imp >0, and G = {p:Imp >0, |p| >
¢!l £(0,50) + 4P|l £(0,00)- We introduce the functions {zj.(z, p)}x>0 by the recurrent formulas zo(z, p) = 1,

21 (z,0) =1+ 51.—;) / (exp(2ip(t — x)) — 1) (a(t)2(t, p) + exp(ipt)p(t)z; (8, p)) dt, k> 0.

The estimates |z (z, p)| < 2 and |zk41(z, p) — 2 (7, p)| < 27%~1 are valid for z > 0, p € G; therefore the

o
series z(z,p) =1+ Y. (2k41(,p) — zk(z, p)) is absolutely and uniformly convergent for p € G, = > 0.
k=0
In addition, |2(z, p)| < 2, lim z(z,p) = 1 (uniformly with respect to p € G), and z(z,p) =1+ O0(p™!)
T—>00
(uniformly with respect to z > 0) as |p| — oo. The function ¢(z,p) = 2(z, p) exp(ipz) is a solution of
the integral equation

o0

. 1 . .

ol p) = explipz) + o / (exp(ip(t — x)) — exp(ip(z — 1)) (a(t)e(t, p) +p()¢°(t, p)) dt,
x

and therefore ¢ is a solution of (4.22), ¢ is regular with respect to p € G for each fixed z > 0, and

lim (z, p) exp(—ipz) = 1, ¢(x,p) = exp(ipz)(1+ O(p™")), lp| — oo. Denote N;(p) = ©lI~1(0, p),

j=1,2. The IP is formulated as follows.
Problem 4.7.  Given the functions 91;(p), j = 1,2, and p(x), find the function ¢(z).

We give the solution of Problem 4.7 for the case in which ¢(z) and p(z) are analytic for = > 0.
Denote by M the set of analytic functions f(z) for « > 0 such that f)(z) € £(0,00) for all j > 0.

Lemma 4.8.  Let p(z), g{z) € M. Then the asymptotic formulas

.} v
o (x, p) Z exp ((s + 1)ipz) (ip) Z (ip)~* Z Ch(s+1)"~ ”g,(f‘)u (), v=20,2, (4.23)
s=0 k=2s u=0

e o]

N;(p) = (ip)j_l Z(ip)_kmkjv Noj =1, j=12 goo(z) = 1 (4.24)
k=0

are wvalid as |p| — oo, p € G. The functions gis(x) are analytic for x > 0, and gxs(x)q(x) € M,
grs(x)p(x) € M. Moreover, the following relations hold:

(8> +28)gra2,s(z) +2(s + 1)ghy1 o (2) + s (2) = q(z)gs(2)
k—2s+2 s

(4.25)
Z Zgy+m 2,i-1(2)gk—j—2it2,5—i(T), §>0, k>2s—2,
=0 i=1
[k/2] [k/2]
N1 = Z gis(0 N2 = Z ((9 + 1)gks(0> -+ g;c—l,s(o))' (4.26)
§=0
Here and below, gis(x) =0 for k < 2s.
Proof. Let us show that
N Tk/2]
z(x,p) = Z(ip Z grs(z) expl(ispz) + p~ N " tenaa(z, p) (4.27)

k=0
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for any N > 0, where [-] denotes the greatest integer in the number, and [Ex41(z, p)| < Cn41 for all
x >0, p € G. We prove this fact by induction on N. For N = 0, (4.27) is obvious. Assume that
this formula holds for some N = Ny. By construction, the function z(x,p) is a solution of the integral
equation

oo

2(z, p) / exp(2ip(t — z)) — 1) (q(t)2(t, p) + p(t)2* (L, p) exp(ipt)) dt. (4.28)

For N = Ny, we have

N [k/2]
= Z(ip hys(z) exp(ispx) + p~ N Loy (x, p), (4.29)
0

k=0 8=

where the functions hys(z) are analytic for z > 0 and hgs(x)p(z) € M, (z,p)] < C¥,, for all
z >0, p € G. Then, substituting (4.27) and (4.29) into the right-hand side of (4.28), we obtain

[k/2]

z(z, p) = 1-}—22 (ip) F 1 Z/ exp(2ip(t — z)) — 1)
X (q(t)grs(t) exp(ispt) + p(t)hes(t) exp((s + L)ipt)) dt

/ exp(2ip(t — ) — 1) (q()En-1(t p) + plt)2 1t p) explipt)) dL.

Integrating by parts the kth term Ny — k + 1 times we obtain (4.27) for N = Ny + 1.

Thus, the asymptotic formula

oo (/2]
z(z,p) = Z(z’p)“’C Z 9ks () exp(ispr)
k=0 5=0

holds uniformly with respect to 2 > 0 as |p| — o0, p € G. Therefore (4.23) is proved for v = 0. If v > 0,
then the consideration is similar. Since N, (p) = Y~1(0, p), then (4.24) and (4.26) are obvious corollaries
of (4.23). Now by substituting (4.23) into (4.22) and equating the coefficients for p=* exp(ip(s + 1)), wi
obtain (4.25). The lemma is proved.

Differentiate (4.25) v times with respect to = and set = 0. We obtain

(5% +28)91, ,(0) +2(s + 1)gi5(0) + 972 (0) ZGJ D(0)g52 9 (0)

k 2s+2 s m

+ Z Cmp(u m) Z Z Z g](i)Zz Z,i—l(o)glsmj “'27—1—2,3 1(0> 52 0’ k Z 2s — 27 vz 0.
m=0 = i=1 pu=0

(4.30)

For [ > 0 we consider linear algebraic systems X; that consist of (4.26) for k¥ =1+ 2 and (4.30) for

s=0,[(1+2)/2], k+v=1,v>0, k>max(0,2s~2), with respect to the unknowns ¢V (0), g,(fq M2)(0),

s =0,[(l+2)/2], k = max(1,2s),]+2. Since for each [ > 0 the matrix of the system X, is triangular

with nonzero elements on the main diagonal, the determinants of the systems X; are nonzero. By solving

the systems X; for [ =0,1,2, ..., we find ¢ (0), gl(u';)(O), and, consequently, the function ¢(z). Therefore,
the following statement holds.
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Theorem 4.5.  Let p(x), q(x) € M. Then the solution of Problem 4.7 is unique and can be found by
the following algorithm:
(1) calculate gip = M1 = Nyg;
(2) for 1 =0,1,2,... successively solve the linear algebraic systems X; and find ¢V (0), g,(cls—kJrz)(O),
s =0,[(l+2)/2], k= max(1,2s),l+2;
(3) construct the function q(x) by the formula

>0

!
alx) =Y V(@)

=0

5. Differential Operators with Locally Integrable Coefficients

We investigate here the IP for the non-self-adjoint differential operator (2.1) on the half-line with
locally integrable analytic coefficients from the so-called generalized Weyl functions. To solve the IP we
use connections with an TP for partial differential equations, and also use the Riemann-Fage formula
[28] for the solution of the Cauchy problem for higher-order partial differential equations.

5.1. Distributions. Let us introduce the space of generalized functions (distributions) by analogy with
[62]. Let D be the set of all integrable entire functions of exponential type on the real axis, with ordinary
operations of addition and multiplication by complex numbers and with the following convergence: z(u)
is said to converge to z(u) if the types o, of the functions zy(u) are bounded (supop < o) and
llzi (1) — 2()]| £(~c0,00) — O as k — co. The linear manifold D with such convergence is our space of test
functions.

Definition 5.1. All additive, homogeneous and continuous functionals (z(u), R) defined on D are called

generalized functions (GF). The set of GF is denoted by D’. The sequence of GF Ry € D' converges to

ReD'if klim (z(u), Ry) = (2(u), R) for any z(u) € D. A GF R € D' is called regular if it is determined
—00

by the following formula:

o0

(z(p), R) = /Z(M)R(u)du, R(p) € Leo.

-0

Definition 5.2.  Let the function f(¢) be locally integrable for ¢ > 0 (i.e., it is integrable on every
finite segment [0,0]). A GF Ls(u) € D' defined by the equality

G0 L) < [ f)de [ 2o explintydn, () € D. (5.1)
0 —00

is called the generalized Fourier-Laplace transformation for the function f(¢).

Since z(p) € D in (5.1), z(u) € Lao(—00,00). Therefore, by virtue of the Paley-—Wiener theorem, the

function
>0

[+t explinn) de

— o0
is continuous and finite. Consequently, the integral in (5.1) exists. We note that f(t) € £(0,00) implies

o0

(. L) = [ 2w du [ £(0) explint) .

-0
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Consequently, in this case, Lf(u) is a regular GF and coincides with the ordinary Fourier-Laplace
transformation for the function f(t).

1 1 —cospux r—t, t<ux,
— —————exp(iut) d
7r/ e p(ipt) dp = {0, -

— o

Since

the following inversion formula takes place:

/(r—t (t)dt = < Lo COSMT 1 )> (5.2)

5.2. Solution of the IP for third-order DO’s. In this section, in order to simplify calculations, we
give formulation and solution of the IP for DO’s of the third order. The general case of arbitrary order
operators will be described, in brief form, in Sec. 5.3.

Let us consider the DE

"

ly=y" +pi(x)y +po(x)y =Xy = (in)’y, >0, (5.3)

Denote go(z) = —p1(z), :(z) = po(z) — pi(z), B = {z : |argz| < I}, Ry = exp (Z(k_— NZ), k=1,3,
and assume that the functions ¢, (x) are regular for x € B, £ = 0, and continuous in B. Let us consider
the following integral equation:

Qe,5) = Qu(x,5) +Z 1 / E= i [ oo wa

0

3

R2-u S s—u(s o E)V é_ §
+Zﬁi—7%?)/d“/ v! q"(l—Rk+$>Q<1_Rk+m’“> (5.4)
0 0

k=2
£ 3
_qv(l_Rk>Q(1_Rk7u> dé 9
where

Q1(z, 8) = -3 —/qUt)dt+Z 1_;k) (3;,@” (qu(—l_é—erx)—qV(l_ng))dﬁ

v= O
(5.5)

By the method of successive approximations it is easy to show that in the domain s > 0, z € B, the
integral equation (5.4) has a unique solution Q(z,s). The function Q(z,s) is continuous and, for any
fixed s > 0, is regular with respect to z € B.

Moreover, if the functions g, (z) are regular for |z| < §, then the function Q(z,s) is regular in the
domain F5 = {(z,8) : |z < 8, |s| < V33, [z +s(1 = Re)™'| <6, k=2,3}.

Let the function Q(z,s) be a solution of (5.4). Denote u(z,t) = Q(z,t —z), 0 <z <t < oo;
u(x,t) =0, t < x, and consider the GF

P(z, u) = exp(ipz) + Lu(p), (5.6)
(2(12), Bz, 1)) = / () explipz) dys + / u(w, ) dt / dwexplipt) du, 2 €D, (5.7)
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Put also
(z(1), (11)*®(x, ) = {(ip2)°2(n), @ (2, ),
(2(0), 892, ) = (), o)), G=T3,
for z(u) € D, p*z(u) € L(—00,00).
Theorem 5.1.  The following relations hold:
19(z, p) = (ip)° (2, 0) =0,  2(0,p) =1.

Proof. Equality (5.4) can be transformed to the following form:

I"‘l—SRk v
Q(m,s)———ZZRg / (s - (1_13]:)(77—1;)) qv(n) dn
v=0 k=2 0 .
s $+TS‘_‘EUZ v
/ — (1 7 Rk) X qv (1) dn + /du / S ;!Rk)(n =) @ (MQ(nuw)dn  (5.8)
0 0 0

S—U

e L
0 0

Indeed, first we can transform Q,(z,s). Via the changes of variables in the right-hand part of (5.5),
n=¢6(1—-Ry) '+ and n=£(1 — Ry) ™! respectively, we obtain

1 z 3 2 TR
15 R s —(1— Rg)(n —x)
Qi) =3 | 35 [aae T [ U BIO—a) g,
v=0 0 k=2 p )
(5.9)
— Rk R )
S — 1 — k
- v (n) dn
0
Using the regularity of the integrand, we can make the change
T+ =Ry, T+ =Ry Ry
Since
3 .
Y RI=0, j=12
k=1
the integrals [ can be canceled, and (5.9) has the form
0
o A ) T )
i s—(1—Ri)(n—x) s — (1 — Ri)n
s =) gy [ EZORO
v=0 k=2 0 0

The rest terms in the right-hand part of (5.4) can be transformed in analogous way.
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Differentiating (5.8) we obtain

k)
x+1*Rk

3 2 R
Qx(z,8) = Z %qo (1 +1 _SRk> + Rk(13 Ry) / qi1(n)dn

0

S—U
T+i_g,

R? - - Ry(1—Ry) |
+—k/QO 24+ 2N 0 (w4 2T ) qu 4 B Re) ’“)/du / a(mQn,u)dn |,
3 - R, 1 _ T, 3
/ S (5.10)

3 R2 s—1u s —u
+§’”/du / Q1(77)Q(77vu)d77—3(1—_23?)/qo (1_Rk)Q<1—Rk’u> du
0 0 0

L [ [ amem w5 [ wmawm . (1)
0 0 0

R (1 — Ry) 7 $—u s—u
_— : d 5.12
+ 3 /q1<x+1_Rk>Q<B+1_Rk,u) u), (5.12)
0

R: r , s —u s—u s—u s—u ))
L : x : ,B ) d
+3(1_Rk)/<qo <B+1—Rk)Q<T+1—Rk,’u)+qo (%Jrl—Rk)Q‘ (x+1_Rk u )
0

Ry, / s—u s—u R}
= : g (x)Q(z, 5.13
+ /‘h($+1_Rk>Q(T+1_Rk’“>d“+ 5 W(2)Q(z s)) (5.13)
0
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From this we obtain

9%Q(z, 0%Q(x, 93Q(x, 0Q(x, aQ(z,
%.5:3 23 aciga;) 3 3259228) = ~0o(@)Q(5) T () < Qe(?s - Qg:f: S)> - B9
Moreover, it follows from (5.8) and (5.11) that
Q,5)=0,  Qz,0)= %/pl(t) d,
C (5.15)
. (
Qs(T,8)s=0 = 3 (Pl(-l‘) =p1(0) - / (po(t) — p1(1)Q(¢,0)) dt) :
\ 0
Since u(z,t) = Q(z,t —z), 0 <z <t, (5.14) and (5.15) imply
3 3 "
NG LN ) (5.16)
u(0,t) = 0, (5.17)
uwa) = ) dr
0
i (5.18)
1
. 0
Consequently,
Sa%u(:r,:c) = p1(x), 3dix (um(r, t)“:w) + pi(z)u(z, ) = po(z). (5.19)

Further, using (5.7), we calculate

o0

(2(1),1®(z, 1)) = / z(p) ((w)3 — (i) ul(z, ) + ip <p1(:c) - Q%U(x,:c) — ug(z, t)1t:x)

—0o0

+ <po(:c) —pi(x)u(z,z) — %u(r,t) — Zl%: (ux(x,t)|t:x) — um(m,t)t:w> ) exp(iux) du

o0 o0

+/<Wg§”+mmﬁ%%9+m@mww)ﬁ/éwnmmww.

