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In this paper 3 criteria to design experiments for Bayesian estimatian of  the parameters of 
nonlinear models with respect to their parameters, when a prior distribution is available, are 
presented: the determinant of the Bayesian information matrix, the determinant of the pre- 
posterior covariance matrix, and the expected information provided by an experiment. A procedure 
to simplify the computation of these criteria is proposed in the case of  continuous prior distributions 
and is compared with the criterion obtained from a linearization of the model about the mean of 
the prior distribution for the parameters. This procedure is applied to two models commonly 
encountered in the area of pharmacokinetics and pharmacodynamics: the one-compartment open 
model with bolus intravenous single-dose injection and the E ...... model. They both involve two 
parameters. Additive as well as multiplicative gaussian measurement errors are considered with 
normal prior distributions. Various combinations of the variances of the prior distribution and of 
the measurement error are studied. Out" attention is restricted to designs with limited numbers of  
measm'ements (1 or 2 measurements). This situation often occurs in practice when Bayesian 
estimation is petformed. The optimal Bayesian designs that result vary with the variances of the 
parameter distribution and with the measurement error. The two-point opt#hal designs sometimes 
differ fi'om the D-optimal designs for the mean of the prior distribution and may consist of 
replicating measurements. For the studied cases, the determinant of the Bayesian information 
matrix and its linearized form lead to the same optimal designs. In some cases, the pre-posterior 
covariance matrix can be far fiom its lower bound, namely, the inverse of the Bayesian information 
matrix, especially for the E ...... model and a multiplicative measurement error. The expected 
information provided by the experiment and the determinant of the pre-posterior covariance matrix 
generally lead to the same designs except for the E ...... model and the multiplicative measurement 
error. Results show that these criteria can be easily computed and that they couM be incorporated 
in modules .for designing experiments. 
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INTRODUCTION 

Parameter estimation in pharmacokinetic or pharmacodynamic models 
from data from an experiment performed in a given individual is a commonly 
encountered procedure in the area of optimal drug dosage regimen. This 
estimation may require several measurements which raises ethical, practical, 
and economic problems. It has been shown that estimation procedures using 
complementary information yield more accurate estimates or reduce the 
number of samples required for a given target reliability (1). One source of 
such additional information is prior knowledge of the parameters in the 
population. As, for instance, the parameter distribution in the population 
when assuming that the parameters are random variates. When a structural 
model for the process being studied and an error model are defined, several 
methods are available to estimate the population's parameter distribution 
from a given set of measurements (2). A Bayesian approach may then be 
used to estimate the parameters for a new individual from only a few 
measurements. Many therapeutic applications of this approach have been 
proposed to individualize dosages of various drug regimens (3). The accur- 
acy of the parameter estimation for a patient clearly depends on the design 
of the experiment (i.e., sampling times, administered doses) especially when 
the number of measurements is small. 

Several approaches to optimizing experimental design for individual 
parameter estimation have been proposed (4-7). The principle of these 
methods is to optimize a criterion with respect to design variates. These 
design criteria either refer to the concept of Fisher information matrix or to 
that of the Shannon information. Most of the design criteria are scalar 
functions of the Fisher information matrix. It should be noted that, for 
nonlinear models, this matrix depends on the vector of parameters to be 
estimated. In that case, a nominal value of the parameter vector is chosen. 
When a prior parameter distribution is available this value is generally taken 
as the mean. For standard estimation, the D-optimality criterion, which is 
the determinant of the Fisher information matrix, is the most frequently 
used design criterion (8). Results concerning D-optimal designs for various 
pharmacokinetic models have already been given (9). 

For Bayesian estimation, work on defining optimal designs has mainly 
concerned linear models with normal additive errors and normal prior distri- 
butions (4,10,11,12). The proposed optimality criteria are scalar functions 
of the Bayesian information matrix (13). The most well known is the deter- 
minant of this matrix which is called the Bayes D-optimality criterion. Few 
applications have been proposed for nonlinear models. 

The other approach originates from Shannon's work (14). He defined 
a quantity called entropy that measures the uncertainty associated with 
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random phenomena. From this concept comes the notion of the entropy of 
a distribution, also called the Shannon information. For classical estimation 
the design criterion can be taken as the entropy of the distribution of the 
estimator. For Bayesian estimation and from the notion of entropy, Lindley 
(15) defined the information provided by an experiment as the difference 
between the entropy of the prior and the posterior distribution. The expecta- 
tion of this quantity can be used as a Bayesian design criterion. It has already 
been used to optimize sampling times for Bayesian parameter estimation in 
therapeutics (16,17). 

Unfortunately, for nonlinear models with continuous prior distributions 
these Bayesian criteria involve expectations that cannot be expressed ana- 
lytically. This is surely an obstacle to their applications in designing optimal 
experiments. To simplify their computation, linearization of the model 
around the mean of the prior distribution has been proposed (18). 

In this paper an approach for simplifying the computation of three 
Bayesian design criteria (the determinant of the Bayesian information 
matrix, the determinant of the pre-posterior covariance matrix, and the 
expected information provided by an experiment) for nonlinear models and 
continuous prior distributions is first proposed. The results obtained from 
this approach are compared with those provided by the linearization of the 
model about the mean of the prior distribution. This approach is then 
applied to design experiments for estimating the parameters of two models 
commonly encountered in the area of pharmacokinetics and pharmaco- 
dynamics: the one-compartment open model with a single bolus intravenous 
injection and the Emax model. The prior parameter distribution is assumed 
to be Gaussian. The measurement error is additive, normally distributed 
with either homoscedastic or an heteroscedastic variance. The optimal 
experiments obtained from the three Bayesian design criteria are compared 
with each other for various combinations of the variances of the parameters 
and of the measurement error. They were also compared to designs provided 
by standard approaches. 

