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COHERENT EFFECTS IN RESONANT 
DIFFRACTION: THEORY 
U. VAN BORCK 

Physik-Department t?,15, Technische Universiti~t M~nchen, James-Franckstr.; D-8046 Garching, 
Federal Republic of Germany 

The main results of the kinematical theory and of the 
dynamical theory for resonant diffraction are summarised, 
with special emphasis given to the coherent enhancement 
of the radiative channel and to the suppression of the 
incoherent channels. 

I .  INTRODUCTION 

In nuclear resonance scattering the nucleus is excited by an 
incoming w-quantum and decays afterwards. In the simplest case either 
a ~-quantum is reemitted, which is coherent with the incoming quantum, 
or internal conversion takes place. For low energy resonance transi- 
tions, the probability Wxo for coherent radiative decay is usually 
much smaller than the probability for incoherent decay. 

The question arises, whether this weak radiative decay channel 
of the individual nucleus can be intensified by resonant diffraction 
of w-radiation, where a regularly arranged ensemble of nuclear 
scattering centers is excited in phase /I-9/. An enhancement of the 
coherent channel could be caused by constructive interference in the 
Bragg direction. It can also be expected, that the radiative coupling 
within the regular system of nuclear resonators has strong effects on 
the scattering parameters of the system. 

These two aspects lead to the treatment of the resonant diffrac- 
tion in terms of the dynamical theory. The discussion of this theory 
and its results will have a central place in this paper. At first, 
however, we will have a short look at the enhancement of the coherent 
channel in kinematical diffraction. 

2. ENHANCEMENT IN KINEMATICAL DIFFRACTION 

In the kinematical theory of diffraction, each scattering center 
is acted upon only by the primary wave. Multiple scattering effects 
are neglected. 

If an individual nucleus is excited by an incoming w-quantum, 
the reemitted radiation is directed into the full solid angle. How- 
ever, if n nuclei in a crystal are excited by a w-quantum incident 
in the Bragg direction, the coherently reemitted radiation is colli- 
mated into the forward direction and into the direction of the Bragg 
reflection. In these directions, the peak intensity is enhanced pro- 
portionally to n. The total probability W~kin for the coherent re- 
emission of the radiation is obtained by integrating the diffracted 
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intensity in k-space. In the case of radiation with a broad energy 
distribution like with X-rays and neutrons, this integration is over 
the full size of the diffraction region centered at the reciprocal 
lattice point, which is proportional to ]/n. As a result, there is no 
enhancement of the total diffracted intensity. For M6ssbauer radia- 
tion, however, which is nearly monochromatic, the integration is only 
over a thin disc cut out of this diffraction region by an Ewald 
sphere with well defined radius k. Since in this way the energy dis- 
tribution of the radiation is not sharpened by the diffraction, the 
total coherent reemission probability is enhanced as given by /],6/ 

W kin = W 0 2Nn/(ka) 2 (I) 

Here N is the number of lattice planes in the direction of the out- 
going quantum, k is the length of the wave vector and a the inter- 
planar distance. The coherent decay probability increases with N. 
The incoherent decay probability, by contrast, remains unchanged. 

This enhancement of the coherent channel with respect to the 
incoherent channels is caused by the constructive interference in the 
radiative decay of the collective nuclear excitation of the crystal. 
It corresponds to the Dicke's superradiance of a symmetric state 
/8,19/. This state is here a single delocalised excitation, which 
must be specially selected by the proper in-phase excitation of the 
system of resonant scattering centers by a primary beam incident in 
the Bragg direction. 

The radiative decay channel can be observed in the reflected 
beam. As follows from eq. (I), for sufficiently large N the total 
intensity of a beam reflected by the nuclei of a crystal will be 
larger than the intensity scattered by the same number of individual 
nuclei into the full solid angle. But the enhanced coherent reemis- 
sion probability results also in a speed-up of the radiative decay. 
Thus the enhancement of the coherent decay channel in kinematical 
diffraction means both, an intensity increase and a speed-up in the 
diffracted beam. 

