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In pharmacokinetic data analysis, it is frequently necessary to select the number o f  exponential 
terms in a polyexponential expression used to describe the concentration-time relationship. The 
performance characteristics o f  several selection criteria, the Akaike Information Criterion (A IC), 
and the Schwarz Criterion (SC),  and the F test (a=O.05), were examined using Monte Carlo 
simulations. In particular, the ability o f  these criteria to select the correct model, to select a model 
allowing estimation o f  pharmacokinetic parameters with small bias and good precision, and to 
select a model allowing precise predictions o f  concentration was evaluated. To some extent inter- 
relationships among these procedures is explainable. Results indicate that the F test tends to 
choose the simpler model more often than does either the A IC  or SC, even when the more complex 
model is correct. Also, the F test is more sensitive to deficient sampling designs. Clearance 
estimates are generally very robust to the choice o f  the wrong model Other pharmacokinetic 
parameters are more sensitive to model choice, particularly the apparent elimination rate constant. 
Prediction o f  concentrations is generally more precise when the correct model is chosen. The 
tendency for  the F test (a=O.05) to choose the simpler model must be considered relative to the 
objectives o f  the study. 

KEY WORDS: Akaike information criterion (AIC) ; Schwarz criterion; F test; model selection. 

I N T R O D U C T I O N  

Sums of  exponent ia ls  are often used in pharmacokinet ics  to pro- 
vide compar tmenta l  (1) or n o n c o m p a r t m e n t a l  (2,3) descriptions of  
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concentration-time profiles. In noncompartmental methods the fitting of 
exponential equations to data can be considered as a type of smoothing 
procedure. When using sums of exponentials the data analyst is often con- 
fronted with choosing between two or more possible descriptions, for 
example, a bi- vs. a triexponential equation. Boxenbaum et al. (4) described 
the use of the F test to choose among models with differing numbers of 
parameters and apply it to the choice of model for the disposition of isonia- 
zid. Yamaoka et al. (5) introduced the Akaike Information Criterion (AIC) 
(6,7) into pharmacokinetic data analysis. They compared the performance 
of the AIC to the F test and found that the two methods agree for the 
examples they used. The Schwarz Criterion (SC) (8) can similarly be used 
in model selection. It has a Bayesian derivation that has been questioned by 
at least one author (9). Imbimbo and colleagues (10) summarized both the 
subjective and objective methods used to assist in model selection, including 
the AIC and SC and F test, and offered a new criterion that chooses a 
model based on the area between the confidence bounds for model-predicted 
concentrations. In addition, this group also investigated the influence of the 
number of sampling times and the difference between the values of exponen- 
tial constants on the performance of the criteria (11). 

Independently, we have also compared the performance of the AIC, 
SC, and F test using a number of performance measures. Our findings com- 
plement and extend those of Imbimbo et al. (10,11) and illustrate that appli- 
cation of any of the three criteria can lead to the choice of the wrong 
model, result in biased or imprecise parameter estimates, or result in poor 
predictions of true concentrations. 

M E T H O D S  

Six cases are studied using Monte Carlo simulation. Three cases (I-III) 
explore the selection of a mono- vs. a biexponential model, and two cases 
(V-VI) explore the selection of a bi- vs. triexponential model. An additional 
biexponential case (IV) is studied. 

In describing models the following symbolism is used 

N 

f ( t )  = • A i e  -'~t 
i - - I  

where f ( t )  is the predicted concentration, t is time, N is the number of 
exponential terms and the A;s and Ais are the linear and exponential con- 
stants, respectively, with ~i> J ~ i + l  �9 

For Cases I-III, the linear constants for the biexponential model, A~ 
and A2, are fixed at 0.7 and 0.3. The slowest exponential constant, A2, is 
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fixed to 0.693, so that time units are expressed in the number of half-lives 
of this terminal log-linear slope. The value of 2~1 is twice (Case I), three 
times (Case II), and six times (Case III) the value of ~.2. In each case the 
parameters of the simpler monoexponential model are chosen so that the 
first two moments of the disposition function are the same as those for the 
biexponential model (12). For Case IV, A~, A 2 ,  ~ l ,  ~2 are set equal to 0.950, 
0.05, 6.93, and 0.693, respectively. 