MODELS AND NOTATIONS 

Let y(~) be a vector of observations obtained after having conducted 
an experiment with a design ~ on a given individual. The predicted model 
vector is denoted f (  4, 0) where 0 is the individual parameter vector. The 
relationship between the observed vector and the vector of responses pre- 
dicted by the model is assumed to be 

y( ~)=fr ~, o)+ ~ (1) 



104 Merlfi and Mentr6 

Where e is a random error with zero mean and a variance-covariance matrix 
f~(0, ~). Let X(O, ~) be the matrix of derivatives vector of the model with 
respect to its parameters: 

X(O, ~ ) = ~-~ f(  4, O) (2) 

The distribution of the observations given the vector of parameters 0 is 
denoted p(y( ~ )l 0) and is fully specified by the distribution of the measure- 
ment error. The prior distribution for the parameter is denoted p(O). The 
posterior distribution p(O[y( ~ )) is estimated from the prior distribution and 
the distribution of the observations using Bayes theorem 

p(Oly( ~ )) -P(Y( ~ )10))p(O) (3) 
P(Y( ~)) 

where 

= f p(y( o)p(o) eo (4) 

The mean and the variance-covariance matrix of the prior distribution are 
denoted p and C, respectively. 

The standard Fisher information matrix My(O, 4) is given by 

My(O, ~) =Evl0 Ln(p(y(~)lO)) -~t Ln(p(y(~)lO)) (5) 

If the error c is Gaussian with constant variance ~ independent of the design 
and of the parameters then 

Mr(O, ~) =X(0, ~)'t2-'X(O, 4) (6) 

For linear models, X(O, ~) is the design matrix and is independent of the 
parameters. In that case and if the error variance is constant 

MF( ~ ) =X'( ~ )f~-'X( ~ ) (7) 

It should be noted that, from the Rao-Cramer inequality, the inverse 
of the Fisher information matrix is the lower bound of the covariance matrix 
of any unbiased estimator. The covariance matrix of the estimator reflects 
its accuracy. To increase the accuracy, design criteria based upon MF (0, ~ ) 
were defined. The most widespread criterion is the D-optimality criterion. 
A D-optimal design is a design that maximizes Det(MF(0, 4)). 
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DESIGN CRITERIA 

Three Bayesian design criteria are described: the determinant of the 
Bayesian information matrix, the determinant of the pre-posterior covari- 
ance matrix, and the expected information provided by the experiment. 

Determinant of the Bayesian Information Matrix 

The Bayesian information matrix Nv(~) is given by 

Nv( ~ )= Eo[Ev, o(~--~ Ln(p( OIy)) ~ Ln(p( OIy)))]. 

or by 

(8) 

. ~ [-O Ln(p(0)) O Ln(p(0))] 
Nv(~)=Eo[MF(O, ~ ) ] - ~ o  L ~ dO t j (9) 

The first term of the previous expression is the expectation of the Fisher 
information matrix over the prior parameter distribution. For a Gaussian 
prior distribution with a covariance matrix C, the Nv criterion is given by 

Nv( ~ ) = Eo[Mv( O, ~ )1 + C- '  (10) 

From the Rao-Cramer inequality for random parameters the inverse of this 
Bayesian information matrix is a lower bound of the expected covariance 
matrix of any unbiased estimator (19). 

The expected variance-covariance matrix of the estimator of the ran- 
dom vector 0 reaches its lower bound Nv I only if the posterior distribution 
is Gaussian which occurs, for example, for linear models with Gaussian 
additive noise, with constant variance, and a normal prior. The NF matrix 
is then given by 

Nv( ~)=MF( ~)+ C -' (11) 

The Bayesian information matrix, for Bayesian estimation, is analogous to 
the Fisher information matrix in standard nonlinear regression. Similarly, 
optimal design criteria based upon NF(~) were defined to increase the accu- 
racy of the estimator. 

The design which maximizes the determinant of this matrix is known 
as Bayes D-optimal. 

Determinant of the Pre-Posterior Covariance Matrix 

The covariance matrix of the posterior distribution also called posterior 
covariance matrix reflects the accuracy of the Bayesian parameter estimator 
after a given experiment has been conducted. Its expectation, V(~) is the 
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expected posterior covariance matrix over all the possible results of the 
experiments given the design 4- This matrix is also called the pre-posterior 
covariance matrix. 

Therefore the inverse of V( ~ ) can be viewed as a measure of the accu- 
racy and can be used to define optimal design criterion. It is given by 

V( ~ ) = Ev[Var(Oly( ~ ))] (12) 

V( ~ ) = Eo[Evlo(Var(Oly( ~ )))] (13) 

where Var(0ly(4)) is the covariance matrix of the posterior distribution. 
V( ~ ) can also be written as 

V ( ~ ) = f  f Var(O[y(~))p(y(~)IO)dy(~)p(O)dO (14) 

The design that maximizes the determinant of the inverse of this matrix is 
optimal for this design criterion. It should be noted that the pre-posterior 
covariance matrix is the expected covariance error of the mean a posteriori 
estimator. Therefore Nvl(~)  is a lower bound of V(~). 