With increasing intensity of the reflected beam, however, multi- 
ple scattering cannot be neglected any longer. Therefore the validity 
of eq. (I) is restricted to very small crystals, where also the en- 
hancement effect remains small. The appropriate treatment for larger 
crystals has to take into account multiple scattering processes, and 
this is done by the dynamical theory. 

3. THE DYNAMICAL THEORY: GENERAL CONCEPTION 

The dynamical theory was developed by Darwin, Ewald and yon Laue 
in the beginning of this century /]0-14/. The impact of multiple 
scattering becomes most evident in a model introduced by Ewald /10/: 
Oscillators, which are placed at the lattice sites, are acted upon 
by all possible radiation waves in the crystal and give rise, in 
turn, to scattered waves. The waves are coupled by the oscillators, 
and the oscillators are coupled by the waves. The main idea now was 
to look for self-consistent solutions of this coupled system in an 
unbounded medium: The oscillators have to sustain just those waves 
by which they are driven. The eigenfunctions of this resonating 
system have to be such, that the incoming and the outgoing waves are 
matched by means of boundary conditions. 



U. van Biirck, Coherent effects in resonant diffraction: theory 221 

The fundamental set of equations of the dynamical diffraction 
theory is given by 

2 ~j Ej = i~ gji Ei (2) 

where E i is the electric field amplitude of the wave in direction i 
and g'i are the scattering parameters from direction i into j, which 
are e~ual to ~2~/V times the coherent scattering amplitude of the 
unit cell with volume V. cj is the deviation of the refractive index 
from unity for the wave in direction j. For simplicity, only one po- 
larisation component is considered. Eq. (2) can be interpreted in the 
following way: All possible waves in the crystal, with directions i 
and amplitudes Ei, generate by coherent scattering (described by gji) 
wavelets into the direction j. The sum of all these contributions 
determines the refractive index of the wave in direction j. The 
refractive index resp. the phase velocity is used as the regulating 
device in order to obtain a self-consistent solution, the eigenvalues 
of which are ~j. The simplest case of eq. (2) is well known: When 
there is no Bragg reflection, the refractive index n is determined by 
the coherent forward diffraction according to n=1+~=1+goo/2. 

In the following the discussion will be limited to the most 
common case, where only one Bragg reflection is activated. Then the 
incoming wave with wavevector k excites only two waves in the crystal, 
a forward wave with wavevector ~o and a reflected wave with wavevec- 
tor ~i=~o+~, where ~ is the reciprocal lattice vector. In this case 
the eigenfunctions are superpositions of these two coherent w~ves, 
which create each other continuously by diffraction: [ko "=- kl]- 
The coherent superposition of these two waves is a new physical 
entity, which is called wavefield or coupled pair state. 

Since the wavefield eigenfunctions are formed by the coherent 
superposition of a wave and its reflected wave, they will always have 
a periodic standing wavefield structure in the direction perpendicu- 
lar to the reflection planes. This structure essentially determines 
the refraction and absorption of the radiation in the crystal. For 
instance, if the scattering is isotropic, the eigenfunctions at the 
exact Bragg position are standing wavefields with nodes in or in 
between the lattice planes. Accordingly, the absorption of these 
wavefields will be anomalously low or anomalously high. 

Up to now the general conception of the dynamical diffraction 
was introduced, which applies for all types of radiation and scatter- 
ing processes, as long as the Bragg condition can be fulfilled. In 
the following the special impact of the nuclear resonant scattering 
process on the dynamical diffraction will be discussed. 