—CO

On the other hand, the integration by parts gives

(2(p), —(in)*@(x, p)) = / (—ip) () exp(ipz) dps + / u(z, t) dt / (=ip)®2 () exp(ipst) dps
- / z(u)( — (ip)® + (i) *ulz, 2) — (ip)u)t(x, t)t=w + Ugs (T, t)|t:w) exp(ipz) du (5.21)
L2 lg(tﬁ’t) dt / z(w) exp(ipt) dp.
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Since

d
UI(ZE, t)|t:x + ut(ma t)\t:m = 'd';u(ma :E)v
d? d
ZEE‘Q_U(:E’ ‘T) + ux:v(xv t)|t:w - utt(xu t)lt:x = 2—d,:l; (Uw(.%', t)|t:x>7

from (5.16), (5.19), (5.20), and (5.21) it follows that
(2(1), 1®(x, 1) — (ip)°®(z, 1))

- 70 <0 () (212 = 3. u(0,2)) + (olo) = 35 (snle 1) — palo)utzsa) ) ) explier)

+ / (3 %&ﬁ’t) ;42 ZE; U pl(m)—ma“é? J +p0($)u($at)> dt / 2(p) exp(ipt) dp = 0.

From (5.7) for 2 =0 and (5.17) we obtain
(00, 20.1)) = [ 2(0) s

i.e., ®(0,u) = 1. Theorem 5.1 is proved.

Definition 5.3. The GF ®(x,u) is called the Weyl generalized solution of the DE (5.3), and the
functions M, (1) = (0, p), v = 1,2, are called the Weyl generalized functions (WGF).

Note that if Pog & /r(y) dy < oo, 7(y) L max sup |g, ()], then |u(z,t)| < Cexp(Ct), and the
function o Rez=y

yeEB
: . T om
Oz, 1) = expliuz) + /u(:v,t) exp(iut) dt, arg p € (6 6 )

T
is the ordinary Weyl solution.
The IP for the DE (5.3) can be formulated as follows:

Problem 5.1.  Given the WGF’s {9, (1)}, construct the functions {ps(2)}r=0,1-

=1,2’
For this IP let us prove the uniqueness theorem.

Theorem 5.2. If9M, (u) = E}JVI,,(,LL), v=1,2, then pi(z) = pr(z), x >0, k=0,1.
Proof. We denote

ho(£) = —ai—u(:zr,t)lxzo, v=1,2 t>0.
Taking into account (5.18), from (5.7) we deduce that
My (1) = (i) + Loy (), Map) = (ip)* — 201 (0) + Liny (1)

Using the inversion formula (5.2), we calculate

d®> /1 1—-cosut .
hl(t):EF<_'-—2—uvm1(u)—m>,
T 1
? /1 1 t (5.22)
- _._Cf)_sﬁ ()2
hg(t)—dt2 <7T p Mo () — (i) +2h1(0)>.
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If the conditions of the theorem are fulfilled, we obtain from (5.22) that h,(t) = h,(t), v = 1,2. But
(56.16) and (5.17) imply
3u(z,t)  u(w, ) ,t)
B g )™
W(,)
Ox”

For this Cauchy problem we use the Riemann-Fage formula (see [28]) in the vicinity of the point z =
t = 0, and obtain:

ou(x,t)
oz

+po()u(z, t) + pr(z) + Po(z)u(z,t) = 0,

=0, v=0,1,2.
z=0

x €1 &2 1
ae,t) = - [ e [ de [ (Z@(@)ﬂu (68—t + 2+ (Ra — R0 + (Ro — Ra)és — R3£3))

0 0 p \w=0

V(0,0,&3,2 — &1, &1 — &2, &) dEs,

v

ox”

where V' is the Riemann-Fage function, u,(z,t) = u(z,t). By changing the order of integration, we

obtain

(e, 0) = [ Y AlOB (o8 d, (5.23)

5 v=0
where
T &1
B,(z,t,£) = —/dfl /’ﬁy(ﬁ, —t+ x4+ (R — R1)é1 + (Bs — R)é2 — Re&)V(0,0,8, 2 — &, &6 — &, &) déo,
3 3
v=20,1. Since
I B, (x,t,§)
Oztotd

=0,  45=01,
E=z
it follows from (5.23) that

oGz, 1) /Z 8+~"B 9" By(x,t,§)

831"8157 ax’l,atj dé, i,j=10,1,2. (5.24)

Using (5.19), we obtain

~ d .
pi(z) = 3£u(x,w),

. d d
Po(z) = Sd—(uw(l: Bjt=z) + pr(2)8(z, z) + 3u(z, r)d— u(z, x).
From this and from (5.24) follows that

T 1
- [ S Autzopfode k=01
'O v=0

where
d
Alu = 3ZZ-BU(Z‘1 ta§)7
8B, (z,t,€) ~ o d ,
Ao =3 (T t:) P2 By, 28) + i@, 2) By (2, 2,€).
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Consequently, pi(z) =0, k¥ =0,1. Theorem 5.2 is proved.

Solution of the IP. Let the WGF 9, (u), v = 1,2, of the DE (5.3) be given. We construct the
functions h,(t), v = 1,2, by (5.22). Since u(z,t) = Q(z,t — ), Q(0,s) =0, we have

hi(s) = Qz(0,s), ha(s) = Qz2(0, 8) — 2Q45(0, s). (5.25)

Note that the functions h,(s) are regular at the point s = 0. More precisely, if the functions gy (x) are
regular for |x| < 6, then the functions h,(s) are regular for |s| < v/36.
Denote ¢3(z) = ¢)(z), @ (x,s) = Q.(z,s). Using (5.25), (5.10), (5.12), and (5.13), we calculate

v+1
hl =52 1—qu°<1—Rk)+R’“ql<1—Rk>
Ryt h 1 s—u s—u 5— L[ s—u
d .
+1—Rk/(q0<1—Rk C\iTrY) Te\TTgR, )¢ oY) | (5:26)
0

v sTu s-u -
—i—Rk/ql(l_Rk)Q(l_Rk,u)du), vr=20,1.

0

Having solved (5.26) with respect to the functions ¢j(z) and ¢1(z), we obtain

€T

3
¢ (z) — Z R; / (1 - Ri)(z —u)) + go(w)Q" (u, (1 — Ry)(z — u))) du = I(z), (5.27)
k=1 3
g (z) +3 Z R; / q1(w)Q(u, (1 — Ri)(z — u)) du = Ir(z), (5.28)
k=2 3}

where

k

3
Liz)= 33 (R}~ Rk)‘1<Rkh’1((1 — Ri)x) — ha((1 - Rk)x)),

Lz)=-3) z(Rkh;(u — Ry)z) = ha((1 - Rk):zz)>.

k=2

Since ¢o(0) = —p1(0) = —3Ah1(0), we obtain

qo(z) = —3h1(0) + /qé (u) du. (5.29)

Equality (5.10) can then be rewritten as follows:

e S
T+ 1R, THioR,

3
1 )
Q(x,s) = 3 Z Ry | =3h1(0) + / qo(w) du | + Ri(1— Ry) / q1{n)dn
k=2 0 4]
S R (5.30)
5 5—u s—u
+R; /qo T+ Qlzx+ ,u | du+ Ri(1 — Ry) /du / q1(n)Q(n,uw)dn
1— Ry 1- R,
0 0 0
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Let us consider the systein of nonlinear integral equations (5.8) and (5.27)—(5.30) with respect to the

functions qo(z), ¢}(2), q1(x), Q(z,s), and Q*(z,s). We solve this system by the method of successive
approximations in sufficiently small neighbourhood of the point # = s = 0. Then we obtain the following
obvious result.

Lemma 5.1.  Let, for a fized § > 0, the functions h,(s), v =1,2, be regular for |s| < \/35. Then there
exist unique functions qo(z), q§(x), and qi(x), which are regular for |z| < &, and unique functions Q(z, s)
and Q*(z,s), which are regular in Fs, where all the functions satisfy the system (5.8), (5.27)-(5.30),

e., the system (5.8), (5.27)~(5.30) is uniguely solvable in a neighborhood of the point x = s = 0. The
solution of the system (5.8), (5.27)—(5.30) can be found by the method of successive approzimations, and
(@) = 4l), Q'(5,5) = Qu(z, ).

Thus we can construct the solution of the IP via the following algorithm.

Algorithm 5.1. The WGF 9, (u), v = 1,2, of the DE (5.3) are given.

(1) By formulas (5.22) we construct the functions h,(t), v =1, 2.

(2) Having solved the system (5.8), (5.27)-(5.30), we find the functions go(z), ¢i(z), ¢1(z), Q(z, s),
and Q'(z, s).

(3) We construct the functions p(z) = —go(z), po(z) = q1(z) = ¢ (z), |z] < 4.

(4) By means of analytic continuation we obtain the functions py(z) and p;(z) for z > 0.

5.3.  Similar results are also valid for the DE of an arbitrary order

n—2

Iy = y™ + Zpk(m)y(k) = Ay = (in)"y, x> 0. (5.31)
k=0

In this case,

@)= ()0 P (@), v=0n-2

§=0
B:{x:|arg1:[<i—i}, Rk:exp<2—(—k—_—1—)7—r—z>, k=1,n.
2 n n

The function Q(z,s) can be determined by the integral equation

n—2 1 8 ( )U Z

s—u
Q(x,s) = Q1(x,s) + ZO —;/ i du/q,,(t)Q(t, u)dt
v= 0 0

R s u—g) & . € L.
; (1— Ry) /d“/ V! (q (I—Rk+1>Q(1—Rk+'E’u>
k=2 0
§ §
qy(l_RJQ(le,u))dé),
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where

"R [ (s— 0 S ¢
+Z 1——Rk/ V! <qu<1*Rk+£>_qy(l—Rk)>d£

The function u(x,t) defined by the equalities u(z,t) = Q(z,t — ), 1 <z <t < oo, u(z,t) =0, t < z,
satisfies the following relations:

n—2

8 ‘u(z,t) 0"u(z,t) O"u(zx,t)
AN il Sed A -
+ Z 81’” ( ) 8t” ? ’U,(O,t) 07
dn—m-— 7 n—2 ; dv—m- i
Z nmdﬁnmyum 1(£E’E) Z ZCV md,,mjum 1(7:73)
v=j+1
nei O™ I u(z, t)
+(—1)"" ot |, = p;(z), j=0,n-2,
where
0¥ ; k!
w () = sl b), o= R

The Weyl generalized solution ®(x, 1) is defined by the formula ®(z, u) = exp(iuz)+Ly (), and (®(z, u)—
(ip)"®(x, ) = 0, ®(0, ) = 1. The functions M, (u) = ®*)(0,n), v = I,n—1, are called the WGF
of (5.31).

The IP is formulated here as follows: find the coefficients {py(z)}, _s-—5 of (5.31) via the given

WGF {Eml,(u)}u:m. Solution of this IP can be obtained in exactly the same way as in the case
n=3J. 4

PART 2

HIGHER-ORDER DIFFERENTIAL OPERATORS WITH A SINGULARITY

6. Differential Operators on the Half-Line

6.1. Fundamental systems of solutions. Let us consider the DE
n—2 y
= (7 J
]y =Y + Z (:En—] +
j=0
on the half-line z > 0. Let pu1,..., 4, be the roots of the characteristic polynomial

ZVJH u—k), v,=1, v, =0
7=0 k=0

It is clear that g1 + --- + pn = n(n — 1)/2. For definiteness, we assume that pp — p; # sn (s =
0,+1,+2,...), Reys < --- < Refin, ur #0,1,...,n — 3 (other cases require minor modifications). Let

qg(fv)) Y9 = Ay (6.1)
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0, =n—1—Re(un — p11). Denote go;(z) = g;(z) for z > 1, and go,(2) = g;(z)z™ @20 for x < 1, and
assume that go;(z) € E(O ), j=0,n-2.

In this section, we construct special FSS’s for the DE (6.1) and use them to investigate the IP.
The presence of a singularity in the DE introduces essential qualitative modifications in the investigation
of the operator. Basic difficulties arise when n > 2. In the construction of the special FSS’s for (6.1)
the elementary solutions of the simplest equation are no longer exponentials, but functions that are
generalizations of the Hankel solutions of the Bessel equation. An important and technically difficult
problem is the determination of the asymptotic behaviour of the Stokes multipliers for the constructed
FSS’s. Using properties of the FSS’s and the Stokes multipliers, we introduce and study the WS’s and
the WM for (6.1), and investigate the IP: to construct the operator [ from its WM.

We mention that DE’s with singularities arise in various areas of mathematics as well as in applica-
tions. In addition, various DE’s with a turning point, for example, the equation

(@) = Mr(t)2(t), t>0; r(t) ~at?, t—+0, >0,

and other more general equations, can be reduced to (6.1). We also note that for n = 2 IP’s for operators
with a singularity have been studied by several authors (see, for example, [18, 32, 82]).