Expected Information Provided by an Experiment 

The information is defined from the notion of the entropy of a distribu- 
tion, namely, the Shannon information. The entropy is a quantity that 
measures the uncertainty associated with random phenomena. 

The entropy of a probability distribution is given by 

or by 

H(p( O) ) = - Eo(Ln(p( O) ) ) (15) 

H(p(O)) = - J  Ln(p(O))p(O) dO (16) 

The entropy of the p-dimensional gaussian distribution N(p, C) is given by 
1 H(p(O)) = ~. Ln[(2Jr)P[ CI] + �89 (17) 

where I CI is the determinant of C. 
The information provided by an experiment is given by 

I( ~ ) = H(p(O)) - H(p(Oly( ~ ))) (18) 

where H(p(O)) and H(p(O[y(~)) are the entropies of the prior and the 
posterior distributions, respectively. It quantifies the loss of uncertainty pro- 
vided by the results of the experiment y( ~ ). 
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As for the previous criterion, the expected information provided by an 
experiment is therefore the expected value of I(~) over all the results of the 
experiment y( ~ ) 

Ev(l( ~ )) = Ev[n(p(O)) - n(p(Oly( ~ )))] (19) 

Ev (I( ~ )) = H(p(O)) - f f  H(p(Oly( ~ )))p(y( ~ )l O)p(O) dy( ~ ) dO (20) 

A design that maximizes the expected information provided by an experi- 
ment is optimal for this design criterion. It corresponds to a design that 
minimizes the expected posterior uncertainty in the parameters after the 
experiment is conducted. 

For linear models, a normal prior and normal additive measurement 
errors with a constant variance Eq. (18) does not depend on the observations 
but only on the experimental design. Therefore it is equal to its expectation 
and is given by 

I ( ~ ) = - ~  LnlMv(~)+C-' l - �89 LnlC-ll (21) 

So in this case, this criterion is equivalent to the determinant of the inverse of 
the Bayesian information matrix and to the determinant of the pre-posterior 
covariance matrix. 

COMPUTATIONAL METHODS 

For continuous prior and posterior distributions, the determinants of 
the Bayesian information matrix, the pre-posterior covariance matrix, and 
the expected information provided by an experiment have no analytical 
expression. The required integrals may be evaluated using stochastic tech- 
niques but these are time-consuming. The computation can, however, be 
simplified by discretization of the prior. This approach is compared with a 
first-order expansion of the model about the mean of the prior distribution. 

Discretization of the Prior Distribution 

An algorithm has been developed by Katz (20) to approximate a con- 
tinuous univariate density function p(O) on a closed interval [a, b] by a 
discrete density distribution which consists of o vectors of parameters Ok 
with associated probabilities 6k. 

The principle of the method is to minimize an appropriate measure 
of the difference between p(O) and the discrete distribution. Instead of 
directly comparing the difference between these two functions, their respec- 
tive cumulative distributions F(O), for p(O), and G(O), for the discrete 
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distribution, are compared that leads to the LI optimality criterion 

,,; lf(O)-G(O)l dO (22) 

which has to be minimized with respect to Ok and t~k and 5k, k = 1 . . .  v. 
An initial value for the first location (ON) is chosen, then the sequence 

of Ok and 5k, k = 2 . . .  v, is obtained from a simple iterative procedure which 
only requires to calculate F(Ok)and F-I(Ok). The criterion is then computed 
by numerial integration (the Simpson method) from the sequence of Ok and 
5k and is optimized with respect to 01 by using a one dimensional search. 
This method has been extended to multivariate continuous densities (21). 

We use this approximation to discretize the prior distribution. With 
this approximation some of the expectations involved in the criterion become 
summations that can easily be evaluated. 

The Bayesian information matrix given in Eq. (10) for a Gaussian prior 
can be approximated by 

Nv(~)~ ~ 5kMv(Ok,~)+C -I (23) 
k = l  

Similarly, the first integral in Eq. (14) giving the pre-posterior variance- 
covariance matrix can be approximated by a discrete sum and the equation 
becomes 

W(r ~ 5kf Var(Oly(~))p(y(~)lOk) dy(~) (24) 
k = l  

The posterior distribution can be approximated by 

p(y( ~)lO)p(O) p(Oly( )) (25) o 
"e~k= I P( Y( ~ )10k)Sk 

Therefore Var(0ly(~)) can be approximated by 

Var(01y(~))~ i O~p(Okly(~))- Okp(Oly(~)) (26) 
.i = l ./ 

The integral involved in Eq. (24) can be computed by stochastic simulation: 
Let Yi.k ( ~ ) be samples from the distribution p(y( ~)[ Ok). Given n samples 
for each k, the remaining integral involved in Eq. (24) can be approximated 
by a discrete sum and becomes 

V(~)~., ~ 5k "1- ~. Var(OklY,,k(r (27) 
k = l  /'/ t '= I 
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where Var(OklYi,k(~)) is obtained using Eqs. (25) and (26) with Yi,k(~) 
replacing y( ~ ). 