For Case V, the A~, A 2 ,  and A3 values for the triexponential model 
are set to 0.7, 0.2, and 0.1, respectively, and 23 is set to 0.693. The ~2 
value is three times 23, and ,~ is three times Aa. For Case VI, the &2 
value is five times ,~3, 2~ is five times 22, and. the Ai values are determined 
so as to sum to 1 while each exponential term of the model has equal 
area, i.e., 

A~ A2 A3 3 
. . . .  ; ~ Ae=l 
/]'1 ~ '2  /~3 i = I 

For each triexponential model, a competing biexponential model is deter- 
mined so that its moments are equal to those of the triexponential model 
(12). These cases are summarized in Table I and Fig. 1. Cases I, II, and V 
are somewhat pathological in that in each case the differences between the 
exponential constants are not large. 

A standard sampling design of 16 points is used for all cases, and 
various modified designs consisting of fewer data points are examined in 
conjunction with specific cases. The standard design and its modifications 
are summarized in Table II. 

Table I. Summary  of Cases 

Exponential 
Case terms A 1 .Jl.i A2 ~2 A3 ~3 

I 1 0.885 0.947 
2 0.7 1.39 0.3 0.693 

II 1 0.752 0.977 
2 0.7 2.08 0.3 0.693 

III 1 0.543 0.902 
2 0.7 4.16 0.3 0.693 

IV 2 0.950 6.93 0.05 0.693 

V 2 0.745 3.79 0.127 0.707 
3 0.7 6.24 0.2 2.08 

VI 2 0.949 6.79 0.032 0.702 
3 0.82 17.3 0.15 3.47 

0.1 0.693 

0.03 0.693 
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Fig. 1. The concentration-time profiles for 
the two models used for each case (I-VI) are 
illustrated. The solid line represents the 
simpler model and the broken line the more 
complex model. The logarithmic scale makes 
the models appear more similar than they 
really are. 

Stat is t ical  e r ro r  is s imula ted  accord ing  to the  a p p r o x i m a t e  cons tan t  
coefficient o f  va r i a t ion  (CV) er ror  mode l  

In y = l n f ( t )  ~- e 

This  mode l  was chosen because  it p rov ides  a g o o d  descr ip t ion  o f  the 
measu remen t  e r ror  inc luded in ~, genera ted  by  mos t  c h r o m a t o g r a p h i c  ana-  
lyt ical  methods .  S imula t ion  o f  e was real ized using the B o x - M u l l e r  m e t h o d  
(13) for  p roduc ing  p s e u d o r a n d o m  n o r m a l  deviates.  The  s t a n d a r d  dev ia t ion  
o f  e was fixed to 0.15. Each  case and  design was repl ica ted  with  250 da t a  

sets. 
The  non l inea r  regression analysis  p r o g r a m  uses o rd ina ry  least  squares  

to fit the log - t r ans fo rmed  s imula ted  d a t a  (ln y)  to compe t ing  models .  A 
M a r q u a r d t  sea rch  a lgo r i thm (14) was used with  convergence defined as a 
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Table  II .  S u m m a r y  of  Sampl ing  Designs 

435 

Sampling points 

Design 0.02 0.05 0.08 0.10 0.12 0.17 0.25 0.30 0.50 0.75 0.1 1.5 2 2.5 3 3.5 4 5 

S X X X X X X X X X X X X X X X X 
l X X X X X X X X X X X X X X 
2 X X X X X X X X X X X X X X 
3 X X X X X X X X X X X X X X 
4 X X X X X X X X X X X X 
5 X X X X X X X X X X X X 
6 X X X X X X X X X X 
7 X X X X X X X X 
8 X X X X X X X X X X X X 

change in all parameter values of 0.1% or less. Initial estimates were chosen 
using a grid search of the parameter space based on the IMSL subroutine 
ZSRCH. 

The expressions for the model selection criteria are 

AIC= N ln SS + 2p 

SC=Nln SS +p In N 

F ratio = SS;- SS~ dfk 
SS~ df;- df~ ; with df; > dfk 

where N is the number of  design points, p is the number of  estimated param- 
eters, SS is the sum of  squared residuals, and df= N - p  is the degrees of  
freedom. The subscripts j and k represent the simpler and more complex 
models, respectively. 

When the AIC and SC are applied, the model producing the lowest 
value is chosen. For  the F test, the F ratio is compared to a table of  critical 
values for the F distribution with (df;-dfk), df~ degrees of freedom. Each 
critical value corresponds to a so-called Type I error, a. For  all applications 
of the F test described here a is 0.05. 

