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In drug therapy, effective dosage strategies are needed to maintain target drug effects. The relation- 
ship between drug dose and drug effect is often described by pharmacokinetic/pharmacodynamic 
(PK/PD) models where typically the PK model has a multicompartment form and the PD model 
is the sigmoidal Emax model. The parameters in the PK/PD model are generally unknown in the 
individual patient, although prior knowledge may be available and can be updated after measure- 
ments of drug effect are taken during the therapy. This fact, together with the complexity of the 
PK/PD model, makes the control problem complex. This paper investigates several control 
strategies in the framework of  a three-compartment PK model plus an effect site with a PD model. 
Using computer simulations under different assumptions, we show that a MAP (maximum a 
posteriori) Bayesian type of strategy is effective, nevertheless in high-risk situations a stochastic 
control strategy hedging against estimation errors provides better performance at computational 
cost. 

KEY WORDS: Bayesian; compartment model; dose regimen design; pharmacokinetics; phar- 
macodynamics; stochastic control; effect site. 

INTRODUCTION 

This paper addresses the problem of choosing an appropriate drug 
infusion regimen to keep the drug effect in a patient at some target level in 
the context of incomplete information about the patient's pharmacokinetic/ 
pharmacodynamic (PK/PD) characteristics. Observations of drug effect are 
taken but are assumed to be imprecise due to measurement errors. 
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The pharmacokinetics of many drugs can be described by a poly- 
exponential disposition function of time having the form: Y,'7= ~ ci e - x"  where 

m Z~ are rate constants, and Y.e= i c; equals the concentration at Time 0 following 
a bolus injection. In practice m is usually no larger than 3 because there are 
not enough data to estimate large numbers of parameters. The poly- 
exponential disposition function is mathematically compatible with a bio- 
logical compartment model of the human body (1) with unknown 
parameters. Compartment models represent the body as a series of finite- 
volume compartments with transfer rates connecting compartments to each 
other and to the outside world. In this paper we restrict our attention to 
three-compartment models with an effect site (see below). These models 
have been found useful in describing the behavior of intravenous drugs used 
in anesthesia practice. 

Controlling the plasma drug concentration is not necessarily desirable 
because the plasma is not the site of drug effect. The pharmacodynamics 
are often modeled by using an additional compartment, called "the effect 
site," combined with a nonlinear function relating the effect site concentra- 
tion and the drug effect (2,3). Thus we have the model shown in Fig. 1, 
where Compartment 1 represents the site sampled (often the plasma), 2 and 
3 are peripheral compartments, and 4 is the effect site compartment. We 
denote by ve the volume (liter) of the ith compartment. The volume of the 
effect site compartment 04 is assumed to be very small so as to not affect 
the plasma concentration. This effect site models the time lag between drug 
dosing and drug effect. As in Shafer and Gregg (4), we arbitrarily define 
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Fig. 1. Three-compartment model with effect site. 
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04=OI/10000. cli is the clearance (liter/time) between the central and the 
ith compartment, with the exception that cl2 is the clearance to the outside 
world. Note that the clearance from Compartment I to 2 equals that from 
Compartment 2 to 1, which follows from the assumption that the concentra- 
tions at all compartments are equal at steady state, which can be assumed 
without loss of generality in relating the drug dose to effect. 

Therefore, given the drug infusion rate d(t) (g/time) at time t, the 
trajectory of the drug concentrations is represented by the system of differ- 
ential equations: 

C~ (t) = - 1 (c12 + c13 + clo) C2 ( t) + 1 cl2C2(t) + 1 c13C3(t) + d( t) 
I)2 "02 1)2 02 

c~(t) 1 L =--  c l2G( t ) -  c12C2(t) 
1)2 1)2 

C'3(t) =--1 cl3G(t) _I_ cl3C3(t) (1) 
1)3 1)3 

c'.( t) 1 ~ =--  cl4G(t) - cl4C4(t) 
1)4 V4 

where Ci(t) is the drug concentration (g/L) at the ith compartment at time 
t. For computational reasons we will use the parameter k42=c141)fflO000 
instead of c14. 

The relationship between the effect site concentration and the drug effect 
is modeled by the following Emax model 

EmaxCO(t) 
E(t) = Eo ~ (2) 

ECho + CO(t) 

This model, also known as Hill equation, represents monotonically increas- 
ing sigrnoidal curves relating C4(t) and E(t). ECso is the "apparent" drug 
concentration in the effect site (this is not a real concentration and thus 
cannot be measured, cf. ref. 4) that corresponds to the 50% effect and r/ 
determines the steepness of the curve. We assume that E0 and Emax are 
known, and (without loss of generality) equal to 0 and 1, respectively. There- 
fore the parameters of interest are: 1)2,02, 1)3, cl2, cl2, C13, k42, ECso, q. For 
a more detailed description of this PK/PD model, see Shafer and Gregg 
(4). 

The model parameters are generally not exactly known prior to the 
therapy, although some information may be available and can be updated 
during the therapy as new observations become available. Thus the drug 
effect for a given dose cannot be exactly predicted. We would like to find a 
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dosing strategy that optimally balances the risk of overdosing vs. under- 
dosing strategy that optimally balances the risk of overdosing vs. underdos- 
ing during the whole course of therapy. The mathematical definition of this 
notion is given in Methods. 

