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Residual error models, traditionally used in population pharmacokinetic analyses, have been devel- 
oped as i f  all sources o f  error have properties similar to those o f  assay error. Since assay error 
often is only a minor part o f  the difference between predicted and observed concentrations, other 
sources, with potentially other properties, should be considered. We have simulated three complex 
error structures. The first model acknowledges two separate sources of  residual error, replication 
error plus pure residual (assay) error. Simulation results for this case suggest that ignoring these 
sepm'ate sources o f  error does not adversely affect parameter estimates. The second model allows 
serially correlated errors, as may occur with structural model misspecification. Ignoring this error 
structure leads to biased random-effect parameter estimates. A simple autocorrelation model, 
where the correlation between two errors is assumed to decrease exponentially with the time 
between them, provides more accurate estimates o f  the variability parameters in this case. The 
third model allows time-dependent error magnitude. This may be caused, for example, by inaccu- 
rate sample timing. A time-constant error model f i t  to time-varying error data can lead to bias 
in all population parameter estimates. A simple two-step time-dependent error model is sufficient 
to improve parameter estimates, even when the true time dependence is more complex. Using a 
real data set, we also illustrate the use of  the different error models to facilitate the model building 
process, to provide information about error sources, and to provide more accurate parameter 
estimates. 

KEY WORDS: population PK/PD; residual error; intraindividual variability; autocorrelation; 
replicates; NONMEM. 

INTRODUCTION 

In pharmacokinetic data analysis using nonlinear regression, the resid- 
ual error is often considered to have properties similar to those of  assay 
error. Historically, it is easy to understand why assay error was considered 
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the main source, or even sole source, of data error. In the early days of 
pharmacokinetic (PK) studies and nonlinear regression, assays were gen- 
erally less precise than they are today, and studies performed were almost 
exclusively well-controlled experiments using a homogeneous study group. 
Today many pharmacokinetic analyses are performed using data gathered 
from observational studies of heterogeneous patient groups, often studied 
at several different sites. The residual error of the fit is usually considerably 
greater than assay error in such population analyses (Table I). This implies 
that residual error may not have the simple statistical properties usually 
associated with assay error: independence, and error magnitude propor- 
tional only to the underlying concentration. The larger and more heterosced- 
astic the residual error, the more important it may be to account for it 
properly. Moreover, we know that several of the standard error model 
assumptions may not be true. Specifically: 

1. Replicate determinations are treated as having the same error struc- 
ture as nonreplicate observations. We expect, however, that replicates will 
deviate from each other to a lesser extent than will nonreplicate observations. 
What constitutes a replicate may differ depending on the type of experiment. 
For a PK study, it could be multiple blood samples at (essentially) the same 
time or duplicate preassay sample clean-up. For a pharmacodynamic (PD) 
study, it could be the multiple measurements of a PD effect such as blood 
pressure at (essentially) the same time. 

2. Residual errors are treated as independent, although correlation 
often can be observed under fitted models. 

3. Residual error is rarely modeled as depending directly on covariates 
(other than through the expected response), yet different degrees of struc- 
tural model misspecification for different portions of a response-time profile 
may well lead to different magnitudes of residual error over time, despite 
similar values for the expected response. 

In this study, we investigate the possibly detrimental effects on the 
parameter estimates of population models of considering all error to have 
simple properties (i.e., current pract!ce). We also suggest extensions to the 
present models for residual error that can be used to modify current practice 
when necessary. Although the investigation focuses on population analyses, 
the extensions suggested are equally applicable to single-subject data. Also, 
although the examples are PK examples, the extensions suggested can apply 
as well to PD examples. 