The performances of the AIC, SC, and the F test are evaluated using 
(i) percentage of  correct model selection; (ii) mean (parameter estimation) 
error (ME) and mean absolute (parameter estimation) error (MAE) 
expressed as a percentage of the true value of the parameter: clearance (CL), 
steady state volume of  distribution (Vss), terminal slope (%z), and mean 
residence time (MRT); and (iii) prediction error as measured by the mean 
overall sampling times of the squared deviations between natural logarithms 
of  the predicted and true concentration values. 
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Since, for all models, unit dose was assumed, clearance is calculated as 

1 
C L -  

2 N Ai/j~2i 
i = 1  

Vss = 
(E;~, A~/ ~)  ~ 

M R T =  Vss /CL  

RESULTS 

Selection of  the Correct Model  

The comparative performance of the three criteria in selecting the cor- 
rect model is illustrated in Table III. The F test (a--0.05) is biased toward 
selection of the simpler model. The biexponential equation for Case I had 
exponential constants with a ratio of only 2 and presents a difficult model 
selection problem. Yet, the AIC and SC perform reasonably well when the 
standard design is used and the biexponential is the correct model (Table 
III). However, a less complete sampling profile degrades the performance 
of these criteria (Case I, design 1). When the ratio of exponential constants 
is increased to 3 (Case II), the performance of the F test improves. However, 
the performance of the F test is seriously compromised when the biexponen- 
tial model is correct and deficient sampling designs are used. Overall, the 
AIC and SC much more often select the correct model in these situations 
(Table III). For Case III the ratio of exponential constants is further 
increased to 6. With the standard design all criteria perform reasonably well, 
with the AIC exhibiting the worst performance when the monoexponential 
model is correct. However, it is once again possible to seriously degrade the 
performance of the F test when the biexponential model is correct by restrict- 
ing the design points. A similar pattern is revealed for Case IV simulations 
where the ratio of the exponential constants is 10. The AIC and SC continue 
to perform well, whereas the F test can fail to select the correct model. The 
relative performances of the three criteria are similar when applied to the 
discrimination between bi- and triexponential models. When the exponential 
constants have ratio 3 (Case V), none of the criteria perform well when 
the more complex model is correct. When the ratio is increased to 5, the 
performance of the AIC and SC in this respect improves, but the F test still 
exhibits very poor performance. For Case III, designs 6 and 7, and for Case 
IV, all designs, the fits to the biexponential model when the monoexponential 
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Table IIL Percentage of Converged Replications for Which the Correct Model Was Chosen ~ 

Nonconverged 
replications % correct selection 

Sampling Correct Converged with correct 
Case design b model" replications model AIC SC F test 

I S 1 104 0 80.8 88.5 100.0 
2 222 28 79.3 71.6 11.3 

1 1 88 0 75.0 86.4 100.0 
2 171 79 53.6 40.0 0.6 

II S 1 146 0 80.1 93.2 100.0 
2 250 0 99.6 99.6 76.0 

1 1 147 0 92.5 94.6 100.0 
2 228 22 95.2 92.5 2.2 

2 1 115 0 87.0 88.7 100.0 
2 249 1 100.0 100.0 18.5 

3 1 105 0 87.6 94.5 100.0 
2 241 9 99.2 98.8 13.3 

4 1 121 0 78.5 84.3 I00.0 
2 217 33 95.9 93.5 0.0 

5 1 78 0 84.9 88.5 100.0 
2 237 13 99.2 97.5 0.0 

III S 1 128 0 85.9 94.5 100.0 
2 250 0 100.0 100.0 98.8 

6 2 243 7 100.0 100.0 0.0 
7 2 227 23 97.8 97.8 0.0 

IV S 2 250 0 100.0 100.0 100.0 
4 2 250 0 100.0 100.0 100.0 
8 2 250 0 100.0 100.0 0.0 

V S 2 202 0 92.1 95.0 100.0 
3 184 66 37.5 26.1 0.0 

I 2 154 0 93.5 95.5 100.0 
3 153 97 30.1 20.3 0.0 

VI S 2 132 0 85.6 93.2 100.0 
3 225 25 97.8 95.6 4.4 

1 2 143 4 88.1 91.0 100.0 
3 218 32 95.3 92.2 0.0 

2 2 119 0 83.2 88.2 100.0 
3 215 35 75.3 68.4 0.0 

"A converged replication is one for which convergence 
incorrect models. 

hSee Table II. 
"Refers to number of exponential terms, See Table I. 

is achieved with both correct and 

is c o r r e c t  o f t e n  d i d  n o t  c o n v e r g e .  T h e r e f o r e ,  n o  r e su l t s  f o r  t h e s e  s i t u a t i o n s  
a re  i n c l u d e d  in  T a b l e  I I I .  

