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Using population analysis, sparsely sampled Phase 3 clinical data can be utilized to determine the 
pharmacokinetic characteristics of the target population. Data arising from such studies are likely 
to be constrained to certain sampling windows, i.e., the visiting hours at the study clinic. When 
the sampling window is narrow compared to the half-life of  the drug, the advantage of taking 
more than one sample is not obvious. Study designs with one or two samples per visit have been 
compared with respect to (i) precision and bias of the population parameter estimates, (ii) the 
ability to identify the underlying pharmacokinetic model, and ( iii) the estimation of individual 
parameter values. The first point was assessed using simulated data while the latter two were 
studied using a real data set. Results show: (i) Parameter estimates are more biased and 
imprecise when only one sample is taken compared to when two samples are obtained, this 
is true irrespective of the time span between the two samples. (ii) Ability to identify a more 
complex model is increased if  two samples are taken. Specifically, the variability between 
occasions can be quantified. (iii) Two-sample designs are generally better with respect to 
prediction of individual parameter values. Even minor changes to commonly employed study 
designs, in this case the addition of  one sample at each study occasion, can improve quality and 
quantity of  the information obtained. 
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INTRODUCTION 

Population analysis using nonlinear mixed-effects models is a commonly 
used tool to analyze sparse pharmacokinetic data. This type of  data may 
arise from a number of  situations; routinely collected clinical data, toxico- 
kinetic studies, and Phase 2 and Phase 3 clinical studies (1). In recent years 
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some work has been done using simulations to evaluate and compare designs 
of sparse data experiments (2,3,4). These studies evaluated the impact of 
altering the number of subjects and the number and timing of blood samples 
on the precision and bias of the estimated parameter values. The conclusions 
can be summarized broadly as follows: Increasing the number of individuals 
in the study improves the estimation of  the parameters. This is true even if 
a large fraction of the subjects have only one sample each (2). Increasing 
the number of samples per individual also leads to increased predictive 
performance but not to the same extent as designs with more (sparsely 
sampled) individuals (4). The question of the timing and the number of the 
samples is a little more complex. It is well known that the sampling times 
can have a large impact on the precision and bias of parameter estimates in 
nonlinear regression type of data analysis (5). Unfortunately, to find optimal 
times for sampling, it is necessary to make quite precise assumptions regard- 
ing the model, the values of the parameters to be estimated, and, especially, 
the weighting scheme to be used in the analysis. If these assumptions can 
be made it is theoretically possible to devise an optimal design with respect 
to the precision of the estimated parameters (6). The effect of sampling times 
on the precision of  the parameter estimates from an intravenous monoexpon- 
ential model was explored by A1-Banna et al. (3). The results show that as 
early and as late as possible were the best time points if only two samples 
were taken (the model used was a one-compartment intravenous bolus model 
with constant coefficient of variation residual model). If a third sample was 
added to the best two-sample design, it mainly improved the estimation of 
the population random effects and it did not matter when the third sample 
was taken. Another sampling strategy is to randomize the observations. 
Hashimoto and Sheiner (4) showed that compared to fixed sampling times, 
randomization of the sampling times in all the individuals resulted in a high 
robustness to model misspecilication. 

It is not always possible to make observations either totally at random 
or at certain optimal time points. In a Phase 3 outpatient clinical study, for 
example, it is more likely that the sampling times will vary within certain 
sampling windows, circumscribed by the visiting hours at the clinic. These 
sampling windows do not necessarily coincide with the optimal sampling 
times and do not allow a total randomization. When, in addition, the sam- 
pling windows are narrow compared to the half-life of the drug, the main 
design question becomes one of number of samples. The present study evalu- 
ates the consequences of taking two samples instead of one during a visit 
to a clinic in a Phase 3 study. The influence of taking two samples on 
parameter precision and bias, as well as the ability to characterize the struc- 
tural and statistical model and the capability to predict individual parameter 
values were investigated, using both simulated and real data. 
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METHODS 
Simulations 
Study Design 

The basic study design of the simulated data sets was aimed at mimick- 
ing an outpatient Phase 3 clinical trial (including 100 patients) in which two 
visits to the study clinic were scheduled for pharmacokinetic observations, 
i.e., blood samples. Apart from blood sampling these visits are supposed to 
include other types of examinations and tests. The dosing interval is 12 hr 
with doses taken at 8 am and 8 pm. Visits can take place either between 10 
and 12 am or between 2 and 4 pm (Fig. 1). 