THEORY 

Residual Error with Replicates 

In population analyses the residual variability is a measure of the dif- 
ference (or error) between the observations and their subject-specific 
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predictions. Assuming additive error, the observed concentration for the ith 
subject at the jth time point can be written. 

yij=fO+ eO (1) 

where fi~ is the subject-specific prediction and e~ is the error. By taking 
replicate measurements at a single time point it is possible to some extent 
to differentiate between sources of error. Variability between replicates arises 
from assay error and the error introduced by sample handling from the 
point in the handling chain where the replication is made. We will assume 
replication is made at the point of sampling. There are, of course, other 
sources of nonassay error, including imprecisely recorded sampling times 
and model misspecification. Assuming that at the jth time point, replicate 
observations are made, Eq. (1) may be extended as follows: 

Y~ik =.~/+ co+ e~ik (2) 

The difference between predicted and observed concentrations at thejth time 
now has two components, a consistent difference (@) between all replicates 
and the prediction, and replicate-specific differences (e0k). We will assume 

2 that @ has 0 mean and constant variance oc and that the eUk have 0 mean 
and constant variance 2 2 or. The variance o-c incorporates all sources of vari- 
ability that are constant across replicates. One may wish to consider different 
models for the probability distributions of the two components. Whereas 
we assume that the er are time-invariant and uncorrelated, the possibility 
of time-variant and correlated errors will be considered for the e~j. 

Auto-correlated Errors 

In the case that a pharmacokinetic model is misspecified, and frequent 
sampling is done, the data often show regions of consistent deviations (of 
the same sign) between the predicted and observed concentrations. One of 
the many models that have been suggested for describing such time- 
correlated errors is the AR(1) model (1), the inclusion of which into linear 
(2) and nonlinear (3) mixed-effects models has previously been suggested. 
In the AR(1) model the positive correlation between two errors, e,, and 
e, 2, decreases exponentially with the time separating the two observations 
according to 

corr( e,,, e,~) = exp(- lh  - t21/t~o~,) (3) 

where tcorr is a constant determining how fast the correlation decreases with 
time. In what follows, this model is used, but other models, involving, for 
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example, a hyperbolic or biexponential decrease with time, may be equally 
appropriate. 

In a final model (obtained after some model building) some serial corre- 
lation of errors may be considered unavoidable. In the context of population 
PK data analysis, little is known about the impact of the degree of correlation 
on parameter estimates when the correlation is ignored. With single-subject 
data it is known that by ignoring correlation in the errors, the precision of 
parameter estimates can be overestimated (4) and that standard errors can 
be underestimated (5). 

To diagnose model misspecification, examination of residuals is the 
standard approach. Serially correlated residuals may indicate misspecifi- 
cation of at least some part of the model. However, it is not easy to make 
plots for population data sets, with many subjects and complex dosing and 
sampling patterns, that can reveal serial correlation. The use of a model 
that specifically allows the correlation to be estimated can therefore be of 
diagnostic value. 

Time-Dependent Error Variance 

Sources of variability such as erroneous dosing and sampling history 
and model misspecification may in PK data introduce errors whose variances 
are time-dependent (in addition, perhaps to depending on the expected con- 
centration). Inappropriately recorded sampling times introduce larger errors 
when the concentrations are rapidly changing than when they are not. Phar- 
macokinetic absorption models are generally less well specified than disposi- 
tion models, resulting in potentially larger error magnitudes in the ascending 
limb of a concentration-time curve after an oral dose, than in the descending 
limb (even at points where the expected concentrations are similar). The 
error variance of PD data can also be time-dependent, an example may be 
PD data from in situ animal models, which tend to be less reliable as time 
progresses. In neither of these situations is time the error source per se, but 
time can be used as a surrogate variable. When only single dose or steady- 
state PK data are considered, as in the present investigation, the modeling 
of error magnitude as a function of time, or time after dose, is straight- 
forward. If more complex dosing patterns are present, it may be difficult to 
find a relationship with time that can adequately describe time-dependent 
variances, although it has been suggested that d P/dt be used as a surrogate 
variable (where fi is already a function of t) (6). 

Of the many possible models for describing the time dependency of 
error variance that one might propose, we choose to use a simple step 
function where the time point for the change in variance is either fixed or 
estimated. 
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METHODS 

Simulations 

To investigate previously used error models, and the new ones proposed 
here, simulations of nine different conditions were performed. These condi- 
tions can be grouped into three groups of three. Simulations CONT1, 
CONT2, and CONT3 represent control simulations, made to study the esti- 
mates of tr 2 and tr 2 under basic conditions. Simulations DUPL, CORR, and 
TIME represent positive controls of the more elaborate error models and 
are made using extensive duplication of samples (DUPL), autocorrelated 
errors (CORR), and time-varying error magnitude (TIME). Simulations 
SAMPL, BIEXP, and ERRAT represent attempts to mimic the type of 
errors that may occur in real data sets due to error in sampling times 
(SAMPL), error in the specification of the input model (BIEXP), and time- 
varying pharmacokinetic parameters (ERRAT). The basic characteristics of 
the simulations are as follow. Differences from these basic conditions are 
discussed later. 

