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Using population analysis, sparsely sampled Phase 3 clinical data can be utilized to determine the

pharmacokinetic characteristics of the target population. Data arising from such studies are likely
to be constrained to certain sampling windows, i.e., the visiting hours at the study clinic. When
the sampling window is narrow compared to the half-life of the drug, the advantage of taking
more than one sample is not obvious. Study designs with one or two samples per visit have been
compared with respect to (i) precision and bias of the population parameter estimates, (ii) the
ability to identify the underlying pharmacokinetic model, and (iii) the estimation of individual
parameter values. The first point was assessed using simulated data while the latter two were
studied using a real data set. Results show: (i) Parameter estimates are more biased and
imprecise when only one sample is taken compared to when two samples are obtained, this
is true irrespective of the time span between the two samples. (ii) Ability to identify a more
complex model is increased if two samples are taken. Specifically, the variability between
occasions can be quantified. (iii) Two-sample designs are generally better with respect to
prediction of individual parameter values. Even minor changes to commonly employed study
designs, in this case the addition of one sample at each study occasion, can improve quality and
quantity of the information obtained.

KEY WORDS: study design; sampling design; population analysis; NONMEM.

INTRODUCTION

Population analysis using nonlinear mixed-effects models is a commonly
used tool to analyze sparse pharmacokinetic data. This type of data may
arise from a number of situations; routinely coliected clinical data, toxico-
kinetic studies, and Phase 2 and Phase 3 clinical studies (1). In recent years
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some work has been done using simulations to evaluate and compare designs
of ‘sparse data experiments (2,3,4). These studies evaluated the impact of
altering the number of subjects and the number and timing of blood samples
on the precision and bias of the estimated parameter values. The conclusions
can be summarized broadly as follows: Increasing the number of individuals
in the study improves the estimation of the parameters. This is true even if
a large fraction of the subjects have only one sample each (2). Increasing
the number of samples per individual also leads to increased predictive
performance but not to the same extent as designs with more (sparsely
sampled) individuals (4). The question of the timing and the number of the
samples is a little more complex. It is well known that the sampling times
can have a large impact on the precision and bias of parameter estimates in
nonlinear regression type of data analysis (5). Unfortunately, to find optimal
times for sampling, it is necessary to make quite precise assumptions regard-
ing the model, the values of the parameters to be estimated, and, especially,
the weighting scheme to be used in the analysis. If these assumptions can
be made it is theoretically possible to devise an optimal design with respect
to the precision of the estimated parameters (6). The effect of sampling times
on the precision of the parameter estimates from an intravenous monoexpon-
ential model was explored by Al-Banna et al. (3). The results show that as
early and as late as possible were the best time points if only two samples
were taken (the model used was a one-compartment intravenous bolus model
with constant coefficient of variation residual model). If a third sample was
added to the best two-sample design, it mainly improved the estimation of
the population random effects and it did not matter when the third sample
was taken. Another sampling strategy is to randomize the observations.
Hashimoto and Sheiner (4) showed that compared to fixed sampling times,
randomization of the sampling times in all the individuals resulted in a high
robustness to model misspecification.

It is not always possible to make observations either totally at random
or at certain optimal time points. In a Phase 3 outpatient clinical study, for
example, it is more likely that the sampling times will vary within certain
sampling windows, circumscribed by the visiting hours at the clinic. These
sampling windows do not necessarily coincide with the optimal sampling
times and do not allow a total randomization. When, in addition, the sam-
pling windows are narrow compared to the half-life of the drug, the main
design question becomes one of number of samples. The present study evalu-
ates the consequences of taking two samples instead of one during a visit
to a clinic in a Phase 3 study. The influence of taking two samples on
parameter precision and bias, as well as the ability to characterize the struc-
tural and statistical model and the capability to predict individual parameter
values were investigated, using both simulated and real data.
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METHODS
Simulations
Study Design

The basic study design of the simulated data sets was aimed at mimick-
ing an outpatient Phase 3 clinical trial (including 100 patients) in which two
visits to the study clinic were scheduled for pharmacokinetic observations,
i.e., blood samples. Apart from blood sampling these visits are supposed to
include other types of examinations and tests. The dosing interval is 12 hr
with doses taken at 8 am and 8 pm. Visits can take place either between 10
and 12 am or between 2 and 4 pm (Fig. 1).

