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Abstract. Using the duality equations of Moore and Seiberg we define for every 
primary field in a Rational Conformal Field Theory a proper Markov trace and 
hence a knot invariant. Next we define two nested algebras and show, using results 
of Ocneanu, how the position of the smaller algebra in the larger one reproduces 
part of the duality data. A new method for constructing Rational Conformal Field 
Theories is proposed. 

1. Introduction 

In the past few years several attempts have been made to find the basic underlying 
principles and structures governing Rational Conformal Field Theories (RCFT). 
In one approach, quantum groups are proposed as the underlying algebraic 
structure of RCFT [21]. In [21] the philosophy is that the quantum group can be 
seen as the centralizer of a representation of the braid group. This approach is in 
particular successful for WZW models, where one can compute braid matrices 
using the analogue of 6j-symbols. The result of this construction for arbitrary 
RCFT is, however, unclear. 

In another approach, Rational Conformal Field Theories are seen to be 
intimately related with three-dimensional topological field theories [16, 3]. Here, 
the Hilbert space associated to a constant time slice with charges in the three- 
dimensional theory is equal to the space of conformal blocks of a RCFT. The 
observables of the three-dimensional theory are knotted links whose expectation 
values can also be computed (as we will show) from RCFT. 
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In this paper we will take a look at these two approaches from a somewhat 
different angle. Instead of quantum groups we will end up with inclusions of certain 
IIl factors. These are infinite dimensional algebras that can be obtained by taking 
a certain limit of finite dimensional ones. They arise as algebras of paths on a graph 
constructed from the fusion rules, and a primary field 4). The graph is closely 
related to the fusion graph, but not necessarily identical to it. For instance for a 
field q~ with the fusion rule ~b2= 1 + ~b the graph is the Dynkin graph A 4. 

An outline of the contents and the results of this paper is as follows: 
In Sect. 2 we will give a review of the duality relations that govern RCFT. Using 

these it will be shown in Sect. 3 how one can obtain link invariants from arbitrary 
Rational Conformal Field Theories, by construction of a proper Markov trace. 
Some examples will be given where the invariant is equivalent to some well-known 
knot invariant. In particular this shows that there exists a well-defined three- 
dimensional topological field theory, where the expectation values of links agree 
with the link invariant obtained from RCFT. One could in principle use this to 
properly define expectation values of graphs as well, as has been done for Chern- 
Simons theories in [14], and more recently for arbitrary RCFT in [5]. 

In Sects. 4-6 we will explain the relation between II1 factors and RCFT, using 
Ocneanu's path algebras [9]. The algebras presented in those sections have the 
properties that their representation theory coincides with part of the fusion rules, 
and that the intertwiners between these representations are (up to a normalization) 
braiding matrices. In the case that the special chosen field q~ is self-conjugate, our 
construction should give the same resulting algebras as in [21], suggesting a close 
relation between quantum groups and path algebras. The precise relation is, 
however, unclear, and must presumably be sought along the lines of Witten's work 
[15]. 

As a by-product of our graphic representation of the string algebras we find in 
Sect. 7 a relation between the positive half of the Virasoro algebra and the 
Temperley-Lieb algebra. These results are also valid for certain statistical 
mechanical models, because we can define an IRF model based on the same string 
algebras, where the Boltzmann weights are braiding matrices. In this context the 
elements of the string algebras can be seen as transfer matrices. 

The final part of this paper consists of a study of the reverse process, namely 
constructing Rational Conformal Field Theories out of inclusions of factors. We 
establish some necessary (but, unfortunately, not sufficient) conditions for 
inclusions to produce Rational Conformal Field Theories, and present some 
examples. 

2. Duafity in CFT 

Rational Conformal Field Theories are conformal field theories in which the 
Hilbert space decomposes into a finite sum of irreducible representations of the 
(maximally extended) chiral algebra alL| 

The physical correlation functions in such a theory can be expressed in terms of 
finite sums of holomorphic times antiholomorphic functions, which are called the 
conformal blocks. Whereas these conformal blocks are multivalued functions, the 
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Fig. 1. Different sewing procedures for the 4 punctured sphere 

physical correlation functions are constructed out of the conformal blocks in a 
monodromy invariant way. Graphically, we can represent a n-point conformal 
block ~-~1 ..... ~n as a skeleton diagram. For example, a 4-point conformal block on 
a genus two surface can be represented as 

~2 ~3 

The number of blocks can be easily computed from the fusion rules Nkj, which for 
the above case gives 

number of blocks = ~ Tr(Ne~ Tr(NPNr162 
P 

where (NP)u= N~. 
The idea here is that a punctured Riemann surface can be formed by sewing a 

number of trinions (i.e. three holed spheres). This sewing procedure gives the 
different conformal blocks when one sums over the intermediate states in the 
channel that is formed by the sewn holes. Of course, the same punctured Riemann 
surface can be obtained by different sewing procedures. For example, the four 
punctured sphere can be obtained from two different sewing procedures, as shown 
in Fig. 1. These different sewing procedures give rise to different conformal blocks. 
Now, the basic axiom of duality in Conformal Field Theory [1] assures that the 
vector space spanned by the conformal blocks is independent of the sewing 
procedure. This means that the conformal blocks obtained from one sewing 
procedure are linear combinations of conformal blocks obtained from another. 
The matrices representing these linear transformations are called "duality 
matrices." 

Moore and Seiberg [-23 have shown that the duality data of a Conformal Field 
Theory are contained in the braiding and fusion matrices and the modular matrix 
S(j) (see below). Furthermore, they have proven that the conditions on these 
duality matrices, stemming from the requirement of duality and modular 
covariance on arbitrary genus, can be represented by a finite number of equations, 
the polynomial equations. We will review these polynomial equations below. 

The basic duality data for genus zero are contained in the braid matrix 

Bpq (e) or the fusion matrix Fpq k , which are defined in the following 
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(e = + depending how the braid is performed). A particular simple example of the 
braid matrix, which we will denote by ok, is given in Fig. 2. We always can make a 
"choice of gauge" such that f2~[j becomes (Ai denotes the conformal weight of the 
primary i) 

f~iJ(e)=Bji k (5) _,j_ 

where ekj (not to be confused with the e which denotes the orientation of the braid) 
can be _+ 1. For  WZW models we can use the fact that for representations e~j is 
- / + depending on whether k appears (anti)symmetrically in the tensor product of 

k has to be determined consistently from the i and j. In more general situations ~ij 
polynomial equations. Note that if i=j  we also have B(e)=F-xf2(e)F, which 
implies that in this case B(e) has the same eigenvalues as f2(e). 

The braid and fusion matrices are not independent, in fact 

B(e) = (f2( -- 5)| 1)F(1 | f2(e)) (2.2) 

which can be easily deduced when one applies the simple moves shown in Fig. 3. 
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From (2.2) we have B(e)o B ( - e ) =  1, which is obvious. Furthermore, since f2*(~) 
= f2( -  e) and F* = F v, we have B*(e) = B v ( _  e), where B v denotes the braid matrix 
with the fields q~i replaced by their duals ~b v (recall that the dual ~b v of a field q5 is 
the unique field with which ~b has the fusion rule ~b x ~b v = 1 +...).  One can easily 
prove that this implies that the braid matrix B(e) is in fact unitary. 

Applying a series of B and F moves on special conformal blocks one can easily 

derive l o t so f iden t i t i e s fo r theBpq[~  ~ ] a n d F p q I ~  ~l. The results of Moore 

and Seiberg guarantee that all these identities are in fact equivalent to just two 
identities, which we will now derive. The first is called the hexagon identity and is 
expressed graphically in Fig. 4. In terms of the fusion matrix it reads 

F(f2(e) | 1 ) F = (1 | O(e)) F( 1 | f2(e)). (2.3) 

The second fundamental identity is called the pentagon identity. Its graphic 
derivation is given in Fig. 5, which gives the following expression in terms of fusion 
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Fig. 6. P roo f  of the Yang-Baxter  equat ion 
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Fig. 7. P roof  of  the genus one identity 

matrices: 

F 23F12F 23 = P 23F13F12 , (2.4) 

where P is the permutation operator. Using (2.3) and the connection between the B 
and F matrix as in (2.2), we can rewrite (2.4) as 

B ~ 2(~) B 2 3(~) B ~ 2(~) = B2 3(~) B a 2(~) B2 3(~) (2.5) 

whose graphic interpretation is given in Fig. 6. Equation (2.5) is the Yang-Baxter 
equation and is due to the fact that the B matrices form a representation of the 
braid group. 

In addition to the genus zero equations which we have derived above, there are 
of course duality constraints from higher genus. One of the surprising results of 
Moore  and Seiberg is that the only new fundamental duality equations come from 
genus one. We will now derive these equations. First, the new duality data in genus 
one are given by the modular matrices S(j) and T, where S(j) represents the behavior 
of the one point functions on the torus under the transformation z ~ - l/z, and T 
equals Tu= 6ije 2i~(Ai-c/24). Since the modular matrices S(j) and T should form a 
(projective) representation of the modular group, we have the following two 
identities 

S(j )  T S ( j )  = T -  ~ SQ) T - a , (2.6) 

$2(]) = +e-inAJC, (2.7) 

where C is the charge conjugation matrix C u = N ~ which maps the field q5 i to its 
dual ~b v. 

Besides these two identities we have one more genus one relation, which can be 
represented pictorially as in Fig. 7, and which gives the following constraint on the 
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duality matrices: 

( S | 1 7 4 1 7 4 1 7 4  (2.8) 

The idea [6] of Fig. 7 is that one inserts a primary p on the torus, where p is some 
field contained in the operator product expansion of j l  and j2. Then one "defuses" 
to get an insertion of j l  andj2 instead ofp. Subsequently, one transportsj2 along 
the a or b cycle of the torus, and fuses it again withjx to get an insertion of some 
other field s. The two processes of transporting along the a or b cycle are related via 
the modular transformation S : z - ~  - 1 /z .  Schematically, S a S -  ~ = b. Performing 
the moves explained here one arrives at (2.8), where O(_+) acts as 

O(--F) = e  +irt(Ak- A'-  AJ) x , 

i ~ ~ k k v ~ ~ i v 

so for the case of Fig. 7 we have l |  2i~t~'-ap). 
Note that if we take j~ =J2 =J and p = s = 0  in Fig. 7 this implies [6, 2], 

k _ ,~. Stk'n Sjm,  (2.9) N i j -  ~ -,m 
Sore m 

where 

Si j  Soi So j  i 

soo soo Soo=m ~ (2.10) 

and where we used the "tetrahedron" symmetry 

l J  V F k F j  ' (2.11) 

( F  i = Soi /Soo ) which can be proven from the pentagon identity (2.4). 
From (2.6) and (2.9) we also have 

Sij -- ~' S~ N.m.e 2i~(Ai+Aj-a'O . (2.12) 
Soo ~ Soo 'J 

So we see that we can make the following consistent "gauge choice": 

B i "//F-m m iTte(Am A, A Om[i / v ] ( f , ) : l /  "m  eije - ' - i ) .  (2.13) 
V F i F j  

Taking the tetrahedron symmetry into account this is in fact the only gauge choice 
consistent with (2.1). 