First of all, we consider the DE
n—2 U
= o) e BV )
loy =y™ + E% LV =y (6.2)
]:

Let z = rexp(ip), r >0, ¢ € (—m, 7], 2* = exp (u(lnr + igo)), and II_ be the z-plane with a cut along
the semiaxis 2 < 0. Take numbers ¢;jq, j = 1, n, from the condition

" -1
H Cjo = (det ['u.l;_l]j,u:l,_n) .
j=1

Then the functions

o k -1
z) =2 ) cipa™, e =cjo- (H Alpy + 8”)) (6.3)
k=1

s=1

are solutions of (6.2), and det [C’(V 1)(.1:)] _=— = 1. Furthermore, the functions C;(z) are regular in IT_.

Jyw=1ln

2 —1 1 — _
Denote ¢ = exp (—ZT—Zg——)) S, = {a: rargzr € <Vﬂ—7r,(—yiﬂ>}, St = Sn-1, S; = Sp—2k+1 U

n n
Spokta, k=2, Qp = {x rargz € [max (—7r, (—2k + 2)%) , min (7‘(‘, (2n — 2k + 2)E>} }7 k=1,n. For
' n

z € S} there are solutions of (6.2) ex(z), k = 1,n, of the form el(cy_l)(:r) = e} exp(epx) 2 (), v =0,n — 1,
where zp, (z) are solutions of the integral equations

Zkl/( ) +1 '+' / 25U+1 €Xp (Ek: - 57) t'— J' (Z Vm€m me nzkrnl(t>> dt

m=0

(here argt = argx, [t| > |z]). Using the FSS {C; (:1:)}].:1—5 we can write

= Z 30,C5(). (6.4)

In particular, this gives the analytic continuation for e(x) on IT_.
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Lemma 6.1.  The system {ek(:n)} w1t T €U, is a FSS of (6.2), and

det [e;, (v=1) (:L)] = det [} "

kv=1n
The asymptotics

egcu_l)(a:) =g/t exp(epz) (1 + O(x'l)), lz] = 00, € Qy, (6.5)
are valid.

We observe that the asymptotics (6.5) holds in the sectors @, which are wider than the sectors Sj}.
Next we obtain connections between the Stokes multipliers 6,3]..

Lemma 6.2.

62] "_'18838:]7 J?k: 17”7 (66)
-1 -1
H 8% = (et [el'], ) det[el ], # O (6.7)

Indeed, for argz € (—m, ™ — 2mws/n), by virtue of (6.3) and (6.4), we have

2= 3B o). (68)

It is easily seen from the construction of the functions ey(x) that ej{e®z) = exy1(x). Substituting (6.4)
and (6.8) in this equality and comparing the corresponding coefficients, we obtain (6.6). After this, (6.7)
becomes obvious.

Now we consider the DE
loy = Ay = p"y, x> 0. (6.9)
It is evident that if y(z) is a solution of (6.2), then y(pz) satisfies (6.9). Define C;(x, A) by

o0

Cj(m,A) = p M Ci(px) = & cjp(px)™.

k=0

The functions C;(x, A) are entire in A, and det [Céu_l)(:c,/\)]
get the following theorem.

iv—Tm = 1. From Lemmas 6.1 and 6.2 we

Theorem 6.1.  In each sector Sy, = {p : argp € (kow/n, (ko + 1)nw/n} Eq. (6.9) has a FSS By =
{yk('vap)}k:m such that yk(xap) = yk( )
v, ) (pRi) ™ explpRir) = 1| < Mo(rle) ", p €Sk, lple=1, v=0n=1, (6.10)

v nnh) def y—
det [ : 1)(7:’ p)}’” v=ln =p Q’ Q = det [Rk 1]k,u=ﬁ 7£ 0, (611)
(z,p) = Zb P4 Cx(x, ), b =B8Ry, B #0, (6.12)

where the constant My depends only on {v;}.

The functions yi(x, p) are analogs of the Hankel functions for the Bessel equation. Denote

O, A) = det [CF (2, A)]

yi(@.p) = (1" (p

v=0n—2,k=1,n\n—j+1’

—1
Q) det [yl(c )('T7 p)] v=0,n—32.k=1 n\j’

(n=1)(n—2)
2
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N RY exp(pRiz), |plz > 1, . | exp(—pRyz), |plz > 1,
Fuulpz) = { (pa)y=, lplz <1, wloe) = { (px)r=ton, ol <1,
u(@,0) = 3 (@, 0) (0" Fioo (o)), (2, p) = yir(z, ) (i (o))
g(mt, \) =Y _(~1)" I Ci(@, N Ch_ja (1, 1) = pl*“zyj(x,my;(t, p)-

=1 j=1

The function g(z,t,A) is the Green function of the Cauchy problem loy — Ay = f(z), y(0) = 0
v =0,n—1. Using (6.10)—(6.12), we obtain

|U2V(l,p)l < M17 ‘U%*(ZL', IO)I < M17 x 2 07 pE gkoa (613)
|C5 (@, \)| < M|, (6.14)
0 "
‘wg(x,t,/\)‘ < M, Z ‘x“i—"t"—l—“il, lpz| < Cy, t<u,
7=1

where M; depends on {v;}, and M, depends on {v;} and Cj.
Let us now construct FSS’s of Eq. (6.1). Denote

ll)l_l fe’e}

J(p)=ilplﬁe(“““n> / 19 g ()] dt + |p| ™ / |grn ()] 2.

0 fp| 1

Lemma 6.3.
Q def 2
Jp) <= lel=1 Q=Y [ colgom(t)]dt.
el —~

0
We construct the functions S;(z, A), j = 1,7n, from the system of integral equations

T

ﬁ”@A%:@”@A)Lfgu xtA<§:% muxﬂdt v=0,n-1 (6.15)

By (6.14), system (6.15) has a unique solution; moreover the functions S; ) (x,A) are entire in A for each
. v—1
z > 0, the functions {S;(z, )\)}jzl,—n form an FSS for (6.1), det [S( )(1: )\)]W:l’—n = 1, and
S, N) = 0@ 7), Sz, ) - Cylz, A))z ™ = oz 1), = 0. (6.16)

Let Siya = {p 2 p € Sky, ol > a}, po=2MQ+1. For k=1,n, p¢€ gko,po consider the system of
integral equations

n—2 ¢
Upy, (1, p) = ud, (T, p) + Apom (2, t, plugm(t, p) dt, r>0, v=0n—1, (6.17)
m:O‘O
where
k
= S Fu(pn)ud, (2, ) (ot (£, p), <,
_ gn{t) Fem(pt) i=1 K
BT W)
; Py (pz)ud, (z, p)Fy (pt)u™(t, p), t> .
Jj=k+1
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Using (6.13) and Lemma 6.3, we obtain
Z / ‘Akl/’nl(m7t7 0)1 dt S ]\{lJ(p) < ]\/[lQ‘prl-

Consequently, system (6.17) with p € Sk, », has a unique solution and, uniformly in z > 0,

i (2, p) = upy (2, 0) = 0(p™"), P € Shopo- (6.18)
Theorem 6.2.  For x > 0, p € Sk, there exists an FSS of (6.1), B = {Yk(:c,p)}k:m of the form
Yk(y)(x,p) = p" Fr,(pz)us(z, p), where the functions ug,(z, p) are solutions of (6.17), and (6.18) is true.

The functions Y,C(U) (z,p), considered for each x > 0, are regular in p € Sy, p,, continuous in p € Sko.pos

and

n(n—1)
3

det [V, V(2. p)], =0 2 QL+0(7Y)  as ol oo
The functions Yy (z, p) satisfy the equality

z k n-—-2
Yi(z,p) = yr(z, p)=p' " / > i, p)yi(t p) (Z am (Y™, p)) dt

0 J=1 m=0

+p17n/ Z yj(:l?,[))y;(t’p) (i qm(t)Yk(m)(t, p)) dt.

e j=k+1 m=()

Moreover, one has a representation

(z,p) = Z bij (p (6.19)

where
bes(p) = ;0" (L+0(p™h)),  |pl =00, p€ S (6.20)

The only part of the theorem that needs a proof is the asymptotic formula (6.20). Let p be fixed,
z < |p|7*. Then (6.12) and (6.19) become

(6.21)
upo(x, p) Zbkﬂ THLpHiT 1S (x,A),

where 5]-(:17,)\) = x M Cj(x, A), §j(m,)\) = x7Hi S;(x, A), §j(0, A) = @(O,)\) = ¢jo # 0. It follows from
(6.21) that

n

uo(, p) — udo(, p) = > (bug(p)p ™" — B9+ )i =1 5 (e, A)
= (6.22)
—i—Zb (px)Hs k1 § i, ) —@(;y,x)).
Denote
fkl(:r7 p) = uk0($7p) - u%O(xﬂ P)7
R . (6.23)
Fronsr (@, p) = (st(:p, p) = Fins (0, 0)Ss(z, Mg )x“s"’““, s=Tn—1
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Lemma 6.4.

<bks )0 T — bgspus_“1>cso = fk’s(o’ P); s$=1,n, (624)

Frsla,p) = | (wnolz, ) = oz, )

(6.25)

s—1

=7 (uao)p =Wy Y Gy, ) | e, s=Tom,

Jj=1

Proof. When s = 1 equality (6.24) follows from (6.22) for z = 0, while (6.25) is obviously true. Assume
now that (6.24) and (6.25) have been proved for s =1,..., N — 1. Then

N-1
(Uko(l' p) —udy(x, p ) (bk] PP — bgjp“j"“l):n’”‘“l §j(1.’/\) pH1—BN
J=1
N—-2
- (uko(ZE, P) — u(l);()(xy p)) — (bkj(p)pﬂl _ bgjpﬂj _Hl)xlh ,u1 (x /\) M1 THEN -1 pUN -1 BN

j=1

—(bk,N—l(P)P“1 - bg,N—wﬂN—l_”l)gN—l(% A)hN1TEN = Fun(z, p),
which gives (6.25) for s = N. We now write (6.22) as

11

Fin(z,0) =) (bkj(p)p"“l — bgpt T ) 2 S (2, 0)
j=1

+Zb (px)Hi~ ‘“ (;17 A) — CA'j(x,)\)):L*“'l_“N.

Hence, using (6.16), we obtain Fin(0,p) = (ka(p)p”“l - ngp“N_W)cNo, which gives (6.24) for s = N
and completes the proof of Lemma, 6.4.

Now write (6.17) for v =0 as

Fra(z,p) = p' ™" / (2, p)uy™ (, p) | (o)1 Vi(t, p) dt
o \J=1
</
4]

(6.26)
> ulo(@, p)ud (¢, p)F7 (pt) | wilt, p)dt |
E+1

j:

where

Z QWL LFk'm pt)ukrn(t ,0)

m=0

Since for t < z < |p|~! we have

n
> ulo(x, p)ul (¢, p) = phnTHr gL I g (1 N,
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it follows from (6.14) that

Zu 09z, p)u, " (t, p)| < Ms

(p)in=in],  0<t<z<|p| ™" (6.27)

Lemma 6.5.

o0
Fis(0, p) = pte—rr—mH ey, / > B E ()l (t ) | Vilt, p) dt, (6.28)
0 J=k+1

Fis(w,p) = p " | —at” ”5/ (Z“?o z, p)uy” (¢, p)) (pt)" 1 THm Vi (t, p) di

j=1
s—1 * n N =
—21"”_“3/ > B (Si, A) = G, \) Fy (pt)ul™ (2, p) | Vilt, p) dt (6.29)
=1 0 Fj=k+1
—I—/ Zbogﬂ“5 o= “SC’g(v A) F;‘(pt)u?’*(t,p)) Vi(t, p)dt |, z<|p|™t
0 j=k+1 =s

Proof. For s =1, (6.28) and (6.29) follow from (6.26), in view of (6.21). Assume now that (6.28) and
(6.29) have been proved for s =1,...,N. Then, using (6.23), we obtain

Frnt1(z, p) = (ka(ﬂ%P) — Fin (0, p)Sn (2, A)f&%))mw THN

z n

=—p'™" —/ D _ ol p)ug™(t,0) | (o)™ Vilt, p) dt

o \J=l1

_Zw MN+1/ ( > i (S, A) = Gl M) Ff (pt)ul " (£, p) | Vilt, p) dt

j=k+1

0

(o.0]

_*_:E/LN_NN+1/ ZbO I SN “NCé(z: )\)—b Ny “1CN(F /\>
0 j=k+1 \ (=N

- b(;Np“N_“1 (§N(x, A) — Cn (z, A))) Fj?"(pt)ug’*(t, p)) Vie(t, p) dt

| g / (Zuﬂ (2, o) p>> (o) Vit ) dt

N o0 n .
-y [ (Z B (Sila, X) ~ Cula, A>)F;<pt>u2’*<t,p>> Vilt, o) d
=1

S \i=k+1
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+ / S S e Ce(a, A) | Fy (pt)ud (4, 0) | Vilt p) dt |

o \g=k+1 \E=N+1

giving (6.29) for s = N +1. We now let x — 0 in (6.29) for s = N + 1. Using (6.27), we obtain (6.28)
for s = N + 1. This proves Lemma 6.3.

It follows from (6.24) and (6.28) that

bes ()" — 1), = i~ / Fr (otyul? (1, p) | Vilt, p) dt. (6.30)
0 F=k+1

Using (6.30), (6.13), (6.18), and Lemma 6.3, we obtain

bis(p)p™ = bie = O(J(0)) = O(p™"), ol =00, p& Sk,
i.e., (6.20) is valid. Theorem 6.2 is proved.