Similarly the entropy of the prior distribution is approximated by 

H(p(O)),~- ~ 6kLn(p(Ok)) (28) 
k = l  

The posterior distribution can also be discretized. It has the same locations 
Ok than the prior but the associated frequencies 6~(y(~)) are given by 

6kp( y( ~ )1 Ok) 
- -  o ak(Y( ~)) Ej=, 6jp(y( ~)lOj) (29) 

Then, the entropy of the posterior distribution is approximated by 

H(p(Oly(~))) ~ - ~ 6k(y( ~ )) Ln(p(O~[y( ~ ))) 
k = l  

(30) 

The expectation of the information is approximated by 

Ev(l( ~))'~ H(p(O))- ~ t~k f H(p(Oly( ~)))p((y( ~))lOk) dy( ~) 
k = l  

(31) 

The integral involved in this criterion can be approximated by stochastic 
simulation using the same technique as was used for the pre-posterior covari- 
ance matrix. 

Ev(I(~)),~H(p(O))- ~, 6k" I ~ H(p(Oly,.k(~))) 
k = l  n i = l  

(32) 

where H(p(O)) and H(p(Olyl,k(~))) are obtained by using Eqs. (28) and 
(30), respectively. 

Linearization of the Model 

By expanding the model to the first order about the mean p of the 
prior distribution an approximate linearized form of the model can be 
obtained and is given by 

f(X, O) ,~f(X, Iz) + X( 4, lt)'( O -p )  (33) 

The model linearization considerably simplifies the computation of these 
three criteria which become equivalent for a Gaussian prior distribution and 
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an additive error with a constant variance. In that case, the linearized form 
of the Bayesian information matrix is given by 

N(L) (~ )  = My(p, ~ ) + C-' (34) 

SIMULATIONS 

We now compute the criteria we have just described in order to compare 
the criteria, the designs, and the approximations. The models, the prior 
distributions, the measurement error models, and the studied experimental 
designs are presented successively. 

Pharmacokinetic and Pharmacodynamic Models 

Our attention has been focused on one pharmacokinetic model: the 
one-compartment open model with single-dose bolus intravenous injection. 
Its expression is given by 

D : CL~  
f(t,  0 ) = {  exp , - - -  V- t) (35) 

where the design variable ~ = t is the time of sampling and 0 = ( V, CL). This 
model involves two parameters: V, the apparent volume of distribution and 
CL the elimination clearance. D is the administered dose which was fixed 
to 1. 

The pharmacodynamic model was assumed to be an Emax model. Its 
expression is given by 

Em,x" D 
f (n ,  O ) - - -  (36) 

D50 + D 

here the design variable ~ = D is the dose x and 0 = (Em~x, Ds0). This model 
involves two parameters, Emax and Dso, which are the maximum drug-related 
effect and that value of the dose that causes 50% of the maximum effect, 
respectively. 

Studied Experimental Designs 

The design variates of interest were either the sampling times (for the 
pharmaeokinetic model) or the doses (for the pharmacodynamic model). 
Our attention was restricted to designs with one or two measurements. 

For designs including a single measurement, only the criteria developed 
in a Bayesian estimation context (namely, the Nv criterion, the expected 
information provided by an experiment and the pre-posterior covariance 
matrix) can be computed. These criteria were calculated for 20 sampling 
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times or doses included in the interval [0, 1 ] and [0, 20] for the one-compart- 
ment and the Emax models, respectively. 

For designs including two measurements the determinant of the 
Bayesian information matrix after linearization, the determinant of the 
Bayesian information matrix, the determinant of the pre-posterior covari- 
ance matrix and the expected information provided by an experiment were 
computed. For the pharmacokinetic model 200 time pairs were explored 
between t = 0 and t = 1 with steps of 0.05 under the assumption t2_> 4. For 
the Em,x model the same procedure was taken for doses in the interval [0, 20] 
using steps of 1. 

Measurement Error Models 

Two error models for observations y (concentrations or effects) per- 
formed at the design variate ~ (times or doses) were considered. For the 
homoscedastic model, it was assumed, as in Eq. (1), that these errors are 
additive and independently normally distributed with zero mean and a con- 
stant variance equal to 

var(e) = ~ = o-21 (37) 

For the heteroscedastic model, it was assumed that 

Y=f( 4, 0)(1 + e) (38) 

where e is normally distributed with constant variance as in Eq. (37). How- 
ever, this model was approximated as follows in order to be in the setting 
previously described of a constant error model: First a logarithmic trans- 
formation was applied; second, a first-order expression of Ln(l + e) about 
zero was done. Therefore it was assumed that 

Ln(y( ~ )) ~ Ln(f( 4, 0)) + s (39) 

where Ln(y( ~ )) was taken as the data and Ln(f )  as the model. 
The variance of the error 0-2 was taken to be 0.0225. For the heterosced- 

astic error this corresponds to a coefficient of variation of 15%. 

Prior Distributions 

The prior distributions of the parameters were supposed to be Gaussian 
because this assumption is often made when estimating a prior. The expecta- 
tion and the variance-covariance matrix of this prior was supposed to be 
known and the covariances between the parameters were assumed to be 
equal to zero. 

For each model a nominal value for the hyperparameters was chosen. 
For the one-compartment open rnodel with single-dose bolus intravenous 
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injection the mean value and the variance of the clearance were fixed at 0.5 
and 0.01, respectively. For the volume of distribution, the mean and the 
variance were of 0.2 and 0.0016, respectively. For these two parameters this 
corresponds to a coefficient of variation of 20%. For the pharmacodynamic 
model the mean values and the variance for the Em, x parameter were fixed 
to 1 and 0.09. The same values were chosen for the other parameter. For 
these two parameters this corresponds to a coefficient of variation of 30%. 