A one-compartment disposition model with first-order absorption and 
with the following parameters for the typical individual is used: clearance 
( ~ )  = 10 L/hr, volume of distribution (V) -- 100 L, first-order absorption 
rate constant (ffa) = I .  hr -j. The individual parameter values (Pi, for 
example) are obtained using a log-normal distribution around the popula- 
tion (geometric) average value (P), according to 

e,= P exp(rff) (4) 

where 7/p is a normally distributed, independent random variable with zero 
mean and variance m2e. The values used for O~cL, 6Ov, and ~ka are 0.3. The 
residual error is of the form 

yijk=fiij exp(e0+ e~k) (5) 

where the random variables, ev, and eijk are independent with variances 
2 2 trc and or,  respectively. A value of 0.1 is used throughout for 0% whereas 

o'c varies, but has a basic value of zero. Each population data set consists 
of samples obtained at 16 time points (0.3, 0.6, l, 1.5, 2, 2.5, 3, 4, 5, 6, 8, 
10, 12, 16, 20, and 24 hr) after a single extravascular dose, from each of 16 
subjects. With each individual, only one duplicate observation is generated. 
The time at which this duplicate is obtained differs between individuals. For 
each of the nine simulation conditions, 100 data sets are generated. 

What follows is a specification of the difference between each of the 
nine simulations and the basic conditions. Whereas CONTI is generated 
entirely under the basic conditions, CONT2 and CONT3 have values of trc 
of 0.1 and 0.2, respectively. In simulation DUPL, o'c is 0.2 and duplicate 
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observations are generated at each sampling time, rather than at just one 
time per individual. Simulation CORR is the only simulation where a corre- 
lation according to Eq. (2) is included. The values of trc and tcorr are 0.2 
and 2.86, respectively. The latter value was chosen as to yield a high (0.9) 
correlation between the errors of the early adjacent observations. The simu- 
lation TIME differs from the basic conditions in that the magnitude of crc 
varies over time between 0.6 at early times to 0.2 at late times (the exact 
shape of this time-varying function is given in Fig. 3). 

In the last three simulations, e U errors as such are not generated, i.e., 
o-c=0. In the simulation SAMPL, data are generated in the following 
manner: (i) to each of the sampling times given above (nominal times) a 
uniformly distributed random number, in the range -0.15 and +0.15 is 
added, and (ii) predictions are generated using the new times. In the gener- 
ated data set, the nominal, rather than the actual times are given as covariate 
values. The input model in the simulation BIEXP is not a first-order process, 
but the sum of two parallel first-order processes (each accounting for half 
the dose), with values for ~'a of 0.4 and 2 hr -j. The value for O k" is the same 
for the two processes, to ensure that the input profile in each subject is truly 
biexponential rather than near-monoexponential as may occasionally occur 
otherwise. In  simulation ERRAT the value of ka is varied within an indi- 
vidual over time to mimic erratic absorption. For each new subject and each 
time interval between two observations, a new k~ is generated according to 

ka = ~'a exp(7? ka + ran) (6) 

where ran is a normally distributed random variable with mean 0 and vari- 
ance 1 (different for each subject and each time interval). 

The data, as described above, are all analyzed using four models that 
differ only in the way e~ is modeled. The structural model and the models 
for interindividual error and euk are identical to those of the basic simulation 
model. The different e, 7 models for the analyses are (i) the traditional error 
model where trc is set to zero, (ii) a model where o'~ is estimated, (iii) a 
model where the e 0. are autocorrelated according to Eq. (3), and (iv) a model 
where two values for o-r are estimated, each value governing the error on 
one side of the breakpoint of a step function in time. In this model, the 
breakpoint occurs after absorption is virtually complete (at 5 In 2/~-~). Data 
sets from the simulations TIME and ERRAT are also analyzed using a 
model in which o-~ is given by a natural cubic spline (7) in time. Splines are 
defined by the number and location of breakpoints and by the height of the 
function at these breakpoints. The number of breakpoints is determined 
based on the Akaike criterion (8), and the location of internal breakpoints 
is set so that an equal number of observation times lie between two break- 
points (but note that the observations themselves may not be spaced 
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uniformly over time). The heights of the spline function are estimated 
simultaneously with the other population parameters. 