Several difficulties arise in controlling E(t) optimally at target. First, 
even if the PK/PD parameters were perfectly known, the optimal solution 
still would not be available. Because of the delay between the peak of effect 
site concentration and that of the central compartment concentration, opti- 
mal policies in general, when the effect is below target, result in the effect 
rising above target and then dropping to the target. How much the effect 
should go over the target depends on the extent that overdosing and 
underdosing is penalized, i.e., depend on the cost structure. [Appendix A 
provides the optimal solution if one restricts the strategies to the class that 
do not overdose (4)]. Second, even if the optimal solution in the known 
parameter case were available, with incompletely known parameters, the 
problem still becomes a Bayesian control problem of such complexity that 
only approximate solutions are known. In the setting of incompletely known 
parameters the most popular approximate solution strategy in the medical 
literature is the MAP Bayesian strategy (5-9), which simply uses the policy 
corresponding to the posterior mode of the parameter distribution. However, 
even this simple strategy is not easily available for the second reason above. 
With a sigmoidal PD model, the information contained in an observation 
decreases as the predicted effect approaches E0 or Emax. Therefore when the 
desired target effect is close to Eo or Emax, one might wish to compromise 
the near term objective to obtain more information for controlling the system 
in some fashion. 

Finally, the fact that we have a large number of unknown parameters 
makes the stochastic control problem difficult due to what is called "the 
curse of dimensionality" (10). Previously, stochastic control methods have 
been applied to two-compartment models by D'Argenio and Rodman (11) 
and D'Argenio and Park (12), where the "myopic" approach, which is 
also known as "open-loop stochastic control," were used. The approach is 
relatively computationally easy, however it is not appropirate in our case, 
as discussed in the next section. 

In Hu et al. (I 3), a variety of alternative control strategies were intro- 
duced and compared in simulated patients in the context of controlling 
plasma concentration in one-compartment PK models. It was shown that a 
strategy called "VU" is effective in a variety of problem settings. In this 
paper we adapt some of those strategies to the much more complex situation 
of three-compartment PK/PD models. However, direct extention is not pos- 
sible for two reasons. First, in the one-compartment case, it is easy to calcu- 
late optimal policies if the parameters are known; these policies can then be 
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used to obtain stochastic control strategies to handle the situation where 
the parameters are unknown. This is not directly possible with the three- 
compartment PK/PD case, because optimal policies in the case of known 
parameters are not easily available. Second, stochastic control strategies 
generally use discrete representations of the distribution of the unknown 
parameters. This is very difficult in the three-compartment PK/PD case, 
where the number of the uncertain parameters is large. We present our 
computational approaches to address these two difficulties in Methods. 
Then, in Results, we present the numerical comparisons of our candidate 
control strategies. We shown by computer simulation that due to the pres- 
ence of the PD model and the high computational complexity in this three- 
compartment PK/PD environment, a MAP Bayesian type of strategy can 
be quite efficient. We also show, however, that the VU procedure is still 
more advantageous in the high-risk case where it is important to hedge 
against estimation errors. The Discussion summarizes the findings. 

METHODS 

The Three-Compartment PK/PD Model 

As stated, our objective is to control the system described by Gibaldi 
and Perrier (1) and Hull et al. (2), where the PK/PD parameters (Vl, v2, 
v3, cll, cl2, cl3, k41, ECso, q) for the individual are assumed unknown at 
the beginning of the dosage regimen. It is assumed however that the param- 
eters come from a population prior with a known joint probability 
distribution. 

Observations of the drug effect can be made at any time with measure- 
ment error. Specifically, a reverse form of the multiplicative noise model 
(14) is assumed 

E(t) = 1 - [ 1 -  E(t)] e ~ 

where E(t) is the observed effect at time t, and t is a normal random variable 
with mean zero and standard deviation o'. This noise model has the feature 
that the variance of the measured effects decreases with increasing predicted 
effect, a feature that is empirically observed in measuring muscle relaxation 
in anesthesia. An example for this is that with 100% paralysis there is no 
measurement error (provided that the equipment is working). 

For any specific set of PK/PD parameters and a given dosage regimen, 
the differential Eq. (1) can be solved and this solution together with Eq. (2) 
gives the drug effect as a function of time, as described in Appendix A. Let 
ti, i = 1, 2 . . . . .  be the times when observations are taken and decisions on 



530 Hu, Lovejoy, and Shafer 

dosage rates made. For simplicity we assume that the times are evenly 
spaced, i.e., t~+~ = ti+ L for some constant L. 

In our problem scenario, we assume that at each time t,- the decision 
maker inspects the entire therepeutic history (i.e., historical dosages, prior 
distribution, and observations) and chooses a constant infusion rate for the 
time interval (ti, ti+ 1). Since the observations are imperfect, the exact P K /  
PD parameters that characterize the patient, and hence the true drug effect 
at any point in time, are only imperfectly known. Our objective is to maintain 
a constant target effect T over some unspecified, long time horizon. A cost 
function g[ �9 ] penalizes the deviation from target. Different forms of the 
cost function g[ .  ] represent different objectives, i.e., how close the drug 
effect should be kept at target and how much overshooting (or undershoot- 
ing) should be penalized. Then our objective is to find a strategy that mini- 
mizes the expected total cost 

e e-P'g[E(t)- rl at 

where/3 is taken to be very small. The presence of the term e -~' implies that 
our interest in optimizing decreases as we look further into the future. This 
term is necessary to keep the integral finite. 