4. NUCLEAR RESONANT DYNAMICAL DIFFRACTION 

Nuclear resonance scattering is a second order, indirect 
scattering process, which proceeds via an intermediate state. The 
existence of this intermediate state has important consequences, 
which make up the appeal of resonant dynamical diffraction /15-25, 
26 (review)/. First of all, the intermediate state can decay via 
coherent and incoherent channels, thereby givingthe possibility to 
study explicitely the ratio of these two decay modes. Secondly the 
intermediate state has a finite lifetime, which leads to distinctive 
time and energy dependences of the scattering process. These char- 
acteristic properties of the individual nucleus will be drastically 
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changed in collective resonance scattering by an ensemble of nuclei 
arranged in a crystal lattice. 

The coherent nuclear resonance scattering parameters for an 
isolated hyperfine transition (El or MI) are given by /23,27/ 

2 x 3 1 1 1 
gji(~E) = .......... C 2 n ..... f-f. P.P. (3) 

~V 2k AE+i ~ +I 21 +l j i j i 
c g 

AE is the distance from resonance in units of half the natural line- 
width. ~c is the internal conversion coefficient, C the Clebsch-Gor- 
don coefficient, n the enrichment and Ig the spin of the groundstate. 
The intranuclear incoherence due to conversion and spinflip is 
described by the factors I/(~c+l) and C 2, the internuclear isotopic 
and spin incoherence by the factors n and I/(2Ig+1). f1 fi is the 
temperature factor and PjPi the polarisation factor B~cause of the 
factorisation of these last two terms and because of the absence of a 
formfactor, the complete nuclear scattering parameter can be written 

g j i ( a E )  = g j  g ( A E )  g i  (4) , 

where gi describes the excitation, gj the deexcitation and g(~E) the 
energy dependence. There is no term in g~i(AE), which directly con- 
nects the directions i and j. This compl~te factorisation is always 
possible in the case of an isolated nuclear hyperfine transition 
/21-23/. Eq. (4) also holds for special cases, when several hyperfine 
transitions coincide, e.g. for antiferromagnetic reflections /23/ 
and in the case of an unsplit Ml-transition for the ~-polarisation 
component of the radiation /15/. In these cases the fundamental set 
of dynamical equations (eq. 2) can be written 

2 ~j Ej = gj g(AZ) ( ~ gi Zi ) (S )  
1 

This set of equations shows, that there exist eigenfunctions 
with eigenvalues Ej=0. They must be built up in such a way, that the 
total amplitude Ae• c for the excitation of the individual nuclei in 
the crystal lattice vanishes completely 

Aexc ~ ~ gi Zi = 0 (6) 
1 

These solutions exist at the exact Bragg position, if eq. (4) is 
fulfilled. Eigenvalues ei=0 mean, that the corresponding wavefield 
travels trough the cryst~l without any refraction and absorption. 
Since the excitation of the individual nuclei is completely cancelled 
in this case, the incoherent decay channels are suppressed as well. 
This is the effect of suppression of the incoherent channels predic- 
ted by Kagan and Afanasev /15/. A sufficient condition for the sup- 
pression effect is, that the nuclear excitation amplitude vanishes. 
Thus the wavefield itself does not have to vanish at the nuclear 
sites. It is sufficient, if the wavefield is constructed in such a 
way, that it is exactly perpendicular to the nuclear hyperfine 
transition oscillators These are circular or linear oscillators for 
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the Am=-1 or Am=O transltlons, respectively. Examples for the resul- 
ting wavefield structures are given in /23/. 
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At first glance it seems contradictory, that diffraction can be 
sustained without excitation of the nuclei. It should be noted, how- 
ever, that the eigenfunctions of the dynamical theory are steady 
state solutions, where no transient effects are taken into account. 
At the exact Bragg position, the collective nuclear resonator system 
has just eigenfunctions which do not excite the nuclei. For a further 
understanding it is helpful to abandon the exact Bragg position for 
a moment and to have a look at the behaviour of diffraction and 
absorption, when the exact Bragg position is approached /28/. Near 
the Bragg position the total excitation amplitude Ae• c does not 
vanish completely and residual resonance absorption takes place. 
Approaching the Bragg position, the excitation amplitude decreases, 
the residual absorption breaks down and the radiation penetrates 
deep into the crystal. The excitation amplitude must vanish to an 
extent, that the total diffraction, summed up coherently over the 
increasing crystal volume, remains constant. This is just the self- 
consistency condition. The excitation of the individual nuclei 
vanishes, but the coherent excitation of the nuclear collective 
remains. The incoherent channels are suppressed, because the exci- 
tation amplitude for the individual nuclei vanishes, whereas the 
diffraction by the collective of nuclei is fully maintained due to 
coherent excitation and coherent decay. Thus dynamical diffraction 
in spite of a vanishing excitation amplitude can be considered also 
as a result of the coherent enhancement of the radiative channel. 