For all analyses, the first-order method as implemented in the program 
NONMEM (9), version V, is used. With version V, autocorrelated errors 
can be handled. The spline calculations in NONMEM were made using the 
B-spline package, based on PPPACK (7) (available from D. Verotta, Box 
0446, University of California, San Francisco, CA 94123, upon request). 
The performance of parameter estimation is reported with the means and 
SDs of the estimates. For some simulations, the means of the SEs, as pro- 
vided by the program, are presented. Individual parameter estimates, used 
to make individual-specific predictions for residual plots, are obtained as 
empirical Bayes estimates, which are available in NONMEM, versions IV 
and later. 

Real Data Set 

An illustration of the use of the different residual error models is given 
using a real data set, previously described (10). The drug is an antihyperten- 
sive agent administered to 64 patients orally twice daily. After at least 4 
weeks of continuous therapy a concentration-time profile (samples at 1, 2, 
3, 4, 5, 6, 8, 10, and 12 hr postdose) was obtained from each patient. A 
second profile was obtained 4 weeks or more after the first one from each 
of 35 patients. The population model used to describe the data is a one- 
compartment model with first-order input and with some covariates (height, 
age, race, and presence/absence of concomitant therapy with hydrochloro- 
thiazide) influencing the expected values for clearance and/or volume of 
distribution. Proportional error models are used to describe both the random 
interindividual and residual variability. The population model developed by 
Mandema et al. (10) is taken to be the basic model in this study, to which 
we add extensions to the residual error model. Since replicates are not avail- 
able in this data set, residual error cannot be separated into two components. 
For the same reason, the autocorrelation and the time-dependent error 
models are used for total residual error. In addition, a model that takes into 
account variability in pharmacokinetic parameter values between different 
studies within a subject is incorporated into the model (11). In this model 
the value of a parameter P for subject i during study j can be described by 

p/j=/3 exp(r/ff + tee) (7) 

where r/~ e is as before, and tc~ is a random variable with variance 7r~. 
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Simulation 

CONTI CONT2 CONT3 

True value 0.01 0.01 0.01 
Mean of estimates 0.01 0.01 0.01 
SD of estimates 0.0029 0.0045 0.0054 

True value 0.0 0.01 0.04 
Mean of estimates 0.0022 0.014 0.048 
SD of estimates 0.0026 0.0054 0.010 

R E S U L T S  

Replication Error 

Resul t s  o f  us ing  the different  mode l s  to ana lyze  the s imula ted  d a t a  sets 
are  shown in Tables  II  and  III .  W h e n  2 2 2 crc/o'r is Small, crc is imprecise ly  

es t imated .  This  is i l lus t ra ted  b y  the results  p resented  in Tab le  II .  On the 
o the r  hand ,  or, 2 can  be es t ima ted  even with as few as one repl icate  per  subject ,  

2 and  the m a g n i t u d e  o f  cr~ does  not  have a m a j o r  influence on the precis ion 
o f  the es t imate .  I t  can be no ted  tha t  in the con t ro l  s imula t ions  the es t imated  
misspeci f ica t ion e r ro r  (0.0022, 0.014, and  0.048) is s l ightly larger  than  the 

c o m p a r a b l e  values  used in the genera t ion  o f  d a t a  (0, 0.01, and  0.04). These 
differences are  la rger  than  are  exp la inab le  by  sampl ing  error ,  and  they m a y  

Table IlL Parameter Estimates for Simulations CONT3 and DUPL 

O'r Or -I- O'c 

Parameter True value ~ SD .i SD 

CONT3 
CL 10 9.7 0.8 9.7 0.8 
V 100 101 9 101 9 
ka 1 1.1 0.2 1.1 0.2 
(0 2 CL 0.09 0.08 0.04 0.08 0.04 
(0~, 0.09 0.07 0.03 0.07 0.03 
(0~ 0.09 0.15 0.17 0.15 0.17 
tr~ 0.01 0.057 0.008 0.01 0.005 
cr 2 0.04 0.048 0.010 