I n s p e c t i o n  o f  T a b l e  I I I  i n d i c a t e s  t h a t  w h e n  t he  m o r e  c o m p l e x  m o d e l  is 

c o r r e c t ,  t h e  A I C  se lec ts  i t  m o r e  o f t e n  t h a n  d o e s  t he  SC,  a n d  w h e n  t h e  s i m p l e r  

m o d e l  is c o r r e c t ,  t h e  S C  se lec ts  i t  m o r e  o f t e n  t h a n  d o e s  t h e  A I C .  T h i s  

b e h a v i o r  f o l l o w s  f r o m  t he  f ac t  t h a t  in  al l  d e s i g n s  s t u d i e d ,  f o r  a n y  d a t a  set,  
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if the SC (AIC) selects the more complicated (simpler) model, then so does 
the AIC (SC). This fact in turn follows from the proposition proved in the 
Appendix. With this proposition, results concerning the F test along with 
the other two criteria also are explainable. Namely, when the more complex 
model is correct, these other criteria select this model more often, and when 
the simpler model is correct, the F test selects it more often than do the AIC 
or SC. 

Accuracy and Precision of Parameter Estimates (Table IV) 

In pharmacokinetic data analysis the choice of the correct model may 
not be of greatest importance. Rather, accurate estimation of one or more 
pharmacokinetic parameters, or good predictions o f  concentrations under 
similar dosing circumstances may be the eventual goal. To assess the per- 
formance of the three model selection criteria for these goals, the bias and 
precision of various estimated parameters and the mean squared prediction 
error for the logarithm of true concentration were determined. In the follow- 
ing presentation of results for parameter estimation, specific mention is made 
of situations for which one or more criteria yield a ME or MAE greater 
than 10% (Table IV). Situations not described are those for which the ME 
and MAE are both less than 10%. 

Clearance 

For Cases I, II, and III clearance is accurately and precisely estimated 
using either the correct or incorrect model and for all designs tested. There- 
fore, model selection has little influence on the estimation of clearance. 

For Case IV, design 8, the F test yields highly biased estimates of 
clearance (ME= 67%) because the initial exponential phase is essentially 
ignored. The clearance estimates based on AIC and SC are unbiased (ME = 
0.3%), and of modest precision (MAE= 9.6%). 

For Case V, accurate and precise estimates of clearance are provided 
by either model and, therefore, model selection has no influence, in spite of 
the fact that the F test always chooses the wrong model when the triexponen- 
tial model is the correct one. 

For Case VI, accurate and precise estimates of clearance are provided 
by either model for designs S and 1. However, for design 2, the clearance 
estimate based on the F test is biased (ME= 13.3%) when the triexponential 
model is correct. The clearance estimates based on AIC and SC are unbiased 
( M E = - I . 4  and -0.6, respectively) but relatively imprecise (MAE= 13.9 
and 14.3%, respectively). 

Overall, estimation of clearance is robust to model selection. Only poor 
designs yield biased estimates of clearance when the simpler model is chosen 
by the F tes t  over the more complex correct model. 
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Table IV. Bias and Precision of Parameter Estimates (%)~ 
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Mean error Mean absolute error 
Correct 

Case Design model AIC SC F test AIC SC F test 

Clearance 
IV 8 2 -0.3 -0.3 66.6 9.6 9.6 66.6 
VI 2 3 -1.4 -0.6 13.3 13.9 14.3 13.5 

Steady state volume of distribution 
I 1 1 15.7 12.8 0.8 18.9 16.4 4.9 

2 47.9 34.8 -6.5 56.5 44.7 8.0 

II 1 2 38.3 38.2 -9.0 43.8 43.9 12.5 
3 2 13.8 13.8 -2.8 18.6 18.6 9.3 
4 2 20.4 20.6 -6.4 29.2 28.9 7.7 
5 2 18.8 18.7 -4.2 24.3 24.3 6.5 