The vanishing of the excitation amplitude is independent of the 
energy distance from resonance. At the exact Bragg position, there- 
fore, the diffracted intensity does not depend on frequency. As a 
consequence, the diffraction is instantaneous. The promptitude of the 
diffraction leads to an alternative interpretation of the suppression 
effect /]9,41/. In the time picture, the incoherent channels are sup- 
pressed, because the coherent excitation of the collective of nuclei 
decays immediately via the coherent channels. The interpretation of 
the suppression effect by means of a standing wavefield with vani- 
shing excitation amplitude, however, is the more general one, because 
it is closely related to the standing wavefield picture widely used 
in the dynamical diffraction theory for X-rays and neutrons. The 
spatial picture seems also to be more helpful for an understanding of 
the interaction of the radiation with the nuclear scattering centers 
in the crystal. 

The temperature dependence of the suppression effect is of 
fundamental interest. It should be expected, that lattice vibrations 
always spoil the effect, because they tend to shift the nuclei into 
the space between the lattice planes, where the nuclear excitation 
amplitude does not vanish. The dynamical theory, however, predicts, 
that at the exact Bragg position the suppression effect is indepen- 
dent of temperature /15/. The excited nuclear level is so extremely 
sharp in energy, that the nuclear excitation by a MSssbauer v-quantum 
can only proceed elastically, i.e. without simultaneous phonon crea- 
tion or annihilation. If the nuclear resonance scattering process is 
to be elastic altogether, also the deexcitation must proceed without 
recoil. For this reason the temperature factor for coherent resonance 
scattering fjfi is a product of an excitation and a deexcitation 
factor (Lamb-M6ssbauer factor for scattering). As discussed above, 
this factorisation leads to eigenvalues ~=0 at the exact Bragg 
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position, in spite of the lattlce vlbratlons. A handwaving explana- 
tion for this surprising result relies on the fact, that the lifetime 
of the intermediate state, which is of the order of 10-?s, is much 
longer than the characteristic times of the lattice vibrations, which 
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are about I0 "13 s. Because of this comparatively long lifetime of the 
intermediate state, the wavefield sees the nuclei only in their time 
averaged positions, i.e. exactly in the lattice planes, where the 
excitation amplitude vanishes /15/. 

The set of dynamical equations (S) has four eigenvalues e o in 
the case of one Bragg reflection. These eigenvalues depend on the 
angular deviation parameter ~ and on the energy distance aE from 
resonance. The full dependence on ~ and aE can be obtained analyti- 
cally, if the set of dynamical equations splits into two subsets 
with separate eigenpolarisations. Then the general expression for the 
eigenvalues ~o for one eigenpolarisation component is given in the 
case of a crystal plate by /15/ 

4~1,2)(~,aE) = (goo+~g11-~a) [ #-((goo+Bg11-B~)2+4B(~goo-D)) (7) 

with a=-sin2@ a@, 8=coseo/COS@1, @i angle between the surface normal 
and the direction i, and D= goog11-glogol- The energy dependence of 
the scattering parameters gli(aE] has been omitted in eq. (7). The 
eigenvalues ~I follow from ~i:~o+~. It should be noted, that the 
eigenvalue ~o=0 corresponding to the full suppression effect is 
obtained at the exact Bragg position ~=0 only, if the determinant D 
vanishes. This condition, however, is always fulfilled in those 
cases, where the scattering parameters can be completely factorised 
according to eq. (4). 