The algorithm developed by Katz was used for discretizing the prior 
distributions. The number of locations for the discrete distributions was 
fixed at 15 x 15 = 225. For each location 100 vectors of observations y were 
simulated. The same simulated samples were used for the computation of 
every criterion. 

The impact of altering (i) the ratio of the measurement error variance 
to the variances of the parameters and of altering (ii) the ratio of the variance 
of one parameter to the other was investigated on (a) the variations of the 
criteria with respect to the experimental designs; (b) the optimal designs. 

Influence of the Ratio of the Intra- to the Interindividual Variability 

The variances in the prior population were fixed to their nominal values. 
For the one-compartment open model five values of the measurement error 
variances were studied (0.005, 0.01, 0.05, 0.1, 0.5). For the Em,x model, six 
values of the variance were investigated (0.0014, 0.0028, 0.00563, 0.0113, 
0.045, 0.09). 

Influence of the Ratio of the Var&nce of One Parameter to the Other 

The variance of one parameter was fixed to its nominal value while the 
other was altered. For the Em,x model, six values of the coefficient of varia- 
tion of the other parameter were studied: 5, 10, 15, 20, 40, and 50%. The 
same procedure was applied to the other parameter. For the one-compart- 
ment open model four values were studied: 10, 15, 30, and 40%. 

Analysis of the Results 

For each value of the population parameters and combination of 
measurements, the design criteria were computed and compared. The cri- 
terion variations have been plotted with respect to the experimental designs. 

Given a design criterion q~, either the determinant of N~ or the determi- 
nant of the pre-posterior covariance matrix, or the expected information 
provided by an experiment, a usual measure to compare a design ~ to the 
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optimal one ~, is the ~b-efficiency defined as (4) 

)) (40) 

where p is the number of parameters to estimate. This efficiency is defined 
from the ratio of the criteria for the design ~ and the optimal design ~ ,  
therefore it is always lower than 1. It is taken to the power l /p  in order to 
be normalized with respect to the number of parameters. The efficiency 
reflects the loss of information in the current design ~ instead of the optimal 
one. In our study we have evaluated the efficiency of the D-optimal design 
for the mean of the prior with respect to each design criterion. The gain of 
efficiency of a Bayesian optimal design instead of the D-optimal design, 
defined as 

was reported. 

l - e f  
G E f  = - -  (41) 

ef 

To examine if the pre-posterior covariance matrix V(~) is close to its 
lower bound N ~ ( ~ ) ,  the ratio Det( V) /De t (N~  t) was also computed. This 
ratio quantifies the normality of the posterior distribution and therefore the 
nonlinearity of the model with respect to the design under study. 

RESULTS 

For the homoscedastic error, results on two-point and one-point designs 
are presented. For the heteroscedastic error only one-point designs were 
studied. 

One-Compartment Open Model 

The results on the Bayesian designs for this model are presented in Table I. 

Homoscedastic Error 

It was shown (9) that the two-sample D-optimal design in that case is 
tl = O, t2 = CL/V.  Therefore, for the mean of the prior, the D-optimal design 
is tl =0  and t2=0.4. The loss of efficacy may be very large if the samples 
are not performed at optimal times. The optimal designs obtained from the 
determinant of the pre-posterior covariance matrix, the Nv criterion without 
or with linearization, and the expected information provided by an experi- 
ment are generally the same as the D-optimal designs for the mean of the 
prior distribution except when the ratio of the variance of the measurement 
error to the variance of the parameters is very large [Var(CL)=O.O1, 
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Var(V)=0.0016, 0-2=0.5]. In that case, the optimal Bayesian designs are 
designs with replicates: The two measurements must be repeated ideally at 
t = 0  (except 7or the linearized form of the NF criterion). For this case the 
gains of efficiency when performing the Bayesian optimal design instead of 
the D-optimal design are of 15, 11, and 7% for the NF criterion, the determi- 
nant of the pre-posterior covariance matrix and the expected information, 
respectively. The variations of the expected information with respect to the 
sampling times are presented in Fig. 1 for the nominal values of the param- 
eters. The variations of the other criteria are quite similar. The importance 
of an early measurement (ideally at time t = 0) is shown. By contrast, the 
choice of the second sampling time seems less crucial. For the case where 
the measurements must be repeated twice at t=  0 the variations of the 
four Bayesian design criteria are also very similar. For the optimal designs, 
the ratios of the determinant of the pre-posterior covariance matrix to 
the determinant of the inverse of the Fisher information matrix are within 
the interval [1.27, 476]. The highest value was found for large coefficients 
of variations of the volume of distribution. 

For the one-point designs, the four Bayesian design criteria lead to the 
same result: The measurement has be be performed as soon as possible, 
theoretically at time t = 0. The variations of these four criteria with respect 

: . . .  

: i i i  ........... 
tO ..... i i?: 

. . . . . . '  

tO 

% 

o.~ 

0' 6 
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o 

Fig. 1. One compartment open model, two-point designs, and homoscedastic error: 
Variations of E(I) with respect to the two measurement times for the nominal values. 



116 Merl6 and Mentr6 

-~- c,l 

d 

\\ 
1 \ \  - -  Det (NE~" 
,! \ . . . . . . .  Det(NF()) 

~ \\\ I ( ) 

�9 , : ~ .  ~ -.... 