DUPL 
CL 10 9.7 0.8 9.6 0.8 
V 100 100 9 101 9 
ka 1 1.1 0.2 1.1 0.2 
CO~L 0.09 0.09 0.04 0.08 0.04 
C02V 0.09 0.08 0.03 0.07 0.03 
CO~ 0.09 0.20 0.19 0.14 0.14 
cr~ 0.01 0.055 0.008 0.011 0.001 
cr 2 0.04 0.047 0.008 
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be due to the presence of approximations with the first-order method used 
in these analyses. 

Even when a 20% misspecification error is included in the data (simula- 
tions CONT3 and DUPL) there is still no appreciable difference in the 
parameter estimates for fixed or interindividual random effects (Table III), 
nor in their estimated SEs (not shown), between those obtained with the 
simple model and those obtained with the more elaborate model involving 

2 both 0 -2~ and 0-r. 

Autoeorrelated Errors 

Simulation BIEXP explores the case that a simpler structural model is 
used to analyze the data than the true one, while simulation CORR explores 
the case that autocorrelation is actually present in the data. In neither case 
does the inclusion of an autocorrelation term in the analysis model result 
in markedly different estimates of  the fixed effects parameters. In contrast, 
the estimates of the random effects parameters, especially coka and oc, depend 
considerably on the error model uses (Table IV). The correlation model 
used in the CORR simulation specifies less correlation between neighboring 
observations the greater the distance between them. This could explain the 

Table IV. Parameter Estimates for Simulations CORR and BIEXP 

True Or + oe trr + autocorrelated ere 

Parameter Value .~ SD g SE g SD .~ SE 

CORR 

CL l0 9.4 0.84 0.72 9.7 0.83 0.73 
V 100 105 11 9.2 101 10 8.6 
ka 1 0.92 0.17 0.13 1.15 0.21 0.15 
tco~ 2.86 4 2.6 1.9 

2 toCL 0.09 0.090 0.038 0.031 0.076 0.039 0.031 
tO~, 0.09 0.10 0.048 0.037 0.062 0.045 0.034 
O~2a 0.09 0.45 0.37 0.26 0.13 0.18 0.ll 
cr~ 0.04 0.026 0.008 0.006 0.060 0.023 0.018 
o2 0.01 0.011 0.006 0.004 0.011 0.004 0.003 

BIEXP 

CL 10 10.0 1.1 0.93 10.4 0.93 0.85 
V 100 121 12 11 122 10 9 
ka 1 1.5 0.12 0.10 !,7 0.15 0.14 
tco,~ 15 7.4 5.6 
tO~:L 0.09 0.10 0.049 0.041 0,086 0.053 0,039 
CO 2 0.09 0.089 0.050 0.034 0,060 0.037 0.030 
to2~ 0.09 0.051 0.042 0.029 0.024 0.024 0.014 
tr~ 0.0055 0.0038 0.0029 0.036 0.018 0.014 
tr 2 0.01 0.010 0.0038 0.0030 0.0090 0.0016 0.0015 
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greater estimation error with COka than with C0CL or COv when the correlation 
model is not used in the analysis, since the latter two parameters rely on 
information during the entire time span, while the former relies entirely on 
the early, more closely spaced samples. Interindividual variability is overesti- 
mated when autocorrelation is present but not accounted for. The underlying 
reason for this can be understood by considering the extreme case of no 
interindividual variability, but high autocorrelation. If such data were to be 
analyzed by a model without autocorrelation, consistent differences between 
profiles caused by highly serially correlated errors would be interpreted as 
real differences between individuals. Thus, overestimation of interindividual 
variability would result. When the correct model is used in the analysis of 
simulations CORR and BIEXP, some deviations from the true parameter 
values can still be observed, particularly in rye and tr Again, these may 
be due to the first-order approximation which induces a misspecification 
error. 