Data were generated according to six different sampling designs (Table 
I). Either the patients had samples taken at both a morning and an afternoon 
visit (the normal case) or they had only morning samples or afternoon samples 
(mm/aa).  In the latter case, half of the patients had only morning samples and 
the other half only afternoon samples (Data sets 2 and 5 in Table I). The first 
sample was taken when the patient arrived at the clinic, which was at a time 
randomly chosen from 2, 2.5, 3, 3.5, or 4 hr postdose in the case of a morning 
visit or 6, 6.5, 7, 7.5, or 8 hr postdose in the case of an afternoon visit (which 
corresponds to 0, 0.5, 1, or 2 hr from the start of the visiting period, see 
Table I). The second sample, in the case of a two-sample design, could be 
at a time 0 (a replicate sample), 1 or 2 hr after the first sample. No sample 
was allowed to be taken outside the sampling window. 

Generation of the Data 
A one-compartment, first-order absorption, steady-state pharmaco- 

kinetic model was used to generate the concentrations in the simulated data 
sets 
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Fig. l .  The timing of the sampling windows. The curves are the log concentration-time curves 
for the short half-life (solid line) and the long half-life (broken line). 
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Table I. Sampling Designs Evaluated in the Simulations 

Data 
set no. 

Sampling times a 

First visit Second visit 

1 One sample 

2 One sample (mm/aa) b 

3 Two samples, AT=0 

4 Two samples, AT= 1 

Two samples, AT= 1 (mm/aa) b 

6 Two samples, AT=2 

2, 2.5, 3, 3.5, or 4 6, 6.5, 7, 7.5, or 8 

2, 2.5, 3, 3.5, or 4 2, 2.5, 3, 3.5, or 4 
or 

6, 6.5, 7, 7.5, or 8 6, 6.5, 7, 7.5, or 8 

2, 2.5, 3, 3.5, or 4 6, 6.5, 7, 7.5, or 8 
and and 

2, 2.5, 3, 3.5, or 4 6, 6.5, 7, 7.5, or 8 

2, 2.5, or 3 6, 6.5, or 7 
and and 

3, 3.5, or 4 7, 7.5, or 8 

2, 2.5, or 3 2, 2.5, or 3 
and and 

3, 3.5, or 4 3, 3.5, or 4 
or 

6, 6.5 or 7 6, 6.5, or 7 
and and 

7, 7.5, or 8 7, 7.5, or 8 

2 6 
and and 

4 8 

aHours postdose. 
bHalf of the patients have only morning samples on both visits and the other half only afternoon 
samples after both visits. 

F o, Vi, C L i ,  a n d  kai  a r e  t he  i th  i n d i v i d u a l ' s  p a r a m e t e r  va lue s  w h e r e  the  
s u b s c r i p t s  i, j ,  a n d  k d e n o t e  i n d i v i d u a l ,  o c c a s i o n ,  a n d  s a m p l e  r e spec t ive ly .  
I n d i v i d u a l  p a r a m e t e r  e s t i m a t e s  fo r  C L ,  V, a n d  ka  were  o b t a i n e d  a c c o r d i n g  

to  

CLi  = CL"  e n'cL (2a)  

V/=  V" e "v  (2b )  

kai  = k a .  e "i~~ (2c)  

w h e r e  C L ,  V, ka ,  a n d  F a r e  t he  t y p i c a l  va lue s  o f  t he  p a r a m e t e r s  in  t he  
p o p u l a t i o n  a n d  C L i ,  Vi, a n d  kai  are  the  i th  i n d i v i d u a l ' s  p a r a m e t e r  va lue .  