The above Eqs. (2.3-2.4) and (2.6--2.8) are the polynomial equations which 
encapture the fundamental duality relations of a Conformal Field Theory. In the 
next section we will explore these polynomial equations to show that we can define 
for every primary field in a Conformal Field Theory a topological invariant of 
knots (or more generally links). As we will see, these invariants are intimately 
connected with so-called Markov traces, which already appeared in a slightly 
different context in [40]. In the next section we will give a proof of the existence of 
such traces in Conformal Field Theory using the polynomial equations of Moore 
and Seiberg. 
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3. Topological Aspects of CFT 

To define a topological invariant of links for Rational Conformal Field Theories 
we first have to discuss the relation between knots or links and braids. The braid 
group defined on n strands will be denoted by B n and is generated by the simple 
braids (a l ,  ..., an- 1)which satisfy 

trioi+ ltri = tri+ laitri+ 1, (3.1) 

tritrj = trjtri, l i - j l  > 2. (3.2) 

[ i  ~] encountered in the previous section form a representation of the The Bpq k 

braid group, and the Yang-Baxter equation (2.5) is a direct consequence of (3.1). 
To discuss links in terms of braids, we will take a two dimensional point of view 

towards links. When one projects a link down to two dimensions to get a knot 
diagram, as in Fig. 8, the question which diagrams give equivalent links arises. A 
theorem in knot theory 1-4] states that knot diagrams give equivalent links when 
they can be transformed into each other via so-called Reidemeister moves, shown 
in Fig. 9. A link invariant defined on the level of these diagrams should of course be 
invariant under these Reidemeister moves to be a true topological invariant. 

It is more or less obvious that every link can be obtained by the closure of a 
braid. Such a closure of a braid ~ (see Fig. 10) will be denoted by ~. According to a 

Fig. 8. A knot diagram 

Fig. 9. The Reidemeister moves 

Fig. 10. Closure of a braid 
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theorem of Markov, this means that an invariant L(~) defined in terms of braids c~, 
should satisfy the following properties: 

L(ct3) = L(flcO, ~, 3 e B, ,  (3.3) 

L ~ = L ( 0 2 ) ,  cteB.,  (3.4) 

where the trace property (3.3) is clear when one closes the braid, and (3.4) is the 
consequence of the first Reidemeister move. Conversely, these properties are 
sufficient to guarantee that L defines a link invariant. 

The representation ~ of the braid group B. that we will study here is a 
representation on special conformal blocks. These are genus zero blocks with n 
external ~b lines and one "spectator" field j [21] 

II  l l j  
4 4 

P l  P n - 2  

Such conformal blocks will be denoted as o~"~. The dimension dtg!s of the vector 
space spanned by these conformal blocks is easily computed as 

d ( n )  _ t l~r  n - i ~ 
ee , .i - -  ~ * " e~ .' 4, J " 

So for a fixed spectator fieldj the braid matrices rc(~ri) are elements of Mat(dR}/, C), 
the space of complex square matrices of dimension d~)j. We can use this to build 
finite dimensional C*-algebras C~ ~) as follows: 

C~")= @ Mat(d~"),, C). 
J 

This gives us a sequence of inclusions of C*-algebras 

c . . .  c c . . . ,  (3 .5 )  

with the inclusion matrix given by N~ [13]. 
To define a link invariant for Rational Conformal Field Theories we will first 

look for a so-called Markov trace M~, which is defined on C~ = U c~ "), and 
n 

satisfies the following properties: 

M(g(1)) = 1, 

M(~(ct]?)) --- M(g(flc0) , 

M(rc(~a,)) = zM(rc(cO) , 

M(rc(ow~ 1)) = eM(r~(~)), 

(3.6) 

~, B e B., (3.7) 

e B,,  (3.8) 

e B., (3.9) 

where z is called the Markov parameter. Once we have such a Markov trace we can 
easily define a topological invariant out of it, as follows: 

L(r ~ B , ,  (3.10) 

where w(ct) is the wraith of the braid ~, i.e. the number of overcrossings minus the 
number of undercrossings in a knot diagram (with the choice that the 0-~ generate 
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overcrossings and the a71 undercrossings). Note that we have the following 
normalization: 

c = 

The idea now is that in order to study knots or links we first write them as the 
closure of braids, and then assign numbers to these braids as follows. We perform 
the same braids on the conformal block of (3.5), which then equals 

Pl , . . ,Pn--2 ;qi ,- . . ,qn-2 
ql,...,qn--2 ~) . . . . .  J ,  

ql q,~- 2 

where B~;J,...,v._ 2;ql ..... q._ 2(a) is a product of the braiding matrices Bvq [ ~  i ~1, so 

it is a map from the braid group B. to C~ "). Taking the trace inside each C(~ n) we 
get another map t~ from C~ ") to C 

t~ : c ( n ) - ~  C ,  

E *s Bv ...... v._2;v ...... w_:(a), 
Pl,  . . . ,  P n -  2 

and t~(rc(a)) is the number we want to associate with the braid ~. 
The reason we restricted ourselves to the conformal blocks of (3.5) is that since 

we want to study links in terms of braids, all the external lines have to be the same, 
otherwise the braid cannot always be closed. 

The final step is to construct out of the numbers t~(rc(a)) a Markov trace 
M~(rc(a)). A proposal for such a Markov trace is given in [21, 40] (and im- 
plicitly in [16]). We will not repeat the arguments leading to this proposal here, 
but simply state the result 

Soo " S~ t~(n(a)). (3.12) 

Note that due to (2.9) M,(rc(1)) = 1. We will now prove that this proposal for the 
Markov trace indeed satisfies the Markov properties (3.7) and (3.8). As one can 
easily verify the trace property (3.7) is fulfilled due to the fact that we have taken the 
trace inside each C~ "). 

To prove the second Markov property (3.8) we first have to determine what it 
means in terms of the braid matrices. Setting e = 1 in (3.8) and evaluating it on ~-(2) ~4~.J 
gives for the Markov parameter z 

(Soo~2 Z Sos r~n oS o,~(2~,-~j) (3.13) 

which we will show to be equal to 

e - 2inA4~ 

z = - -  (3.14) 
SojSoo " 
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J 

Fig. 11. Working out (3.8) on a general conformal block 

q 

0 

The implication of (3.8) for general conformal blocks and general braids ~ is 
worked out in Fig. 11. From (3.12) and Fig. 11 we deduce that (3.8) becomes 

. 
~ ~oo j j  ( + ) =  z sooS~ sooS~ N~ k . (3.15) 

Note that for k = 0  this equation reduces to (3.13), so to show that (3.12) defines a 
good Markov trace we only have to prove (3.15). Using (2.13) we can rewrite the 
left-hand side (1.h.s.) of (3.15) as 

Sop So, 1.h.s. B P - S o ~ S o ~  Oj[p ~ v l ( - - ) B j o [ ~  :vl(--)e2"~tAJ-a"-a*)BppI~ k ffl(+) 

S o p  S o ,  e2i~:(Ap _ - ~ , - ~ k )  B P 

-- Sop So4' e2i~( AP- "%-'~k) f~kp*( -- ) f2k*( -- ) Boo I ~ Soo t~v] ( - )  

- -  SOp o -  2ircAq~ 1~-[, (3.16) 
- -  S o  O ~ Z ,pk  ~ 

where going from the first to the second line we used (2.2) and from the second to 
the third we used the Yang-Baxter equation. So we have proven that (3.12) indeed 
satisfies the Markov properties with the Markov parameter z given by (3.14). 

We thus have produced for every primary field ~b a link invariant given by 

.', 2irzA w(~t" S o j  L,(ct) = e * ' Y~ ~ t~(~(~)) (3.17) 
J 500 

with (3.11) replaced by 

L (O) =F,. (3.18) 

If we specialize the above invariant to the case of a S U(N)k WZW model, with ~b 
corresponding to the fundamental representation, q~ = E], our invariant is in fact 
the Jones polynomial [7]. This can be proven as follows. The fundamental 
representation for SU(N) has the "fusion" rule 

F-I x E3= ~ | I-F]. 
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The weights of the fields appearing in this product  are given by 

( N - 1 ) ( N + I ) .  AH ( N - 2 ) ( N +  1) (N--  1) (N+2)  
A[]= 2N(k + N) ' = N(k + N) ; A ~ =  N(k + N) ' 

which implies that the eigenvalue equation for the braid matrices zc(a~) becomes 

(q- 1/2Nrc(a,) + Vq)(q- 1/2/v re(a,) - 1/Vq) = 0 (3.19) 
2in  

(here q = e k +N) which (after some renormalization) is the Hecke relation. 
From (3.19) we can derive the following property of the link invariant (3.17): 

where L~ stands for the value of a link with at some point an overcrossing, L~ is 
the value of the same link with the overcrossing replaced by an undercrossing and 
L~ is the value of the link with the crossing removed. 

Graphically, we can represent (3.20) as the "skein" relation 

q N / 2 ~ / / ~ - - q - N / 2 ~ = ( I / / q - - I / [ / ~ ) I I .  (3.21) 

This skein relation can be used to disentangle the knot. Together with the 
normalization (3.18) it completely determines the polynomial Lb. This polynomial 
equals the Jones polynomial as given in [16], since the skein relation we derived 
here is identical to that of [163. In a similar way we can prove that for q~ = []  in 
SO(N)k or Sp(2N)k WZW models, our invariant is equivalent to the Kauffman 
invariant [8]. In fact, we can use (3.17) to construct many new knot polynomials, 
namely one for every primary field of an arbitrary RCFT (and not just for WZW 
models, which would give the same polynomials as Witten derived from (2 + 1)- 
dimensional Chern Simons theory). Although we should note that in practice the 
evaluation of the braid matrices appearing in (3.12) can become quite cumbersome. 