An equivalent formulation of the above is to find the best strategy 
that sequentially, at each time ti, takes an observation, updates the prior 
distribution (which is the posterior distribution at time ti_ j after the observa- 
tion at time t~_ 1 was taken), then chooses an infusion rate to be used from 
t~ until It+ i. 

Unfortunately, no optimal solution is currently available for this prob- 
lem and we have to look for approximation methods, which are discussed 
in the next section. 

Control Strategies 

Here we introduce four suboptimal but potentially well-performing 
strategies. The first strategy is intuitive and easy to implement. The second 
strategy is an improved version of the first. The third and fourth strategies 
use stochastic control techniques, and offer potential further improvement. 

Certainty Equivalent Strategies 

These types of strategies separate the estimation and the dosage admin- 
istration process in that they first obtain an estimate of the parameters and 
then compute the control assuming that the estimate is exact. The term 
"certainty equivalence" comes from the fact that the control is chosen as if 
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the parameters were known with certainty and equal to the estimate. Cer- 
tainty equivalence strategies are conceptually simple and easy to implement. 

MAPSG. Map Bayesian is currently the most commonly invoked 
strategy in the context of incomplete information of model parameters, 
where MAP stands for "maximum a posteriori." The MAPSG strategy 
directly uses this idea and is defined as follows. To emphasize the dependence 
of E(t) on the PK/PD model parameters which we shall call 0, we tempor- 
arily write E(t) as E(O, t). Recall that for any dosage history E(O, t) can be 
computed for any 0 and time. After the j th  observation (zj) is taken, the 
parameter estimate 0 is chosen to maximize 

(, :)' 1 ~ nz~-lnE(O,t~ 
+fp(O) 2_. 

2 i =  1 tY 

where fp is the log o f  a multivariate normal density of the prior distribution. 
Thus the estimate 0 maximizes the Bayesian posterior probability for 0 
(hence MAP). In this study we used an IMSL least squares routine to carry 
out the maximization in this process. MAPSG then computes the policy 
described by Shafer and Gregg (4) where 0 are assumed to be the true 
parameters. This policy is presented in Appendix A. The rate used in an 
interval results in an increasing effect (if the rate is large enough), a moment 
where the effect peaks, and a decreasing effect (4). Once the effect is on 
target at or after the peak time, it can be maintained at target by maintaining 
the plasma concentration at the appropriate level using the method proposed 
by Schwilden (15). Finding the optimal policy that does not overshoot there- 
fore is equivalent to finding the rate such that its resulting effect peaks at 
target [followed by a maintenance procedure (15)]. This requires a double 
search: One needs to search for the correct infusion rate, and for each rate 
one needs to search for the peak drug effect. More on the search procedure 
is given in Appendix B. Figure 2 illustrates how MAPSG would perform. 

DPMAPSG. In case of known parameters, the Shafer-Gregg (SG) poli- 
cy is only optimal with the restriction of not overdosing, therefore one can 
expect that the policy may be improved, especially in the situations where 
underdosing is undesirable. The DPMAPSG strategy aims at achieving this 
improvement by using the following dynamic programming procedure. The 
dynamic programming procedure has as its cornerstone the "principle of 
optimality" (10) which can be stated as follows. The optimal infusion rate 
must minimize the following: the cost of deviation from target over the next 
interval (duration = L), plus the future cost starting at the end of this interval 
(at time = now + L), after updating our information with the current dosing 
decision and effect observation at the end of the interval, and then following 
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Fig. 2. MAPSG. At time (now - L) it used an infusion rate so that the drug effect corresponding 
to the typical individual would not go over the target. At time (now), a new observation 
revealed that the typical individual's effect is less than previously predicted. Our beliefabout 
the PK/PD model is updated with this observation, and a new infusion rate is chosen according 
to the posterior distribution of the PK/PD parameters. 

an optimal dosing strategy from that point forward. Informally, the optimal 
cost V satisfies the following recursive form: 

Qo V ~ Vl.ow=COStln~ now Inow+ L 

This principle reduces the task of finding the optimal infusion rate to a 
simple minimization of a function with two terms. The first term is simple, 
being the cost integral only over the next time interval (from now until 
now+ L). The "future value" function, however, is typically impossible to 
evaluate for realistically complex problems. Indeed, if we could find this 
value function the control problem would be essentially solved, i.e., evaluat- 
ing this value function inherits all of the complexity of the control problem 
itself. However, if we can find an approximation to this value function, we 
could use the approximation in the minimization to derive an infusion rate. 
The better the approximation of the value function is, the better an infusion 
rate so derived can be expected to perform. 

One useful approximation can be generated by a so-called "nominal 
policy". That is, using the nominal policy results in a trajectory of drug 
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effect, and the accumulation of the total deviation of this effect trajectory is 
then used as the approximation of the value function. Using this approxi- 
mate value function in the dynamic programming recursion can be expected 
to generate an improved strategy (10). DPMAPSG uses the SG policy as 
the nominal policy. More precisely, at any particular time t, given the param- 
eter set 0 and the past dosage history, the current state of the system can 
be viewed as the amount of drug in each compartment (including the effect 
site), which we shall call s. Using an infusion rate d, the effect in the current 
period (from now until now+L) ,  can be fully written as E(O, s, d, t), and 
the resulting "state" of the system at time (now+ L), written as s'(s, d), can 
be computed by solving Eq. (1) if the PK/PD parameters 0 are known. 
DPMAPSG first uses the same estimation procedure as MAPSG to obtain 
an estimate 0, then uses the following to obtain an infusion rate: 

min{f~ e-~'g[E(O's'd't)-T]dt+e-~LV(O's'(s'd)) } d  (3) 

where V is the total cost incurred by using the SG policy (4). It is well 
established in the control literature that this iteration step improves the 
nominal policy, which in this case is the SG policy (4) [cf. (10)]. Therefore 
we can expect DPMAPSG to perform better than MAPSG. Figure 3 illus- 
trates how DPMAPSG would perform. 