Note that, as a consequence of (6.10) and (6.18),

Yk(y) (z,p)(pRi) " exp(—pRx) — 1‘ < Mylp|™H, 21, p€ Skypo- (6.31)

6.2. The Weyl matrix. Solution of the inverse problem. Let the functions ®,,(z,)\), m =1,n,
be solutions of (6.1) satisfying the conditions ®,,(z,A) ~ oz, z — 0; Bp(z, A) = O(exp(pRpz)),
z — 00, p € Sk,. We call ®,,(z,\) the WS’s for (6.1). Let {Yi(z,p }k — be the FSS B of (6.1) in
Sko,po- We will look for the WS’s in the form

N =" mn(p)Yilz,0) = Y 8i(2,0) Y bij()ami(p)
k=1 =1 k=1

The conditions imposed on the WS’s, combined with (6.16) and (6.31), imply that for |p| > 2M,

amik(p) =0, k>m; Zbkj P)ami(p) = 0jm, j=1,m.
Hence we obtain
D, (z,\) = i amk(P)Yi(x, p) = Sm(x, ) + suml_,, 1My (X)S;(x, A), (6.32)
k=1
ami(p) = (1) (A (p)) ™ det [beu(p)] ;15 oyt (6.33)
A) = i biej (0)ami(p) = (Amm(p)) " Ami(p),  j>m, (6.34)

where 0 ;(p) = det [be(p)] 1= T, Denote Ay =1, A, ; = det [b), ] j>m>

=T =T=T\j”
1, a¥ . =det [bgy]£ T\ k=T (=17 ’“(Aomm)_l, and II4; is the A-plane with the cut £ > 0. Since

b, = BORL”, we have A9 . #0. Cleary, a),, = (AS,,)" 1A9n_17m_1 # 0. Using (6.20), (6.32)—(6.34), we
see that for |p| — 00, p € Sy, ALZP =,

ami(p) = p7* (agy + 0(p™ ), (6.35)
Mpj(A) = 7 Hma0 (L4 0(p7h)), M, = (A%,,) A% #0, (6.36)
() (2, \) = p~H7 a0, (pRom)” exp(pRm) (1 +O(p ™)) (6.37)
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for every fixed x > 0.
Repeating the preceding arguments for the FSS B, = {ymk(.r, p)} ki We obtain

ymk x ,0 ZBnLk;] .I: A)

Mg (N) = (AL (0) TALI(p),  AL(p) = det [Bok;(0)]

k=1m;rv=1,m—1,5"

_1yn—m _ _1yn—myg
Denote G = {p rargp € ( (= P 1)7r, ( )2n ik W) } The domain G is the union of two sectors with

the same {R¢},_15;- Consequently, the functions A}nj(p) are regular for p € G, |p| > p,, and continuous
for p € G, |p| > po. We have thus proved

Theorem 6.3. The WS’s ®,,(x,A) can be written as

B, (2, )) = Z M (A)S; (2, A), (6.38)
j=m-+1
where the functions M,,;(N) are reqular in IL_1yn—m with the exception of an at most countable bounded
set of poles Amj, and continuous in ﬁ( 1yn-m with the exception of bounded sets A,,;. The WS’s
{@p(z, A } — form an FSS for (6.1), such that det [@(” 1)(:6 /\)]m vt = 1. For |p| — 00, p € S,
argp = @, and ﬁ:Led x > 0, we have the asymptotic formulas (6.36) and (6.37).

The functions M, ;(A) are called the WF’s, and the matrix 9(A) = [Dpy;(N)]
(m > j) is called the WM for |.

The IP is formulated as follows: given the WM 97(\) construct the DO .

Let us prove the uniqueness theorem for the solution of the IP.

M (A) = Omyj

m,j=1,n’

Theorem 6.4. If M(\) = E)Aﬁ()\), then 1 = 1.
Proof. Denote S{z,\) = [SJ(-U)(J?,A)}, O(x, ) = [(Pg-u)(:n,)\)]. (6.38) becomes

®(z, \) = Sz, )M (N). (6.39)
Moreover, det ®(z,A) = det S(xz,A) = 1. Define a matrix P(z,\) = [ij(m,)\)]j’k:m by the formula
Pz, \) = &(x, /\)( (, /\))

Pio(z,\) = det [ém(x,n,...,@55—@(1-,»,@g—1>(x7A),€>§j§>($,A),...,égq—w(x,m] . (6.40)

m=1,n
From (6.40) and the asymptotic properties of the WS’s ®,,(z, \) and </Iv>m(:n,/\) we see that for a fixed
z >0 and |A — oo
Pia(e, ) = O(# ), o, \) — byp = O(p™Y). (6.41)
Using (6.39), we transform the matrix P(xz, A) as follows:
P2, ) = (2, A) (B(z, \)) 7" = S(z, A) (S(2, \))

-1

Hence we conclude that for each fixed x > 0 the functions Pjz(x, A) are entire in A. Using (6.41) and
the Liouville theorem, we obtain Pyy(z,A) = 1, Pip(x,A\) =0, & = 2,n. But then ®,,(z,\) = ®,,(z, )
for all 2, A\,m, and hence [ = 1. Theorem 6.4 is proved.

Using the results obtained above, and the contour integral mmethod, one can obtain an algorithm for

the solution of the IP from the WM, along with necessary and sufficient conditions of its solvability, in
analogous manner as in Sec. 2.
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7. Boundary Value Problems for Equations with Singularities on a Finite Interval

7.1. The asymptotics of the spectrum. The inverse problem. Consider now the DE (6.1) on a
finite interval z € (0,7). As in Sec. 6, let p1, ..., u, be the roots of the characteristic polynomial. For

definiteness, we will assume that n = 2m, pp # p; (modn), Repy < --- < Repy, pp #0,1,...,n—3.

Denote 6, = n — 1 — Re(py, — p1). We assume that the functions qé v)

continuous and q( N(z) - 23+ € £(0,T), v =0, .
In this section, we study the boundary value problem L for the DE (6.1), x € (0,7), with the
boundary conditions

, v = 0,7 —1, are absolutely

Vo) =y () + Y vey™(T) =0,  p=Tm, 0<m<n-1, n#7n (p#s).

Theorems on the completeness and expansion in eigenfunctions and associated functions of L are
obtained. The equiconvergence theorem is provided, and the IP is studied. Our consideration essentially
uses the results obtained in Sec. 6, where special FSS’s of (6.1) are constructed and analytical and
asymptotic properties of the Stokes multipliers are investigated.

Denote A(X) = det [V, (5;(z, A))]p:m;jzm’ where [S;(z, )‘)]j:fﬁ is the FSS of (6.1) constructed
in Sec. 6. The zeros of A(A) coincide with the eigenvalues of L.

Theorem 7.1.  The boundary value problem L has a countable set {\} of eigenvalues, and for | — oo
>\l = (_1)m((l + H)WTil + O(l—l»na 0= 9(/1/17 e 7ﬂn)'
All eigenvalues, starting with some eigenvalue, are simple.

Let us define LF V), for p = m + 1,n. Let the functions ®;(z, \), k = I, n, be solutions of (6.1) under

the conditions ®j(x, A) ~ cra**, x — 0, and V,(®;) =0, p=1,n — k. Then det [(1)53”*1)(1:, /\)]k e =1
and o

Dr(z, A) = Si(z, ) + Z My (A)Ss(x, A).
j=k+1
The functions ®,(z, A) are called the WS’s, and the matrix 9I(A) = [Sﬁm’“()‘ﬂm,k:fﬁ’ Mk (N) = Sk,
m > k, is the WM for the operator [. The WS’s and WM are convenient for studying both direct and
inverse problems for /. Let us formulate the uniqueness theorem for the solution of the IP using the WM.

Theorem 7.2.  If M(\) = M(N), then l=1, V, = V.

7.2. The Green function. Let us define the Green function G(z,t, \) for L using WS’s of L and L*,

S (1) (2, NBE(EN), 7>t
Gla,t,A) =4 =it

7

S (=1)k®, i (z, N)PE(E, A, <t
k=1

We put pup =n—1—1, 4,,-
Lemma 7.1.  Let f(t)tm+1 € L(0,T), A(A) #0. Put

T
= / Glx,t, \)f(t) dt
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Then
ly—dy=f,  ylx)=o(z"), -0
Vo(y)=0, p=T1,m.

The converse is also valid. We note that the function G(x,t, A) is meromorphic with respect to A
with poles at the points A = ).

Lemma 7.2.  Let \; be a simple zero of the function A(X). Then
-1

ArglG(m,tw\)=—azsoz(:l?)<ﬁ7(t)7 o = /soz(t)sof(t)dt ;

where p(x) and ¢} (z) are eigenfunctions of L and L*, respectively.
Let A= p™, A) = (=)™ ((1 + 0)7T~1)", A} = (p!)", eo > 0. Denote Go = {p: |p— p?| > &0}
Theorem 7.3. Put

T )
wite ) = [ B iy a,
0
where f(£)t* € L(0,T) for s <Rep .y —j. Then for p € Go, |p| > p° and 0 <z < T, we have
s (2, M) S w()lpl om0 ol > 1,
s (2, 2)] < wlp)fer 27| (|0 72 4 QeI e <1,

where () = max(x,0),

Q_{o, » < Repis, —
B 1, %>Re,u;kn—j7
and w(p) = o(1) as |p| — oco.

7.3. Completeness, expansion and equiconvergence theorems. Applying Theorem 7.3 and the
method of contour integration, we come to completeness, expansion and equiconvergence theorems. Let
a be a real number and 1 < p < co. Consider the Banach spaces ®,,{f(z): f(z)z™® € £,(0,T)} with

the norm |[flla.p = £ (z)% ™% £, 0,7)-
Lemma 7.3. Forl<s<p<oo, f—a< % — %, the space @, is densely embedded into g ;.
Let us intoduce notations
¥ = Re i1, ¢ = min(0, — Re pt), v =min(0,Re e, 1), n = max(0, — Re tiy41)-

Theorem 7.4. The system of eigenfunctions and associated functions of boundary value problem L is
complete in the space Pg s for 1 <s< oo, <9+ %

Corollary. The system of eigenfunctions and associated functions of L is complete in L(0,T) for
R9M77L+1 > —%

Theorem 7.5.  Let a function f(t) be such that f(t)t¥ is absolutely continuous on [0,T7], f(ty*~* €
L£(0,T), and if 71 ----- Tm = 0, then f(T) = 0. Put

T
y(w, \) = / Gl 1, ) f(2) dt.
0
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Then
I; al L [ -
A max (27 | o / y(z, N)dA+ f(z) || =0,
'y
where Ty = {X: [A\| = rn} are circles of radii ry — 0o at a positive distance from the spectrum of L. In
particular, if L has a simple spectrum, then

T T -1

N
m oax | f(z) —z&lw(l’)/f(t)ﬁ(t)dt =0, = /@z(t)ﬁ(t) dt

=1 0 0

In conclusion, we formulate the equiconvergence theorem for L and L on the whole segment [0, 7.

Theorem 7.6.  Let f(¢)t" € £(0,T). Put y(z,\) = f (2, ¢, A) f(t)dt. Then
0

li T— | y( =
N5 01<nﬂa,<xT v 21 /y A dA) = 0.

T'n

In particular, if L and L have simple spectra, then

N T
Jim, s 273 | (o) [rEma-age [ oz )| =o.
= 0

PART 3

NONLOCAL INVERSE PROBLEMS

8. An Inverse Problem for Integro-Differential Operators

In this section, perturbation of the Sturm-Liouville operator by a Volterra integral operator is
considered. The presence af an “aftereffect” in a mathematical model produced qualitative changes in
the study of the IP. The main result of the section are expressed by Theorems 8.1 and 8.3. Note that
the IP for integro-differential operators in various formulations has been studied in [23, 58, 91, 92].
Among other things, in [91] a connection is pointed out between the IP under consideration here and
the completeness of the eigen- and associated functions of a bundle of fourth-order integro-differential
operators.

8.1. The uniqueness theorem. Let {A,}n>1 be the eigenvalues of a boundary value problem
L = L(g, M) of the form

xr

ly(x) = —y"(z) + q(z)y(z) + /M(:E — )y(t) dt = My(z) = p’y(x), (8.1)
0

y(0) = y(m) = 0. (8.2)

Consider the following problem.

Problem 8.1.  Given the function ¢(z) and the spectrum {A,},>1, find the function M(z).
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Put
My(z) = (7 — 2)M(x), Mi(z) = /M(t) dt, Qx) = My(x) — My(x).
We shall assume that ¢(z), Q(z) € L2(0,7), My(z) € L(0,7), &k =0,1.

Let S(z, ) be the solution of (8.1) under the initial conditions S(0,)) = 0, S’(0,A) = 1. Denote
A(X) = S(m, A). The eigenvalues {A,},>1 of L coincide with the zeros of A(A) and as n — oo

A 1
Pn =V An —n—i—*i-{——— {s,} € la, AIZ%/q(t)dt. (8.3)
0
The folowing assertions could be proved by well-known methods.
Lemma 8.1.  The representation
t
S(z, ) _ sinpz +/K Sm’o dt (8.4)

holds, where K (z,t) is a continuous function, and K(z,0) =

Lemma 8.2.  The function A(X) is uniquely determined by its zeros, and

N=r]] A"n; . (8.5)

We shall now prove the uniqueness theorem for the solution of Problem 8.1. Let {X'n}nzl be the
eigenvalues of the boundary value problem L = L(1, M).

Theorem 8.1.  If A, = An, n > 1, then M(z) o M(z), z € [0, 7).

Proof. Let the function S*(z, A) be the solution of the equation
Pz = —2"(z) + ¢(z)z(z) + /M(t —x)z(t) dt = Az(x)

under the conditions S*(m, A) =0, S*(m,A) = —1. Put A*(\) = §*(0,\). Then
T X T

S (2, N dz | Mz —t)S(t,\dt = [ I"S*(z,A)- S(z, N dz ~ [ §*(z,N)-15(z, \) da
[senn] / /

+ (§(m, NS (2, A) — 8 (2, \)S* (z, /\)> = A*(\) = A(N).