With this knowledge about the wavefield properties inside the 
crystal we are now prepared to discuss the resulting intensities of 
the outgoing diffracted beams. 

5. DIFFRACTED BEAMS: LAUE GEOMETRY 

In Laue geometry, the incoming beam and the outgoing diffracted 
beams are on opposite sides of a crystal plate. Diffraction in Laue 
geometry is especially sensitive to anomalous absorption, because the 
radiation becomes transmitted through the entire crystal. 

Laue diffraction geometry causes the parameter ~ in eq. (7) to 
become positive. In this case the two eigenvalues ~o11, 2J given by 
eq. (7) correspond to anomalously low and anomalously high resonance 
absorption, respectively. The incoming beam excites in the crystal 
two wavefields belonging to these two eigenvalues, which are given by 

ikt'~ I) ikt'E~ 2) 
WF(1)+WF(2)= (E~l)eo+Ell)el)e + <~E(2)-O eo+'(2~l )[I )e (8), 

where EiCI,ZJ ei is the electric field vector of the wave in direction 
i as given in /15/ and t' is the effective crystal thickness t/coseo. 
For instance in the case of isotropic scattering and at the exact 
Bragg position ~=0, the first wavefield has nodes in the lattice 
planes yielding anomalously low absorption, whereas the second wave- 
field has the nodes in between the lattice planes yielding anomalous- 
ly high absorption. Both wavefields travel along the reflection 
planes towards the rear side of the crystal, where they split into 
two diffracted beams: the Laue-reflected and the Laue-transmitted 
beam. In general, each one of these beams is made up by the coherent 
contributions of both wavefields. 
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If the incoming beam is at resonance, the second wavefield is ex- 
tinguished on the way through a thick crystal because of anomalously 
high resonance absorption. In this case the outgoing beams originate 
only from the first wavefield which experiences the full suppression 
of the incoherent channels at the exact Bragg position. Thus the in- 
tensities of the reflected and of the transmitted beams are not redu- 
ced by any resonance absorption. As can be seen from eq. (8), these 
intensities are then determined only by the electric field amplitudes 
Eo lIJ and El {lj, which follow from the scattering parameters gji 
according to the condition, that the total excitation amplitude Aex c 
given by eq. (6) vanishes. In the case of isotropic scattering, the 
intensities of the reflected and the transmitted beams are equal. 
They can, however, strongly differ in anisotropic scattering condi- 
tions /29/. At angular positions slightly Off the exact Bragg posi- 
tion, the suppression effect breaks down, and the intensities of the 
diffracted beams fall off sharply because of residual resonance 
absorption. The angular dependences of the Laue-reflected and the 
Laue-transmitted beams are Gaussians with halfwidths inversely pro- 
portional to the square root of the crystal thickness /15,22/. 

With increasing energy distance from resonance, however, the 
resonance absorption of the individual nucleus decreases strongly 
according to I/(aE) 2. For radiation several linewidths off resonance, 
even a thick crystal becomes transparent and the second wavefield 
corresponding to anomalously high resonance absorption described 
by the eigenvalue ~J2J in eq. (8) begins to contribute to the 
diffracted intensities. The Laue-reflected and the Laue-transmitted 
beams are now composed of the coherent Contributions of the two wave- 
fields. These give rise to pronounced interference effects, the 
so-called Pendell6sungen. The Pendell6sungen depend on several 
parameters like crystal plate thickness, angular deviation from the 
Bragg position and energy distance from resonance /30/. In practice, 
thickness inhomogeneities of the crystal and the finite divergence 
of the primary beam always tend to average the Pendell6sung inter- 
ferences to a certain extent. In this region of intermediate and weak 
resonance absorption, the angular dependence of the Laue-reflected 
beam is still nearly Gaussian. The Laue-transmitted beam shows 
characteristic dark-light and light-dark intensity profiles at energy 
positions below and above resonance, respectively /31/. 