Before we close this section we return to the issue of inclusions of C*-algebras, 
as given in (3.5). We will argue that we can complete rc(B~o) = C~ = U C~ n) such that 

t~ 

it becomes a so-called 1I 1 factor. First we will review the definition of a 111 factor. 
An algebra A is a factor if: 

- A is a v o n  Neumann algebra, i.e. an algebra of bounded operators on a Hilbert 
space ~f~, such that it contains the identity, it is closed under taking adjoints, and it 
is closed in the ultraweak topology 1. 
- the center of A is trivial. 

It is of type 111 if it is infinite dimensional and admits a finite normalized trace 
tr:  A ~ C  such that 

tr(1) = 1, 

tr(ab) = tr(ba), a, b e A, (3.22) 

t r (a*a)>0 ,  a~A.  

This trace is always unique. 

1 This means if 1pl , l p 2 ~ t ~  , annA, a~B(,g ~) and <wIIa,,w2>~<wIIaw2> then a~A as well 
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Jones has shown [10] how to associate to a II1 factor M and a subfactor N, a 
number [M : N], called the index, which measures "how many times N fits into M," 
similar to the index [G:H]  for finite groups. The index need not be an integer 
however. 

There is one more property we will need: a factor is hyperfinite if it contains a 
dense increasing sequence of finite dimensional sub *-algebras A 1 C A: C... C A. Up 
to isomorphism there is only one hyperfinite II1 factor [11] usually denoted by ~.  
In a sense ~ is the smallest possible II1 factor [12]: Any II1 subfactor o f ~  is again 
isomorphic to ~ ,  and any II1 factor contains ~.  Another property o f ~  is that the 
range of the index [ ~ :  ~ ' ] ,  where ~ '  runs over all possible subfactors of ~ ,  equals 
[10] 

[ ~ : ~ ' ]  ~ {4 cos 2n } u[4,  + oo]. (3.23) 
n n > 3  

Using the Markov trace M o we can define an inner product on rc(B~)= Co, 

<xly> = Mo(x*y). (3.24) 

Using this inner product we can take the weak closure of 7r(Bo~). It can be 
proven, unless ~b is simple [26], that this closure ff(B~) satisfies all the requirements 
in the definition of a hyperfinite 111 factor, so we see that it is in fact isomorphic to 
the hyperfinite 111 factor ~ .  

With this factor, naturally comes a subfactor as follows. Take for B~o the braid 
group generated by the elements <tr2, tr3, ...>, then r~(B') is a subfactor of r~(Boo). 
The index of this subfactor can be calculated as 

Z'~'rn+x'2 (Ss~o)2 ' . - -  ! j 

[ff(B~o). rc(Bo~)] = lim - (3.25) 

J 

since Soo/Soo is the largest eigenvalue of N~. 
For the special value 3 of the index, Jones [34] noted that (for q5 = [] in SU(2)4 ) 

ff(B') C ff(Bo~), is equivalent to the pair ~n3 C ~z2, where ~ o  denotes the set of fixed 
points o f ~  under an outer action (i.e. not of the form gxg- 1) of the finite group G. 
Furthermore, at this value of the index the link invariant (3.17), in this case the 
Jones polynomial, is equal to + i times a power of ~/3, for any link L. A similar 
situation occurs for index equai-to 5. Here, (~b = [] in Sp(4)2) ff(B'~) C ff(B~) can be 
described as ~/~sC ~z2, and the link invariant (3.17), now called the Kauffman 
invariant, is equal to _ i times a power of 1/-5. 

To understand these peculiarities we will consider the more general situation of 
~o2p + 1 C ~z2, and show that similar things happen here, thereby generalizing the 
results of [34]. The "principal graph" (see Sect. 9) one gets for ~D2p +1 C ~Z~ is 

2 

1: ~ - T i ~ ~  --1. (3.26) 
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As will be explained in Sect. 9, to get an inclusion of factors from RCFT which is 
equivalent to ~o~p +1C ~z~, we have to find a primary field which has (3.26) as its 

fusion graph. Such a primary ~ is given by the field which corresponds to the 
L I  

representation (p blocks) in a SO(2p + 1)2 WZW theory, except for p = 1 for which 
~ =  [] in SU(2)4 and p = 2  for which ~ =  [] in Sp(4)2. 

The conformal weight of the field �9 is given by A~ = 8' and the weights of the 

fields which appear in the product of �9 with itself are given by 

Aj = (p - j )  (p +j -4-1) 
@ + 2  , j=0 , . . . , p .  

The group theoretical factor e for these models is 

e ~ = i  ~2 +j), j =  0,.. . ,p. 

From this we deduce that the eigenvalue equation for the braid matrices n(a~) 
becomes 

p 
I ]  (i-P/27C(tTi) - i(J2+ J)o9- l[4(p- j ) (p+ j+ 1 ) ) = 0  , (3.27) 

j=O  
2in 

where o9--e 2p+ 1. We can rewrite this product such that it becomes 
p 

I-I ( ip/2 7z(cri) "-}- i -  P2ogj2) : 0 .  (3.28) 
j = 0  

This allows us to take for the a i the so-called "Gaussian" representation [34], 

i -p~2 2p 
z 

where the ui satisfy 

u2iP + 1 ~ 1 ,  

Uil'li + 1 = fO2Ui + lbli, 

UiU j = UjU i li--jl > 2, 

since the eigenvalue equation for n(ai) with ai defined in this way is equivalent to 
(3.28). 

Now it is shown in [34] that the Markov trace evaluated on a braid in the 
Gaussian representation gives (up to some constant C which is a power of 2p + 1) 

Z o9<v,v~, (3.29) 
veHx(S; Z2p + 1) 

where S is a Seifert surface for the closed braid, and ( , )  is the Seifert pairing (for 
an explanation of these terms, see for example [4]). For the link invariant L~ given 
by (3.17) this implies that, whenever 2p + 1 is prime, IL~(~)l equals C(2p + 1) v+~/2, 
where (#)v is the number of (non)zero eigenvalues of the Seifert pairing. 

With the Gaussian representation at our disposal, we can now easily show why 
fc(BL)Cfc(Bo~) is equivalent to ~D2p+l c~Z2. Following [34] we deduce that the 
completion of the algebra generated by u~, denoted by A=Alg(Ul, U2,...), is 
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isomorphic to ~ .  On A we have the following Z2-action: ui--.u T 1, whose fixed 
points are the n(a~), so ~(B~)~ ~z~. Furthermore, we have an Zzv + l-action on A 
given by: u 1 ~ om 1 and u~ ~ u~ for i > 2, whose fixed point algebra is generated by the 
(u2, u3,. . .) .  Since DEp+ 1 = Zz >~ Z2p+ 1, this implies that the 111 factor generated by 
the (a2, a3,. . . ) ,  i.e. ~(B'~), is isomorphic to ~o~+ ~. So we can finally conclude that 
g(B ' )  C ~(Bo~) is equivalent to ~D~+~ c~Z~. 

4. II 1 Factors Coming from RCFT 

In this section we will define what a coupling system is and how they can be 
obtained from Rational Conformal Field Theories. Some background material on 
coupling systems and their relation with inclusions of factors is gathered in 
Appendix A. 

Let f# be an unoriented graph. A path of length n on fr has the obvious meaning. 
The vertex where a path ~ starts will be denoted by s(0 (source), the endpoint by 
r(4) (range). In particular a path of length one is just an edge with an orientation. 
The reverse 4 ~ of a path 4 is the same path walked along in the opposite direction. 
If we have two paths 41 and 42, and 42 starts, where 41 ends, 41 ~ ~2 will stand for the 
path "first ~ 1 and then Ca." The set of all paths of length n starting at x and ending 
at a vertex y will be denoted by Pathn, r, the length of a path by 141. 

A standard finite measure graph is a finite connected graph fr with a 
distinguished vertex * = *~ adjacent to only one other vertex **~ via one edge, and 
with a natural Z 2 grading given by the distance of a vertex to *. The even vertices 
will be denoted by f~ ... . .  so * ~ f# ... . .  and the odd vertices by fr Let A be the 
incidence matrix of f#, then by Perron-Frobenius theory A has a unique 
eigenvector with only positive entries and such that its entry at * is 1. The 
eigenvalue will be denoted by IbALI, and the components will be labeled by Fx, 
where x is a vertex of fr 

We have the following definition: a local coupling system is a quadruple 
(f#, ~ ,  z, W), where f# and ~ are finite standard measure graphs with IIA~bl 
= IIAje I[. Furthermore z is an involution on the set of vertices of f r  satisfying 

~(*~)=*~, ~(*~)=*~, ~(**~)=**~, 

~'(f f  . . . .  ) : ~ . . . . .  Z ( f fodd)  ~--- ~/~odd, 7'(~tOeven) = ~e  . . . .  ( 4 .1 )  

F~x) = Fx. 

W is map which associates to any cell (a 1, a2, a3, a4) consisting of four oriented 
edges with z(r(ai)) = s(ai§ 1), a number W(al, a2, a3, a4) E C satisfying five axioms 
which we will give below. 

Consider a RCFT and pick a field ~. We make a graph by taking 2N vertices if 
N is the number of primary fields in the theory, and label them by ~b i and ~), where i 
runs from 1 to N. Next we draw N~, edges from tki to q~. Let f# be the connected 
component of the resulting graph containing the identity operator 1, and let *~ = 1. 
Also let ~ be the connected component containing 1' and let . g  = 1'. From now 
on we will usually identify tk~ and ~b'~. We see that fr is the graph obtained by 
alternatingly fusing with 4~ and its dual field ~ v, and ~ is obtained by the same 
process, starting however with ~ v. Therefore, as graphs f# and ~ are identical. 
Note that not all fields need occur in fr and J r .  The eigenvalues for the Perron- 
Frobenius eigenvector are given by IIA~ I I - - I IAje  It = So,dSoo. The contragradient 
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map is defined by z(r q5 v or r(r qS'i v (compare with the charge conjugation 
matrix C of Sect. 2). This can be done in such a way that it is compatible with the 
demands stated above in the definition of a coupling system. The Perron- 
Frobenius eigenvector has components F~ = So4,]Soo. 