The patterns in NONMEM-computed SEs reflect those in the SDs of 
the parameter estimates (Table IV). The SEs consistently, but not greatly, 
underpredict the SDs of the parameter estimates. The accuracy of the SEs 
is similar in both models that incorporate autocorrelation and in models 
that do not. Thus, underprediction of SEs, which, as mentioned in the 
Theory section, can occur in the analyses of single-subject data when true 
autocorrelation is ignored, does not seem to be as great a problem in popula- 
tion analyses. 

Time-Dependent Error Variance 

The fit of the data from simulations TIME and ERRAT using the 
traditional error model, sometimes leads to grossly overestimated values for 
ka and c0ka (Table V). Although some overestimation remains when the two- 
step error model is used, this error model generally leads to more accurate 
and precise estimates of all parameters. An indication of the need for a 
model with time-dependent error variance can be obtained from residual 
analyses. The trends in the variance-adjusted residuals in one data set each 
from simulations TIME and ERRAT, analyzed with the traditional error 
model, are shown in Figs. 1 and 2, together with the relative absence of such 
trends when the two-step error model is used. When, instead of the two- 
step function, a spline is used to model the error variance over time, further 
improvement of the fit is obtained. For both the TIME and ERRAT simula- 
tions, the most appropriate number of breakpoints for the spline varies 
among data sets in the range of 3-5. The approximation by the two-step 
function, and by a 4-breakpoint spline, of the function used in the generation 
of oc for the TIME simulation is shown in Fig. 3. Despite the slightly better 
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Table V. Parameter Estimates for Simulations TIME, SAMPL, and ERRAT 

trr trr + time variant trc 

Parameter True value .~ SD .~ SD 

TIME 
CL 10 10.6 1.0 9.7 0.8 
V 100 95 12 99 9 
ka 1 90 >99 1.5 0.7 
O~L 0.09 O. 11 0.07 0.08 0.04 
co 2 0.09 0.10 0.04 0.08 0.04 
c0~ 0.09 >99 >99 0.32 0.71 
cr~ 0.01 0.11 0.03 0.010 0.006 
r see Fig. 3 see Fig. 3 

SAMPL 
CL 10 10.0 0.8 10.1 0.8 
V 100 102 9 102 9 
ka 1 1.3 0.2 1.1 0.2 
CO~L 0.09 0.09 0.04 0.09 0.04 
OJ 2 0.09 0.08 0.03 0.08 0.03 
C0~a 0.09 0.14 0.12 0.16 0.18 
tr~ 0.01 0.015 0.002 0.008 0.002 
a~ not shown 

ERRAT 
CL 10,4 1.0 10.1 0.8 
V 101 9 102 9 
ka 6,6 21 1.8 0.4 
C02CL 0. I 0 0.09 0.09 0.04 
CO2v 0.09 0.04 0.08 0.03 
O~a 31 >99 0.50 0.24 
tr~ 0.01 0.024 0.011 0.009 
cr~ not shown 

0.003 

fit with the spline, the precision and accuracy o f  parameter  estimates using 
either approximat ion ,  for  bo th  the T I M E  and E R R A T  simulations, are the 
same (not  shown).  

In three simulations, S A M P L ,  BIEXP,  and E R R A T ,  model  misspecifi- 
cat ion is in t roduced in a manner  designed to mimic model  misspecification 
as it occurs  in real data.  The  mean  o f  the trr in these three simulations is 
0.12, 0.12, and 0.15, respectively, when the tradit ional error  model  is used. 
The da ta  are generated with or  = 0.1 and the mean of  the o-r in the corre- 
sponding  control  simulation ( C O N T  1) is 0.11. Thus,  the increases in residual 
error  due to the various misspecifications are small compared  to the differ- 
ences normal ly  seen between the assay error  and the total residual error  (see 
Table 1). 

Real Data Example 

The basic popula t ion  model  used for  this da ta  set is a one-compar tment  
model  with first-order absorpt ion.  Several covariates influence the typical 
values o f  C L  and  V, but  as these relationships are o f  little interest in the 
context  o f  this paper,  only  the est imated values for  the typical covariate 
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Fig. 3. The standard deviation of e~ versus time from the analyses of 20 randomly 
chosen data sets from the TIME simulation is presented. The broken lines in the 
top graph shows crc versus time, as estimated using the two-step error model. The 
corresponding lines in the lower graph show estimated tr c versus time, using a spline 
function with four breakpoints. In both graphs the continuous line represents the 
function actually used for crc in the simulation. 

values are presented. The runs described below are meant to exemplify the 
application of the autocorrelation model and the model for time-dependent 
error magnitude as diagnostics and for obtaining final parameter estimates. 