T h e  a s s u m p t i o n  o f  s t a t i o n a r i t y  is o f t en  m a d e  in  s tud ies  p e r f o r m e d  o n  
t w o  o r  m o r e  occa s io n s .  I n  m a n y  cases  t h o u g h ,  th is  a s s u m p t i o n  m a y  be  
i n v a l i d  (7 ,8 ,9) .  T o  e v a l u a t e  the  i m p a c t  o f  n o n s t a t i o n a r i t y  the  f o l l o w i n g  
s t a t i s t i c a l  m o d e l s  we re  u sed  to  s i m u l a t e  va lues  fo r  F .  

F o = F .  e ":~r (3)  
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F o. are the ith individual's value of  F at study occasion j. The two random 
variables r/e (where P is one of  CL, V, or ka) and tCF denote interindividual 
(IIV) and interoccasion (IOV) variability, respectively, r/e and rF  are nor- 
mally distributed with mean zero and variances ~0 2 and ~r 2 respectively. It  
was assumed that CL, V, and ka had only IIV and that F had only IOV. 
In addition to the models for IIV and IOV, a positive correlation between 
CL and Vwas also included in the generation of  the data. This may be viewed 
as if there is some covariate that influences both clearance and volume, for 
example protein binding or body size. "Observed" concentrations (Cobs,Uk) 
were generated from the true concentrations by addition of  random errors 
according to 

Cobs,0k---- Cijk e eUk (4) 

eOk is normally distributed with mean zero and variance cr 2. Since the benefit 
of  two narrowly spaced samples is likely to be dependent on the difference 
in concentration between the sampling times, two different half-lives were 
used in the simulations, 6 or 12 hr. 

Thirty data sets with 100 individuals in each were generated and ana- 
lyzed for each design and parameter set. The parameter values of  both 
the pharmacokinetic and statistical parameters used in the simulations are 
displayed in Table II. 

Analysis of  the Generated Data 

The models used to analyze the simulated data differed depending on 
whether the model used to generate the data included IOV in F or not. The 
model used to analyze the simulated data without IOV was identical to the 
model used to generate the data except that ka was not estimated but rather 
fixed to its true value and that COka was fixed to zero. The reason for this 

Table II. Summary of Parameter Values Used in the Simulations and How Parameters Were 
Treated in the Analysis 

Simulation Analysis 

CL (L/hr)  11.55/5.8 a 
v (L) 100 
ka (hr -1) 2.08 
COcL 0.3 
COy 0.3 
(1J ka 0.3 
R'~ 0/0.1 b 

cov(r/cL, r/v) 0.045 
e 0.15 

Estimated ( CL / V ) 
Estimated (V/F)  
Fixed to 2.08 
Estimated 
Estimated 
Not included 
0/approximated by IOV in CL/F and V/F 

(~cL = ~v) b 
Estimated 
Estimated 

aHalf-life = 6 hr/half-life = 12 hr. 
bData generated without IOV/data generated with IOV. 
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was that the simulated data sets contained no, or very little, information 
about the absorption process and hence problems with the identification of 
ka could be anticipated. Wade et al. (10) have shown that if the data to be 
analyzed do not contain information about absorption, then there will be 
no adverse effect (such as bias appearing in other parameters) if ka is fixed 
to a value similar to the true value. 

The model used to analyze the data generated with IOV in F differed 
in one additional respect from the true model. For two samples per occasion 
data sets Eqs. (5a) and (5b) were used to model the IOV due to IOV in F 
and the IIV in CL and V, respectively. 

( CL /F)u  = C L / F .  e (n'cL- ~> (5a) 

( V/F)u  = V /F .  e (n'V - ~r) (5b) 

The IOV term (tr was omitted from the model when analyzing the single 
sample per occasion data sets since it is not possible to estimate IOV when 
having only one sample per occasion. The way the parameters were treated 
during the analysis is summarized in Table II. 

Data were analyzed using both the first-order approximation (FO) and 
the first-order conditional method (FOCE), as implemented in NONMEM 
version IV (11). During the analysis, if a run resulted in an unsuccessful 
termination, all parameter estimates from that particular data set were 
excluded from the subsequent analysis. 

The evaluable parameter estimates were used to calculate mean absolute 
error (precision), Eq. (6), and mean error (bias), Eq. (7) (12). 