III 7 2 17.4 17.4 -5.4 28.3 28.3 8.5 

IV 8 2 1.2 1.2 196.0 17.8 17.8 96.0 

VI 1 3 2.1 2.1 -0.9 11.9 11.9 6.8 
2 2 -1.9 -2.0 1.0 13.0 12.8 10.3 

3 3.1 4.5 28.0 26.6 27.3 28.2 

Terminal slope 
I S 2 6.0 8.4 31.7 25.7 26.3 34.6 

1 2 16.4 22.4 44.2 40.7 41.9 45.0 

II S 2 -5.7 -5.7 4.0 14.0 14.0 20.1 
1 2 0.6 1.2 50.4 26.8 27.4 51.7 
2 2 -5.0 -5.0 27.3 13.6 13.6 31.8 
3 2 -7.1 -7.0 36.6 21.1 21.1 42.7 
4 2 -2.2 -1.5 48.9 26.0 26.7 48.9 
5 2 -8.0 -7.4 44.9 23.7 23.8 44.9 

III 6 2 -3.0 -3.0 30.6 11.2 11.2 30.6 
7 2 -8.0 -8.0 50.0 24.0 24.0 50.0 

IV 8 2 -0.6 -0.6 37.4 4.9 4.9 37.4 

V S 3 2.0 4.2 10.1 12.8 12.4 11.1 
1 2 - 3 . 7  - 3 . 4  - 2 . 2  11.9 11.8 11.I 

3 6.6 8.8 16.1 21.0 20.7 18.8 

VI S 3 -3.1 -2.6 14.6 8.5 8.7 15.3 
1 3 -4.8 -4.1 27.7 16.5 16.9 27.8 
2 3 -3.7 -2.8 8.8 10.7 10.9 10.2 

~Only situations with one or more values greater than 10% are shown. 

Steady-State Volume of Distribution 

F o r  C a s e  I, d e s ign  1, m o r e  p rec i se  e s t i m a t e s  o f  Vss are  o b t a i n e d  f r o m  

the  m o d e l s  se lec ted  by  the  F tes t .  B o t h  the  A I C  a n d  SC resu l t  in b i a s e d  

( M E = 1 3 - 4 8 % )  a n d  i m p r e c i s e  (MAE= 16 -57 % )  Vss e s t i m a t e s  f o r  th is  

des ign .  T h e  p e r f o r m a n c e s  o f  t he  A I C  a n d  SC are  w o r s e  fo r  the  s i t u a t i o n  
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where the biexponential model is correct than for the situation where the 
monoexponential is correct (Table IV). 

For Case II, designs 1, 3, 4, and 5, when the more complex model is 
correct the AIC- and SC-selected models yield Vss estimates that are much 
less precise (MAE= 19-44%) and more biased (ME= 14-38%) than the Vss 
values based on F test-selected models (MAE= 6-12%, ME= 3-9%). These 
designs have one or two of the latest samples deleted. Designs S and 2 did 
not have missing data at late times, and model selection exhibits little influ- 
ence on either bias or precision of Vss estimates. 

For Case III, designs S and 6, there are no important effects of the 
selection criteria on bias or precision of Vss estimates. For design 7, with 
the correct model being the more complex, the AIC- and SC-selected models 
yield Vss estimates that are biased (ME= 17.4%) and imprecise (MAE= 
28%), while the F test-selected models yield little bias (ME=-5%) and 
reasonable precision (MAE= 8%). 

For Case IV, design 8, there is a large bias for Vss based on the models 
selected by the F test (ME= 196%). This results from choosing the simpler, 
incorrect model. The AIC- and SC-selected models result in virtually no bias 
in Vss (ME= 1.2%), but precision is rather poor (MAE= 17.8%). 

For Case V, there is no major influence of selection criterion on the 
estimate of Vss. 

For Case VI, designs S and 1, the results are generally similar to those 
described for Case V. For design 2, when the triexponential model is correct, 
the biexponential model selected by the F test yields biased estimates of Vss 
(ME= 28%), while the models selected by the AIC and SC are unbiased 
(ME= 3 and 4%, respectively). Using each of the criteria, estimates of Vss 
are imprecise (MAE= 27-28%). 

Mean Residence Time 

The results for estimates of the MRT are essentially the same as those 
for Vss. 

Terminal Slope 

For Case I, design S, when the biexponential model is correct, the F 
test yields biased estimates of ~.z (ME = 32%), while the AIC- and SC-based 
estimates are less biased (ME = 6-8%) but still imprecise (MAE=26%). 
Results for design 1 are qualitatively similar, but the biases for all selection 
criteria are greater (Table IV). 