Residual analyses of the fit using the basic model (Run 1) do not display 
any obvious model misspecification, but when the residual error model is 
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extended to include autocorrelation (Run 2) a significant drop in the objec- 
tive function occurs (Table VI). The magnitude of the residual correlation 
coefficient between nearby observations (those separated by 1 hr) is 0.6. A 
type of model misspecification that can cause such a high correlation, 
without being evident from traditional residual analyses, is random vari- 
ability in one or several pharmacokinetic parameters over time. When, as 
with the real data set, we use the observations that are collected on distinct 
occasions, separated by relatively long periods with no observations, it is 
reasonable to believe that most of the random variability over time within 
an individual may be attributable to differences in his pharmacokinetic 
parameters between the study occasions. When a model that accounts for 
random variability in CL and V between study occasions in included in the 
analysis (Run 3), a better fit results. Not only is the objective function value 
markedly lower (Table VI), but or decreases from 0.20 to 0.13, and the 
correlation between nearby observations drops from 0.60 to 0.18. In fact, 
omitting the autocorrelation part of the model after the inclusion of inter- 
occasion variability (Run 4) results in little change in either the parameter 
estimates or the objective function value. 

Absorption is relatively rapid in the real data, and early observations 
are made at hourly intervals. A plot of the error magnitude versus time 
(Fig. 4) gives some guidance as to whether a time-dependent model might 
be appropriate. Three different two-step models for time-varying residual 
error were tried, with the breakpoints after the first, second, and third sam- 
piing time. Use of any of the three models results in a significant decrease 
of the objective function, the largest decrease being associated with the model 
with a breakpoint after the first sample (Run 5, Table VI). With this error 
model, a further trend in error magnitude with time is no longer observed 
(Fig. 4). As noted previously with the simulations, the introduction of a 
time-dependent residual error results in marked decreases in the estimates 
of ka, ~ka, and ~ka. 

The variation of the error magnitude over time was further explored 
using a spline (Fig. 5). The parameter estimates using the most flexible spline 
the data would support (Run 6) were similar to those obtained using the 
best two-step model (Table VI). Further, the shape of the spline confirms 
that the two-step model is appropriate. 

As a final check on the adequacy of the two-step model, correlation 
between residuals was allowed for this model (Run 7). This extention to the 
model resulted in no decrease in the objective function, and the correlation 
between neighboring observations is a trivial 0.06 (see Table VI). 

The use of extended models for the residual error has, apart from aiding 
the identification of time-varying parameters, led to revised values of some 
parameters (most notably ka, a~ka, and ~rka) and a strong indication that the 
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model describing disposition is far more precise that the one describing 
absorption. The residual error in the postabsorption phase in the final model 
is 0.I0, compared to 0.20 (overall) using the basic model. This low error, 
similar in magnitude to assay error, and the apparent absence of correlation 
between observations strongly suggest that little or no disposition model 
misspecification is present with the final model. 

DISCUSSION 

This paper suggests several residual error models for population analy- 
ses, dealing with the situation that sources other than assay error contribute 
significantly to total unexplained residual variability. Three error models 
were investigated using simulations. All identify the different properties of 
the residual error for which they are intended: (i) different residual error 
magnitudes for interreplicate and intersample error, (ii) serial correlation of 
errors, and (iii) time-dependent magnitude of error. 

Correct specification of the magnitude and structure of residual error 
may be important if they, together with other population specifications, are 
to be used as prior information for subject-specific Bayesian estimation. In 
addition, the potential utility of the models used here is that they can provide 
(i) more detailed identification of sources of error, (ii) additional diagnostic 
tools and/or measures of modeling success, (iii) more realistic assessment 
of the appropriateness of models used to describe kinetic processes, and (iv) 
more accurate or precise estimates for structural parameters. The remainder 
Of this section discusses the specific situations in which the three models can 
be useful. 