..4 

z 

O0 0.2 0.4 0.6 0,8 I n  

Fig. 2. One-compartment open model, one-point designs, and homoscedastic error: 
Variations of the four Bayesian design criteria with respect to the measurement time 
for the nominal values. 

to the sampling time are shown in Fig. 2 for the nominal values of the 
hyperparameters. The efficacies of the designs decrease rapidly within the 
interval [0, 0.2]. The expected information and the inverse of the determinant 
of the pre-posterior covariance matrix vary very similarly. The pre-posterior 
covariance matrix is close to its lower bound for the optimal designs. That 
is not always true for nonoptimal designs particularly when the ratio of the 
variance of the measurement error to the variance of the parameters is very 
low [Var(CL) =0.01, Var(V) =0.0016, 0-2=0.005]. In that case the ratio of 
the two criteria reached 11 for sampling times within the interval [0.3, 0.4]. 
The variations of this ratio are shown in Fig. 3. 

Heteroscedastic error 

The optimal designs consist in measuring the concentrations as late as 
possible. It should be noted that for every studied case, the four criteria lead 
to the same design. The variations of the four Bayesian design criteria for 
the nominal values of the parameters are presented in Fig. 4. A comparison 
of Fig. 2 to Fig. 4 shows the importance of the error model on the criterion 
variations and on the optimal one-point design. The determinant of the pre- 
posterior covariance matrix is generally close to its lower bound except when 
the variance of the measurement error is low or for great values of the 
variances of the two parameters. It should be noted that because of the 
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Fig. 3. One-compartment open model, one-point designs, and homoscedastic 
error: Variations of  the ratio Det(V)/Det(Nv I) of the determinants o f  the 
pre-posterior covariance matrix and of  the NF criterion with respect to one 
measurement time for Var(CL) = 0.01, Var (V)  = 0.0016, and o 2 = 0.005. 

stochastic simulation the determinant of the pre-posterior covariance matrix 
was found in some cases to be slightly lower than its lower bound. 

Em,~ Model 

Homoscedastic Error 

The results are presented in Table II. It was shown that the D-optimal 
two-point design is theoretically D I =  Dso and D2 at an infinite value. In 
practice, the dose D2 has to be fixed to a large value, and, in that case, D1 
is slightly lower than Ds0. For the mean values of the parameters given the 
design constraints, the D-optimal design is D1 = 1, D2 = 20. The variations 
of the D-optimality criterion with respect to the two doses show that DI 
must be equal or close to Ds0 otherwise the loss of efficacy can be large. The 
choice of D2 is less important provided this dose is large. For each studied 
combination, the four Bayesian design criteria generally lead to the same 
optimal designs: The same dose has to be repeated twice and must be as 
large as possible. In some cases the gain of efficacies when performing opti- 
mal Bayesian designs rather the D-optimal design for the mean parameters 
can be large. For instance, for Var(Emax) = 0.09, Var(Ds0) = 0.0025 and 0 .2 = 
0.0225 the gains of efficacies are 41, 59, 41, and 19% for Det(N~), 
Det(N~L)), l /Det(V),  and E(I) ,  respectively. 
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Fig. 4. One-compartment open model, one-point designs, and heteroscedastic 
error: Variations of the four Bayesian criteria for the nominal values. 

In some cases the optimal designs are however different. Thus, the D- 
optimal design for the mean of the prior distribution has to be performed 
when (i) the ratio of  the variance of  the parameters to the variance of  the 
measurement error is low: Var(Em~x) and Var(Ds0) at their nominal values 
and cr 2 lower or equal to 0.00563; (ii) the ratio of the coefficient of variations 
of  Em~ to Ds0 is lower than 0.50. It should be noted that the dose must be 
equal to Ds0 and given twice when the previous ratio is equal to 1. The 
variations of the four Bayesian criteria with respect to second dose when 
the first one is equal to 20 are presented in Fig. 5. 

The optimal one-point designs generally consist in giving the largest 
dose. In this example the dose must be greater than 5 otherwise the loss of 
efficacy can be important. The variations of the Bayesian criteria, with 
respect to the dose, for the nominal values of the hyperparameters are 
presented in Fig. 6. These criteria vary similarly. In these cases the determi- 
nant of the pre-posterior covariance matrix is always close to its lower 
bound. It should be noted that for low values of the variation coefficient of 
the E,,~x parameter (5%, 10%) the optimal designs obtained from the four 
Bayesian criteria consist in giving by contrast a dose equal to Ds0. 

Heteroscedastic Error 

For the studied cases the determinant of the Bayesian information 
matrix and of its linearized form lead to the same optimal designs: The 
given dose should be as low as possible. Thus, the optimal dose found from 
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Table II. Optimal One-Point and Two-Point Designs for the Em~ Model, Homoscedastic Error, 
and Several Values of the Hyperparameters ~ 

Var(Ema~) b 

Nominal 0.0025 0.01 0.0225 0.04 0.16 0.25 

Designs 
Two-point homo. 20-20 c 1-1 1-20 1-20 d 20-20 20-20 20-20 
One-point homo. 20 1 1 20 20 20 20 

Ratio 
Two-point homo. 0.90 0.96 0.96 ! .00 0.92 1.00 0.90 
One-point homo. 0.77 0.76 0.90 0.87 0.83 0.83 0.87 

GEf 
Det(N~ L)) 0 0.11 0 0.08 0.18 0.30 0.30 
Det(Nv) 0.15 0.13 0 0.02 0.09 0.12 0.16 
l /Det(V) 0.22 0.11 0 0 0.14 0.26 0.29 
E(I) 0.09 0.31 0 0 0.09 0.10 0.07 