MAPSG and DPMAPSG separate the estimation and the dosage 
administration process and thus fall into the class of certainty equivalence 
strategies. These types of strategies have the weakness that the only way the 
posterior distribution enters into the strategy is via the estimate, thus ignor- 
ing the variability when computing the control policy. Consequently, in 
using a single estimate it behaves as if the patient's characteristics were 
known with certainty, i.e., as if estimation errors were not possible. To 
properly accountfor the uncertainties in the patient's PK/PD parameters, 
one would want a strategy that considers more than just one of the most 
likely parameter sets, i.e., a strategy that "hedges" against estimation errors. 
Below we introduce two strategies having this property. However, any hedg- 
ing normally makes the strategy more computationally intensive because 
considering simultaneously a number of possible parameter sets takes more 
effort than considering only one. Also, in the three-compartment PK/PD 
ease the number of unknown parameters is large and computation is large 
and already heavy, therefore dense discretizations (11,12,16,17) are not com- 
putationally feasible here in the full parameter space. 

Stochastic Control Strategies 
Stochastic control strategies hedge against estimation errors by using 

some discretized parameter distribution, instead of a single estimate. A 
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Fig. 3. DPMAPSG. Similar to Fig. 2 (MAPSG), but allows overdosing and gets the drug 
effect closer to target. 

discretization procedure considers a discrete prior probability distribution 
of the parameters of interest, and the corresponding control strategies use 
this distribution, rather than using only a single estimate, such as the mode 
often used in certainty equivalent control strategies. Using a discrete distribu- 
tion can reduce potential errors caused by invoking specific distributional 
assumptions such as normalcy. A discrete prior probability distribution 
assumes that the patient's parameters come from a finite number of points in 
the parameter space. These points are fixed throughout the control process, 
therefore the number of points must be relatively large in order to properly 
represent the original distribution�9 We have previoasly reviewed the influence 
of discretization on one-compartment control strategies (17). 

Since dense discretizations are not computationally feasible in the three- 
compartment PK/PD setting, we use a crude hedging around the parameter 
estimate in the estimation procedure as in MAPSG by singling out some 
parameters that we think are important and take a three-point discretization 
in the chosen p~ameters;. More precisely, let 0 = (vl ,  v2, v3, cll, cl2, cl3, 
k4~, ECso, r/)--(0, . . . . .  09) be the estimated mode of  the posterior distri- 
bution and say that the j th  parameter, with initial variance trj,Ais being 
discretized. Then the discretized parameter sets are (/~l . . . . .  0j_j, 0j, 
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~+1, - .~ ,09) ,  (OI,'..,Oj--l,Oj--O'j, Oj+l . . . . .  09) and (/~, . . . .  , /~j_,,  
0j+ erj, 0j+ i . . . . .  09). The probability weight associated with the parameter 
sets in the discretization is assigned as the corresponding posterior probabil- 
ity density function values. If m parameters are discretized, the procedure 
produces a discrete prior of 3" points, centered around the Bayesian estimate 
0. This prior is not as significantly different from the single estimate as that 
in D'Argenio and Katz (16) and Hu et al. (17) because of the crudeness of 
the discretization. Still, using this crude discretization better hedges against 
the estimation error than considering only the estimate 0. Additional com- 
ments on our discretization procedure appear in Appendix D. 

The theory of dynamic programming can also be applied in the situation 
where the parameters are only imperfectly known. In this context, the above 
stated principle of optimality still holds if we replace the costs by their 
expectations, taken with respect to the future observation and the prior 
probability distribution of the parameters (18). Therefore, to generate 
strategies using this theory, we need to search for approximations of the 
expected future values. Two such procedures, called VU and VL, were corn- 
pared in the setting of one-compartment models (13). Below we introduce 
them in the setting of three-compartment PK/PD case. 

VUMAPSG.  The VU procedure uses a relatively easily computed 
approximate value function to derive infusion rates, as described below. The 
method was originally proposed by Van Hee (19) and extended by Loveyjoy 
(20). See Hu et al. (13,17) for more discussion and application of the strategy 
in one-compartment models. In the simulations we discretize six parameters, 
(vl,  v2, cll, k41, ECso, ri), resulting in a discrete prior of n = 3 6 = 729 points. 
Thus at each period the stragegy considers only a finite number of discrete 
parameter sets indexed by subscript j, i.e., 0j for j =  1 to n, as the discrete 
prior. However, unlike in previous applications (1 I,I 2,16-17), all points in 
the discrete prior change from one period to the next. In the one-compart- 
ment case, if the parameters were known with certainty then the dosage 
problem would be easily solvable as a deterministic control problem, so that 
the corresponding optimal policies can be comptued and the average 
weighted values are then used as the approximate value function (17). In 
the three-compartment PK/PD case, if the PK/PD parameters were known 
with certainty then only the policy given in Appendix A is available. There- 
fore, we use the (numerically evaluated) cost generated by this policy to 
approximate the optimal cost in the known parameter case, as follows. Given 
the dosage history until time ti and a fixed parameter set 0j, we can compute 
the drug concentration levels at compartment 1 . . . .  ,4, denoted as the cur- 
rent "state" sj. For each infusion rate d, the resulting drug 
effect E(Oj, sj, d, t) during the interval from ti to ti+~ can be computed (4) 
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so that the cost accumulated for the interval, denoted by Rj(sj, d)=-- 
L So e-mg[E( Oj, sj, d, t ) -  T] dt, can be evaluated numerically. Similarly, for 