The definition of W for RCFT's  is a bit more involved. Fix once and for all an e, 
which may be either + or - .  Consider a cell (al, a2, a3, a4) consisting of four edges 
((q~l, ~b~), (q~z, qS~), (~b3, q~,~), (q54, q~)). We have to consider four different cases: 

4 F1F~ 
~916Cffodd--+Wtl'(al, a2,a3,a4)=Br 1 q~3] (e) ~F~-~4,  (4.2) 

F~F3 
c~lSN~ven~W(2)(al, a2,a3,a4)=B4o~4~g q51 q5 3 ( ) , (4.3) 

41e~odd W (al, a2,a3,a4)=B4,vov ~b 1 q~3 () F2F4 , (4.4) 

c~le~von~W(4~(a,,a2,a3,a4)=B,~,~ q~, ~b 3 t e ~ V F ~ .  (4.5) 

For N ~  > 1 a pair of vertices does not specify an edge and we would have to 
include into the definition of W also a dependence on couplings e, which are 
elements of a N ~  dimensional vector space. We have suppressed these as they 
would just complicate the expressions. Furthermore, Ocneanu has defined a 
notion of equivalence of two coupling systems, stating that two coupling systems 
are equivalent precisely when they differ by a unitary transformation in the space 
of couplings, and therefore everything is independent of a choice of basis in the 
space of couplings. 

In order to check the axioms that W has to satisfy, let us recall some of the 
symmetries of the braid matrices, 

B F jl kl Jq3 ]/ff-pFq (4.6, v, L i (e) = Bik [Jf (--e)VFiF k , 

BpqlJ: k](e)=BpvqV[~2 v flv](e ), (4.7) 

where (4.6) is a consequence of(2.2) and (2.11), (4.7) is due to our convention for the 
conformal blocks and (4.8) is a direct consequence of (4.6) and (4.7). 

First we will cheek the three axioms that Ocneanu calls local [9]. 

- The first axiom is that of inversion symmetry: for any cell (al, a2, a3, a4) we must 
have 

W(a 4 , a 3 , a2, a'~)= W(a 1, a2, a3, a4). (4.9) 

From now on we will assume that 

(al, aa, a3,a4)=((O,,c~),((a2,c~),((a3, c~),(c~4, c~)). (4.10) 
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In order to check the inversion symmetry we would in principle have to distinguish 
between four cases, depending on whether q51 is in ~ or in ~vf, and whether it is an 
even or odd vertex. We will just prove it for one case, the other three being 
completely similar. So assuming q~l e ffodd, we have 

W(a4 aa a2 a~ ' )=Wr  v v , , , q~4), (q~4, q~3), (q~ 3 , q~2), ( q ~ ,  (~ 1)) 

a 4 F~Fz 

= Win(a1, a2, a3, a4). 

- The next axiom is the axiom of rotation symmetry, 

W(a2, a3, a,,, a 0 = W(a l ,  a2, a3, a4)*. 

To check this, take for example ~b 1 e f#evon" We have 

W(3)(a2'a3'a4'a1)=B~ ~)2 

= B G ,  ~ 
�9 3 

~ v  4 
g F2F4 

~ v  e F1F3~4 F2F-~4 

VFZ  
~ v  e 4 FaF3 , 

(4.11) 

= W(2)(al, a z, a3, a4)*, 

where in the second line we used B*(e)= B v ( _  e), see Sect. 2. 

- The third and last local axiom is the axiom ofbi-unitarity. This axiom states that 
the connection is a unitary matrix, after a certain renormalization. In our case that 
means that we have to check whether the braid matrices in (4.2--4.5), without the 
normalization factors, are unitary. This fact was already noted in Sect. 2 below 
Eq. (2.2), and therefore the third axiom is also satisfied. 

This completes the proof  that the connections obtained from Rational 
Conformal Field Theories satisfy all the local axioms. 

Next we want to prove the two remaining axioms, which are called the global 
axioms, to make the coupling system a global one. To state these, one needs to 
extend the definition of W from cells to more general surfaces, using Ocneanu's cell 
calculus, where the map W is extended to a map defined on contours. A contour 
consists of four paths (41, 42, 43, 44) in either ff or J r ,  with 141[ = [~31, 1~2] = 1~4] and 
s(41 + 1)= z(r(4i)). A surface s is a family of cells c(i , j)= (c(i,j)l , c(i,j) 2, c(i,j)3, c(i,j)4) 
(i = 1,..., m, j = 1,..., n) having matching walls: c(i + 1,j) 4 = c(i,j) 2 and c(i,j + 1)1 
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n 

Bm~ ¢1 ¢4 

rn $3 

Fig. 12. The braid matrix as the expectation value of a graph 

7" (~3~ 4) ) T(~)(m2)_ i ) 

7"(~3(m4)--1)~ i ~ T(ff)~ 2) ) 

, . ,  

Fig. 13. The boundary of F(c) 

= c(i,j) 3. The boundary ofs is a contour (41, ¢2, ~3, ¢4) with 41 = c(n, 1) . . . . .  c(l, 1) 
etc. For  a surface s, one defines 

and for a contour c, 

W(s) = ~ W(c(i,j)) (4.12) 

W(c)= Y~ W(s), (4.13) 
s 

where the sum is taken over all surfaces having boundary c. 
To see what these expressions mean in RCFT, observe that W(c) consists of a 

sum of products of braid matrices. As we have seen, similar expressions are 
encountered in the computation of knot  invariants for RCFT's. So it is tempting to 
find a knot whose expectation value in 3-d topological field theory equals W(c). 
However, as it turns out; we need a graph instead of a knot. This is because braid 
matrices are related to expectation values of graphs rather than knots. The precise 
relation [-14] is given in Fig. 12. From now on we will take e = + ; if one takes e = - 
instead one just has to replace overcrossings by undercrossings and vice versa. 

If we have a graph projected onto a plane and a preferred "time" direction, the 
computation of the expectation value involves a summation over all possible ways 
to fill in the graph, as explained in [-14]. This corresponds precisely to a sum over 
all surfaces with a fixed boundary as in Eq. (4.13). 

Consider now an arbitrary contour c =(41, ¢2, ¢3, 34), and suppose that 

¢1 =(~o~.~ 1, ~ . ' )  ° " " " ~  ,,,~1~ ~ o 
, W n  - 2 ,  °c~n - 1! . . . .  (~/)(1), ~p~l)) (4.14) 

with similar expressions for ¢2, 43, and ¢4. The boundary of our graph will consist 
of the rectangle with the labeling of the fields as indicated in Fig. 13. Next we have 
to fill this graph with a set of horizontal and vertical lines in such a way that is 
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~L~even 

~odd 
4 

~odd 

Fig. 14. The interior of F(c) 
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~even 
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"]-~even 

~odd 

~'~even 
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"~odd 

~even 

"]"[odd 

~evere 

Fig. 15. An example 

compatible with the grid depicted in Fig. 1 4. A typical example we might get in the 
case m=4,  n = 6  and lptol)e ff . . . .  is shown in Fig. 15. The unmarked lines in the 
graph will always represent our special chosen field ~. Again we might also have to 
include labels, at every vertex of the graph where three lines meet, to represent the 
couplings. As remarked before, we will not do this, but the reader should keep in 
mind that it is always possible to explicitly include the couplings at any stage. 

Denote the graph obtained in this way by F(c). A careful computation of 
(F(c))s~ based on the results of Witten [14], using as time direction south-east to 
north-west, shows that this expectation value precisely equals W(c), up to a 
normalization factor. This normalization factor can also be computed, where one 
has to pay special attention to the boundary of the graph (see also [15]). The result 
is 

Wto~,--17-tl~,ll+t~21+J~31+l~4t)/4t.'.~ I:;' l~ p " r l / 4 ( I ' ( c ) ) $ 3  " (4.15) 

Using this formula we can now prove that the two global axioms a global coupling 
system has to fulfill are also valid. 

The first one, the parallel transport axiom, states that for any contour c with 
r(4i) = s(r = ** or *~, 

W(c) = ~(G, ~;)~(~2, 42). (4.16) 

In this case, let us take for example r(r = s(~3 = **, the graph F(c) consists of two 
disconnected components, as shown sketchy in Fig. 16. Due to the topological 
invariance in this theory we can move the two pieces apart and using Eq. (4.15) we 
find 

W(c)FgelI+Ir162 @ F2)s~=(F1)s3(F2)s3. (4.17) 



286 J. de Boer and J. Goeree 

Fig. 16. The first axiom 

(r~>s~ = a(41, 4;) 

Expectation values of graphs are topological invariant. One can also prove this 
directly where invariance under the Reidemeister moves (Fig. 9) is due to the Yang- 
Baxter equation (2.5), and invariance under moving a line over a vertex where three 
lines meet is due to the pentagon identity (2.4). 

Now it remains to compute (F~)s~. Using Witten's cutting prescriptions 
[14, 16] based on the fact that for one-dimensional Hilbert spaces we have 
(alb) <cld) = (aid) <clb), it follows that 

(4.18) 

From Sect. 3 we have (cf. Eq. (3.18)) 

which implies 

Using this result we find 

q 
I FwlFw2 = ]//F~FwF~ 

~ J 

(4.19) 

(4.20) 

r \  _~,/=~t/x ~a_~(l~lt+l~31)/4~t~ 43). (4.21) ~ I / S  3 - - ' t O  ~"\~1,  ~3  l - - ~  "~ ,~1,  

Putting everything together the final result is 

W(c) = 6(41, 4~)6(42, 44) (4.22) 

as requested. 
Finally, the global contragradient axiom states that for any vertex x ~ ffuY#, 

there is a contour (~1, 42, 43, 44) with s(41)=s(43)=*~ or *~e, s(42) = x  and s(4r 
= z(x), and such that W(c)#-O. For such a contour we find 

1 
(r(c)>s~ = ~ <rl>~<r~>s~, (4.23) 

where F 1 is given in Fig. 17, for the case s(41) = s(43) = *e. Cutting along the dashed 
line in Fig. 17 shows that 

(F~)s~ = (ip(21).... W,_ 1L~p(3) 1 ( 1 )  ...~p(3)) , (4.24) 



Markov Traces and II~ Factors in Conformal Field Theory 

i~11 t . . . .  ~ ~ l -  

Fig. 17. The contragradient axiom 
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i.e. the inner product of two states in the Hilbert space of the punctured two-sphere 
with charges as those occurring along the dashed line. Now if we let the ~'s vary, 
both states in this inner product run through a basis of this Hilbert space, so it is 
certainly possible to choose them such that this inner product is nonzero. 
Therefore, the connection also satisfies the global contragradient axiom, and this 
completes the proof that the connection obtained from RCFT gives rise to a 
coupling system. 