Data were generated according to six different sampling designs (Table
I). Either the patients had samples taken at both a morning and an afternoon
visit (the normal case) or they had only morning samples or afternoon samples
(mmy/aa). In the latter case, half of the patients had only morning samples and
the other half only afternoon samples (Data sets 2 and 5 in Table I). The first
sample was taken when the patient arrived at the clinic, which was at a time
randomly chosen from 2, 2.5, 3, 3.5, or 4 hr postdose in the case of a morning
visit or 6, 6.5, 7, 7.5, or 8 hr postdose in the case of an afternoon visit (which
corresponds to 0, 0.5, 1, or 2 hr from the start of the visiting period, see
Table I). The second sample, in the case of a two-sample design, could be
at a time 0 (a replicate sample), 1 or 2 hr after the first sample. No sample
was allowed to be taken outside the sampling window.

Generation of the Data

A one-compartment, first-order absorption, steady-state pharmaco-
kinetic model was used to generate the concentrations in the simulated data
sets
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Fig. 1. The timing of the sampling windows. The curves are the log concentration-time curves
for the short half-life (solid line) and the long haif-life (broken line).
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Table L. Sampling Designs Evaluated in the Simulations

Sampling times®

Data
set no. First visit Second visit
1 One sample 2,2.5,3,35, 0r4 6,6.5,7,7.5,or 8
2 One sample (mm/aa)” 2,25,3,350r4 225,335 or4
or
6,6.5, 7,75 or8 6,6.57,7.5 or8
3 Two samples, AT=0 2,25,3,35 0r4 6,6.5 7,75 or8
and and
2,25,3,35 0or4 6,6.5, 7,75 or 8
4 Two samples, AT=1 2,25, 0r3 6, 6.5, or 7
and and
3,35 0r4 7,75, 0r8
5 Two samples, AT=1 (nm/aa)” 2,2.5,0r3 2,25 0r3
and and
3,35,0or4 3,35 0r4
or
6,6.50r7 6, 6.5, or 7
and and
7,7.5,0r8 7,175, 0r 8
6 Two samples, AT=2 2 6
and and
4 8

“Hours postdose.
®Half of the patients have only morning samples on both visits and the other half only afternoon
samples after both visits.

Fy;, Vi, CL;, and ka; are the ith individual’s parameter values where the
subscripts i, j, and k denote individual, occasion, and sample respectively.
Individual parameter estimates for CL, ¥V, and ka were obtained according
to

CL;=CL-¢e" (2a)
V,=V-e" (2v)
ka;=ka- e (2¢)

where CL, V, ka, and F are the typical values of the parameters in the
population and CL;, V;, and ka; are the ith individual’s parameter value.

The assumption of stationarity is often made in studies performed on
two or more occasions. In many cases though, this assumption may be
invalid (7,8,9). To evaluate the impact of nonstationarity the following
statistical models were used to simulate values for F.

F,=F-e"r 3)
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F; are the ith individual’s value of F at study occasion j. The two random
variables 1y (where P is one of CL, V, or ka) and kr denote interindividual
(ITV) and interoccasion (IOV) variability, respectively. n, and xr are nor-
mally distributed with mean zero and variances w3 and 73 respectively. It
was assumed that CL, V, and ka had only 1TV and that F had only IOV.
In addition to the models for IIV and IOV, a positive correlation between
CL and V was also included in the generation of the data. This may be viewed
as if there is some covariate that influences both clearance and volume, for
example protein binding or body size. “Observed” concentrations (Cops )
were generated from the true concentrations by addition of random errors
according to

Cobs,ie = Cy €% 4

&« is normally distributed with mean zero and variance ¢”. Since the benefit
of two narrowly spaced samples is likely to be dependent on the difference
in concentration between the sampling times, two different half-lives were
used in the simulations, 6 or 12 hr.

Thirty data sets with 100 individuals in each were generated and ana-
lyzed for each design and parameter set. The parameter values of both
the pharmacokinetic and statistical parameters used in the simulations are
displayed in Table II.