E,, IP.-P  

Precision = (6) 
N 

P.-PT 

Bias= (7) 
N 

where PT is the true parameter value,/~ is the estimated population param- 
eter value from the nth simulated data set and N is the number of successfully 
terminated runs. 

Simulations with a Fixed Number o f  Samples 

The cost of bioassay or sample handling may limit the possibility to 
change from a one-sample design to a two-sample design without other 
modifications to the study design. If  the number of samples per patient is 
to be increased, the number of sampled patients may have to be decreased. 
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In order to evaluate a strategy with a fixed number of samples, two addi- 
tional designs were tested. The first design includes 50 patients with the same 
sampling scheme as Data set 6 (two samples per visit) in Table IL The 
second design includes 75 patients of which 25 had the same sampling design 
as Data set 6 (two samples per visit) and 50 with the same sampling design 
as Data set 1 in Table II (one sample per visit). The total number of samples 
in these two designs is 200, the same number of samples as in Data set 1 in 
Table II. 

The data sets with 50 and 75 patients were generated and analyzed in 
the same way as Data sets 1-6, except that only the short half-life, IOV and 
FO was used. 

Real Data  

A real data set was used to investigate the ability of the different sam- 
piing designs to identify the correct pharmacokinetic and statistical models 
and to predict individual parameter values. The data set used herein has 
been described previously (13,14) as Drug C and B, respectively. 

The real data set consists of observations from oral drug therapy, 
administered twice daily in 64 individuals. After at least 8 weeks of continu- 
ous therapy the pharmacokinetics were studied during a 12-hr dosing inter- 
val. After a further 4 weeks 35 of the patients were studied again. The 
sampling scheme on both study occasions was relatively extensive: 10 
samples per individual and study occasion (1, 2, 3, 4, 5, 6, 7, 8, 10, and 
12 hr postdose), 

For the present work the full data set was truncated in order to mimic 
the sampling designs described Table I. By different combinations of 6 sam- 
piing times (2, 3, 4, 6, and 8 hr postdose), 2 single-sample designs (similar 
to Designs 1 and 2 in Table I) and 3 two-sample designs (similar to Designs 
4, 5, and 6 in Table I) were created. This was accomplished by randomly 
assigning a sampling time for the first sample on each study occasion (the 
only sample in the case of a one-sample design). The second sampling time 
was then given by addition of the predefined time span between the samples 
(i.e., 1 or 2 hr). All of the reduced data sets (including all 64 patients) 
together with the full data set were used for the purpose of model identifica- 
tion and in the prediction of individual parameter values. The real data sets 
were analyzed using the FO method. 

Model Identification 
The model (without covariates--see below) that best described the full 

data set is denoted the full model. The ability of the various reduced data 
sets, i.e., different sampling designs, to characterize the full model was 



252 Jonsson, Wade, and Karlsson 

assessed by comparing the final model characterized by each reduced data 
set to the full model. 

Previous analysis of the real data set found that a one-compartment 
first-order absorption model with both IIV and IOV in all basic parameters 
(CL/F, V/F, and ka) and a constant CV residual error model best described 
the full data set [the model is described by Eqs. (1)-(4)]. CL/F and V/F 
were also found to be correlated, not only between individuals but also 
within individuals between occasions (14). In addition, a comprehensive 
covariate model was built (13). In the present work the covariate model was 
not considered necessary to illustrate the aims of the study and was therefore 
not included. 

Preliminary runs showed that all the truncated data sets successfully 
identified CL/F and V/F but had problems with estimating ka. This was 
expected since the data sets generally contained very little information about 
the absorption process. Accordingly, ka was fixed to the estimate from the 
full model when analyzing the truncated data sets (10). The validity of this 
simplification was tested by repeating the same analysis but with 50% lower 
and 50% higher values for the fixed ka. The problem of model identification 
was therefore reduced to a problem of identifying the different parts of the 
models for the IOV and IIV in CL/F and V/F, that is oocL, eOv, tCcL, 
~Cv, cov(r/ct, r/v), cov(tCcL, tCv). Models with different combinations and 
numbers of these parameters were tested, the complexity ranging from indi- 
vidual estimation of all of the above parameters to a single interindividual 
variability parameter of r/cL=r/v (Table III). Discrimination between 