Due to the one-one relation between coupling systems and irreducible finite 
index finite depth inclusions of 111 factors [9], this proves that for every RCFT 
together with a field �9 there is a corresponding inclusion of such 111 factors (in fact 
there are two, as we can take both e = + and e = - ,  but these two choices need not 
be inequivalent), see also [41, 42]. An immediate consequence is that we always 
have 

So~ { n} w[2, oo]. (4.25) 
So ~ ~ cos~- ,__>3 

Although this method would enable one to construct many examples of 
irreducible inclusions of 111 factors, and maybe even new ones, we will be mainly 
interested in the reverse process: given an inclusion, when does this correspond to 
a RCFT?  To answer this question we will first take a closer look at the II~ factors 
coming from RCFT. 

5. The String Algebras 

First we construct the string algebra on f#. A string is a pair (41, 42) of paths of 
length n starting at * and ending at the same vertex x. Write 41=(*,~p~ 1), ..., 
~1) 1, x) and (2) (2) 1~(1) ~1=(*,~1 ... . .  ~,-1,x) ,  so that = ~ 2 ) =  ~. Now define 

~(~1, ~2) = x~xxF~ n/2 

~3~1) ~3~2) 

X 

(5.1) 
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I u 
I :  :1 

Fig. 18. The closure of f2 

in the case n is even. If n is odd, the definition is the same, only the direction of the 
four arrows at the bottom of the picture has to be reversed. From now on we will 
always display one special case, the others being obtainable via a minor 
modification. 

The box in this definition should be seen as a part of a graph embedded in S 3, or 
alternatively as a state in the Hilbert space of a punctured two-sphere. Given two 
such f2's, they can be multiplied with each other: one has to multiply the constants 
in front and put the graphs next to each other, after which one has to glue them 
together in an obvious way. The closure of f2 is the graph (including the constant in 
front) obtained by identifying the in- and outgoing lines as shown in Fig. 18, and 
will be denoted by O. 

The algebra A, is the algebra having as basis the f2(41, 42), where (41, 42) runs 
over all strings of length n, and with the multiplication rule explained above. The 
adjoint of f2(r 42) is equal to f2(42, 41). The algebra A, constructed this way is 
isomorphic to the algebra M,c~N' occurring in the derived tower [Eq. (A.6)]. 
Actually, the multiplication rule is very simple. Using the techniques similar as 
those used in the proof of the global parallel transport axiom [cf. Eq. (4.18)] one 
can easily derive 

O(41, 42)f2(~3, 44)= 6(42, ~3)f2({ 1, 44). (5.2) 

A, is imbedded in A, + 1 via 

0(41, r E a(41 o ~, 42 o ~), (5.3) 

where the sum is over all edges starting at x. A trace on A, compatible with this 
imbedding A,,~A,+ 1 is given by 

tr(f2(~l, 42))= Fg ~(f2(41, ~2))s3 

= FxVg"6(41, 42). (5.4) 

This trace can be used to complete u A ,  into a v o n  Neumann algebra A. This 
algebra A is in fact a subspace of the space of all conformal blocks. A similar 
construction works for ~ where the paths start at *~. The graphs occurring in the 
definition of ~ have in this case all the arrows of the in- and outgoing lines reversed. 
In this way one gets algebras B, which may be completed into a v o n  Neumann 
algebra B. The notation used here for the operators 0(41, ~2) is more or less similar 
to the notation used for instance in [17, 40] to label the bases of spaces of 
intertwiners. 

In order to define other operations on the string algebras A, and B,, it is 
convenient to extend the definition (5.1) to two paths starting at a vertex y and 
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ending at a common vertex z. In that cas 

? 
I 

I 

I, 

L 

case we define 

rt--1 Z 

*1 

I 

I 
J 

(5.5) 

Again we only have displayed the case y, z ~ ~#eve, or y, z e ~odd" The definition in 
the other cases is similar. 

Using this extended definition we define a homomorphism q5 : A , ~ B , +  1 as 
follows: let f2(~1, r A. and ((1, (2) be two arbitrary paths on ~ of length n 
starting at �9 v and having a common range. Let e denote the path of length one on 
Jr from *w to �9 v. Then ~b is defined by 

(~(Q(~1,~2))= ~ Fr-(~ll)F~ll)(O(~1,~2)~2(~l,~2))s3~(eo~l, eo(z  ). (5.6) 

Define in a similar way a map (k : B , ~ A , +  1, and let A : A , ~ A , +  2 be ~ o ~b. This is 
what Ocneanu [9] calls the canonical shift. In fact, d plays the role of a 
generalization of the comultiplication for these string algebras. The map (~ can be 
used to define a homomorphism c~:A~B,  and the inclusion of II~ factors 
belonging to this coupling system is precisely the inclusion ~(A)(B.  

To see how the even vertices of f# correspond to A - A  modules, fix a vertex 
x ~ f# . . . . .  and consider a pair (ct, fl) of paths of length n, having common range, 
while ct starts at *~ and fl starts at x. These pairs (c(, fl), so-called open strings, 
together form the basis of a linear space A,(x). Let f2(r 1, 42) ~ A,, then f2(~ 1, ~2) acts 
on (~, fl) from the left as follows: 

t2(~1, ~ ) .  (~, 3) = ~(~, ~)(~1, 3). (5.7) 

To define the right action we need a generalization of (5.5)2 

(~,fl)'f2(~l,r = E (F~F;l(f2(r �9 (5.8) 
7 e Path-~,r(~) 

What goes into this definition is precisely Ocneanu's notion of parallel transport. 
We see that A,(x) is a A. - A, bimodule and after taking an appropriate completion 
we get a A - A  bimodule A(x). These are irreducible [9]. Therefore we have the 
interesting result that the irreducible modules of the string algebras correspond to 
certain primary fields of the underlying RFCT. 

If we consider vertices in ~odd or in ~ we must also consider left and right 
actions of B,. Again, the expressions are the same as those occurring in (5.7) and 
(5.8). 

2 It is an interesting exercise to check that this right action is indeed compatible with the algebra 
structure on A. 
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6. Tensor Products and the Number of Paths 

How do the fusion rules arise in this context? Take for simplicity two even vertices 
off#, say (x, y), and let (:~, fl) be a pair of paths starting at respectively x and y having 
common range. On the linear space A,(x, y) which has as basis the pairs (~, fl) one 
can again define a left and a right action of A,, similar as in (5.8), 

O(~l,~2)'(a, fl) = E (F~F;'(O(~,,~2)f2(a,7))s~)(7,fi), (6.1) 

(~162 E (Fa~F/l(~(~l,~2)f~(Y, fl))s~)(a,Y) �9 (6.2) 
7 ~ PathS, r(~) 

A.(x, y) will decompose into irreducible A . - A .  modules: A.(x, y)= @An(2 ). We 
will present some dimensional arguments why we expect that 

A,(x, y) = @ N~4, A,(z), (6.3) 
z 

where ~b~ is the field corresponding to the vertex x etc. Actually, A,(x, y) is precisely 
what one finds when one studies the tensor product of the representations A(x) and 
A(y) using the generalized comultiplication. Therefore, we see that the fusion rules 
are just the rules for decomposing the tensor product of representations of the 
string algebras. 

Let fir(t) be the generating function for the number of paths from i to j; that is, 

flr(t) = ~ IPath~.jl t k. (6.4) 
k=O 

It is easy to check that fir(t) = (1 - tA,)~ a, where 1 represents the unit matrix. We 
would like to check whether 

or equivalently whether 

where 

Using 

fdt)= E k Nivjfok(t ) (6.5) 
k 

gij(t) = E (6.6) Ni~jgok(t), 
k 

gij(t) = det(1 - tA~) (1 - tA,);; 1. (6.7) 

N~j= ~ S~ ~ 

and (S2)ir = C = 6~rv, SS* = 1 one can derive the following expressions for fij(t) in 
terms of the modular matrix S 

1 

f~ I~ol S~j' 
a 1 - -  t 2 S ~  2 

t S*~/ S ~o 
f , ( t )  = E s , j ,  

I - -  t 2 S ~  2 

tS~,/S~o 
f,(t)= E s*, s j, 

1 - -  t 2 S ~  2 

i,j~even o r  ~ o d d ,  (6.8) 

i ~ (~ . . . . .  J ~ ~ o d d ,  (6.9) 

i e goad, J e ff . . . .  �9 (6.1 O) 
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Similar expressions are valid for W, where S ,~ /S ,o  is replaced by its complex 
conjugate. The last relation we need in order to put everything together is 

S*iS~j= ~, k (6.11) N t v  jS~oSctk . 
k 

It is now obvious that relation (6.5) is fulfilled, and that we therefore have a perfect 
agreement with the decomposition rule (6.3), at least as far as dimensions are 
concerned. 

As a side remark, observe that 

lim for(t) _ Fi  (6.12) 
t-,Soo/So~ foj(t) F j '  

so in a sense Fi measures how many paths there are from * to i. A remarkable fact is 
that [33] 

F~ = lira z~(q) (6.13) 
F~ q~l  z j (q) '  

where the character Zi is the trace of q(Lo- c/24) in the representation corresponding 
to r We thus see that the number of states in the ith representation grow 
asymptotically at the same rate relative to each other as the number of paths. 

Another way to obtain the fusion rules from path algebras has been studied in 
[31, 32], by techniques similar to the ones in Sect. 9. 

7. Algebras Hidden in the Path Algebras 

The projections e k ~ M k + 1 [see (A.3)] descend to Z k + 1" Instead of expressing them 
in terms of the basis (5.1), we will express them directly in terms of (pieces of) a 
graph. Let 1 > k then e k can be represented in A t as 

. . . . . . . . . .  -1 

I 

k 1 g - -  I 

" i 

I 

1 

I 

, k :  • 3 C . (7.l) 

l - k - 1  

I 

I 
I 

I 

I 

I 

I 
I -  . . . . . . . . . .  

These e k indeed satisfy a Temperley-Lieb algebra 

e 2 = e k ,  

eke k • l e k = F g 2 e k , (7.2) 

ekek, = ek,ek, I k -  k'l > 2 .  