Case II, designs 1 through 5, all yield very biased estimates of Z~ (ME= 
27-50%) when the F test is applied and the biexponential model is correct. 
While corresponding models based on the AIC and SC yield 2~ estimates 
with much less bias, they are still relatively imprecise (MAE= 14-27%). 
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Case III, designs 6 and 7, Case IV, design 8, Case V, designs S and 1, 
and Case VI, designs S and 1, provide results that are qualitatively similar 
to those described for Case II, designs 1-5 (Table IV). 

In general, choice of the simpler model yields biased estimates of  the 
terminal slope when the more complex model is correct. This occurs most 
frequently with the F test. 

Predict ion o f  True Concentrat ions  

The prediction of true concentrations, as measured by the mean squared 
difference between the logarithm of the predicted and the logarithm of the 
true concentration, is notably worse when the F test chooses the simpler 
model but the complex model is correct in the following situations: Case II, 
all designs; Case III, designs 6-7; Case IV, design 8; and Case VI, designs 
S and 1 (Table V). "Notably worse" here means a two-fold or more differ- 
ence in the mean squared error. For  Cases I and V, the predicted and true 
concentrations are very similar, and model choice has little influence on this 
measure of performance. 

DISCUSSION 

Our results indicate that when exponential models are distinct and sam- 
pling designs are good, all three criteria, the AIC, SC and F test, perform 
well (Table III). These observations are similar to those of Yamaoka et aL 

(5) who introduced the AIC into pharmacokinetics and described some 

Table V. Sum of Squared Errors for Predicting the 
Logarithm of the True Concentration ~ 

Case Design AIC h F test 

II S 0.099 0.238 
1 0.099 0.350 
2 0.097 0.499 
3 0.096 0.402 
4 0.096 0.300 
5 0.096 0.391 

III 6 0.091 0.524 
7 0.090 0.377 

IV 8 0.093 3.05 

VI S 0.137 0.383 
1 0.141 0.318 

"Only values that differ by at least twofold between 
AIC and F test when the correct model is the more 
complex model are tabled. 

hSC results are essentially the same as those for AIC. 
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limited comparisons of its behavior to that of  the F test. Since the F test 
has as the null hypothesis that the simpler model is correct, it takes reason- 
ably strong evidence for this null hypothesis to be rejected at a -- 0.05. Thus, 
if the true and hypothesized models do not differ greatly, or the sampling 
design is poor, then the tendency of  the F test to select the correct, more 
complex model declines. For  example, Case IV is based on a biexponential 
model with exponential constants that are substantially different, i.e., they 
differ by 10-fold (see Table I). Design 8, although clearly less informative 
than the standard design or design 4, still has 3 to 4 data points in the initial, 
rapid phase of  the concentration-time curve. For  design 8, the F test always 
leads to the selection of the incorrect model while the AIC and SC always 
lead to the selection of the correct model. The power of the F test in this 
context has been addressed in more detail by Imbimbo et al. (11), Burguillo 
et al. (15), and Bardsley et al. (16). Bardsley et al. (16) conclude that the F 
test is useful for selecting multiexponential models with up to two or three 
exponential terms provided that the exponential constants are sufficiently 
different and the design is good. 

Since the ultimate goal of  fitting models to pharmacokinetic data is 
often to estimate parameters or to predict concentrations, the influence of 
the selection criteria on such estimates/predictions was also investigated. 
We find that estimates of  clearance are robust to the choice of model. A 
notable bias in the clearance estimate is seen in only two situations (Case 
IV, design 8 and Case VI, design 2), in both of  which sampling designs are 
very poor. In these cases model selection based on the F-test results in 
modestly biased clearance estimates, while selection based on the AIC and 
SC does not. 

When the more complex model is in fact correct, estimates of Vss and 
M R T  are often less biased if the simpler, incorrect model is chosen. This is 
particularly true if the more complex model is not markedly different from 
the simpler model. However, in one situation where the more complex model 
is very distinct from a simpler model, selection of the simpler, incorrect 
model results in highly biased estimates of Vss and M R T  (Case IV, design 
8). Therefore, in regard to Vss and M R T ,  no particular criterion consistently 
performs better than all others. 