the same infusion rate we can also compute the resulting state of the 
system s~(s, d) and policy (4) which we denote by Pj, and the resulting 
drug effect E(Oj, s'(sj, d), Pj, t) from time ti+l to infinity. Thus we can 
numerically compute the cost accumulated from time ti+t to infinity 
Vj(S;(sj, d ) ) -S~  e-a'g[E(Oy, s'(sj, d), Pj, t ) -  T] dt. 

Let zcj denote the probability weight associated with the parameter set 
0j. VUMAPSG uses the approximate future cost ~j lrjVj(s}(sj, d)). The 
infusion rate d that minimizes the following 

~, zrjRj(sj, d) + e -aL ~, 7rj Vj(s~(sj, d) ) (4) 
J J 

will then be used for the current period. Figure 4 illustrates how VUMAPSG 
would perform. 

In the context of one-compartment models the "myopic" strategy that 
minimizes only ~j zrjRj(Sy, d) may be useful (13), which is similar to the 
approach in refs. 11 and 12. However, because of the delay between the 
peak of the plasma concentration and the peak of the effect in our case, the 
"future" is very much relevant. That is, when the effect E(ti) is expected to 
be significantly lower than target, minimizing only the immediate expected 
cost ~j 7rjRj(sj, d) will make the effect exceed the target significantly at some 
time after ti+l. Therefore the myopic approach is not considered here. VUM- 
APSG hedges against estimation errors by considering a number of possible 
parameter values in the discrete prior, rather than using only the mode. 
With a dense discretization, the original VU procedure performed well in 
one-compartment models (17). However, here our discretization is very 
crude. Therefore we may expect VUMAPSG to perform better than 
DPMAPSG, but only in circumstances where it is important to hedge against 
estimation errors. 

VLMAPSG. The VLMAPSG strategy is obtained similarly to the above 
strategy, by using the VL procedure to approximate the optimal value func- 
tion instead of VU. The VL procedure works as follows: For each parameter 
set 0 2, j= 1 , . . . ,  m, in the discrete prior there corresponds a specific policy 
Pj (4). The VL procedure chooses actions as if the decision maker has one 
more chance to gather information, and then must commit to one of the 
policies Pj, which is implemented from that point forward. (The committed 
policy Pj is the one that results in the least expected accumulated deviation 
from target with respect to the posterior distribution after taking an observa- 
tion in the next per!od.) The VL procedure differs from the previous three 
strategies in that it actively gathers information (in the parameters being 
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Fig. 4. VUMAPSG. At time (now), a new observation changed the current predicted drug 
effects (say, for 90% of the population). An infusion rate would result, for each individual in 
the population, an effect profile in the current period (between now and now + L), and an end 
effect at (now + L). For each such end effect, if the parameters were going to become known 
after (now+L),  the corresponding optimal policy would generate a drug effect profile. 
VUMAPSG minimizes the sum (weighted by the posterior probabilities) of the costs, that 
would be accumulated in the current period (between now and now+L)  and the future. The 
future concentrations all approach target because they are computed with the corresponding 
optimal strategies. 

discretized) by perturbing the system in order to obtain a more favorable 
posterior distribution. This is especially true when one is very uncertain 
which of  0j is the true parameter set, in which case a little additional informa- 
tion in favour of  one parameter set 0j will be valuable. Figure 5 depicts how 
VLMAPSG would perform. We have previously described the VL procedure 
in detail (13). Jelliffe and Schumitzky (21) noted that an optimal strategy 
is actively gathering information by perturbing the system in order to get 
a more favorable posterior distribution after taking the next observation. 
Therefore one might expect the VL procedure to perform better than the 
other three strategies�9 However, in the one-compartment case, VL did not 
perform well because it sacrificed too much on near term costs in order to 
gather information, and thus actively gathering information may not always 
be superior (13). In our three-compartment PK/PD case, we are using a 
very crude discretization, which should reduce the aggressiveness of  VL in 
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Fig. 5. VLMAPSG. Similar to Fig. 4, but with a different approximation of the future 
cost. Corresponding to each individual in the population with an end effect at (now + L), 
there is an optimal policy. One such optimal policy will generate relatively the least risk 
for the entire population. The expected cost coressponding to this policy is taken as the 
approximation of the future cost. VLMAPSG minimizes the sum of the expected cost 
(accumulated in the current period) and this future cost. None of the future concentrations 
approach the target, except for the individual whose optimal policy has smaller risk than 
everyone  else. 

searching for information. This is because in the simple discretization used 
here, the parameters are relatively less spread out (i.e., represent the whole 
distribution worse) than in the one-compartment case, therefore different 
parameter sets do not give rise to significantly different policies. In such case 
more information would not lead to significant improvement of "future 
values," so that VL would not seek information as aggressively as in Hu et 
al. (13), where the discretization was dense. We note that the VL procedure 
seeks information for only those parameters being discretized. More on this 
appears later. Because of the actively gathering information feature, VL is 
computationally intensive since additional numerical procedures are neces- 
sary to evaluate the future expected value with respect to the possible obser- 
vation outcome in the next period, i.e., one must consider every possible 
future observation outcome and plan what to do accordingly. In the simula- 
tions we discretized two parameters: (c11, ECso) for the VLMAPSG strategy, 
resulting in total 9 parameter sets at each period. Details of our numerical 
methods appear in Appendix B. The relative computational complexity of 
these strategies is discussed in Appendix C. 
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RESULTS 

In the numerical trials we simulated all patients for 30 time periods. At 
each period, an infusion rate was computed, then an error term simulated 
to obtain the observed drug effect at the end of the period, and the procedure 
continues. The target effect T was taken to be 0.9 (i.e., 90% maximal effect). 
The period length L was chosen to be 5 min. 