0

For [ =1 we have A*()\) = A()), and consequently

/ §* (2, A) da / Mz — 08t \) dt = A, (8.6)
i 0

Transform (8.6) into
/ Mi(z) da / S*(t, N)S(t — 2, \) dt = A()). (8.7)
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Denote w(x, A) = S*(m — =z, A), N(x) = M(n — z),

x

ﬂLM:/wMMQmﬁAMt (8.8)
0
Then (8.7) takes the form

/ 2oz, \) dé = A(N). (8.9)
4]

Lemma 8.3.  The representation
i
ez, A) = 2—p—2 —I Cos px + / V(z,t)cosptdt (8.10)
0

holds, where V(x,t) is a continuous function.

Indeed, since w(z, A) = S*(m — x, A), the function w(z,A) is the solution of the Cauchy problem
—w"(z,\) + g(m — 2)w(x, \) + /M(m —tw(t,A) dt = dw(z, ),
o
w(0,A) =0, w'(0,)) = 1.

Therefore, by Lemma 8.1, the representation

w(z, \) _ sin p:r: /KO smpt dat, (8.11)

holds, where K°(z, 1) is a continuous function. Substituting (8.4) and (8.11) into (8.8), we obtain (8.10).
Let us return to the proof of Theorem 8.1. Since A, = A,, n > 1, we have, by Lemma 8.2,
A(X) = A(A). Then, substituting (8.10) into (8.9), we obtain

w

/cospa: (—xN /VtrN(t dt | dx =0,

0
and consequently,

—zN(z /Vt@Nﬂﬁ— (8.12)

For each fixed £ > 0, (8.12) is a Volterra homogeneous integral equation of the second kind in the
interval (e, 7). Consequently N(z) =0 a.e. in (g, 7) and, since ¢ is arbitrary, in the whole interval (0, ).
Thus, M(x) = M(z) a.e. in (0,7), and the theorem is proved.

8.2. Solution of the inverse problem. Relation (8.9) also makes possible to obtain an algorithm
for solving Problem 8.1 in the case when M(x) € PA|0, 7). Consider L(g, M) and L(q, M), and assume
that g(z) € £2(0,7), M(z) and M(x) € PA. Let for some fixed a > 0

N(@x)=0, z€(an),
N(z) Nﬁg(a!)"l(a—m)“, z—a—0.
It follows from (8.10) that as [p| — oo, argp € [d, 7 — 4], z € (g,7), § > 0, € > 0, the asymptotic formula
o(x, ) = —z(4p”) "t exp(—ipz)(1+ O(p™ ")) (8.14)

(8.13)
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holds. Furthermore, it follows from (8.10) that

lo(z, N)| < C|p~? exp(—ipz)|, z€[0,7], Imp>0. (8.15)
Using (8.15) we obtain the estimate

/N o(z,\)dz| < Clp~ 2exp(—ipa)], Immp > 0. (8.16)

Using (8.13), (8.14) and Lemma 4.1, we obtain for |p| — oo, argp € [6,7 — d]
a ~
N(z = —1 e . .
/ oz, ) dr = —ip)ats exp(—ipa)(NE + o(1)) (8.17)

Since N(z) =0 for z € (a,), from (8.9), (8.16), and (8.17) follows that as |p| — oo, argp € [§, 7 — J],

A = (i)™ exp(—ipa) (N2 +o(1)),

and consequently
Ne=Z= hmA(/\)( p)* B exp(ipa),  |p| = o0, argpe[s,m— 4] (8.18)
Thus we have proved the following theorem.

Theorem 8.2.  Let {\,},>1 be the eigenvalues of L(q, M), where q(z) € L2(0,7), M(z) € PA. Then
the solution of Problem 8.1 can be found by the following algorithm:

(1) From {Ap}n>1 construct the function A(N) by formula (8.5).

(2) Takea=rm.

(3) Fora=0,1,2,... carry out successively the operations: construct a function M (z) € PA so that
N(z)=0,z € (a,7); N (a—0) =0, k=T1,a — 1, and find N& = (—1)>N®(a —0) from (8.18).

(4) Construct N(x) for z € (a™,a) by the formula

-y e
a
a=0
(5) If a™ >0, set a:=a™ and pass to step (3).

We shall now investigate the question of solving Problem 8.1 “in the small,” and the question of
stability. First, let us prove an auxiliary assertion.

Lemma 8.4. Consider in a Banach space B the nonlinear equation

P f Y ) 5.19)
;) < (Clrl)s Tl () = 5 ) < e = [ (Cmax(fr), [17]))

There exists & > 0 such that if | f|| < 9, then in the ball ||r|| < 2§ Eq. (8.19) has a unique solution r € B,
for which ||r| < 2||f]l.

Proof. Assume that C > 1. Put

Gry =Y _(r),  Co=2C% &= (4Cy)""
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IF [|rfl, 7| < (2Co)~*, then

—

18

[ <3 (ClIrll)’ < Colirll® < S,

[\

||
N

’ (8.20)

1 1

4 (r) - (||<Hr—r||Z (2C0) 1) < Sl — 7.

[\

Let || f|| < 4; construct rq = f, 41 = f 4+ ¢(rk), k > 0. By induction, using (8.20), we obtain the
estimates

Il <20f0 lrea —mll <2757HIAL k>0

Consequently, the series

o0
T =T+ Z(Tk—l—l — 7))
k=0

converges to the solution of (8.19), and |7|| < 2||f||. Lemma 8.4 is proved.

Theorem 8.3.  For the boundary value problem L = L(q, M) with the spectrum {\,}n>1, there exists
6 > 0 (which depends on L) such that if the numbers {A},>1 satisfy the condition

At (S —Ans)

then there exists a unique L = L(g, M ), for which the numbers {Xn}n21 are the eigevalues, and

|Q(z) — Q)|
|| My () — My (z

[:')(0 71') —
Hﬁ(o )<CA E=0,1.

Here and below, C' denotes various constants dependent on L.

Proof. For brevity, we confine ourselves to the case when all the eigenvalues are simple. The Cauchy
problem ly(z) — Ay(z) + f(z) =0, y(0) =¢'(0) = 0 has a unique solution

€T

y(z) = / o, N (1) dt,

0

where g(z,t, A) is the Green function satisfying the relations

—Gaa(Z, 1, A) + q(2)g(x,t,N) — Ag(z,t,\) + /M(x —7)g(7,t,A)dr =0, T >t

g(t,t, /\) =0, gx(Il/‘,t7 )‘)Ix:t = 1.

Denote

G($7 L )\> - gt(.T, L, A)7 yn(E) = S(Il)-,xn)a En = ’n,zA(Xn)?
I - - A —
1)n(’1,‘ t) — { w (7T T t,)\n)7 O<t<m z,
0, r—z<i<m
{ G(.Z',S—i—t,xn), S+t§.’l',

Gplz,t,8) =
nl ) 0, s+it>z,
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x e

on(z) = / wt, \n)S(z —t, An)dt,  En(z) = / (i, t)yn(t) dt,
0 0
Unle) = ZA(@) dnole) = g sinfur, m(e) = TG,

Let W3 be the space of functions f(z) absolutely continuous on [0, 7] and such that f'(z) € £5(0,7),
with the norm || fllwz = [|fllca(0,x) + 1f 1 2o(0,7), and let Wy = {f(z) € W} : f(0) = f(r) = 0}.

Lemma 8.5. The functions {1/)n(a:)}n>1 constitute a Riesz basis in L2(0,7) and the biorthogonal basis
{zb;;(a:)}n>1 possesses the following properties:

(1) ¥r(z) € Wy,

2) lgb;(x)[ <C,n>1,zel0,7],

(3) for any {6,} € Lo

(M

€. > Hn * | >
0(x) = Y Lui(x) € Wi, He<x)||W21<c<an|2>
n=1

To prove, we shall use the well-known results for the Sturm-Liouville IP. Since A < oo, from (8.3)
follows that

- ~ A x ~
Pn=Vdn=n+ 2L+ = Daleb. (8.21)

n

Consequently, there exists a function g(z) (not unique) such that the numbers {Xn}nz 1 are the eigenvalues
of the Sturm-Liouville boundary value problem

-y +q(x)y =Xy,  y(0)=y(r)=0. (8.22)

Let 5,(z) be the eigenfunctions of (8.22) normalized by the condition 3/,(0) = n/2. The functions
{sn } 51 constitute a Riesz basis in £5(0,7), and

™

/gn(.L)Sm( ) AT = 8, Oy« (8.23)
0
Using Lemma 8.1, we obtain
5n(7) = Ypo() + / K(z,D)no(t)dt,  K(z,0)=0. (8.24)
0

In particular, from (8.24), (8.23), and (8.21) follows that

™

~ 1 1 - 1

Sn(z) = 3 sinnx + O <;> , Oy = /3%(1:) dr = % +0 <;> ) n — oo.
0

Due to (8.24), the functions {¢no(z } >, constitute a Riesz basis in L2(0, 7). Denote
Yno(z) = 3p(x / K(t,x)5,(t) (8.25)
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From (8.23)—(8.25) follows that

/Lbno Yo (T dﬁ—/l/’no S ( )+/7TI~((t,x)§m(t) dt | dz

(8.26)
— /gm x wnO /K T t wnO ) /Sn(x)sm( )dJ:'— 5nman
0
Further, we compute
T
Ynlz) = - / w(t, 3n) S (& — £, Xn) dt. (8.27)
0
Since
S'(x, \) = cos pz + /Kl(x,t) cos pt dt, (8.28)
0
we obtain, substituting (8.28) and (8.11) into (8.27), as in the proof of Lemma 8.3,
Yn(T) = ¢nolz +/Vo T, t)Yno(?) (8.29)
0
where Vg(z,t) is a continuous function, Vp(z,0) = 0. Solving the integral equation (8.29), we find
Uno(x) = Yn(x) + /Vl(:l:, ) () di, Vi(z,0)=0. (8.30)
Consider the functions
v ) = @) + [ Vatto)uate) dr (831

xr

From (8.26), (8.30), and (8.31) follows that
0

By virtue of (8.29) and (8.32), the functions {i,(z)} Jnzq CODS constitute a Riesz basis in £5(0,7), and the
biorthogonal basis {1/1;‘Z(31:)}n>1 has the form ¢} (z) = &, @b**( ). Substituting (8.25) into (8.31), we have

T

() = B () + / VOt 2)E,(t)dt,  VO(£,0) =0,

Hence we obtain the required properties of the biorthogonal basis. Lemnma 8.5 is proved.
Since 7, () = (7 — x), Lemma 8.5 implies

Corollary 8.1.  The functions {7}n(z:)}n>l constitute a Riesz basis in L2(0,7), and the biorthogonal

basis {Xn(x)}n>l possesses the properties:

(1) xn(z) € Wi,
(2) [xn(z) <C,n>1, z €0,
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(3) for any {Qn} € Iz

0(x) =" () € Wy, lI0(@)llwy <C (Z l9n12)

1
2

Let us return to proving Theorem 8.3. Put

o0

)= " ~xn(2). (8.33)

n=1

Using Lemma 8.1, the relations A(A) = S(m, ), A(A\,) = 0, and formulas (8.3), (8.21), we obtain
the estimate |en| = n?|A(As) — A(A)| < C|A, = An|. Now by Corollary 8.1 we have e(z) € Wi,
le(@)llw; < CA.

Consider in W3, the nonlinear equation
r=c+ Z ;(r), (8.34)

where (z) is defined by (8.33), and the operators z; = ¥;(r) act from W3, to W3, according to the
formula

—Z / /l"(tl) ( )an(tl,... ,tj)dtl"'dtj Xn(l'),

n=1

——

J
n
an(tl,... ,tj) = (7r—-t1)---(7'r—7'j) /--'/'Un(tl,sl)Gn(Sl,tg,Sg)--'Gn(Sj_l,tj,Sj)yn(Sj) dSl"'de,
0 . 0
J

and
95y < (Clirlluz)’,

5r) = 65 gy < U =l (Cmax (el 1 o) )

By Lemma 8.4, there exists § > 0 such that for A < § Eq. (8.34) has a solution r(z) € Wi,
[r(x)llwz < CA. Put JV[( ) = M(z) — (7 — 2)™" (a:))’, and consider the boundary value problem

L = L(g, M). Clearly Q(z) = Q(x )—r(r) € L5(0,7). [Q(x) = Q@) z, g0y < CA. Since
W (z W_:E/Q Mo @) = Q) + s (),

we have || My(x) — M(x <CA k=0,1.

HE(O w) —

It remains to show that the numbers {/\n}nzl are the eigenvalues of the problem L. To do this,
consider the functions y,(z) which are solutions of the integral equations

yn —yn /Ml dt/G Tf,t,S yn ) (835)
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or, which is the same,

T r—t

Un(z) = yp(z) + /Ml(t) dt / G(z,s+ t,xn)ﬂn(s) ds. (8.36)

0 0

After integration by parts, (8.36) takes the form
T xz

() = () — / M (1) dt / 9z, 5, Xa)Ti(s — 1) ds.

0 t
Reverse the integration order,

x

Un() = yn(z) — / g(z,t, An) dt / Mi(s)F(t — s) ds.