Of all the parameters examined, the terminal slope is the most sensitive 
to model selection. Choice of  the correct model almost always yields the 
least biased and most precise estimates of  ~z. As expected, the largest biases 
are found when the more complex model is correct and model selection is 
based on the F test, which tends to choose the simpler model. 

Prediction of true concentrations is almost always better when the cor- 
rect model is chosen. The largest differences are again noted when the more 
complex model is true but the simpler model is chosen. Thus, the F test is 
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inferior to the AIC and SC by this performance measure, especially when 
model differences are not trivial and the sampling design is poor. 

The performances described here are based on multiexponential, bolus 
input models fit to data with correct weighting. Other designs, input 
functions, models, or weighting schemes could yield different results. Con- 
sider for example, the simulations performed by Imbimbo et al. (11), which 
differed from ours in several respects. (i) One- and two-compartment open 
models with either bolus or first-order input were investigated, but not a 
three-compartment bolus input model. (ii) Whereas Imbimbo et al. com- 
pared three models when a biexponential model was correct, we compared 
only two models. (iii) The residual error in their simulations was 5%, whereas 
we assumed a value of  15%. (iv) The designs used by Imbimbo et al. are 
described as having "sampling prolonged up to four elimination half-lives 
and sampling times were chosen on a logarithmic basis." It is not clear if 
the designs with small numbers of  samples covered the same time-span as the 
designs with 15 or 20 samples. We tended to focus primarily on pathological 
situations caused by small differences in exponential constants and relatively 
poor designs. Imbimbo et al. (11) concluded that overall, the F test and 
their proposed new criterion are better than either the AIC or SC in terms 
of correct model selection. However, they also found, as we did, that the 
performance of  the F test diminished relative to that of  the AIC or SC when 
values of  exponential constants differ by a ratio of 2 (11). 

It is clear that the F test, AIC, and SC do not always agree in their 
choice of  model. When the design is good, and the exponential constants 
are well separated, the F test may be better than the AIC or SC with respect 
to correct model selection. However, when the competing models are very 
similar, or when the design is inadequate, the F test has a strong tendency 
to choose the simpler model, even when the more complex model is correct. 
Imbimbo et al. (10,11) also noted that the F test performed poorly for ill- 
conditioned equations. In applications to real data sets (for which, of  course, 
the true model is unknown), and where there is some extra risk associated 
with choosing the simpler model, i.e., when the best estimate of  terminal 
half-life is desired, it wouild be prudent to use the AIC or SC. This would 
be especially true when exponential constants appear to be poorly differen- 
tiated or the sampling design is thought to be deficient. 

A P P E N D I X  

P r o p o s i t i o n  

Let j, k refer to the simpler and more complex models, respectively. 
(A) Suppose In N > 2  (i.e., N>7) .  Then if the SC selects Model k, so 

does the AIC. 
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(B) Let 

Ludden, Beal, and Sheiner 

Pk -Pj 1) -N/2 
2o = \N_~-~k Fo + 

where Fo is the critical value of the F distribution used with the F test. 
Suppose - In  2o >p~-pj .  Then if the F test selects Model k, so does the AIC. 

(C) Suppose - ln  2o > 0.5 (pk-pj)  In N. Then if the F test selects Model 
k, so does the SC. 

Proof  

(A) Suppose the SC selects Model k, i.e., 

then 

SO 

by hypothesis 

(B) Let 

Nln SSk + pk In N < N I n  SSj + pj ln N 

N In SSk < N In SSj-  (p~ -p j )  In N 

N In SSk + 2pk < N In S S j -  (Pk --Pj) In N+ 2pg 

--(pk--Pj) In N+ 2pk < 2pj 

~, (Pk--PJ F+ I) -N/2 
= \N--pk 

where F is the F ratio, so that 

-2  In Jt = N(ln SSj - In  SSk) 

Suppose the F test selects Model k, i.e., F>Fo. Then - ln  ~,>-In 2,o. So 

Nln SSj>Nln S S k - 2  In 2O 

SO 

by hypothesis 

Nln SSj+2pj>Nln SSk+2pj--2 In 2o 

2pj- 2 In Zo> 2p~ 
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( C )  S u p p o s e  t h e  F t e s t  se lec ts  M o d e l  k. 

F r o m  a b o v e  

N l n  S S j + p j  In N > N l n  S S k + p j l n  N - 2  In 

b y  h y p o t h e s i s  

p j l n  N - 2  In ~ 0 > p ~  In N 
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