Var(Dso) b 

Nominal 0.0025 0.01 0.0225 0.04 0.16 0.25 

Designs 
Two-point homo. 20-20" 20-20 20-20 20-20 20-20 20-20 1-20" 
One-point homo. 20 20 20 20 20 20 20 

Ratio 
Two-point homo. 0.90 0.93 0.94 1.07 0.92 1.66 1.25 
One-point homo. 0.77 0.93 0.92 0.93 0.93 0.93 0.91 

GEf 
Det(N~-) 0 0.47 0.42 0.41 0.37 0.12 0.02 
Det(NF) 0.15 0.45 0.42 0.58 0.33 0.14 0 
I/Det(V) 0.22 0.47 0.42 0.41 0.35 0.05 0 
E(1) 0.09 0.22 0.22 0.19 0.16 0.14 0 

O- 2b 

Nominal 0.0014 0.00282 0.00563 0.0113 0.045 0.09 

Designs 
Two-point homo. 20-20 c 1-20 1-20 1-20 e 20-20 20-20 20-20 
One-point homo. 20 20 20 20 20 20 20 

Ratio 
Two-point homo. 0.90 1.45 1.31 1.19 0.95 1.00 1.33 
One-point homo. 0.77 0.93 0.94 0.91 0.99 0.75 0.66 

GEf 
Det(N~ L~) 0 0 0 0.02 0.14 0.28 0.25 
Det(NF) 0.15 0 0 0 0.14 0.22 0.21 
l /Det(V) 0.22 0 0 0 0.12 0.25 0.34 
E(1) 0.09 0 0 0 0.23 0.16 0.25 

OFor each combination are given: the optimal designs, the ratio Det(V)/Det(N~ ~) and, for 
two-point designs only, the GEf of the D-optimal designs. 

bOther variances fixed to their nominal values. 
CExcept for Det(N~ L~): !-20. 
dExcept for Det(Nv and Det(N~ z')) : 20-20. 
eExcept for Det(N~L~): 20-20. 
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of the four Bayesian criteria with respect to D2 for the nominal values when 
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Fig. 6. Emax model, one-point designs, and homoscedastie error. Variations 
of the four Bayesian criteria with respect to the dose for the nominal values. 

these criteria is equal to zero which has obviously no sense in practice. The 
optimal designs obtained from the expected information and the determinant 
of the pre-posterior covariance matrix generally consist in giving either the 
lowest dose or a dose equal to Ds0. These two criteria cannot be computed 
for D = O. It should be noted that for a large variance of the Emax parameter 
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(0.25) as well as for low values of 0 -2 (0.0014 and 0.00282), these two criteria 
do not lead to the same optimal designs: D = 1 for the expected information 
provided by an experiment and D=20  for the determinant of the pre- 
posterior covariance matrix. The variations of the four Bayesian criteria for 
the nominal values of the parameters are very similar to those presented for 
the homoscedastic case. The pre-posterior covariance matrix may be far 
from its lower bound especially for low values of the variances of the two 
parameters and of the variance of the measurement error. 

DISCUSSION 

In this paper a method for simplifying the computation of three 
Bayesian design criteria in case of nonlinear models with respect to their 
parameters has been proposed. This method has been applied assuming a 
Gaussian prior distribution and for two models often encountered in the area 
of pharmacokinetics and pharmacodynamics. This simplification procedure 
could be applied to other distributions, it is easy to perform and substantially 
decreases the time of computation especially for the expected information 
provided by an experiment as well as for the determinant of the pre-posterior 
covariance matrix. The approximation of the prior distribution to compute 
expectations could have been obtained by using a random variate generation 
technique. However, the sample required to obtain the same accuracy in the 
criterion computation might be larger than the value used (15 x 15 = 225 
locations) in our simulation procedure after discretization of the prior distri- 
bution. The number of locations chosen for the discrete prior distributions 
leads to a reasonable approximation of the continuous prior distributions. 
Thus, the values of the entropies of the prior distributions obtained from 
Eq. (28) were very close to those provided by the exact formula Eq. (17). 
The same remark can be made for the variance. Furthermore, with this 
number of locations, the discretization procedure is not time-consuming. A 
greater number of locations (30 x 30 = 900) has been tried but it did not lead 
to a better approximation and took more time. However, the computation 
of the pre-posterior covariance matrix and of the expected information still 
requires stochastic simulations. In Eqs. (27) and (32) the value n= 100 was 
chosen. It corresponds to a reasonable value: The variations of the criterion 
with respect to the design variates are regular and a higher value we have 
tried (n = 1000) does not lead to a better approximation of the criterion and 
is obviously time-consuming. 

Our results indicate that for every studied criterion, the value of the 
variance of the prior parameter distribution and of the measurement error 
may modify the optimal designs. The Bayesian two-point designs sometimes 
differ from the D-optimal design for the mean of the parameter and may 
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consist in a replication of the measurements. The gain of efficiency, when 
performing the Bayesian design, rather than the D-optimal design for the 
mean parameters may be large. The results provided by our approach have 
been also compared with those obtained from the linearization of the model 
about the mean of the prior distribution. This latter approach is to compute 
the determinant of the Bayesian information matrix for the mean of the 
prior distribution. In this case the computation of the criteria does not 
require stochastic simulations and is straightforward. In this study, our 
results show that the optimal designs obtained after linearization of the two 
models are mostly the same as those provided by the determinant of  the 
Bayesian information matrix. In contrast, the optimal designs may differ 
from those obtained from the expected information provided by an experi- 
ment and from the determinant of the pre-posterior covariance matrix 
especially for the Emax model and a multiplicative measurement error. Fur- 
thermore our results indicate that the pre-posterior covariance matrix can 
be far from the lower bound. The optimal designs obtained from the expected 
information differ rarely from those provided from the pre-posterior vari- 
ance-covariance matrix and only for the Em~x model and the multiplicative 
measurement error. 