0

Integrate by parts,

T

Ta(z) = yn(z) — / o(z, b, ) di / Mt — 5)jn(s) ds. (8.37)
0

o

It follows from (8.37) that
€T

1Fu(2) - ala) = / M(t = 5)a(s) ds = (I ~ Djin(z),

0

and consequently, Tﬂn(z) = Xngn(a:)7 yn(0) =0, 77,(0) = 1. Since the solution of the Cauchy problem is
unique, we have y,(z) = S(z, A\,).
Write (8.7) in the form

Integrating by parts, we obtain for A\ = Xn
/ Mz / (2, 0)Fn(t) dt = ARy, (8.38)

Solving (8.35) by the method of successive approximations, we have

Un() = yn(z) + Yn(z), (8.39)
Yo (x) :i/ﬂ / Ml (/ /Gn (z,11,81)

X Gn(Sl,tQ,SQ) - 'Gn(Sj_l,tj, sj)yn(sj) d81 " 'de ) dtl .. 'dtj.
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Further, multiplying (8.34) by #,,(z) and integrating from 0 to 7, we obtain

En
/ T]n dZ‘ —+ Z/ / tl le (t]_, j) dtl s dtj = —n— (840)

920 0

j

Since r(x) = (7 — x)ﬁl(z), N () = n(r — 2) 7 &, (x), we can transform (8.40) to the form

™

/M’l( ¥en(z) dz + i/ﬂ /Ml t1)- Ml / /vn t1,81)

0
j j
X Gp(s1,t2,82) - Gn(sj—1,t5, 85 yn(s;) dsy---ds; | dty---dt; = 2—2
Hence, taking (8.39) into account, we obtain
]ﬁl(x) dm]vn(m,t)ﬂn(t) dt = A(\). (8.41)
0 0

Comparing (8.38) with (8.41), we find that ZS(X,L) = 0. Hence the numbers {Xn}nZl are the eigen-
values of the boundary value problem L. Theorem 8.3 is proved.

9. One-Dimensional Perturbations of Integral Volterra Operators

9.1. Formulations of the results. In this section, we investigate the IP for the integral operator
A = A(M, g,v) of the form

Af = /M’(a:,t)f(t) dt—}-g(az)/f(t)v(t) dt, 0<z<m. (9.1)

Let M(x,t,\) denote the kernel of the integral operator My = (E — AM)~'M, where E is the
€T

identity operator and M [ = / M(z,t)f(t)dt. Let us set
0

glz, ) =g(z) + )\/M(x, t, \)g(t)dt. (9.2)

Then the characteristic numbers {A;} of A coincide with the zeros of the function

LA)=1-— /\/U(:B)g(a:, A) de, (9.3)
0

which is called the characteristic function of A. The eigen- and associated functions g (x) of the operator
have the form

14

1o e
Gkvw(z) = WQ(% /\){A:,\,w v=1_0,r,—1,

if 7, is the multiplicity of A (Ax = Apt1 =+ = Mepro—1)- Let Gr = gr(m). We will call the set of the
numbers {A, O} the spectral data of A.
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We consider the following IP’s.
Problem 9.1.  Given the spectrum {A;} and the functions M (z,t), g(z), construct the function v(z).

Problem 9.2. Given the spectral data {\g, 05} and the function M(z,t), construct the functions g(z)
and v(z).

v+3j
Let the function M (z,t) satisfy the following condition (condition M): the functions 50 517 M(x,t),
zv Ot
0
v,j =0,1, are continuous for 0 <t <z <, and M(x,z) = —i, %Nl(x,t)“:x = 0.

Then the operator D = M ~! has the form
x
Dy =1y'(x) + /H(w, t)y(t) dt, y(0) =0,
0

where H(z,t) is a continuous function for 0 <t < z < .

Definition. We will write A € A(()E), if the function M{(z,t) satisfies the condition M, the functions
g(z) and v(z) are absolutely continuous for 0 <z <, ¢'(z) and v'(z) € £2(0,7) and agby # 0, where

iy T

ap =1+ ig(0)v(0) + /U(T) ig' (1) + /H(T,s)g(s)ds dr,

J (9.4)

by = ig(0)v(m).
For simplicity, we solve Problems 9.1 and 9.2 for operators of the class Aglo).

Theorem 9.1. Let A € A&,). Then the spectral data {\g,Br}, k = 0,4+1,%2,..., of the operator A
have the form

A =2k + o + s, Br = ay + s, (9.5)

Ak # 0, o # 0, {%k}a {%kl} € la. '
Theorem 9.2.  Let the functions M(x,t) and g(z) be given such that M(x,t) satisfies the condition M,
g(zx) is absolutely continuous, ¢'(x) € L2(0,7), g(0) # 0. Further, let the numbers Ay, k= 0,+1,42,...,
are of the form A\, = 2k+a+,, A, #0, {3} € lo. Then there exists a unique operator A(M, g,v) € Aé%))
for which {\;} are the characteristic numbers.

Theorem 9.3. If a function M(x,t) satisfying the condition My and numbers {Ag, Bk}, k =
0,%£1,£2,..., of the form (9.5) are given, then there exists a unique operator A(M,gq,v) € A(%) for
which { i, B} are the spectral data.

9.2. Proofs of the theorems. Let us first formulate several auxiliary assertions.

Lemma 9.1.  Let the numbers {\i}, k = 0,£1,42,..., of the form Ay = 2k+a+x,, A\, 0, {0} € 1o
be given. Denote

L(A) = exp(p) ﬁ (1 - %) exp (%) , (9.6)

k=—oc0

where

o0
1 1 . :
P =D+ E (X;—/\—g) ) po = imexp(ian), A =2k + «
- :

407



(the case where o is an even integer brings insignificant changes). Then the following representation is
valid for L(\):

Kl

L(A) = 7(1 — exp (i(a — /\)’/T)) + /w(t) exp(—iAt) dt, (9.7)
H w(t) € L2(0,7).
k——oo

Proof.  The function £o(A) =1 - exp (i(ax — A)) has zeros {\}} and admits the representation

Lo(A) = exp(po) ﬁ (1— ;\k)exp <)\%)

k=—o00

Therefore,

L) =vLoNF),  F)= ] <1+ A;ﬁ A). (9.8)

k=~—o00
Let us show that |[F(A)| < Cs in the domain G5 = {A: |A = A)| > 6} for a fixed § > 0. We choose an
integer N such that || < g for |k| > N. Then, for A € G;

FO) =exp (Hv(V) J] (1+ e ), (9.9)
JUY
|kl<N
where
P Py A— (=1)” s\
v =2 n<+xg»x> ZAg—AZuH(Ag——A)
=N N V=0
Since
lHN()\)IS Z |)\0 )\| ZL Z Eﬁlj\-’ d,
R[> |k[> N @

from (9.9) follows that |F'(A)| < Cs for A € Gs.
Further, it follows from (9.8) that

A0) = —ryie, - _ Tk
L) = —ysd ( 'CO(A))u:Aa’ b= 11 (1+A2_A%),

ie., {L(X0)} € l5. We consider the function
AX) = L) = vLo(N). (9.10)
Denote 0, = A(M\). It is obvious that {6,} € l5. Let us construct a function w(t) € L5(0,7) such

that 6,, = / w(t) exp(—iA2t) dt. Let us consider the function §(\) = / w(t) exp(—iAt) dt and set S(A) =
0 0

(EO(A))“I(G(/\) ~ A(X)). The function S(A) is entire of A. We have [EO(/\)’ > C(1+exp(Im Am)) in the

domain G5. From (9.8) and (9.10) follows that A(X) = vLo(A)(F(X) —1). Using the maximum modulus

principle for analytic functions, we sece that S(\) is bounded, hence, S(A\) = C. Since lim S(iz) = 0 for

x — —oo, we have C' =0, and we arrive at (9.7). Lemma 9.1 is proved.

By the method of successive approximations one can prove the following assertion.
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Lemma 9.2.  The integral equation

r~t+a r—t+ao t

Peta)=i [ Heregdcri [ ds [ Attt OPste-aga)d,
o 0

«

(9.11)
0<t<z<nr—a, 0<La—<m,

a
%P(ZE, t, Oé),

has a unique solution P(x,t,a) and the functions P(x,t, a), P(xz,t,a) are continuous

da

with respect to all the variables.

Lemma 9.3. Let A€ Aé:g) . Then the following statements are valid:
(1) The characteristic function L(X) of A has the form

LA)=1- /\/m(t) exp ( — iA(m — 1)) dt, (9.12)
where

m(t) = g(0)u(t) + /u (M)Q(t, ) dr, u(t) = v(m —t),

0

oo

0

(9.13)

T

Q(t,7) =

Q‘

P(r—t+s,s, t-T—a)g(t—T—-s)ds).

The function P(x,t, ) is the solution of (9.11). The function m(1l) is continuous, m’(t) € L2(0,7),
1+ im(m) = ap, m(0) = —iby, where ag, by have the form (9.4).
(2) The following representation is valid for g(m, \);

g(m, A) = g(0) exp(—iAn) + /fy(t) exp(—iAt) dt, (9.14)

where v(t) = ' (t) € L2(0,7),

p(r —t) = —g(t) — /P(ﬂ' —t,t—71,7)g(r)dr. (9.15)

Proof. It is clear that M 'y = Dy — Ay, y(0) = 0, and the function z(z) = M(x + o, a, )) is the
solution of the Cauchy problem

i2'(x) + /H(:I: + a,t 4 a)z(t) dt = Az(x), 2(0)=—i, 0<az<7-a« (9.16)
for fixed « € [0, 7]. Consequently,

Mz +a,0,A)=—1i (exp(ﬂz’)\:v) + /P(:L', t,a)exp ( — iz —t)) dt) , (9.17)
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since the right-hand side of (9.17) is also a solution of the Cauchy problem (9.16). We substitute (9.17)
in (9.2) and obtain

g(x, A) = g(x) — i\ / exp(—iAt) | gz —t) + / P(t+7,m,z—t-7)glz —t—7)dr | dt. (9.18)
0 0

From this we obtain (9.14). Further, we substitute (9.18) in (9.3) and obtain (9.12), where m(t) is defined
by (9.13) and is a continuous function. Let us show that m/(t) € £5(0, 7). For this, we write m(t) in
the form

u(t — 7)R(¢t, ) dr,

3
—~
o~
~—
I
N
o~
o
~—
2
—~~
o~
~—
+
O\“

R(t,7) =g'(7) -|—P(7r —t4T,7, O)g(O) + /g'(T — S)P(TF —t+8,8T— s) ds

0
r

-I—/g(r—s)f’(w——t—f—s,s,T—s)dS,

0
~ 0 0
Pz, t,a) = | =— — —
(z,t, ) <8a 313) P(z,t,a)
By virtue of (9.11), we obtain
T—t+7T—38 B

]5(7T——t+s,s,’r—s> =—tH(r,7—8)— 1 dn/H(n+s,n+§)ﬁ(’r]+§—7’+s,§,7—s)dg.
s 0

T —

Thus, R(t,7) is continuously differentiable with respect to ¢, hence, m'(t) € L£2(0,7). The lemma is
proved.

Proof of Theorem 9.1. By virtue of Lemma 9.3, the characteristic function £(A) of the operator A

has the form

L(A) = ag — by exp(—iim) + /w(t) exp(—iAt) dt = agLo(A) + L1(N), (9.19)
0
where

Lo(A) =1 — exp (i{a — N)7r), L1(A) = /w(t) exp(—iAt) dt,
0

exp(—iam) = aghy !, w(t) = i-%TTL(’JT —t) € L2(0, 7).

The estimate |Lo(A)] > C(1 + exp(ImAx)) is valid in the domain G5 = {X\ : [\ — A\)| > 6}, where
A) =2k + a and, consequently, |agLo(A)| > |£1(A)| for sufficiently large |A|. Therefore, by the Rouche
theorem, 2N +1 zeros N\, k =0,x£1,...,+N, of L()), lie inside the contour I'y = {/\ A—al = 2N+1}
for sufficiently large N, and exactly one zero A, of £()) lies inside the contour ;(6) = {A: [A= )| = &}
for sufficiently large Ag, i.e., Ax = 2k + a + ., s, = o(1). Substituting this expression in (9.19), we
obtain {»} € l5. Using (9.14), we now easily obtain the desired asymptotic formula for G;. The theorem
is proved.
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Proof of Theorem 9.2. From given numbers {\;} we construct £(A) by (9.6). According to
Lemima 9.1, the representation (9.7) is valid for £{)). Let us set

¢
m(t) = —ibg +i/w(7r —t)dr, by = 7y expl(iar).
0
Further, let u(t) be a solution of (9.13). It is clear that u(t) is continuous, u/(t) € L2(0,7), and u(0) #

0. Denote v(t) = u(m —t) and consider the operator A(M,g,v) of the form (9.1). Let £*(A) be the
characteristic function of A. Then, as in the proof of Lemma 9.3, we obtain

Lr(A)=1- A/m(t) exp ( — i\ — ) dt,

or, after integrating by parts,
™
L*(A\) =1+ im(m) — im(0) exp(—id7) + /w(t) exp(—iAt) dt.
0
Comparing this equality with (9.7) and taking into account the relations £(0) = £*(0) = 1, im(0) =
vexpliar), we get L*(A) = L(A), 1+ ¢m(m) =, and consequently, A € A(()é), and {A;} is the spectrum
of A. If it is assumed that there exists an operator A(M, g,v) € Aglo) with the same spectrum {\;}, then

it would follow from Lemma 9.3 and the uniqueness of the solution of the integral equation (9.13) that
v(t) = 0(t), t € [0,7]. The theorem is proved.

Proof of Theorem 9.3.  For simplicity, we confine ourselves to the case where all A\, are different.
As in the proof of Theorem 9.2, we construct £(\), m(t), and P(z,t,«) from given M (z,t) and {\;}.
Denote ur = A — o, ¢ = oy exp(ian), Bk = B — gexp(—iAgm). It is clear that {Bk} € l5. The system of
the functions exp(—iut) forms a Riesz basis in £5(0,7), since it is complete and quadratically close to
the orthogonal basis exp(—2kit). Let h(t) € £L2(0,7) be such that

B = /h(t) exp(—ipxt) dt
0

and set
7

u(t) = —g — /h(T) exp(iar) dr.
t
Let the function g(¢) be a solution of (9.15). It is clear that g(t) is continuous, ¢'(t) € £5(0,7), and
g(0) = g # 0. As in Theorem 9.2, we now find the function v(¢). Thus, we construct the operator
A(M, g,v) of the form (9.1), and the numbers {\;, 8.} are the spectral data of A. As in Theorem 9.2,
the uniqueness follows obviously from Lemma 9.3. In the case of multiple A, the system of the functions
t” exp(—ipxt), v = 0,7 — 1, where 7, is the multiplicity of )y, is a Riesz basis. The theorem is proved.