Table HI. Precision and Bias (%) for Parameter Estimates Obtained when Number of Samples 
Are Kept Constant While Number of Individuals Is Altered 

100 patients 75 patients 50 patients 100 patients 
200 samples a 200 samples b 200 samples c 400 samples d 

Precision Bias Precision Bias Precision Bias Precision Bias 

CL/F 5 -5  6 -5  5 - 4  6 - 6  
V /F  7 - 4  9 - 6  8 -3  5 - 4  
mcL 9 4 10 0 11 -1  9 5 
cov(qcL, Ov) 46 14 47 2 58 - 7  52 7 
~v  51 -1  27 4 25 -10 25 - 5  
x~ 34 2 43 - 5  32 2 

3I 19 13 1 8 2 6 5 

OThe same as Data set 1 in Table I (1 + I sample). 
bFifty patients had the same type of sampling schedule as Data set 1 in Table I (1 + 1 single 
sample) and 25 patients had the same type of sampling schedule as Data set 6 in Table I 
(2 + 2 samples). 
All 50 patients had the same type of sampling schedule as Data set 6 in Table I (2 + 2 samples). 

aThe same as Data set 6 in Table I (2 + 2 samples). The numerical results from the 2 + 2 samples 
in 100 patients (Data set 6 in Table I) are included as reference. 
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different models was via comparison of the objective function values calcula- 
ted by NONMEM. The difference between the objective function values for 
two hierarchical models is approximately chi-square distributed and may 
consequently be used for model selection purposes (15). In this studyp < 0.05 
was used as the significance level. 

Prediction of Individual Parameter Values 

The ability to predict individual parameters was evaluated by compar- 
ing the best individual parameter estimates (the empirical Bayes estimates 
from the full data set analyzed with the full model) to empirical Bayes 
estimates obtained from the best model for each of the truncated data sets. 

RESULTS 

Simulations 

When the FOCE method was used, up to three data sets had to be 
excluded due to unsuccessful termination from a single set of simulation 
conditions. When the FO method was used, all data sets terminated 
successfully. 

The results from the analysis of  the data generated without and with 
IOV are shown in Figs. 2 and 3, respectively. The symbols represent absolute 
values of bias (broken lines) and precision (solid lines) for the parameters 
obtained with the long half-life and FO (east), the short half-life and FO 
(west), the long half-life and FOCE (north), and the short half-life and 
FOCE (south). The correlation between the size of the reference stars and 
the magnitude of the bias/precision is given by the value to the right of each 
rOW. 

When IOV is absent, the benefits of adding a second sample on each 
occasion are most pronounced for the precision in 09 v and o-. When IOV is 
present, the single-sample designs are associated with greater bias and impre- 
cise estimates for all parameters, except CL/F and tOcL, when compared to 
the two-sample designs. Prolonging the time span between the samples in 
the two-sample designs had virtually no effect on estimation of any of the 
parameters. When considering the effect of different lengths of the half-life, 
it can be seen that the precision is higher for V/F, COy, and cov(r/cL, r/v) 
when the half-life is short, irrespective of the presence of IOV. When FOCE, 
rather than FO, is used in the analysis the precision is higher and bias lower 
for CL/F, O~cL and lrF. In the single-sample designs where the patients have 
only morning or afternoon samples, the precision is lower in parameters 
relating to V [i.e., V/F, coy, cov(r/cL, r/v)]. 
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Simulations with a Fixed Number of Samples 

The results from the simulations with a fixed number of samples are 
displayed in Table II. The results from Data set 6 in Table I (400 samples 
in 100 patients) are included as reference. The three designs perform similarly 
with respect to precision and bias in CL/F, V/F, and cocL. The 100- and 
75-patient designs are better with respect to precision in cov(r/cL, r/v) com- 
pared to the 50-patient design while the 100-patient design yields the most 
biased estimate. The 50- and 75-patient designs are more precise in the 
estimation of co v and tr compared to the 100-subject design. The 100-patient 
design also produces the most biased estimate of tr while the 50-patient 
design gives the most biased estimate of co v. 