Very far off resonance the resonance absorption can be neglec- 
ted. Both wavefields given by eq. (8) reach the rear side of a thick 
crystal plate nearly without attenuation. At the Pendell6sung maxima 
almost all radiation quanta incident at the Bragg position are di- 
rected into the Laue-reflected beam. This result strongly contrasts 
the scattering by an individual nucleus, where most of the scattered 
radiation is lost into the incoherent channels. This holds also far 
off resonance, because for the individual nucleus the ratio of the 
coherent and the incoherent decay rates is independent of the dis- 
tance off resonance. Far off resonance the excitation amplitude for 
the individual nuclei vanishes because of the large distance from 
resonance. As a consequence, the total absorption vanishes indepen- 
dently of any wavefield structure. But the vanishing excitation amp- 
litude nevertheless leads to a coherent excitation of the nuclear 
collective, and strong diffraction becomes possible /31/. This situa- 
tion far off resonance must be distinguished from the case at reso- 
nance, where the strong resonance absorption is suppressed due to a 
vanishing excitation amplitude connected with a very special wave- 
field structure. 
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6. DIFFRACTED BEAMS: BRAGG GEOMETRY 

In Bragg geometry, the incoming beam and the reflected beam are 
on the same side of the crystal. Due to this diffraction geometry, 
the parameter B is always negative. As a consequence, both eigen- 
values ~o 11,21 given by eq. (7) correspond to anomalously low absorp- 
tion at the Bragg position. 

When the condition Im(e~Zl-~oH))kt' >> I is fulfilled in the 
case of a thick crystal, the incoming beam excites onl~,one wavefield 
in the crystal, which corresponds to the eigenvalue eg i. This eigen- 
value ~2) can become zero at the Bragg position, e.g. in the case 
of isotropic scattering conditions. The wavefield is then constructed 
again in such a way, that the nuclear excitation amplitude vanishes 
in the reflection planes giving rise to the full suppression effect. 
In contrast to the Laue geometry, there is only one diffracted beam 
in the thick crystal case. The angular dependence of the intensity of 
this Bragg-reflected beam shows in resonance an extremely sharp peak 
exactly at the Bragg position /17,32/, where even a reflectivity of 
100% is reached in the case of isotropic scattering. This total re- 
flection in resonant Bragg diffraction was predicted by Trammell /I/. 
The reflectivity becomes total in spite of the fact, that the wave- 
field penetrates infinitely deep into the crystal /28/. Total 
reflection at resonance is therefore also a manifestation of the 
suppression effect /17/. 

At the exact Bragg position, the reflection is total, indepen- 
dent of the energy distance from resonance. In the region around the 
Bragg position, the reflection peaks are strongly broadened in ener- 
gy. The broadening is inversely proportional to the angular deviation 
from the Bragg position. This dependence can be understood by consi- 
dering the increase of the number of properly phased scattering 
centers with decreasing distance from the exact Bragg position. The 
closer to the Bragg position the radiation falls in, the more lattice 
planes are in phase, and the smaller the scattering amplitude or the 
larger the distance off resonance may be without causing a loss of 
reflectivity. 

Refraction plays also an important role in the Bragg geometry 
diffraction. It causes angular shifts of the reflection curves. These 
shifts go into opposite directions at energy positions above and be- 
low resonance, because they are proportional to the real part of the 
coherent forward scattering parameters goo(aE) given in eq. (3). The 
resulting distortion of the reflection intensity profile IBR(~,aE) 
can be recognised in a contour plot /32,41/. 