Remark. Results, analogous to the above ones, hold also for other classes of operators, e.g., for the
operators A € A%’), max(v, 1) < m, whose characteristic functions have the form

m—1 T

L) = Z ATk (a;c — brexp (— i/\ﬂ')) +AlT™ /wm(t) exp ( — iMt) dt,

k=0 0

wi(t) € £2(0, 7), asb, #0, ar=56;=0, k=0,v—-1, j=0,p—-1
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Let us observe that similar results are also valid for the case where M ~! is an integro-differential operator
of second order.

9.3. Connections with IP’s for DO’s.  In spite of the qualitative difference of the above-considered
problems from the IP’s for DO’s, there are connections between them. In this section, by the example
of the Borg theorem [16] we show how the IP for DO’s can be reduced to Problem 9.1. For this, we give
here a general uniqueness theorem for the solution of Problem 9.1.

Let us consider an operator A of the form (9.1) under the assumption that the function M(z,t) is
the Hilbert-Schmidt kernel and g(z), v(x) € £2(0, 7).

Theorem 9.4.  Let the system of the eigen- and associated functions gi(z) of the operator A(M, g,v)
be complete in L3(0,7), and let {\c} and {Ax} be the spectra of A = A(M,g,v) and A = A(M, g,7)
respectively. If A\, = N for all k, then v(z) =U(z) a.e. on [0,m].
Indeed, under the conditions of the theorem, from (9.3) follows that
/(U(:z:) —3(z))g(x, A)dz = A" (E()\) — L(A)).

0

Therefore /(v(.r) — 9(x))g(z) dz = 0, and, consequently, v(z) = ¥(z) a.e. on [0, 7).
0

Let us consider the boundary value problems L; = L(q(at), h,H;), i=1,2:

—y" +q(@)y=Ny, ¢ (z) € L(0,m),
y'(0) — hy(0) = /() + Hiy(m) =0,  Hy # Ho.
Let the functions ¢(z,A) and ¥;(z, A) be the solutions of (9.20) under the initial conditions ¢(0,A) =
Pi(m,A) = 1, @' (0,A) = h, ¥i(m,\) = —H;, and let M(x,t,\) be the Green function of the operator
y" — q(x)y — My, y(0) = ¢/(0) = 0. Then the eigenvalues {f;}n>0 of L; are the zeros of the functions

Ai(A) = (0, A) — h; (0, A), and the functions A;(A) are determined uniquely by their zeros. It is known
that if a function G(z,t) satisfies the conditions

0?G(x,t) _9%Glx,1)

(9.20)

o2 - Q(x)G(x’ t) - —at—z— - a(T)G(xa t), 0 <t <z < T,
% (9.21)
o~
G(r,x)=h= 1/ (q9t) — q(1)) dt, (% - hG(;z:,t)) =0,
2 ot t=0
0
then
oz, \) = (E+G)3(x,)), ME+G)=(E+G)M,, (9.22)
where

(E+G)f = F(x) + / Gz, ) f(t)dt,  Myf = / M(x,t, \) f(t) dt.
0 0

Let us consider the family of the operators L, ; (q(:z:),h, Hy, Ho):

Loy =y" — q(z)y + oy, —00 < a < o0,
y'(0) — hy(0) = ¢/ (%) + Hyy(m) = 0.
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The inverse operators A, ; = L;li have the form

Anif = /J\[:z:ta)f()dt—l— /@Z)Zta f(t)dt,

and {n; — o} is the spectrum of A, ;. Analogously, the operators

/l/)zt(l

are inverse to the operators La,i(ﬁ(z),ﬁ, ffl,ﬁlg) and have the spectrum {in; — a}. Now we show that
the Borg theorem [16] can be obtained as a corollary of Theorem 9.4.

x
Ea,ifzfﬁ(m,t,a) dt+

Theorem (Borg).  If un; = fini, @ = 1,2, then q(z) = (7(:1:),‘ h= 71, H, = ﬁk
Proof. Let G(z,t) satisfy (9.21). Denote B, ; = (E+ G) ' Aq:(E+G). Then, using (9.22), we obtain

oz, a)

Baif = /M (z,t,a)f dt+ A () /ﬂvi(r{:,a)f(t)dt

where
vi(z,a) = (E + G Yi(z, @), (E+G)f=flz)+ /G(t, x)f(t)dt

Under the conditions of the theorem, the operators Aa ; and B, ; have identical spectra and, consequently,
by Theorem 9.4 we have 1;(z, ) = (E + G*)¢;(z, @). Since
p(z,a) = (Hy — Hz) 7 Az ()t (z, @) — Ay (a)ia(z, ),

we have ¢(z,a) = (E + G*)p(x, o), which, together with (9.22), gives (E + G*) = (E+G)"". This is
possible only in the case where G(z,t) = 0. Consequently, ¢(z) = §(z), h = h, Hy = Hj. The theorem
is proved.

PART 4

NONLINEAR INTEGRABLE DIFFERENTIAL EQUATIONS
AND THE INVERSE PROBLEM METHOD

10. A Mixed Problem for the Boussinesq Equation

We study a mixed problem for the nonlinear Boussinesq equation on the half-line. An algorithm
for the solution and necessary and sufficient conditions of solvability of this problem are obtained, and
uniqueness is proved.

Let us consider the following problem:

2 2
ur = 120y — Ugy ), vy =1 (vm — Uz — guux> , z>0, t>0, (10.1)
ult=0 = uo(x), v]¢=0 = vo(x), uo(z), vo(z) € L(0, 00), (10.2)
u’m:o = Uz (t), Ugglg;:o = U9 (t), 'Ufm:O =V (t), Uml:z;:O = Ug (t) (103)
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System (10.1), after elimination of v(z,t), reduces to the Boussinesq equation

3Utt = Uzgza + 2(u2>wx-

In this section, the mixed problem (10.1)-(10.3) is solved by the inverse problem method. For this we
use the results of the IP for third-order DO’s on the half-line by its WM, obtained in Sec. 2. We note
that in [3, 13, 68, 80}, using the IP for second-order equations, evolution of spectral data for difference
and differential nonlinear equations on the half-line is obtained, and in [21, 47] the Boussinesq equation
on the line is studied by the inverse scattering method.

Let D = {(z,t) : © > 0, t > 0}, and let J, be the set of functions z(z,t) such that functions
gi+k
z(z,t), 0 < j+ 2k < n, are continuous in D, integrable on the half-line z € (0,00) for any fixed

OxI Otk

I
t>0, and z (%) € L£(0,00). We shall write {u(z,t),v(z,t)} € M, if u(z,t) € J3, v(z,t) € Jo. We
denote by A;;, Bij, ..., elements of matrices A, B, ..., where ¢ is the number of the row, and j is the

number of the column.

10.1. Auxiliary statements. Let {u(x,t), ’u(a:,t)} € M. For a fixed £ > (), we consider the DE with
respect to T

"

ly=y" +uy +vy =My =py. (10.4)

Let ®(z,t,A) = [@g_l)(m,t, ’\)]jk:ﬁ’ where O (z,t,A) is the solution of (10.4) under the conditions

<1>§j‘1)(0,t,A) =0jp, j = 1,k, ®p(2,t,\) = O(exp(prk,:ﬁ)), x — co. Here 1), are the roots of the equation
r3 —1 =0 such that

Repry < Repra < Reprs. (10.5)
We set (¢, \) = &(0,¢, A), i.e.,

M (1, ) = [ (1, 1] My (1, 0) = by (5 < b), (10.6)

J=1,8
where My, (¢, A) = ‘IJéj_l)(O,t, A), k < j. Functions IMy;(¢, ) are the WF’s, and the matrix (¢, \) is
the WM for [.
Let 900* = M1, o7 = <I>1<I>;+l —®; 1@, j =1,2. It is clear that the functions ®* are solutions of
the equation
IFz==2""— (uz) + vz = Mz
k41

Forﬁxedt>0,k:f3,j:{ 5

} p= [i;—k} we consider the functions

z/)k(.r,)\)——-<¢k1(m,/\)71/1;€2(x,)\)>: @j(x,t,)\)q);(:ﬂ,t,)\),—/@;(s,t,)\)@;(s,t,/\)ds :

where [-] denotes the greatest integer in the number. In {103], the following completeness theorem is
proved.

Theorem 10.1. If

Il
[y
o

/Q/Jk(:lf, N f(z) fzr=0, k=1,3, (10.7)
0

fx) = (fi(2), f2(2))" € £(0,00),
then f(z) =0 a.e.

414



Let us now denote

G($7t7/\) = O O ]_ 5 F(:E,t’ )\) :Z >\—'U_I_ %u.’t _%u O ,
A—v —u 0 2Uge — Vg A—v+ Fug —1u
Q=G—F,+GF - FG, q:[Ql,Qz]T,
2 2
Q1 — Ovy +1 (UIZE - ‘?))‘ua:a:x - guur> ) Q2= —us + ’11(2'Uw — um)
Then

0 0 0

Qz,ty=10 0 0],
Q1 Q2 0

i.e., system (10.1) is equivalent to the equality @ = 0. We define the matrices W (z,t,\) and S(z,t, \)
from the relations

W, =Gz, t, )W,  Wseo = E, (10.8)
St = F(.T,t, /\)S, S‘t:() = E, (109)

where E = [0;5]; ;13 is the identity matrix. Then

®(x,t,A) = Wz, t, )M(E, N). (10.10)
Consider the matrices
OOt \) = (zm:(t, ) + I (¢, ) FO(t, /\))Dﬁ(t, N, FO(t,\) = F(0,¢ ), (10.11)
d(w,t,\) = F(t, \) — /Wl(s,t, NQ(s, t)W (s, t, \) ds, (10.12)
0
C(z,t,\) = C°(t, \) —/(D_l(s,t, NQ(s,1)®(s,t,\) ds. (10.13)
0

Lemma 10.1.  The following equality holds:

Oy (x,t, ) = Fz,t, \)®(z, t, \) — ®(x,1, \)C(x,t, \). (10.14)
Proof. By virtue of (10.8), we have (Wt —FW)w -G(W;—FW) = QW, (Wt —FW) lx:O = —FO(t, \).
Consequently

Wiz, t, ) = F(z, t, YW (z,t,X) = W(z, ¢, N)d(z,t,)\). (10.15)

Hence, according to (10.10), we obtain (10.14).

Lemma 10.2.  The following relations are valid:

o0

CO,(1,3) = (~1) / szl t, Ng(z, ) dzr,  1<j<k<3, (10.16)
4]

where v = (Yr1,v),), k=1,3.
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Proof. Rewriting (10.13) in coordinates and using properties of the functions ®;, we obtain in particular
that with fixed 7, A

Cig(2,t,0) = 0(1), k=zji  Cualw,t,N) = O(exp(plr = r2)z)), 200,  (107)
Ciiz,t,A) = C,?j(t, M)+ (=1)F /<pk+j_2(s,t, A)g(s, t)ds, 1<j<k<3, (10.18)
0
and
k
(P,ij_l)(x,t, A =pt* Z (prm)’ 1 exp(prmzl:)(akm +0o(1)), [r|lz = 00,  @mm # 0.
m=1

Now, by virtue of (10.14),

3 3
) O (i -
3 V(@ t, \)Crila,t,A) = —aqﬁg Dt )+ Y Fim(,t, V@ V(2,1 0).

m=1 m=1

Hence, using (10.17) we calculate with fixed ¢, A (Im A # 0)
lim Cgj(z,t,\) =0, Jj<k.

T—00

Together with (10.18) it implies (10.16). Lemma 10.2 is proved.

0
Rewriting (10.11) in coordinates, substituting into (10.16) and solving with respect to é;imjk(t, A),
we obtain ’
3—j
4 _ FO 0 5.0 FO
57;93?]-1@ - Z imjﬂ'*””( kgtm — Fjjem MMk + J'2F1,2+m( - M3 + m12m23)>
’ m=0

- (10.19)
+ (—l)k/ (¢rtj—2 — Ok—j 231 )qdz, 0<i<k<3.
0

10.2. Solution of the problem (10.1)-(10.3). In the following theorem evolution of the WM with
respect to t is obtained.

Theorem 10.2. Let {u(z,t),v(z,t)} be the solution of the problem (10.1) — —(10.3). We denote
U3 (7, 1) = Ugg| o and fm?k(/\) = M;%(0, A) are the WF for {uo(z), vo(z)} and

r=

~ Sui (¢) 0 1
F(t,\) =i | A—vi(t) + 3ua(?) —3u(t) 0 : (10.20)
Zuz(t) —wa(t)  A—ovi(t) + Suat) —1ui(?)

Let the matriz R(t,\) be the solution of the Cauchy problem

Ri(t,\) = =R(t, ) F(t, \), R| E. (10.21)

t=0
We define
Ak(t7 >‘) = RSk?(t7 )‘) - mgg(/\)R2k’(t7 /\) + (Sn(l)Z(/\)mgS()‘) - m(l)s()‘))le(t3 )‘)’

(10.22)
Ak (t, X) = det [ Byp(y, A) = T3 (A) Ra(t, V)]

Jj=2,3;p=m,k
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Then

Aqs(t, A) Aoy (t, A)

A2(t7 )‘)
£A) = =0 g ) = 22 g 5 A) = — . (1023
) = ~ ~ ~ .
—8—t9ﬁjk = Z D j+m (Fk,j+m — FjomMs 4 852 F1 24m ( — Dz + ‘mu?mzs)), 0<j<k<3.
=0 (10.24)

Proof.  Since {u(z,t),v(z,t)} is the solution of (10.1)—(10.3), then Q(z,t) =0, q(z,t) =0, F(¢,\) =
FO(t,\). Consequently, by virtue of (10.12)-(10.16), we have

Ci;(t,A) =0, 1<j<k<3, (10.25)
Wiz, t,A) = F(z, t, VW (x, t,\) — W(z,t, \)F°(t, \), (10.26)
Oy, t, N) = F(z,t, \)®(x,t,\) — ®(x, £, \)CO(t, ). (10.27)
It follows from (10.26), in accordance with (10.9), (10.10), and (10.21) that
Wiz, t,\) = S(z, t, VW (z,0,)R(t,\) and ®(z,t,A) = S(z,{,\)®(x,0,\)B(t, ), (10.28)
where
B(t, A) = (0, ) R(¢, \)M(¢, N). (10.29)

Differentiating (10.28) with respect to ¢ and comparing with (10.27), we obtain
Bi(t,\) = =B(t, \)C°(t, \), B(0,\) = E.