Analysis of the Generated Data

The models used to analyze the simulated data differed depending on
whether the model used to generate the data included IOV in F or not. The
model used to analyze the simulated data without IOV was identical to the
model used to generate the data except that ka was not estimated but rather
fixed to its true value and that w,, was fixed to zero. The reason for this

Table II. Summary of Parameter Values Used in the Simulations and How Parameters Were
Treated in the Analysis

Simulation Analysis
CL (L/hr) 11.55/5.8° Estimated (CL/V)
V(L) 100 Estimated (V/F)
ka (hr™") 2.08 Fixed to 2.08
@cr 0.3 Estimated
w0y 03 Estimated
Ora 0.3 Not included
e 0/0.1* 0/approximated by IOV in CL/F and V/F

(Ker=xy )b

cov(ner, Ny) 0.045 Estimated
£ 0.15 Estimated

“Half-life= 6 hr/half-life= 12 hr.
’Data generated without IOV /data generated with IOV.
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was that the simulated data sets contained no, or very little, information
about the absorption process and hence problems with the identification of
ka could be anticipated. Wade ef al. (10) have shown that if the data to be
analyzed do not contain information about absorption, then there will be
no adverse effect (such as bias appearing in other parameters) if ka is fixed
to a value similar to the true value.

The model used to analyze the data generated with IOV in F differed
in one additional respect from the true model. For two samples per occasion
data sets Eqgs. (5a) and (5b) were used to model the IOV due to IOV in F
and the IV in CL and V, respectively.

(CL/F);=CL/F- ¢McL= % (5a)
(V/F)y=V/F- M~ %mw (5b)

The IOV term (k) was omitted from the model when analyzing the single
sample per occasion data sets since it is not possible to estimate IOV when
having only one sample per occasion. The way the parameters were treated
during the analysis is summarized in Table II.

Data were analyzed using both the first-order approximation (FO) and
the first-order conditional method (FOCE), as implemented in NONMEM
version IV (11). During the analysis, if a run resulted in an unsuccessful
termination, all parameter estimates from that particular data set were
excluded from the subsequent analysis.

The evaluable parameter estimates were used to calculate mean absolute
error (precision), Eq. (6), and mean error (bias), Eq. (7) (12).

N ﬁn - P
Zn=1 PT
Precision= — 5 (6)
N ijn—PT
Bigs= Lo _Pr @)
N

where Py is the true parameter value, B, is the estimated population param-
eter value from the nth simulated data set and N is the number of successfully
terminated runs.

Simulations with a Fixed Number of Samples

The cost of bioassay or sample handling may limit the possibility to
change from a one-sample design to a two-sample design without other
modifications to the study design. If the number of samples per patient is
to be increased, the number of sampled patients may have to be decreased.
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In order to evaluate a strategy with a fixed number of samples, two addi-
tional designs were tested. The first design includes 50 patients with the same
sampling scheme as Data set 6 (two samples per visit) in Table II. The
second design includes 75 patients of which 25 had the same sampling design
as Data set 6 (two samples per visit) and 50 with the same sampling design
as Data set 1 in Table II (one sample per visit). The total number of samples
in these two designs is 200, the same number of samples as in Data set 1 in
Table 11. :

The data sets with 50 and 75 patients were generated and analyzed in
the same way as Data sets 1-6, except that only the short half-life, IOV and
FO was used.

Real Data

A real data set was used to investigate the ability of the different sam-
pling designs to identify the correct pharmacokinetic and statistical models
and to predict individual parameter values. The data set used herein has
been described previously (13,14) as Drug C and B, respectively.

The real data set consists of observations from oral drug therapy,
administered twice daily in 64 individuals. After at least 8 weeks of continu- -
ous therapy the pharmacokinetics were studied during a 12-hr dosing inter-
val. After a further 4 weeks 35 of the patients were studied again. The
sampling scheme on both study occasions was relatively extensive: 10
samples per individual and study occasion (1, 2, 3, 4, 5, 6, 7, 8, 10, and
12 hr postdose).

For the present work the full data set was truncated in order to mimic
the sampling designs described Table 1. By different combinations of 6 sam-
pling times (2, 3, 4, 6, and 8 hr postdose), 2 single-sample designs (similar
to Designs 1 and 2 in Table I) and 3 two-sample designs (similar to Designs
4, 5, and 6 in Table I) were created. This was accomplished by randomly
assigning a sampling time for the first sample on each study occasion (the
only sample in the case of a one-sample design). The second sampling time
was then given by addition of the predefined time span between the samples
(i.e.,, 1 or 2hr). All of the reduced data sets (including all 64 patients)
together with the full data set were used for the purpose of model identifica-
tion and in the prediction of individual parameter values. The real data sets
were analyzed using the FO method.