The last two of these equations follow directly by gluing graphs together, the first 
one follows from Eq. (4.19). Because [M : N] = Fg 2 this algebra is the same as the 
one appearing in (A.4). Similar pictures to represent the Temperley-Lieb algebra 
have already been given in [18]. The generators ek can be expressed in terms of the 
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basis (5.1) of Az via the identity 

ek= Y~ (ekf2(r162162 (7.3) 
r  

We want to define another set of elements of Ak. These also do not have a very 
simple expression in terms of the basis (5.1), but can be defined using a graph as for 
the generators of the Temperley-Lieb algebra. The definition of the element tg~) b is 

(,) ~ r 
a ,b  ~ F ~  

b - a  

(for the case b > a) 

:l b 

I I 
I I 
I I " 

, C 

. }, 
(7.4) 

O(~)b is an element of A r + 2b. The sequence y O (r) ~ converges to an element of A, [ a, bJr>O 
the closure of u A , = A ~ .  Call this element Oa, b. These elements satisfy the 
following algebra, which can be found using (4.19): 

Oa, bOc, d : Omax(a,c-b+a) . . . .  (d,b+d-c) " (7.5) 

If we now define for n > 0, 

L , =  ~ Ok,k+n, (7.6) 
k = O  

we find that for n, m > 0, 

[L,, L,,] = (n - m)L ,  + m, (7.7) 

i.e. the positive half of the Virasoro algebra! Using graphs we can express these L,  
formally in terms of the generators ek of the Temperley-Lieb algebra (7.2). Let 
ek = F~ek, then 

tn"~-F~n[21~__oF~l(k=~cr (e-k+2le-k+2l+2.. .e-k+2l+2n-2)>(e21-1.. .e3el) �9 

(7.8) 

This can be seen as an indication of the suspected relation between the Virasoro 
algebra and the Temperley-Lieb algebra [19, 20]. It would be interesting to have 
the negative half of the Virasoro algebra as well, although it seems difficult to 
express them in a similar way as in (7.6). 

8. Reconstruction of  RCFT 

We would now like to consider the reverse problem: given an irreducible finite 
index finite depth subfactor of the hyperfinite factor ~ ,  when does this inclusion 
correspond to one obtained from a Rational Conformal Field Theory? 
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First recall how to get the graphs f# and ~ from RCFT. We took 2N vertices 
labeled ~b i and ~b~ and drew N~i edges from q5 i to ~b~. Call the resulting graph F, 
which in general will consist of several connected components. If 1 and 1' are in the 
same connected component, ff and Jg  will be the same graph, having a Zz- 
automorphism with no fixed points (mapping ~bi to ~b'i). Otherwise ff and J/g will be 
different but identical graphs. Let/"1... Fr denote the other connected components 
of the graph, i.e. those not containing 1 or 1'. At first sight they could be anything, 
but in fact the possibilities are quite restricted due to the following 

Theorem. The graphs F i have the following properties: 

spec (Fi) C spec (if), (8.1) 

llrill = llfall �9 (8.2) 

The spectrum of a graph means here the set of eigenvalues of the incidence 
matrix, not counting multiplicities. Note that the graphs F~ also have no loops of 
odd length, just like ~ and ~ .  These conditions on the graphs ~ do  not determine 
them completely, but usually only a few possibilities are left. (For more on graph 
spectra, see e.g. 1-13, 22].) 

To prove the theorem, define the 2N • 2N matrix A 

A = A , ( G A ~ e ) G A r , G . . .  G A r , ,  (8.3) 

and let a 
(so,) (8.4) 

coj = arg \So j  j 

with the convention that arg(0) = 0. Now we define 2N eigenvectors of A called v(P); 
they are defined by the values they take at the vertices corresponding to ~bj and ~b~ 
indicated by labels j and f .  The index p takes values in the same set. We put 

v~) - Sip (8.5) 
S o  p ' 

v~.e) = ei~J/2 Sjp (8.6) 
S o  p ' 

v~p, ) _ Sjp (8.7) 
S o  p ' 

v~p, ) _ _ ei~/2 Sip (8.8) 
., __ SO p " 

These 2N orthogonal eigenvectors all have the value 1 at the vertex *~r 
corresponding to the identity 1. Therefore, all eigenvectors v (p) correspond to an 
eigenvalue of A occurring in spec(A,). This shows that 

spec(A) = spec(A~). (8.9) 

Property (8.1) now follows from 

spec(A) = spec(A~) (wspec(Aav) )wspec(Ar )w . . .  wspec(Ar) (8.10) 

3 arg means the argument of a complex number: arg(rd *) = ~b 
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and property (8.2) is a direct consequence of the fact that Soi/Soo > 0, so that v t~ is 
the Perron-Frobenius eigenvector of A. 

Part  of the reconstruction of a RCFT now goes as follows: 

- Start with an inclusion ~ 'C  ~ and determine ~ and ~ff; the first constraint here 
is that as unlabeled graphs, ff and ~,~ must be identical. 

- I f f f  and ~ have a Z2-automorphism with no fixed points, we may have to omit 
altogether. 

- Label the vertices of ff (and ~ )  with q~i and $'i in a way consistent with how 
(and ~() were constructed (i.e. z((ai) = q~v or ~b v', 1 = *~ (1'= *av) and there are only 
edges between primed and unprimed fields). 
- Try to determine the S-matrix and check whether S = St; if this is not true, try to 
repeat the procedure with extra graphs Fi satisfying (8.1) and (8.2). 
- Try to determine T from (ST)3 = S 2. 

In general this procedure will grow more and more complex as we take more 
graphs Fi, so the best thing to do is to use the smallest number of graphs possible. 
The reason why we expect this to give a well-defined conformal field theory is that 
in the original graphs ff and ~ we automatically have good fusion rules and 
braiding matrices, and the hope is that they can be extended to the other graphs F~ 
as well. The only severe restrictions here are S t = S and the fact that (~ and aft must 
be identical as graphs. In the latter case we will call the inclusion factors self-dual, 
because as paragroups ~ can be considered as the dual of ft. In the case of finite 
groups this would restrict us to abelian groups only. Later on we will do some 
speculation on the meaning of S' = S. 

Another remark concerns the solution of (ST)3--S 2. This equation only 
determines the value of the central charge modulo 8 and of the conformal weights 
modulo 1, but certainly not all possibilities are realized. The two constraints we 
know of are that the following two numbers must be nonnegative integers: 

6 \  12 2-4 i = 0  

�89 m ( m  - 1) + M(A ~ + A j + A k + A ~) - Y~ (N~jNus + Ni~kUjts + N~tNjk~) As ,  (8.12) 
$ 

_ 8 where N is the number of primary fields, M - N~iNkz~, and i, j, k, l are arbitrary. 
These conditions follow from considerations of the characters of RCFT's [-23, 24]. 

9 .  E x a m p l e s  

We will now give several examples of inclusions of factors of type II x. We start with 
inclusions with index smaller than 4, so that the index equals 4 cos 2 (~/rn) for some 
m>3.  Then l]ffll=2cos0r/m) and the only possible graphs are the Dynkin 
diagrams A,, D, and E6, E7, and E 8 belonging to r e = n +  1, 2 n - 2 ,  12, 18, and 30 
respectively. According to Ocneanu, ~ cannot be equal to E 7 or D, with n odd, but 
the other possibilities do indeed occur. Inclusions producing the Dynkin diagrams 
An can be constructed in terms of the ek occurring in (7.2). 

Given an inclusion we try to find RCFT's, which correspond to this inclusion in 
the way outlined in the previous sections. However, to prove this correspondence, 
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one would in general also have to compare the connection obtained from the 
inclusion with the braiding matrices of the Rational Conformal Field Theories. We 
will not do this, but we believe that this will not cause any problems, for the 
following reason. Usually, the number of possible connections is very small (at 
most two if the index is smaller than four [9]), certainly if one identifies the 
connections that are related to each other by an automorphism of the graphs. 
Therefore, we think that in the examples that follow, and it is certainly true if the 
index is smaller than four, the only possible connections are equivalent to those in 
Eqs. (4.2)-(4.5) with e = + or - .  

Index 1: In this case i f =  �9 �9  the Dynkin diagram A 2. As ~ has a Zz- 
automorphism with no fixed points, we may omit ovg. Assuming there are no 
further graphs Fi, the field identification is 1 �9 �9 1' and this corresponds to a 
holomorphic theory [25]. An example is the (E8) 1 WZW theory. If we do not omit 
~f,  a labeling giving a symmetric S-matrix is 

~,ug : 1' �9 o ~ ,  f f : l o  o ~ '  (9.1) 

corresponding to SU(2h. Allowing extra graphs Fi, these must all be equal to if, 
since this is the unique graph with norm one 4. Examples producing an arbitrary 
number o f / ]  are rational Gaussian models, and RCFT's  having ~ as a simple 
current [26]. In particular this shows directly that the condition that r is a simple 
current is equivalent to ~ v _-1, and to So~/Soo = 1 as well. 

Index 2: ff = �9 �9 � 9  We also need ~ here. The labeling (no extra F's) is 

1 �9 o ,  �9 zp (9.2) 

and some corresponding models are the Ising model, SU(2)2 and (E8)2. 
Index(3+]/~)/2=4cos2(n/5): f f = e  �9 �9 e .  Omitting ~ gives a 

theory with fusion rules ~ 2 =  1 + ~, known from e.g. the Lee-Yang singularity, 
(G2)1 and (F4) 1. Including ~ gives SU(2)3. The only possible graph Fi is the 
Dynkin diagram A4. Including one of these gives a situation existing in 8U(3)2 , 
reminiscent of the SU(N)k+--~SU(k)n duality [27]. 