Maitre et al. (14) studied the population kinetics of alfantanil. Here 
we followed their result by assuming a log-normal prior of the parameters 
(vl ,  v2, v3, cll, cl2, cl3, k41, ECso, rl) such that the coefficient of variation 
was 30%. The means of (Vl, 02, v3, cll, cI2, cl3, k41, ECso, rl) were set to 
correspond tot he estimates (14) and the means of (k41, ECso, q) were set 
to be (0.77, 0.479, 4.8). The discount coefficient fl was taken as 0.001, 
corresponding to a discount factor e -eL as 0.995. Being so close to l, the 
discount factor played little role in determining the strategies. The sample 
size was 500 for MAPSG, DPMAPSG, and 200 for VLMAPSG, VUM- 
APSG. The samples are smaller for strategies VUMAPSG and VLMAPSG, 
because they use more information on the parameters and consequently are 
more difficult to compute. 

Quadratic Cost 

In this setting deviation from target was penalized quadratically, and the 
cost function was g[E(t) - T] = [E(t) - T] 2, so that the cost for each period 
was 

~o ~ [ E ( t ) -  T] 2 dt 

We computed the costs accumulated by the strategies, as well as their sample 
standard deviations, in situations of low and high observation error vari- 
ances (0-2=0.05 and 0.5, respectively) as shown in Figs. 6 and 7. 

Figure 6 shows that, in the low observation error variance case, 
DPMAPSG performed better than MAPSG in minimizing average deviation 
from target. While we are optimzing an objective that depended only on the 
expectation of the discounted costs, one may also be interested in the risk 
involved in applying a strategy to a specific patient. Over the range of 
patients generated from these priors, DPMAPSG generated significantly 
lower standard deviation results than MAPSG, suggesting that it is also 
much more robust. This improvement of DPMAPSG relative to MAPSG 
is due to the dynamic programming iteration operation. Comparing Figs. 6 
and 7 shows that changing measurement errors had no siginficant impacts 
on these results. 
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VUMAPSG and VLMAPSG further refine DPMAPSG by a simple 
discretization procedure. The VU approach did not achieve any significant 
improvement, contrary to the one-compartment case (17), because the 
discretization was very crude. 

For the same reason, the VL procedure did not perform as badly as in 
the one-compartment case analyzed in Hu et al. (13). As discussed in 
Methods, in this case of a simple discretization where different parameter 
sets are relatively close to each other, the VL procedure did not seek informa- 
tion (in cll and ECso) as aggressively�9 However, our experience suggests 
that the strategy still puts too much weight on information gathering and 
performed poorer compared to DPMAPSG and VUMAPSG. Additional 
simulations could be performed to verify this statement, but this is not 
important because the performances are close. For an illustration, we pro- 
vide a sample path for 11 periods with observation error variance 0.05, 
shown in Fig. 8. 

Figure 8 shows that because MAPSG aimed at never overdosing, it first 
dosed the effect to target, then waited for the effect to drop, and dosed it 
up again. VLMAPSG did not do well for this particular sample, but achieved 
good overall behavior. The other strategies, allowing overdosing, maintained 
the effect on target relatively smoothly. 
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Skewed Cost 

The quadratic cost function penalized deviations from target equally 
in either direction, i.e., whether those deviations represent overdosing or 
underdosing. However, in practice one may wish to penalize overdosing (or 
underdosing) more severely. In this section we explore the effect of using a 
skewed cost function. Here the deviation from target was penalized by a 
quadratic function plus a linear underdosing penalty. Precisely, the cost for 
each period was 

[E(t)-Tl2 dt+ 5 [T-E(t)] dt 

where the second integral was taken over the range of t such that E(t) < T. 
The result for low and high observation error variance (0-2=0.05 and 0.5 
respectively) are shown in Figs. 9 and 10. 

Figures 9 and 10 show that in this case the performance of MAPSG 
significantly deteriorated, because it aimed at never overdosing despite a 
heavy underdosing penalty. 

VUMAPSG appeared to show some advantage relative to DPMAPSG, 
especially in the high observation variance case as shown in Fig. 10. This 
suggests that in a risky situation the VU procedure should be more robust. 
VLMAPSG still seemed to perform slightly worse than VUMAPSG and 
DPMAPSG due to its relatively aggressive information-seeking feature. 
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DISCUSSION 

In this complex three-compartment PK/PD model where little com- 
putational experience has been available, we have described several drug 
infusion strategies and examined their performances in simulations. The 
immediately available strategy MAPSG, obtained by combining the MAP 
Bayesian approach with the SG policy (4), did not perform well compared 
to the other strategies. However, a one-step dynamic programming refine- 
ment of the strategy DPMAPSG improved the strategy notably, and was 
relatively computationally efficient. 