Model Identification

The model (without covariates—see below) that best described the full
data set is denoted the full model. The ability of the various reduced data
sets, i.e., different sampling designs, to characterize the full model was
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assessed by comparing the final model characterized by each reduced data
set to the full model.

Previous analysis of the real data set found that a one-compartment
first-order absorption model with both IIV and IOV in all basic parameters
(CL/F, V/F, and ka) and a constant CV residual error model best described
the full data set [the model is described by Eqs. (1)-(4)]. CL/F and V/F
were also found to be correlated, not only between individuals but also
within individuals between occasions (14). In addition, a comprehensive
covariate model was built (13). In the present work the covariate model was
not considered necessary to illustrate the aims of the study and was therefore
not included.

Preliminary runs showed that all the truncated data sets successfully
identified CL/F and V/F but had problems with estimating ka. This was
expected since the data sets generally contained very little information about
the absorption process. Accordingly, ka was fixed to the estimate from the
full model when analyzing the truncated data sets (10). The validity of this
simplification was tested by repeating the same analysis but with 50% lower
and 50% higher values for the fixed ka. The problem of model identification
was therefore reduced to a problem of identifying the different parts of the
models for the IOV and IIV in CL/F and V/F, that is wc., ©v, Kcr,
Ky, cov(ncr, Nyv), cov(ker, Ky ). Models with different combinations and
numbers of these parameters were tested, the complexity ranging from indi-
vidual estimation of all of the above parameters to a single interindividual
variability parameter of nc.=ny (Table III). Discrimination between

Table ITI. Precision and Bias (%) for Parameter Estimates Obtained when Number of Samples
Are Kept Constant While Number of Individuals Is Altered

100 patients 75 patients 50 patients 100 patients
200 samples” 200 samples® 200 samples® 400 samples?
Precision Bias  Precision Bias  Precision Bias  Precision Bias

CL/F 5 -5 6 -5 5 —4 6 -6
V/F 7 —4 9 -6 8 -3 5 —4
®cr 9 4 10 0 11 -1 9 5
cov(ner, Nyv) 46 14 47 2 58 -7 52 7
@y 51 -1 27 4 25 -10 25 -5
Kr 34 2 43 -5 32 2
el 31 19 13 1 8 2 6 5

“The same as Data set 1 in Table I (1+ 1 sample).

®Fifty patients had the same type of sampling schedule as Data set 1 in Table I (1+1 single
sample) and 25 patients had the same type of sampling schedule as Data set 6 in Table I
(2+2 samples).

¢ All 50 patients had the same type of sampling schedule as Data set 6 in Table I (2+2 samples).
“The same as Data set 6 in Table I (2+ 2 samples). The numerical results from the 2+ 2 samples
in 100 patients (Data set 6 in Table I) are included as reference.
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different models was via comparison of the objective function values calcula-
ted by NONMEM. The difference between the objective function values for
two hierarchical models is approximately chi-square distributed and may
consequently be used for model selection purposes (15). In this study p <0.05
was used as the significance level.

Prediction of Individual Parameter Values

The ability to predict individual parameters was evaluated by compar-
ing the best individual parameter estimates (the empirical Bayes estimates
from the full data set analyzed with the full model) to empirical Bayes
estimates obtained from the best model for each of the truncated data sets.

RESULTS
Simulations

When the FOCE method was used, up to three data sets had to be
excluded due to unsuccessful termination from a single set of simulation
conditions. When the FO method was used, all data sets terminated
successfully.

The results from the analysis of the data generated without and with
IOV are shown in Figs. 2 and 3, respectively. The symbols represent absolute
values of bias (broken lines) and precision (solid lines) for the parameters
obtained with the long half-life and FO (east), the short half-life and FO
(west), the long half-life and FOCE (north), and the short half-life and
FOCE (south). The correlation between the size of the reference stars and
the magnitude of the bias/precision is given by the value to the right of each
TOW.