The potential hazard of ignoring real differences in sources of error was 
mentioned in the Introduction and Theory sections of this paper. In the 
simulations performed here, it seems that little, if anything, is lost in terms 
of structural parameter estimation by using the traditional model in which 
all sources of error are lumped into one error term. However, the model 
with separate error components may be useful when one is particularly 
concerned about identifying different sources of error. The number of 
replicates necessary to detect significant replication error is small, and this 
added information is therefore available at little cost. The magnitudes of 
replication and assay error can be compared. If replication error is consider- 
ably higher than known assay error, this suggests problems elsewhere in the 
replication sequence. 

Recognizing even significant serial correlation between residuals 
improves neither accuracy nor precision of the structural parameter esti- 
mates. Such improvement can only be obtained by using a better specified 
structural model. However, more accurate estimates of variance components 
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can be obtained through using an autocorrelated error structure when this 
is appropriate. Due to the nature of the inaccuracies in variance parameter 
estimates--overestimation of interindividual variability and underestimation 
of residual variability--the apparent value of therapeutic drug monitoring 
can be falsely high when serial correlation is neglected. Another situation 
in which accounting for serial correlation may be important is when conclu- 
sions regarding the population structural model are important. The presence 
of serial correlation may weaken mechanistic interpretations. It should be 
noted, though, that the inability to discover serial correlation, using the 
particular serial correlation model employed here, does not necessarily mean 
that serial correlation is absent. 

The observation that SEs are not adversely affected when even relatively 
high autocorrelation is neglected must be put into perspective. That popula- 
tion analyses differ in this respect from single-subject analyses can be under- 
stood by considering the following example. With a constant infusion where 
clearance varies over time, there will be periods where the concentrations 
from a given subject reflect a higher or lower clearance than the average one 
for that subject. If many measurements are made during such a period, and 
serial correlation between them not considered, an analysis of these data 
would result in a seemingly precise estimate of the clearance value. In a 
population analysis with similar data from a number of subjects, the popula- 
tion average clearance is being estimated, and the precision of this estimate 
is influenced far more by interindividual variability (which is usually substan- 
tial) than it is by the (overoptimistically precise) subject-specific estimates 
of clearance. 

The use of a time-dependent error model should be considered whenever 
residual error is considerably higher than assay or replication error. It may 
be possible to get an indication of the need for this kind of error model 
from residual analyses. It is not surprising that for the oral data in our real 
data example, residual error is larger during the absorption than elimination 
phase. Disposition models are better approximations to the underlying pro- 
cesses than are currently used absorption models. A time-dependent error 
model (was the only model that) resulted in structural parameter estimates 
different from those obtained with the traditional error model. The upward 
bias in ka in the TIME simulation and in the real data example, using the 
traditional error model, is likely due to the use of a proportional error 
model. The only way to accommodate the larger residual errors during the 
absorption phase is to predict higher concentrations, since these, according 
to the proportional error model, are associated with (and therefore permit) 
larger errors. The only way to achieve higher predicted concentrations during 
the absorption, but not elimination phase, is to increase ka above its true 
value; hence the bias noted. 
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Even when interest in the variance components  of  a population model 
is little, the error models presented herein can offer advantages. The real 
data  set is a good example of  this. The estimates of  the structural parameters  
change somewhat  as the variance components  are more correctly specified, 
but  more important ,  the unexplained error is partitioned rather differently. 
In the final model, during the disposition phase the residual error is only 
slightly larger than the assay error. This offers strong reassurance that no 
major  misspecification remains. 

The simulations SAMPL,  BIEXP, and E R R A T  were performed to 
mimic the errors introduced into the analysis when there are problems with 
sample collection practices or the structural model. Despite our judgment  
that  the misspecifications introduced were large compared to what one would 
expect with real data  situations, the estimated o-r with traditional model was 
relatively low compared to the estimated o'r which is often observed with 
real data  sets. Therefore, caution should be exercised in interpreting our 
simulation results quantitatively. 

In summary,  we have presented and investigated extensions of  the stan- 
dard residual error model used in population analyses. The extensions try 
to accommodate  properties of  the residual error that can be anticipated 
f rom the nature of  the data,  but have not previously been incorporated into 
populat ion analyses. The examples presented provide qualitative informa- 
tion on how different parameter  estimates are influenced when different 
models for the residual error are used. 
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