Index 3: For  the first time we have two possibilities for if: either f f = A  5 or 
= D 4. First, consider ~ = A 5. How do we find the S-matrix? In general we can use 

(6.7) to determine the polynomials g~i and then use (6.6) to try to find the fusion 
rules. Diagonalizing these gives the S-matrix. Another technique is trying to 
express all fields as polynomials in ~. Labeling A5 as 

1 ~ ~2  ~3 ~P4 
�9 �9 �9 �9 �9 (9.3) 

gives for instance (assuming ~ = ~ v ) ~ 2 = l + ~ p 2  , so l p 2 - - q b 2 - 1 ,  lp3----q~lpz--qb 
= ~3 _ 2~, and ~P4 = ~ 4 _  3~2  + 1. The sequences of polynomials one finds in the 
case of A, are Chebyshev polynomials of the second kind. We also must have 
~P4 = q~3, giving ~ 5 _ 4 ~ 3  + 3~ = 0, which is precisely the equation 
de t (~ l  - A ~ )  =0.  We can now consider {1, ~, ~P2, ~P3, ~P4} as being a basis of the ring 
Z [~]/(~5 _ 4~3 + 3~). Taking the product of two fields and writing it as a sum of 
basis elements in this ring reproduces the fusion rules. Furthermore, 

q~5 _ 4tp3 q_ 3~ = ~ ( ~ 2  _ 1) ( ~ 2  __ 3) (9.4) 

4 The norm of a graph F is liAr[ I 
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has roots {+]//3, _+1,0} and computing ~pi(~) for these values of �9 gives the 
numbers Sf~k/Sok which can be used to compute the S-matrix. However, this 
method has in general problems if the graph has an automorphism leaving 1 
invariant. 

f9 = J f  = A5 are graphs obtained from S U(2h. Ifff  = Jg = D 4 ,  there is a problem, 
because we cannot construct a symmetric S-matrix. Including extra graphs Fi 
which must necessarily also be equal to D 4 according to (8.1) and (8.2) might 
resolve this problem, but we do not know of any example where this occurs. (This 
case has also been considered in [-37] where it was found to be inconsistent with the 
duality relations of RCFT.) 

Index 4 cosZ(Tz / I  1):  (~ ----- A l o  , omitting W gives (Es) a o r  ( F 4 ) 2 ,  including 3gf gives 
S U ( 2 ) 9 .  

Index 4 cos2(rc/30): Apart from A29 , c~ can also be the Dynkin diagram E 8. Let 
us label the fields as follows 

1 �9 ~b2 r ~b4 ~b6 ~b7 
o - - o - - o - - o - - ~ - - o - - o ,  (9.5) 

o~b5 

where we have again assumed a self-dual situation, ~ v =  ~. We can use the 
technique given above in the index 3 case to try to find the fusion rules belonging to 
f#. Instead of working with �9 as an independent variable, it is more convenient to 
use �9 = o9 + co- 1. Computing det (~l  - AE,) = 0 gives 

f ( o g )  = O916 + O914 - -  O910 - -  O98 - -  O96 "q- O92 -k- l ~ - 0  (9.6) 

and it is straightforward to express the fields in terms of co 

@2(O9) --~- (D2 -~ 1 -~ O9 - 2 ,  q~ 3((.0) = O93 -~- O9 -t- O9 - 1 qL O9 - 3  , 

(]~4((D) = O94 q- O92 -'1- 1 -'~- O9 - 2 -'l'- O9 - 4 ,  (~ 5(O9) = - -  O97 -'l'- O93 "lt- O9 q- O9- 1 -'l'- O9- 3 - -  O9- 7 , 

(~6(o9) = O97 -q- O95 --~- O9-  5 --~- O9 - 7  , (~7(o9) = O96 -q- O9 - 6  . 

Taking products of these polynomials and using (9.6) to express the result in terms 
of the fields, gives the following new fusion rules: 

~2 • 1 6 2  ~3 • ~6=~2+24, , ,  
q52 x q~4 = q52 + 2q~4 + ~b7, ~b4 x q54 = I +2~b2 + 3~b4 + ~bT, 

~ • 4,6=~3+q~5+~6, 4,4 • ~ =,~ + 4,3 + , ~  +,~6, 
4,~ x 4,~ = 1 + 4,~ + 24,, + , ~ ,  4,6 • q ~ 6 = ] + ~ + ~ 4 + q ~ ,  

The characters 2~ of this fusion algebra can be found by computing ~bi(ogj), where 
ogj=e ~'~kj/3~ and k~= 1, 7, 11, 13, 17, 19, 23, 29. In the case ofa  RCFT the characters 
of the fusion algebra are just the numbers Sij/Soj. If we try to compute the S-matrix 
in this case, we find that there does not exist a symmetric S-matrix. Maybe using 
extra graphs F~, which must in this case be equal to E 8 as well, it is possible to find 
an (exotic?) RCFT giving this E8 diagram. 

The E 8 case does however exhibit a feature that is shared by all Rational 
Conformal Field Theories, namely 
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Theorem. For any RCFT, Sij/Soj is always a finite sum of roots of unity with integer 
coefficients. The proof of this can be found in Appendix B. 

We proceed with the index four case: there are infinitely many graphs with 
norm 2, namely the 4,/),  and/~ series. The 4 series are ruled out as candidates for 
N, because they have no distinguished vertex *. Subfactors of N producing graphs 
of type ~,/~, and/~ can be constructed as follows [13]: realize the hyperfinite factor 

o o  

as the completion of @M2(C), where Mn(C ) denotes thealgebra of complex 
n x n matrices. SU(2) acts on N by conjugation on every ME(C), SO in particular 
any finite closed subgroup G of SU(2) acts on N. In the same way we can define an 
action of G on ~@M2(C ). Consider the inclusion 

~ ~  C (~ |  M2(C)) G , (9.7) 

where ~o  stands for the elements of ~ left invariant by the action of G. Then the 
principal graph is precisely one of the 4, /~ or /~ series, giving the McKay 
correspondence between affine Dynkin diagrams and finite subgroups of SU(2). 
One can obtain the graphs directly from G: take as fusion rules the representation 
ring of G, and let ~ correspond to the 2-dimensional representation of G obtained 
by restricting the fundamental representation of SU(2) to G. Then the construction 
as in Sect. 4 yields the corresponding A,/5, and/~ graphs. 

\ /" 

Take for example the graph/53: ~ .  Then the graphs F i must be 44, 
46, or/)3. Omitting J f  and including F1 = A4 gives a situation as in SU(2)4, where 

is the field corresponding to the spin-1 representation. Including also F 2 = z~ 6 is 
what happens in a holomorphic Da orbifold [25]. 

For another example take f# = ~,~ =/~6 

" " i " " (9 8) 

v v v v 

We can take F1 =~z~ 6, giving a set of graphs occurring is SU(3)3. 
Actually, all possibilities occur in the c = 1 models that are SU(2) orbifolds [25]. 

In particular, SU(2)/DN gives (with an appropriate choice of 4) ff =/)N. The total 
field content of the SU(2)/DN-models is organized as follows: f#=Jf=/)N,  and 
there are N +  1 extra graphs Fi: 42~ v occurs N-- 1 times, and the other two graphs 
are of type -44. The total number of fields is 2 x (N + 3) + ( N -  1) x 2N + 2 x 4 
=2(N2+7), in agreement with the results in [25]. Of course we get twice the 
number of primary fields, because we are counting primed fields as well as 
unprimed fields. Using this result one can for instance compute the S-matrix of 
S U(2)/D3 and show that it is just the tensor product of SU(2)1 and the holomorphic 
D3-orbifold. 

As a final class of examples, consider the following situation: suppose the finite 
group G acts outerly on ~. Suppose furthermore that G is the semidirect or crossed 
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product of two subgroups H and A, G = H :4 A, such that A is a normal and abelian 
subgroup of G. In that case we can start with the inclusion 

:4 H C ~ :4 G (9.9) 

or equivalently with NGC Nu, to try to find Rational Conformal Field Theories, 
because in this case the graphs (~ and ~(  are equal (cf. [29] and [30, par 8.2]). The 
even vertices of (r correspond to the irreducible representations of G, the odd 
vertices correspond to the irreducible representations of H, and the number of 
edges between a representation rq of G and a representation 7r 2 of H is given by the 
number of times 7c 2 occurs in the restriction of rq to H. The Perron-Frobenius 
vector ("the So4ffSoo") has the value dim(Tr0 at the vertex corresponding to re1, and 
the value ~ dim(re2) at 7~ 2. In particular the index [ ~  :4 G : ~  :4 H] = [G : HI 
=lAI. 

An example of this is N :4 $ 2 C ~  :4 S 3 giving back the graph A5 

1 2 1 

Another example is N :4 Z a C N :4 A 4. Here A~ is the alternating group on n 
elements. This inclusion gives back the graph E 6 

1 1 1 3 

2 2 2 

Another set of examples is ~ :4 Z 2 C ~  :4 DE.+ 1, where/)2,+ ~ is the dihedral 
group. We have already seen this case in Sect. 3, where it was related to special knot 
invariants. It has the following graph: 

2 

1-" ~ .1. 

Including apart from N and ~ two graphs F i equal to N gives a situation occurring 
in the Z2 orbifold d 4 ,  + 2/Z2 of the rational Gaussian model d 4 ,  + a [25]. Indeed 
the total number of fields is 4(n + 4) which is equal to 2(�89 + 2) + 7) as requested. 
We can also consider N :4 Z2 C ~  :4/?2,, which has N and ~ equal to 

2 

. 
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Adding two graphs which look like 

gives the situation of dg,/Z2. Again the total number of fields equals 2(n + 5) 
+2(n+2)=2(�89 The inclusions ~:4 Z2C~:4 D, are also found in the 
statistical mechanical context in the Fateev-Zamolodchikov model [39]. 

10. Concluding Remarks 

Let us make a few comments on the condition S = S t. We believe that this condition 
is related to a self-duality of the underlying algebraic structure of Rational 
Conformal Field Theories, for which S has the interpretation of a sort of 
generalized Fourier-transform. If for example the fusion rules are those of an 
abelian group, the S-matrix is symmetric, because the abelian group is self-dual. 
More generally, suppose the fusion algebra contains the representation ring of a 
finite group, which happens for instance in holomorphie orbifold theories [25]. In 
that case, there are also twist fields, needed to make the S-matrix symmetric. The 
underlying algebraic structure is the quantum double of the algebra of functions 
on the group, which is self dual [35]. The quantum double of a Hopf algebra A is 
defined as A |  ~ [36], where A ~ is the algebra dual to A with the opposite 
comultiplication. The quantum double is obviously self dual. Also quantum 
groups and Kac-Moody algebras are in a sense self-dual, because the Borel 
subalgebras b- and b + are dual to each other. What happens for instance in the 
SU(2)/G models we have just discussed? Here the underlying algebraic structure 
must be something like A |  ~ :4 Z2, an algebra of dimension 2(dim G) 2. Using the 
analysis of SU(2)/D, we find that in that case the following isomorphism of 
algebras 

A Q A  ~ :4 Z 2 " ~  C40(M2(C)) n2.10(M.(C))4. (10.1) 

There are a lot of possible constructions which produce new inclusions from 
given ones. Some of these seem remarkably similar to certain constructions in 
Rational Conformal Field Theories 

Ma C M2, M2 C M3 ~ M~ C M3 
Mt CM2,5'CM1 ~ S'nM1 CS'C) M2 
MI C M2 =~ M~ C M2 a 
M1 C M2 =~ M1;x~ G C M2 )<] G 

tensor products 
coset construction 
orbifoM construction 
extended Mgebras 

For instance, we have seen that ~2n/Z2 can be realized as ND"C Nz2, which 
looks like a Z2 orbifold of Nz. C N, which would then correspond to d2,.  However 
in general there is a problem with models like d , ,  as they always give the trivial 
inclusion N C N for any choice of field q~. Our construction seems to forget about 
any abelian structure present in the theory. 