Real  Data  Set  

The results of the model identification are displayed in Table IV. None 
of the reduced data sets were able to identify the full model but the best 
models for the two-sample designs were closer to the full model than the 
best models for the corresponding single-sample designs. It can also be seen 
that the mm/aa designs performed worse than the corresponding balanced 
morning-afternoon design. 

The parameter values from the final models are displayed in Table 
V. The basic pharmacokinetic parameters (CL/F and V/F) are fairly well 
estimated, except for the one-sample mm/aa design. The estimated magni- 
tudes of the interindividual variabilities (both co v and cocz) increases when 
the number of samples decreases. Analyzing the final models with an incor- 
rectly fixed ka resulted in values of precision and bias in parameter estimates 
that differed no more than 10% (not displayed) from the estimates obtained 
when ka was fixed to the value found with the full model. 

The individual parameter estimates for the different sampling designs 
are plotted against the parameter values obtained from the full data set in 
Fig. 4 for CL/V and V/F, respectively. The dashed line is the line of identity 
and the solid line is the regression line. Individual predictions are shrunk 
towards the population mean value (a horizontal solid line would indicate 
total shrinkage to the population mean value) when the number of observa- 
tions decreases. In addition, it can be seen that the mm/aa designs suffer to 
a greater extent from this shrinking effect than do their more balanced 
counterparts. 

DISCUSSION 

Traditionally the characterization of pharmacokinetic parameters dur- 
ing drug development has been performed using experimental protocols that 
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employ intensive sampling. This may not be possible in the target population. 
With the introduction of population pharmacokinetics it is no longer neces- 
sary to make frequent observations in each individual participating in the 
study. It has been shown that as few as one to two samples in the majority 
of the study population is sufficient to estimate the mean of the pharmaco- 
kinetic parameter values and their respective variabilities in the population 
(2). This opens up the possibility of using fragmentary (i.e., 1-2 samples 
per individual) clinical trial data to estimate pharmacokinetic parameters. 
In this study we propose and evaluate one possible way of increasing the 
amount of information contained in the data collected during a Phase 3 
clinical trial without a dramatic change in the sampling design. This is 
accomplished by taking two samples instead of one on each or some of the 
times the patients visit the clinic. 

The major conclusions to be drawn from the work presented here are: 

1. A design with a second sample at each study visit produces parameter 
estimates that are at least as, and often more, precise and unbiased as a 
design with only one sample per visit and the same number of subjects. 
This is true irrespective of the time-span between the two samples. 

2. A two-sample design improves the ability to identity a more complex 
statistical model. Especially, it enables the IOV to be quantified. 

3. The capability to predict individual parameter values is greatly improved 
when a second sample is added. 

4. If  it is not possible to increase the number of samples it may still be 
better, with respect to parameter precision and bias, to take two samples 
per visit in some of the patients, even if the total number of patients has 
to be reduced to keep the total number of samples constant. 

5. Sampling designs where one fraction of the patients have only early 
samples and the other fraction have only late samples are inferior to 
designs in which the majority of the patients have both early and late 
samples. This is true even if the total number of early and late samples 
are the same in both designs. 

The finding that an increased amount of data improves the results of 
the data analysis is not surprising. More interesting is that the timing of the 
second sample, within the interval studied, is virtually unimportant. It can 
be seen in Figs. 2 and 3 that increasing the time span from zero to 2 hr does 
not lead to a markedly increased performance. 

It is logical to assume that a more complex model, i.e., a model closer 
to the true model, produces better and more meaningful parameter estimates 
than a less complex model suffering from over simplification. A good 
example of this is the ability to include IOV in the model. By being able to 
quantify IOV it is possible to draw conclusions about, for example, the 
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possibilities of individualizing drug therapy (14). In addition to providing 
more information, including IOV (if it is present in the data), is also impor- 
tant in order to prevent bias from appearing in other parameters and to 
avoid erroneous covariate models from being selected (14). Consider the 
simulations with IOV as an example. When only one sample per occasion 
was taken the IOV could not be modeled leading to considerably worse 
predictions of the parameters concerned with volume compared to those 
estimated when IOV was accounted for. 