Both MAPSG and DPMAPSG separate estimation and control, and it 
has been established that such strategies share the weakness that they ignore 
estimation errors. Different stochastic control strategies have been shown to 
perform better than those that separate estimation and control (12,16,17). 
D'Argenio and Rodman (11) showed similar results for a two-compartment 
model, and D'Argenio and Park (12) showed this for a two-compartment 
PK/PD model. To hedge against estimation errors one needs to take into 
consideration the whole posterior distribution of the parameters, rather than 
only the mode. One approach to achieve this without assuming additional 
properties, such as Linear-Quadratic-Gaussian (21), is to use discrete priors 
(11,12,16,17). However, to properly represent the posterior distribution, a 
relatively large number of points are needed in discrete priors. As the number 



544 Hu, Lovejoy, and Shafer 

of unknown parameters increases, the number of discrete points needed 
explodes, a fact which is known as the "curse of dimensionality" in the 
control literature. In our three-compartment PK/PD model we have nine 
parameters: vl, rE, 03, cll, c12, cl3, k4~, ECso and r/, which resulted in heavy 
computations so that previous discretization procedures are not computa- 
tionally feasible. Therefore in this paper we introduced a crude discretization 
scheme that moves with the parameter estimate, rather than fixed schemes 
as in previous work. 

This moving discretization procedure was combined with the control 
procedures VU and VL that we introduced (13). The VU procedure per- 
formed well in one-compartment models (17), but its variant in this three- 
compartment setting, VUMAPSG, did not achieve a significant improve- 
ment over DPMAPSG. The most important reason is that in this context 
we have a large number of (unknown) parameters which prohibits fine 
discretization procedures (11,12,17). In our experiments, increasing the num- 
ber of points in the discretization scheme VUMAPSG did show improve- 
ment. This suggests that if we were able to overcome the curse of 
dimensionality, stochastic control procedures would indeed still be more 
preferable. Even with the crude discretization, in the high underdosing pen- 
alty case where hedging against estimation errors becomes more important, 
VUMAPSG still shows an advantage. 

In our context the observations are taken at no cost, therefore actively 
gathering information means perturbing the system to get a more favorable 
posterior distribution after taking the next observation. As noted, active 
information-gathering strategies may not perform well if the balance between 
gathering information and exploiting the information to treat the patient is 
not well maintained (13). We established that in a one-compartment model, 
VL too aggressively seeks information (13). Its variant in this three-compart- 
ment PK/PD model, VLMAPSG, turns out to be less agressive in seeking 
information. One reason for this is that different parameter sets in this crude 
discretization did not result in significantly different policies, as mentioned 
earlier. Another reason might be that in the presence of multiple important 
parameters (i.e., the parameters being discretized that also have significant 
impacts on dosage regimen; in this case clj and ECso), the preferred direction 
(say dosing low) for information search in one parameter may be different 
than information search in another parameter (say dosing high). Thus as a 
compromising result VLMAPSG ended up not aggressively searching for 
information in any direction. Nevertheless, VLMAPSG still appeared to 
sacrifice too much on near term cost in order to gather information, and 
hence did not perform as well as VUMAPSG and DPMAPSG. Future 
research is necessary to establish how to optimally conduct the search for 
information in a multiparameter context. 
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As seen above, three-compartment PK/PD models such as considered 
in this paper are difficult to deal with, and the curse of dimensionality 
compromises the performance of stochastic control strategies relative to 
simpler and more naive certainty equivalent strategies. The advantages of 
stochastic control strategies were shown in simple one-compartment models 
(16,17,21) as well as in two-compartment settings (11,12). Future research 
is necessary to find for models with in-between difficulty, such as two-com- 
partment PK/PD models, what type of stochastic control strategies and 
the associated discretization procedures will perform well. An alternative 
approach to deal with models with a large number of unknown parameters 
is to fix some parameters of less importance throughout the process (23), 
therefore reducing the computational burden. 
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APPENDIX A 

Suboptimal Control Policies and Resulting Drug Effect for PK Models with 
Known Parameters and Effect Site 

Shafer and Gregg (4) established the optimal policies with the restriction 
of never overdosing starting with no drugs in the system, given both in the 
case where bolus injection is allowed and the case where bolus is not allowed. 
As stated in the Introduction, optimal policies in general, even with known 
parameters, are difficult to obtain. Therefore this section is restricted to 
computing the policy that never overdoses. Given the target concentration 
Cr at the effect site and the drug amounts AI (0 ) , . . . ,  A4(0), the policies 
can be computed in different cases. Here we follow the notation in Shafer 
and Gregg (4). 

Consider the system that describes the amount of drugs in the system: 

A~(t) = Az(t)k21 + A3(t)k31 + A4(t)k41 

- A l(t)(klo + k,2 + k13 + k14) + I(t) dt 

A~( t) = A,(  t )k ,2-  A2( t)k2, 

A'a( t) = A I ( t)k13 - A3( t)k31 

A'4( t) = A j(t)kl4-a4(t)k41 

where 4 refers to the effect site. We need to derive A4(/) as a function of the 
infusion I(t). 