When IOV is absent, the benefits of adding a second sample on each
occasion are most pronounced for the precision in @y and . When IOV is
present, the single-sample designs are associated with greater bias and impre-
cise estimates for all parameters, except CL/F and @, when compared to
the two-sample designs. Prolonging the time span between the samples in
the two-sample designs had virtually no effect on estimation of any of the
parameters. When considering the effect of different lengths of the half-life,
it can be seen that the precision is higher for V/F, @y, and cov(ncr, nv)
when the half-life is short, irrespective of the presence of IOV. When FOCE,
rather than FO, is used in the analysis the precision is higher and bias lower
for CL/F, w¢; and 7nr. In the single-sample designs where the patients have
only morning or afternoon samples, the precision is lower in parameters
relating to V [i.e., V/F, oy, cov(ncr, nv)l.
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Simulations with a Fixed Number of Samples

The results from the simulations with a fixed number of samples are
displayed in Table II. The results from Data set 6 in Table I (400 samples
in 100 patients) are included as reference. The three designs perform similarly
with respect to precision and bias in CL/F, V/F, and @c;. The 100- and
75-patient designs are better with respect to precision in cov(ncz, 17,) com-
pared to the 50-patient design while the 100-patient design yields the most
biased estimate. The 50- and 75-patient designs are more precise in the
estimation of @y and o compared to the 100-subject design. The 100-patient
design also produces the most biased estimate of o while the 50-patient
design gives the most biased estimate of @ .

Real Data Set

The results of the model identification are displayed in Table IV. None
of the reduced data sets were able to identify the full model but the best
models for the two-sample designs were closer to the full model than the
best models for the corresponding single-sample designs. It can also be seen
that the mm/aa designs performed worse than the corresponding balanced
morning-afternoon design.

The parameter values from the final models are displayed in Table
V. The basic pharmacokinetic parameters (CL/F and V/F) are fairly well
estimated, except for the one-sample mm/aa design. The estimated magni-
tudes of the interindividual variabilities (both @y and wc;) increases when
the number of samples decreases. Analyzing the final models with an incor-
rectly fixed ka resulted in values of precision and bias in parameter estimates
that differed no more than 10% (not displayed) from the estimates obtained
when ka was fixed to the value found with the full model.

The individual parameter estimates for the different sampling designs
are plotted against the parameter values obtaincd from the full data set in
Fig. 4 for CL/V and V/F, respectively. The dashed line is the line of identity
and the solid line is the regression line. Individual predictions are shrunk
towards the population mean value (a horizontal solid line would indicate
total shrinkage to the population mean value) when the number of observa-
tions decreases. In addition, it can be seen that the mm/aa designs suffer to
a greater extent from this shrinking effect than do their more balanced
counterparts.

DISCUSSION

Traditionally the characterization of pharmacokinetic parameters dur-
ing drug development has been performed using experimental protocols that
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employ intensive sampling. This may not be possible in the target population.
With the introduction of population pharmacokinetics it is no longer neces-
sary to make frequent observations in each individual participating in the
study. It has been shown that as few as one to two samples in the majority
of the study population is sufficient to estimate the mean of the pharmaco-
kinetic parameter values and their respective variabilities in the population
(2). This opens up the possibility of using fragmentary (i.e., 1-2 samples
per individual) clinical trial data to estimate pharmacokinetic parameters. -
In this study we propose and evaluate one possible way of increasing the
amount of information contained in the data collected during a Phase 3
clinical trial without a dramatic change in the sampling design. This is
accomplished by taking two samples instead of one on each or some of the
times the patients visit the clinic. .

The major conclusions to be drawn from the work presented here are:

1. A design with a second sample at each study visit produces parameter
estimates that are at least as, and often more, precise and unbiased as a
design with only one sample per visit and the same number of subjects.
This is true irrespective of the time-span between the two samples.

2. A two-sample design improves the ability to identity a more complex
statistical model. Especially, it enables the IOV to be quantified.

3. The capability to predict individual parameter values is greatly improved
when a second sample is added.

4. If it is not possible to increase the number of samples it may still be
better, with respect to parameter precision and bias, to take two samples
per visit in some of the patients, even if the total number of patients has
to be reduced to keep the total number of samples constant.

5. Sampling designs where one fraction of the patients have only early
samples and the other fraction have only late samples are inferior to
designs in which the majority of the patients have both early and late
samples. This is true even if the total number of early and late samples
are the same in both designs.

The finding that an increased amount of data improves the results of
the data analysis is not surprising. More interesting is that the timing of the
second sample, within the interval studied, is virtually unimportant. It can
be seen in Figs. 2 and 3 that increasing the time span from zero to 2 hr does
not lead to a markedly increased performance.