The importance of being able to predict individual parameter values 
depends on the objectives of the study in question. If the investigator wishes 
to explore the possible effects of demographic factors (such as weight, age, 
and clinical laboratory data) on the pharmacokinetic parameters, as often 
is the case, predictions o f  individual parameter values provide a useful tool 
to accomplish this. It has been shown that the use of empirical Bayesian 
estimates of the individual parameter values leads to a reduction of the time 
necessary to build covariate models (13,16). The usefulness of such model- 
building strategy is however related to the accuracy and precision of the 
individual parameter estimates. A second sample will decrease the degree of 
shrinkage towards the population mean value of the parameter in question. 
In Fig. 4, where the shrinkage effect is investigated using the real data set, 
the value of the addition of a second sample can be seen. 

If it is not possible to influence the timing of the samples, as assumed 
in the designs used in the present work, the main design factors are the 
number of samples and number of patients. If the total number of samples 
collected is the limiting factor in a design, any increase in the number of 
samples per individual must be accompanied by a similar reduction in the 
number of studied patients. When designs with a fixed number of samples 
were compared, the most advantageous design, with respect to parameter 
estimation, was a design where two samples were collected in only part of 
the study population (e.g., the data set with 75 patients). Such a design 
allows all variability components to be estimated and still has a relatively 
large number of patients (which is beneficial from a covariate model-building 
point of view). It is worth noting that there is no great loss in parameter 
precision with the 50-patient design compared to the corresponding 100- 
patient design. 

The inferior performance of the unbalanced designs, i.e., mm/aa 
designs, is quite clear throughout the results of this study. These designs 
are, with two exceptions, consistently inferior to the designs in which each 
subject has both morning and afternoon samples. These exceptions are the 
estimation of the residual error in the single-sample mm/aa case when no 
IOV was included in the generation of the data and in the two-sample mm/ 
aa case when the data were simulated with IOV. In both these cases o- was 
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estimated with better precision and less bias compared to the corresponding 
single- or two-sample design. On the other hand, the rest of the variance 
parameters estimates from the mm/aa designs were more imprecise and 
biased compared to their balanced counterparts. It seems preferable to design 
studies so that each individual has a balanced sampling design. 

That unsuccessful termination appear with the FOCE algorithm and 
not with the FO algorithm is not unexpected since rounding error problems 
can occur with the FOCE method even if the FO algorithm terminates 
successfully (11). The unsuccessfully terminated runs were evenly spread 
between the different designs and no pattern could be found. 

The fact that FOCE performs better than FO for some of the parameters 
shows that FOCE might improve the precision and bias of the estimates 
even in situations with sparse data and a relatively linear mode! (11). Since 
the data analyzed, both simulated and real, are steady state data, it is not 
surprising that the estimates pertaining to V are less precise and more biased 
compared to CL (note the difference in reference value for CL/F and V/F 
in Figs. 2 and 3). This is due to the fact that steady state data contain 
more information about CL/F (the main source of information about this 
parameter are the drug levels) than about V/F, which, with steady state 
data, is determined mainly by the fall in the concentration-time curve. This 
also explains why only the parameters relating to V/F are influenced by the 
length of the half-life. Expressing the length of  the sampling windows as 
percentage of the half-life (approximately 17 and 33% for the long and 
short half-life, respectively) shows that the samples taken within a sampling 
window cover a larger part of the elimination phase when the half-life is 
short, i.e., the fall in concentration is better described and hence the V/F. 

As pointed out in the Introduction, the optimality of the sampling times 
depends on the error model used. The numerical results (i.e., the actual 
figures) consequently are dependent upon the weighting scheme used, but it 
is doubtful whether the other, more qualitative results (model-finding ability, 
for example), are as sensitive. However, an error model with (essentially) 
constant CV is often appropriate when analyzing pharmacokinetic data 
(authors experience). 

The present work shows that even minor alterations to a practical and 
"natural" study design lead to improvements in the outcome of the data 
analysis. In this special case the improvement was due to the addition of a 
second blood sample at each or some of the study occasions. The benefits 
included generally improved parameter estimation, facilitated model-finding 
capability, and better predictions of the individual parameter estimates. 
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