Let $~ . . . . .  $4 be the (positive) eigenvalues of 

I 
- k ~ 2 - k j 3 - k l 4 - k l o  k2~ k31 k41 ] 

kl2 -k2] 0 0 
kl3 0 -k3] 0 
kj4 0 0 -k41 
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Define 

p2(s) =k14[s 2 + (k21 + k3j)s + k21k31] 

p3(s) = A4(0)s 3 + [A, (0)k ,  4 -Jr- A4(0)(klo -{- k12 --[- k13 --1- k14 4- k21 4- k31)]s 2 

+ {[Al (0)(k2~ + k3,) + A2(O)k2, + A3(O)k3,]k,4 

+ A4(O)(klok21 + kl3kzl +kl4kzl  + klok31 + k21k31)}s 

+ {[A~ (0) + A2(0) + A 3(0)]k,4 + A4(0)(k,o + k,4)}k2,k31 

and for i=2, 3,1=1 . . . . .  4, 

Then 

P,(-Z3 

A4(t) = c3i e -~'' + I(t)  �9 c2i e -~'t 
i=1 i 

where �9 denotes convolution. 
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APPENDIX B 

Numerical  Procedures 

To compute the SG policy, Shafer and Gregg (4) gave the complicated 
closed form solution, and presented an efficient algorithm to find the correct 
infusion rate lasting 10 sec. However, the efficiency of this algorithm is ques- 
tionable if one needs to search for a rate lasting a longer time, say 5 min. 
In this work we used a direct search with 10 evaluations in both the rate 
and time dimension. We tested our results with the number of evaluations 
increased to 15 without seeing any significant difference in the results, which 
is an evidence that the search finds good solutions. 

Gaussian Quadratures with 5 points are used to compute the Rj and 
that appear in VUMAPSG and VLMAPSG, as well as the expected future 
values with respect to future observations in VLMAPSG. We also tried 
increasing the number of quadrature points to 8 but the results remained 
the same. 

A Fibonacci search with I0 functional evaluations (see ref. 22 for more 
details on this search procedure) was used to carry out the process of minim- 
izing 4 in computing VUMAPSG and the similar process for VLMAPSG. 
The result was then Compared with rate zero to reduce the chance of getting 
a local but not global minimum. This caution is necessary (17), because the 
future value as a function of the current dosage is nonconvex even in the 
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simplest case, so numerical optimization methods that look only for first- 
order conditions may not be sufficient to find the desired minimum. 

In the simulations we assumed a maximum infusion rate of 3000/zg/ 
min. The Fibonacci search gave a local minimum to within an interval of 
length 34/zg/min. 

APPENDIX C 

Computational Complexity 

The strategies are computationally intensive for several reasons. First, 
even in the known parameter case finding a reasonable policy is not easy; 
the SG policy (4) requires some search work. Second, a large number of 
unknown parameters makes estimation difficult. It is well known that any 
optimization package (such as IMSL) does not always stop at the best point. 
Third, if stochastic control strategies are used, then numerical intergration 
is required to evaluation the near-term costs as well as the future values 
such as in Expression (4) in Methods, because they are no longer analytically 
available (17,21 ). 

The actual computing time the strategies take depends on the particular 
machine code and optimization package, as well as the number of numercial 
quadrature points and the discretization levels used. Still, for comparative 
purposes we provide the CPU time based on our actual experience on a 
VAX 4000. Table I presents the time needed to simulate the strategies (with 
the previously mentioned number of  quadrature points, discretization level, 
etc.) for 30 periods. 

Note that Table I may quite reflect the relative computational burden, 
since the time that the optimization package takes is an additive factor for 
the total computing time. 

APPENDIX D 

Discretization Level 

To explore the effect of the discretization level, we tried varying the 
number of dimensions of the parameter space being discretized for VUM- 
APSG and VLMAPSG. VUMAPSG showed slight but consistent improve- 
ment as we discretized more parameters, as may be expected. However, 

Table I. Computational Complexity 

Strategy 

MAPSG DPMAPSG VUMAPSG VLMAPSG 

CPU(sec) 5 6 54 86 
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V L M A P S G  m a y  pe r fo rm  ei ther  be t te r  or  worse  as m o r e  pa r a me te r s  are  
discret ized.  W e  t r ied  discret iz ing on ly  cll as well as cl~, ECso, and  17, in 

bo th  cases V L M A P S G  pe r fo rmed  worse.  The  fact  tha t  on ly  discret izing 
cll resul ted in a worse  pe r fo rmance  o f  V L M A P S G  suggests  tha t  search 
i n fo rma t ion  in the cl direc t ion  m a y  h inder  tha t  in the ECso direct ion.  T o  
i l lus t ra te  this,  call it  Case  1 when cl~ is discret ized and  Case 2 when cl and  
ECso are  discret ized.  N o w  let us say  tha t  dos ing  low will generate  more  
i n fo rma t ion  a b o u t  cl~, then in Case  1 the VL p rocedure  will tend  to  
unde rdose  in o rde r  to  ga ther  i n fo rma t ion  a b o u t  cl~. [This is the case in a one-  
c o m p a r t m e n t  mode l  (13).] But  i f  dos ing  high will generate  m o r e  in fo rma t ion  
a b o u t  ECso, then in Case 2 VL wou ld  dose more  than  in Case 1, and  i f  this 
does  no t  resul t  in overdos ing ,  then in Case 2 VL will no t  pe r tu rb  the system 
as much  as in Case  1. F o r  s imilar  reasons,  the fact  tha t  discret izing c11, 
ECso, and  7 / resu l t ed  in a worse  pe r fo rmance  o f  V L M A P S G  suggests tha t  
a d d i n g  I/ in the d iscre t iza t ion  increased the aggressiveness in seeking 
in fo rmat ion .  
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