It is logical to assume that a more complex model, i.e., a model closer
to the true model, produces better and more meaningful parameter estimates
than a less complex model suffering from over simplification. A good
example of this is the ability to include IOV in the model. By being able to
quantify IOV it is possible to draw conclusions about, for example, the
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possibilities of individualizing drug therapy (14). In addition to providing
more information, including IOV (if it is present in the data), is also impor-
tant in order to prevent bias from appearing in other parameters and to
avoid erroneous covariate models from being selected (14). Consider the
simulations with IOV as an example. When only one sample per occasion
was taken the IOV could not be modeled leading to considerably worse
predictions of the parameters concerned with volume compared to those
estimated when IOV was accounted for.

The importance of being able to predict individual parameter values
depends on the objectives of the study in question. If the investigator wishes
to explore the possible effects of demographic factors (such as weight, age,
and clinical laboratory data) on the pharmacokinetic parameters, as often
is the case, predictions of individual parameter values provide a useful tool
to accomplish this. It has been shown that the use of empirical Bayesian
estimates of the individual parameter values leads to a reduction of the time
necessary to build covariate models (13,16). The usefulness of such model-
building strategy is however related to the accuracy and precision of the
individual parameter estimates. A second sample will decrease the degree of
shrinkage towards the population mean value of the parameter in question.
In Fig. 4, where the shrinkage effect is investigated using the real data set,
the value of the addition of a second sample can be seen.

If it is not possible to influence the timing of the samples, as assumed
in the designs used in the present work, the main design factors are the
number of samples and number of patients. If the total number of samples
collected is the limiting factor in a design, any increase in the number of
samples per individual must be accompanied by a similar reduction in the
number of studied patients. When designs with a fixed number of samples
were compared, the most advantageous design, with respect to parameter
estimation, was a design where two samples were collected in only part of
the study population (e.g., the data set with 75 patients). Such a design
allows all variability components to be estimated and still has a relatively
large number of patients (which is beneficial from a covariate model-building
point of view). It is worth noting that there is no great loss in parameter
precision with the 50-patient design compared to the corresponding 100-
patient design.

The inferior performance of the unbalanced designs, ie., mm/aa
designs, is quite clear throughout the results of this study. These designs
are, with two exceptions, consistently inferior to the designs in which each
subject has both morning and afternoon samples. These exceptions are the
estimation of the residual error in the single-sample mm/aa case when no
IOV was included in the generation of the data and in the two-sample mm/
aa case when the data were simulated with IOV. In both these cases ¢ was
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estimated with better precision and less bias compared to the corresponding
single- or two-sample design. On the other hand, the rest of the variance
parameters estimates from the mm/aa designs were more imprecise and
biased compared to their balanced counterparts. It seems preferable to design
studies so that each individual has a balanced sampling design.

That unsuccessful termination appear with the FOCE algorithm and
not with the FO algorithm is not unexpected since rounding error problems
can occur with the FOCE method even if the FO algorithm terminates
successfully (11). The unsuccessfully terminated runs were evenly spread
between the different designs and no pattern could be found.

The fact that FOCE performs better than FO for some of the parameters
shows that FOCE might improve the precision and bias of the estimates
even in situations with sparse data and a relatively linear model (11). Since
the data analyzed, both simulated and real, are steady state data, it is not
surprising that the estimates pertaining to V are less precise and more biased
compared to CL (note the difference in reference value for CL/F and V/F
in Figs. 2 and 3). This is due to the fact that steady state data contain
more information about CL/F (the main source of information about this
parameter are the drug levels) than about V/F, which, with steady state
data, is determined mainly by the fall in the concentration-time curve. This
also explains why only the parameters relating to V/F are influenced by the
length of the half-life. Expressing the length of the sampling windows as
percentage of the half-life (approximately 17 and 33% for the long and
short half-life, respectively) shows that the samples taken within a sampling
window cover a larger part of the elimination phase when the half-life is
short, i.e., the fall in concentration is better described and hence the V/F.

As pointed out in the Introduction, the optimality of the sampling times
depends on the error model used. The numerical results (i.e., the actual
figures) consequently are dependent upon the weighting scheme used, but it
is doubtful whether the other, more qualitative results (model-finding ability,
for example), are as sensitive. However, an error model with (essentially)
constant CV is often appropriate when analyzing pharmacokinetic data
(authors experience).

The present work shows that even minor alterations to a practical and
“natural” study design lead to improvements in the outcome of the data
analysis. In this special case the improvement was due to the addition of a
second blood sample at each or some of the study occasions. The benefits
included generally improved parameter estimation, facilitated model-finding
capability, and better predictions of the individual parameter estimates.
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