Another remark concerns the central charge. It would be nice to have a simple 
interpretation of the central charge in terms of subfactors. If we consider the 
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examples of the previous section, then we find a wide variety of central charges in 
the models giving the same subfactors. The only constraint seems to be that e i~ 
must be in the same ring Z[co] as S j S o j  and in particular the index (So~/Soo) z (see 
Appendix B). 

A related issue we have not touched upon is the problem of the classification of 
modular invariants. This can in certain cases also be accomplished using 
techniques similar to those occurring in our string algebras [38]. However, this 
technique does not seem to have a direct natural interpretation in the IIa language. 

To conclude, we have established a precise connection between Rational 
Conformal Field Theories and II 1 factors. It would be very interesting to translate 
the remarks above into precise conditions on inclusions, thus providing us with a 
new handle on the wide variety of solutions of the duality equations. 

A. Appendix: Inclusions of Factors and Coupling Systems 

In [9] Ocneanu has introduced a machinery to study the position of a subalgebra 
in a larger one. IfA C B and A' C B' are two inclusions of algebras, A and A' have the 
same position if there is an isomorphism f : B  ~ B '  such that f ( A ) =  A'. Associated 
to such an inclusion is an invariant object called a paragroup. It is invariant in the 
sense that if A and A' have the same position, the paragroups will be the same as 
well. In paragroups, the underlying set of a group is replaced by a graph, the group 
elements are substituted by strings on the graph, and a geometrical connection 
stands for the composition law. 

Of special interest is the case where A and B are II1 factors, and in particular 
when they are both isomorphic to the hyperfinite factor ~ (see Sect. 3). 

Ocneanu [9] has given a complete classification of irreducible subfactors No of 
of finite index and finite depth, in terms of so-called coupling systems, which are 

particular presentations of paragroups. Here irreducible means that N;c~N = C, 
that is, the only elements of N that commute with all of N 0 are the scalar multiples 
of the identity. What  finite depth means will be explained in a moment. In Sect. 4 
we have shown how given a RCFT and a particular primary field �9 one can define 
a coupling system, and hence a subfactor No of N, with index 

F~: No] = ( S o ~ / S o o )  2 �9 (A. 1) 

Let us first explain how to construct a coupling system from an inclusion N C M 
of factors. First of all, one constructs the infinite tower 

M 0 = N C  M1 = M C M 2  cM3 C ... (A.2) 

by iterating the fundamental construction of Jones [10]. Equivalently, one can 
take M k + i = M k |  Mk+l=EndMk_l(Mk) ,  the endomorphisms of M k 
viewed as a right M k_ 1-module, or Mk+ 1 = (Mk,  ek), the II1 factor generated by 
M k and ek on L2(Mk, tr). This requires some explanation: let tr k be the faithful 
normalized trace on M k, then by L2(Mk, trk)= ~ we mean the Hilbert space 
obtained by completing M k with respect to the inner product ( x [ y )  = trk(x*y). The 
left multiplication of Mk extends to an action of Mk on LE(Mk, trk), SO that M k is 
realized as a subalgebra of B(3f). Now let e k be the orthogonal projection 5 

ek : L2(Mk, trk)-* L2(Mg- 1, trk- 1)" (A.3) 

s TherestrictionE~ofe~toMkiswhatiscaltedtheconditionalexpectationfromMktOMk_l;fo r 
x e MR and y e Mk_ 1 we have trk(xy) =trk- I(Ek(X)y) 
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Note  that  tr k_ 1 is equal to the restriction of tr k to M k _ 1" These projections e k satisfy 
a Temperley-Lieb algebra 

e 2 = e k ,  

1 
ekek• l e k - -  [ M : N ]  ek'  (h.4) 

eke k, = ek,ek , Ik --  k'l > 2 .  

Furthermore  the trk'S are Markov  traces in the sense that 

1 
trk + i(Xek)---- - -  trk(x), x ~ M k . (A.5) [M:N] 

A nice account of these topics can also be found in the book  [13]. 
Given the tower M o C M1 C M2 C ... one can construct two unoriented bipartite 

graphs ~ and 5~f, i.e. graphs that admit  a ZE-grading of the vertices, so that no two 
vertices with the same grade are connected via an edge. Equivalently, the graph has 
no loops of odd length, or it is bicolorable. The even vertices of ~ represent the 
inequivalent irreducible N -  N subbimodules of M o, M1, M :  . . . .  , the odd vertices 
o f ~  correspond to the inequivalent irreducible M - N  subbimodules, and the even 
and odd vertices of 5~f correspond in the same way to irreducible M - M  and 
N - M  subbimodules respectively. 

The number  of edges between an N -  N bimodule X and a M -  N bimodule Y is 
given by the number  of times X occurs in Y if the left action of M is restricted to N. 
The number  of edges between a M - M  and a N - M  bimodule is determined 
similarly. 

Fur thermore  there is a map z from the set of vertices o f ~ u ~  to itself mapping 
P -  Q modules to Q - P modules by interchanging the left and right actions. If P 
acts on the left on X via p �9 x - -~px  then it acts on the right via x �9 p ~ p * x .  This map 
z is called the contragradient map. 

The last ingredient of a coupling system is the connection. Given a N - N  
bimodule X and a M - M  bimodule Y, there are two ways to induce X to Y: via 
M - N  and via N - M  bimodules. The way in which these two results differ is 
expressed in terms of a complex number  W associated to each set of four 
bimodules, one of each type. The map  W is called the connection. 

The inclusion N C M is said to be of finite depth if the number  of vertices of 
and ~ f  is finite. Actually ~ is equal to the principal graph of the derived tower of 
finite dimensional algebras 

O M / ~ N  = N '  n M  o C N '  n M 1  C N '  n M 2  C .. . ,  (A.6) 

the finiteness of ~ means here that the Bratelli diagram for ~ M / ~ N  eventually 
becomes periodic. 

To see why a coupling system can be seen as a generalization of group theory 
consider the example ~ C ~ ~ G. Here ~ )~ G means the crossed product  of ~ by 
the finite group G: suppose G acts on ~ by outer automorphisms Qg and QgQh = Qgh" 
Then ~ ~ G has as elements ~ aguo, where u o is unitary, a o ~ ~ ,  and ugau* = og(a). In 
this case the coupling system reproduces all the information contained in G. The 
graph ~q has one odd vertex and the even vertices are in one-one correspondence 
with the elements of G, while ~ f  has one odd vertex and one even vertex for every 
irreducible representation of G. So ~ can be considered as being the dual of (#. 
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B. Appendix: A Proof 

In this appendix we will supply the proof of 

Theorem. For any RCFT, SJSoj  is always a finite sum of roots of unity with integer 
coefficients. 

The idea of the proof  is to use a famous theorem in algebraic number theory by 
Kronecker and Weber stating that a field extension of Q is contained in a 
cyclotomic field Q [09] if the extension is normal and has an abelian Galois group 
[283. 

I S ~  The Let L be the field extension of Q generated over Q by the set ~Sojji, j" 
S o numbers - -  for fixed i are the roots of the polynomial 
Soj 

det (21 - Ni) = 0, (B.1) 

where N i is the matrix (Ni)p~ = N'[p. Therefore this is a normal field extension of Q. 
Now let g be an element of the Galois group of L, g~Gal(L/Q). Because the 

, S 0 numoers _--- are precisely the inequivalent solutions of the fusion rules, 
Soj 

Saj Sbj_  Scj (B.2) 
Soj Soj ~ N~b Soj' 

and the fusion rules are invariant under the action of the Galois group, we must 
have 

Sik 
~.xSoj/] So  k 

with k independent of i, so we can put k = g(j). Because SS* = 1 we find 

Si j  * 

i \Sooci) / \Soo(j) / 

-- , (B.4) 

and combining Eqs. (B.3) and (B.4) yields 

= ioU) _ _  

Soot j) 
=(Sio J . (B.5) 

We now use the fact that S = S' so that (B.5) must be symmetric as well; this implies 
that (Siot/))z = (So,)j) 2 and taking i=  0 gives in particular 

Sa~~ - -4-1. (B.6) 
Soo(j) 
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Take now arbi t rary g, h ~ Gal(L/Q).  We have 

Soo 

=g ~ \\Sio] \Soo] 
= g ( S~.,~ S~o,~ S~o,o ) 

\Sh(i)O Sh(o)o Sh(o)j / 

Sh(o)j Sh(i)O/ 

__ Sh(i)o(J)g(Sh(o)i I 
Sh(o)gu) \ Sh(i)O / " 

O n  the other  hand  

(B.7) 

hg(SS~o~ ) =h( S~~ ) 
\Sog(j)/  

S,o / 
Soo Soo(j)/ 

- S~ Sh(~ (B.8) 
Sh(o)o(j ) Sh(i)O" 

Since g ( _ l ) =  + 1  we see from (B.6) that  (B.7) and (B.8) are in fact the same. 
Therefore, the act ion o fgh  and hg on L is the same, and we conclude that  Gal (L/Q)  
is abelian. Applying the theorem of Kronecker  and Weber  now tells us that L 
c Q [ c o ]  for some root  of  unity co. Since Su/Soj is a solution o fEq .  (B.I), which is a 
polynomial  with integer coefficients and leading coefficient one, these numbers  are 
also algebraic integers. The subring of  algebraic integers of  Q [co] is precisely Z [co] 
[28], and this completes the p roof  that  Su/So~ is a sum of roots  of  unity with integer 
coefficients. 
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