Especially interesting is the thickness dependence of the re- 
flected intensity. In Bragg geometry the number of reflecting planes 
can be changed by increasing the crystal thickness. The general ex- 
pression for the reflectivity of a crystal of arbitrary thickness 
/17,19/ can be expanded near the exact Bragg position and yields in 
the case of a symmetrical reflection (B=-I) and for isotropic scat- 
tering conditions /1,19/ 

IBR(a=0,AE) ..... ~g9 ..... I 2 (9) 
AE+i(l+r~dy n) 

where F~yn=kt'goo(0)/2. This expression shows, that the reflected 
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intensity IBR is broadened in energy proportionally to the crystal 
thickness. For very thin crystals this broadening is the same as 
given by the ratio W kin/W o given in eq (I) which was obtained ~. Y. �9 , 
from kinematical conslderatlons. Hence eq. (9) confirms the kinemati- 
cal result and shows also its limits: In order to observe the line- 
broadening connected with the coherent enhancement of the radiative 
channel r dvn should at least equal unity. At resonance this 
yields a reflectlvlty of 25%, which certainly requires to take also 
multiple scattering into account and to use the dynamical theory. 

Eq. (9) also holds for very thick crystals, as long as the deviation 
from the exact Bragg position is kept sufficiently small. According 
to eq. (9), the reflectivity reaches 100% at resonance for sufficient- 
ly thick crystals. This fact can be considered as the result of the 
suppression effect. Parallel to the increase of the reflectivity also 
the energy width F~dyn of the resonance peak becomes larger. For 
thickness values, where the reflectivity at resonance already goes 
to saturation, the energy width still increases proportionally to the 
number of reflection planes. This energy broadening can be interpre- 
ted as the result of the enhancement of the coherent decay probabili- 
ty in dynamical diffraction. Again one can realise, that the suppres- 
sion of the incoherent channels occurs simultaneously with the 
coherent enhancement of the radiative channel. 

It should be noted, however, that the discussion given above is 
too much idealised in order to describe the phenomena. With pure 
nuclear reflections, the electronic absorption is usually not sup- 
pressed and limits the penetration of the wavefield into the crystal. 
For this reason the peak reflectivity at resonance and the energy 
broadening are smaller in reality than mentioned above. Furthermore 
there exist no pure nuclear reflections without hyperfine splitting, 
which leads to nuclear interference. For nearly pure nuclear reflec- 
tions, where the electronic scattering amplitude of the unit cell 
vanishes by chance, the interference is altogether constructive /32/. 
For systematically pure nuclear reflections, however, this interfer- 
ence is altogether destructive, because a pure nuclear reflection 
must vanish when all hyperfine transitions coincide. For this reason, 
there is no reflection intensity above and below the region of hyper- 
fine splitting, which therefore limits the effective linebroadening 
/32/. Conversely, the destructive interference between close neigh- 
bouring hyperfine transitions could be used to obtain small re~lec- 
tion linewidths in spite of the strong energy broadening effects in 
resonant Bragg reflection. 

A limiting case of a Bragg geometry reflection is the total ex- 
ternal reflection in grazing incidence, which can be completely des- 
cribed as the diffraction arising in a certain angular region around 
a forward Bragg reflection /19/. Hence the basic features of resonant 
grazing incidence reflection can be extrapolated from the properties 
of resonant Bragg reflection. For a detailed discussion, however, the 
field is beyond the scope of this paper, and only recent progress 
with anti-reflection multilayer films is mentioned /33-35/. 

7. TIME DEPENDENCE OF RESONANT DIFFRACTION 

From the energy dependence of the resonant diffraction discussed 
so far, also the time dependence can be obtained by Fourier transfor- 
mation. These aspects of resonant dynamical diffraction /36/ became 
of interest recently, when the possibility emerged to realise time 
resolution experiments also with the intense primary beams needed for 



228 U. van Btirck, Coherent effects in resonant diffraction: theory 

resonant diffraction. This time resolution can be achieved either by 
a fast shutter system, which instantaneously closes and opens the 
primary beam of a strong conventional MSssbauer source /37/, or by 
using the flashlike puls of a synchrotron radiation source /38/. 
Temporal aspects of resonant diffraction are of crucial importance 
for the filtering of M6ssbauer radiation from the synchrotron radia- 
tion by means of a pure nuclear Bragg reflection /39-4]/. 