General principles for Bayesian design of experiments for these two 
models can be drawn from this study. Thus, for the one-compartment open 
model and homoscedastic error, the two-point optimal design is the D- 
optimal design for the mean of the prior distribution except when the vari- 
ance of the measurement error is large (the samples should be performed as 
soon as possible). In the case of one-point designs the sample must be 
performed as soon as possible. In contrast, for heteroscedastic error, the 
sample must be performed as late as possible. For the Em~x model and 
homoscedastic error the two doses should be as large as possible except for 
a low variance of the measurement error (the D-optimal design for the 
mean parameters has to be performed) and when the variance of the Emax 
parameter is smaller than the one of the Dso parameter (the dose should be 
either equal to the mean Ds0 and repeated twice or the D-optimal designs 
should be performed). In the case of one-point designs the dose has to be 
as large as possible except when the variance of the Emax parameter is lower 
than those of the Ds0 parameter. For heteroscedastic error general principles 
are difficult to draw because the various Bayesian design criteria do not lead 
to the same optimal design and depend upon the values of the variances of 
the parameters and of the measurement error. Optimal experiments vary 
with respect to the model and prior assumptions so that the optimization 
of Bayesian design criteria should be performed in each case. 

Bayesian forecasting programs often involve modules for designing 
experiments. The latter generally compute the D-optimal design for the 
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mean of the prior distribution. This approach is not appropriate for several 
reasons. Thus, the design obtained from this approach is optimal only if the 
individual parameters are equal to the mean of the prior distribution. In 
addition, the D-optimal design criterion has not been developed in a Bay- 
esian estimation context but in a standard one; consequently it is not defined 
if the number of measurements is lower than the number of parameters to 
estimate. Furthermore, linearizing the model about the expectation of the 
Gaussian prior distribution does not take into account the shape of the 
latter. Bayesian design criteria should be employed instead because they take 
into account prior knowledge both for estimation and design procedures. It 
should be noted that the determinant of the pre-posterior covariance matrix 
and the expected information provided by an experiment could also be used 
in a standard context of estimation. In that case the design criteria are, 
respectively, the determinant of the variance-covariance matrix of the esti- 
mator (whose lower bound is the inverse of the Fisher information matrix) 
and the entropy of the distribution of this estimator. The studied Bayesian 
design criteria have rarely been used up to now for planning experiments in 
the area of pharmacodynamics and pharmacokinetics. The linearized form 
of the NF criterion has been used in software to design optimal experiments 
(22). For Gaussian prior, the linearization procedure does not take into 
account the shape of the distribution. For that reason, discretization seems 
to be preferable to the linearization procedure. 

Our results show that the determinant of the Bayesian information 
matrix as well as its linearized form are very easy to compute in case of a 
Gaussian prior distribution. However, for other continuous prior distribu- 
tions, the Fisher information matrix involved in the general expression of 
the Nz criterion as well as the second term of Eq. (9) can be more difficult 
to calculate. In addition, our results show that the pre-posterior covariance 
matrix can be far from its lower bound N{: 1. Furthermore the two other 
Bayesian design criteria involve less assumptions and their computation 
can be simplified by the discretization procedure. Therefore the expected 
information provided by an experiment and the determinant of the pre- 
posterior covariance matrix are more appropriate to design experiments. 
Nevertheless, the N~ optimal design could be chosen as an initial point in 
the algorithm used to optimize the two other Bayesian design criteria. In a 
context of parameter estimation, the expected information provided by an 
experiment can be more difficult to interpret than the pre-posterior covari- 
ance matrix which reflects the accuracy of the posterior distribution. How- 
ever we would use the information criterion to design experiments that 
involve a more general measure of the uncertainty of a distribution. We 
applied this criterion to find the optimal two-point design to estimate the 
kinetics of iodine thyroid uptake (16). 
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In the present work, the optimal designs were found by performing a 
combinatorial computation of  all the results. This latter approach can be 
easily used for designs with a small number of  measurement (which is usually 
the case for Bayesian estimation) especially when the measurement times or 
the doses have to be chosen in a restricted set because of  practical reasons. 
In the other cases optimization methods have to be employed. Since, the 
determinant of  the Bayesian information matrix Can be computed quickly, 
a global optimization may be performed. In constrast, for the determinant of  
the pre-posterior covariance matrix and the expected information, stochastic 
approximation methods seem to be more suitable for these criteria which 
involve expectation terms (23). Besides, with these algorithms, the criteria 
do not need to be evaluated at each iteration, 

Other improvements could be performed. Thus, optimal designs 
obtained from the Bayesian design criteria could be individualized by taking 
into account the values of  the covariates of  the patient collected before 
the experiment. In that case optimal Bayesian designs may differ from one 
individual to the other (24). Such methods could be incorporated in modules 
of  Bayesian forecasting programs for designing experiments. Such study as 
well as others conducted in the area of the population design (25) may 
contribute to better collect data. 
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