Hence, from (10.25) we find By;(t,A) = 0, j < k. Rewriting now (10.29) in coordinates for j < k
and solving with respect to 9,.(¢, \), we obtain (10.23). Equalities (10.24) follow from (10.19), since
FO>t,\) = 17“(15, A), q(x,t) = 0. We note that (10.24) can be obtained directly from (10.23) by differenti-
ating with respect to t. Theorem 10.2 is proved.

Using evolution relations (10.23) and the solution of the IP for equation (10.4), we obtain the
following algorithm for the solution of the mixed problem (10.1)-(10.3).

Algorithm 10.1. For x > 0, ¢ > 0 continuous functions ug(z), vo(z), ui(x), vi(x), uz(z), ve(z) are

given. Let ug(z), vo(x) € L(0,00), ue(0) = u1(0), v5(0) = v1(0), and %ul(t) be continuous. We then:

(1) compute the function us(t) = 2vs(t) + i%ul(t);

(2) find the WF’s 9 (X), 1 <k < j <3 for {uo,vo};
(3) find the matrix R(¢,A) from (10.20) and (10.21);
(
(

4) compute the matrix (¢, A) using formulas (10.6), (10.22), and (10.23);
5) find the functions {u(z,t),v(z,t)} by solving the IP by the method described in Sec. 2.

Let us now find the conditions of existence of the solution of (10.1)-(10.3). The following theorem
shows that existence of the solution of (10.1)(10.3) is equivalent to solvability of the corresponding IP.

Theorem 10.3. Let the matriz M(t, ) be constructed from the given functions u;, vj, j = 0,2,
according to steps (1)~(4) of Algorithm 10.1. We assume that there exist functions {u(z,t), v(z,t)} € M
Jor which M(t, A) is the WM. Then {u(z,t), v(z,t)} is the solution for (10.1)—(10.3).

Proof. From (10.23) with ¢t = 0 we find 9,(0,A) = Sﬁgk(/\)7 J < k. The coeflicients of the DE (10.4)
are uniquely determined from its WM. Then we have u(x,0) = uo(z), v(z,0) = vo(z), i.e., u(z,t), v{z,t)
satisfy the initial conditions (10.2).

417



Differentiating (10.23) with respect to ¢, we obtain (10.24). Comparing (10.24) with (10.19), we
obtain

{%m) + (ha(t) = has(£) Mzt A) + Ta (1, X) = hsa(t) = Ta(t, \) = 0, (10.30)

ha(t) 4+ haa (£)MM2(t, A) + (hss(t) — hi1(£))Mas(t, A) — Ta(t, A) = 0,
where

h(t) = FO(t, \) — F(t, \),

oo

Ti(t,\) = / (cpk(g;,t, A) = 02 Pas(t, Ny (2, ¢, A))q(m,t) dx.
0

Using the above-mentioned asymptotic properties of the functions ®;, we compute with fixed ¢ > 0
My(t, N) = (~17 Hpro;—1) (L +0(1)),  j<k,
Ti(t,A) = o(1), A — .
Then (10.30) yields
haa(t) = haa(t) — hi1(t) = has(t) — h1a(t) = ha1(t) = hai(t) = 0,
and consequently

w(0,t) = ui(t), ux(0,t) = ua(t), v(0,1) = v1(t),

2 a0, = 050) — (52(0,8) = (1) =0, .
7%(.7:, t, \g{z,t)dz =0, E=1,3. (10.32)

From (10.32) we have O
/m z, N f(z)dz + fora(0,0) =0,  k=1,3, (10.33)

T
with fixed ¢ > 0, where f(z) = {Ql(x,t), a—,Qg(iL’,t)} O = Q4(0,t). If |A\| = oo, then from (10.33) one
gets f0 =0, ie., £

/ Gl N f (@) ds =0,  k=T.3.

Hence, by virtue of Theorem 10.1, we conclude that f(z) = 0 or Q1(z,t) = Q2(z,t) = 0. Thus, the
functions {u(z,t), v(z,t)} are the solutions of system (10.1). Finally, since
3}
um(O, t) = 21);5 (O, t) “+ iut(O, t), Us (t) = 2’(/2 (t) -+ iaul (t),
then in accordance with (10.31) we obtain v;(0,t) = v2(t). Theorem 10.3 is proved.

It follows that problem (10.1)-(10.3) has a solution if and only if the solution of the corresponding
IP exists. Necessary and sufficient conditions of solvability of the IP from the WM and algorithm for
the solution are given in Sec. 2
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11. Integrable Dynamical Systems Connected with Higher-Order Difference Operators

For a fixed ¢ > 1 we consider the following Cauchy problem for the nonlinear semi-infinite system
of nonlinear DE’s:

nj(t) = an1(t)ant1,j-1(8) — anyj—1,1(t)anj-1(t), (11.1)
an;(0) = ap;. (11.2)

Here —g+1<j<1l,n>qforj=1,andn>qg—jfor j <0;an-—g=1,0a-11=0, agrj_1,—; =0 for

j =1,q— 1; a2, are complex numbers, and a¥. # 0. System (11.1) is a difference analog for equations
J nj p njy k

like the KAV equation, and it is equivalent to the Lax equation L = [A, L], where A = [an10n j-1]n,5>¢>
L=ty ;-nlnj>q @nj =0 for j > 1 and j < —¢. Thus, integration of the Cauchy problem (11.1)—(11.2)
is connected with investigation of the spectral properties and the solution of the IP for higher-order
difference operators:
q+1
(ly)n = Z An,p—qYntpu—q» an1 #0, ap-q=1 (11.3)
u=0

For g = 1, system (11.1) is the Toda chain, which has been studied fairly completely (see [2, 13, 59,
86] and references therein). Things are more complicated for ¢ > 1, and integrable dynamical systems
connected with higher-order difference operators have not been investigated enough. In this direction,
we mention the papers [14-15], in which important integrable systems are pointed out, connected with
two-term difference operators of the form (11.3) for ¢ > 1, where a,,_; =0 for j =0, — 1.

In the first part of this section, we provide the solution of the IP for the difference operators (11.3).
Here we place no restrictions on the growth of the coeflicients a,; at infinity. As the main spectral
characteristic, we introduce and study the WM for the difference operator. In the second part of the
section, we obtain the solution of the Cauchy problem (11.1)-(11.2) by the inverse problem method. We
find the evolution of the WM with respect to ¢, provide an algorithm for the solution of the problem,
and obtain necessary and sufficient conditions for solvability of the problem (11.1)—(11.2) in the classes
of analytic and meromorphic functions.

11.1. For a fixed ¢ > 1, we consider the difference equation

q+1
(ly)n = Zan,u—qyn+u—q = Aln n=4q, (11.4)
p=0
where ¥ = [ynln>0. an; are complex numbers, a, _, = 1, ap; # 0 for n > ¢, and ap,—; = 0 for

n-q+1<j<qg-1g<n<2-2

Denote by Ar (Mg) the set of analytic (meromorphic) for || < R functions. Let A = |J Ag,
R>0

k:
M = |J Mg, and let A’ be the set of sequences {ay }r>1 such that ap = O ((%) ) for a certain
R>0
§ > 0. We shall write {f,;‘,(t)}k>1 € A (A% if there exists R > 0 such that fi(¢) € Ar (fi(t) # 0,
lt| < R) for all k. a
Let A be the set of polynomials of the form F()\) = Y FA¥, —i < k < j (i,5 > 0 depends on
i

the polynomial). Denote by F the set of linear functionals on A. We call the elements of F generalized

functions (GF’s). If P € F, the numbers Py.; = (A, P) are called the moments of P. Here (-, P)

denotes the action of P. It is clear that the GF P € F is uniquely determined by its moments via the

formula (F(X),P) = 3 FyPyy1, F(A\) € A. It is convenient to represent a GF P € F in the form of
k
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P
the formal series P(A) = ), S\—E A GF P € F can be multiplied by elements of A using the formula

(F(A), GOA)P) = (F(NG(A), P), F()), G(A) € A. Denote by 7 the set of GF’s P € F for which Py = 0
for k <l. If {Py}i>1 € A', we can define the GF o(A,t) = exp(At)P(X) with the moments

R +
O'k(t) = ZPk—’_J-_I
=0 7

Let ®,()\) = [®}(A)]._, n > 0, be the solutions of (11.4) under the conditions

e o]
i ; 1 -,
O, =0int1 (n=0,q—1); ® (N = Z % Lin eFo, n=>4q.
k=0

Here T denotes transposition, i.e., [@%(/\)L — is a row vector. The solutions ®7 () exist, are unique,

:]_’q n
and can be constructed from the relations
q+1
i _ Z i .
k+1,n — Qn,u—q kntu—qo n > q, 1= 17Q7 k > Oa
p=0

(I)gn :Ov n_>_Q7 (Pén:(si,n—i—l’ 271 :O, I“‘Z 17 n:O,q——l

We introduce the WM IM(\) = [i)ﬁi()\)]j:l—a by the formula 9M*(\) = @} (A). The IP is formulated

as follows: given the WM 90t()\), construct the operator [. Denote
Alc = dEt[uin]i,n:m’ Hin = (1, )\LW(A)RTL()\)), (115)

where R,()\) = [Rﬁl()\)]izl—q, Risrm(A) = 0imy1X®, m = 0,¢—1. In particular, poo = 1, pin = 0 for
0<i<n<qg-—1.
Lemma 11.1. Ap #0 for all k > 0.

Denote by M? the set of matrices M(A) = [smi(A)}f:E, I (N) € Fi, for which pgo = 1, pin, = 0 for
0<i<n<g-—L '

Theorem 11.1.  For a matriz M(N\) € M to be the WM for | of the form (11.4), it is necessary and
sufficient that Ay # 0 for all k > 0. The operator | is uniquely determined by the WM and can be found
by the following algorithm.
Algorithm 11.1.  Given a matriz TM()\) € M°.

(1) Construct ¢, 0 < i <k, by the formula

cik = A (=1 7 detlgn]; gt 00 = L.
(2) Compute ayn; by the formula

q

-1
anj = (Cnti—qm+i—q) Cntj—g—1lm—q ~ E , GnpCnj—qntp—q
p=j+1

11.2.  Consider the Cauchy problem (11.1)-(11.2). Let M(\) = [Smi()\)}j:l—q be the WM for the
operator I of the form (11.3), constructed from the initial data {af);}. Tet {93?; }j>1 be the moments

of 9*()\). Suppose that there exists an analytic solution {an;(¢t)} € A at t = 0 of the Cauchy problem
(11.1)—(11.2). We consider the corresponding difference operator | = I(t) of the form (11.4). In particular,
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it follows from (11.1) that an,i(t) # 0, and consequently, Ag(t) # 0, &k > 0. In the following theoremn
evolution of the WM with respect to t is obtained.

Theorem 11.2. We have

ML = (A — ago) M -1,
! (11.6)
M = (/\ - aqo)mi - G(H_Z‘_g’lmi—l, 1= ﬂ

Let us now integrate the evolution equations (11.6) with the initial conditions 9t¢(0, ) = M4(\). We

note that in addition to 9M¥(t, \), the functions a.(t), agri—21(t), i = 2,g, in (11.6) are also unknown.
t

Denote B(t) = exp /aqo(s) ds
0

Theorem 11.3. We have

BHML(2,A) = exp(M)TEN) — [ exp (Mt — 7)) B(r) dr, (11.7)

B(OI(E, A) = exp( AT (N) —

/
/

exp (A(t — 7)) B(T)agrio (MM (r, N dr,  i=2g
(11.8)
B = megi’ (11.9)
i—3 4
ag+i-21(t) = | B(t) H%ﬂ’l(t) Z J+L G i=24q, (11.10)
§=0

where {910713 }j>l cA,i=1,q.

Thus, we obtain the following algorithm for the solution of the problem (11.1)-(11.2) by the inverse
problem method.

Algorithm 11.2.  Let {a);}, a); # 0 be given. We then

(1) construct {E)Oﬁ;-}jzp i=1,q;

(2) compute B(t), agii—2,1(t), i = 2,q, by {11.9) and (11.10);

(3) find M (¢, A), i = 1,q, by (11.7)—(11.8), and calculate Ag(t), k& > 0, by (11.5);

(4) construct the functions {an;(t)} by solving the IP with the help of Algorithm 11.1.

Remark. Algorithm 11.2 also works when a,;(t) € M, i.e., in the class of meromorphic functions.

Theorem 11.4. For the Cauchy problem (11.1)~(11.2) to have a solution a,;(t) € M it is necessary and

sufficient that {SUIZ} > € A’ i =1,q. This solution is unique and can be constructed with Algorithm 11.2.
In addition, a,;(t) € Mg if and only if

Ni(t) distmW 5 € Mp, =1,

=

The following theorem gives necessary and sufficient conditions for solvability in the narrower classes
A and Apg.
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Theorem 11.5.  For the Cauchy problem (11.1)~(11.2) to have a solution {an;(t)} € A it is necessary

and sufficient that {zm;i}m €cA,i=14q, and {Ak(t)}k>0 € A% In addition, a,;(t) € Ag if and only
if Mi(t) € Ag, M(1) #0, Ag(t) #0, [t| < R,i=1,q, k> 0.
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