In principle, the time response of a single crystal to the 
synchrotron radiation puls can be directly derived from the energy 
response. At the exact Bragg position, the diffracted intensity is 
independent of the frequency, hence the diffraction is instantaneous. 
At small angular deviations from the Bragg position, the reflection 
peaks are stronly broadened, hence the diffraction is considerably 
speeded up. The energy broadening and the speed-up decrease with in- 
creasing distance from the exact Bragg position. The energy distri- 
bution of the diffracted beam is also determined by the energy-time 
correlation. The beam diffracted instantaneously is white. But after 
a short delay, the radiation with a strongly broadened frequency 
distribution has already passed, and a beam of M6ssbauer quanta can 
be extracted from the synchrotron radiation /40/. 

The speed-up in resonant dynamical diffraction occurs parallel 
to a total or a very high reflectivity. Due to the suppression ef- 
fect, there are no absorption losses. This case must be distinguished 
from all other types of apparently accelerated decay or energy broa- 
dening, which can always be obtained by resonance absorption. If for 
instance the w-quanta of a source are observed after they have pas- 
sed through a resonant absorber, the decay of the source appears also 
to be accelerated, because the radiation quanta at resonance, which 
are preferably emitted at delayed times, are filtered out of the 
beam /42/. 

The coherent speed-up also demonstrates a tight correlation 
between the spatial and the temporal properties of nuclear resonance 
scattering /39/. An individual nucleus scatters radiation with a 
characteristic decay time into the full solid angle. The ensemble of 
nuclei in a crystal, by contrast, diffracts the radiation much faster 
into the Bragg direction. With increasing number of reflection pla- 
nes, the Bragg direction becomes more defined, the energy width is 
broadened and the diffraction is speeded up. For an infinitely thick 
crystal, finally, the speed-up is the stronger, the closer to the 
exact Bragg direction the primary beam is incident. 

In detail, however, the time dependence of nuclear resonant 
diffraction is rather complicated. There are different laws for the 
speeded up decay of the collective excited nuclear state depending 
on the angular deviation from the Bragg position and on the time 
elapsed after the initial excitation /40,41/. In addition, there are 
special interference effects like dynamical beats /40,41/ and quan- 
tum beats /43/, which arise because the white synchrotron radiation 
excites a broadened hyperfine transition or several hyperfine tran- 
sitions simultaneously. 

8. SUMMARY 

With resonant diffraction of M6ssbauer radiation, the coherent 
radiative channel is enhanced with respect to the incoherent channels. 
The reflected wave in a single crystal can become so intense, that 
multiple scattering leads to dynamical diffraction. In the dynamical 
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theory for nuclear resonant diffraction, the general concept of dyna- 
mical diffraction is applied for the special case of a second order, 
indirect scattering process. The existence of an intermediate state 
in this scattering process facilitates strong incoherent decay, which 
gives the possibility to study explicitly the ratio of the coherent 
and the incoherent scattering channels. In the diffraction a~ reso- 
nance, a standing wavefield is built up with vanishing amplitude for 
the excitation of the individual nuclei, thus leading to a complete 
suppression ~ of the incoherent channels, whereas the coherent excita- 
tion of the collective of nuclei and hence also the diffraction are 
fully maintained. The suppression effect results at the exact Bragg 
position in a total transmission or in a total reflection in the 
Laue or in the Bragg geometry, respectively. The existence of the 
intermediate excited state also leads to pronounced energy and time 
dependences of the scattering process. In resonant diffraction, an 
angular dependent energy broadening arises in the region of the Bragg 
reflection, which is directly correlated with an angular dependent 
speed-up in the time dependence. 
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