Graphs and Combinatorics

© Springer-Verlag 1992

The Uniformity Lemma for Hypergraphs*

P. Frankl¹ and V. Rödl²

¹ CNRS, 20 rue de Tournon, 75006 Paris, France

² Emory University, Atlanta, GA 30322, USA

Abstract. In 1973, E. Szemeredi proved a theorem which found numerous applications in extremal combinatorial problems—The Uniformity Lemma for Graphs. Here we consider an extension of Szemeredi's theorem to *r*-uniform hypergraphs.

In [3] Szemeredi proved the theorem which found a lot of applications in graph theory – the Uniformity Lemma for graphs. Here we give an extension to *r*-graphs. We hope that this will prove to be nearly as useful as Szemeredi's theorem. So far, we have found two applications: proof of a conjecture of Erdös concerning Turantype problems [1,2] and giving an alternative condition for quasirandomness (Chung, F.R.K., Graham, R.L., Quasi-random hypergraphs, preprint, 1989). Proof of these applications will be a subject of a subsequent paper.

Let $\mathbf{G} = (V, E)$ be a graph and $A, B \subset V$ be a pair of disjoint subsets of V. The density (A, B) is the fraction d(A, B) = e(A, B)/|A||B|, where e(A, B) is the number of edges with one endpoint in A and second in B and |A|, |B| denote the cardinalities of A and B respectively. A pair (A, B) is called δ -uniform (with respect to \mathbf{G}) if for every $A' \subset A \ B' \subset B$, $|A'| > \delta |A|$, $|B'| > \delta |B|$, $|d(A, B) - d(A', B')| < \delta$ holds. The partition $V = C_0 \cup C_1 \cup \cdots \cup C_l$ is called δ -uniform if:

i) $|C_0| < \delta |V|$

ii)
$$|C_1| = |C_2| = \cdots = |C_l|$$

iii) all but $\delta \binom{l}{2}$ of the pairs (C_i, C_j) are δ -uniform $1 \le i < j \le l$.

For every $\delta > 0$ and positive integer *m*, there exist positive integers $n_0(\delta, m)$ and $m_0(\delta, m)$ such that every graph with at least $n_0(\delta, m)$ vertices has a δ -uniform partition into *l*-classes, where *l* is an integer satisfying $m < l < m_0(\delta, l)$.

Here we extend this lemma to *r*-uniform hypergraphs—(*r*-graphs). Our proof utilizes similar idea as that of Szemeredi, but uses somewhat different concepts.

Now we introduce some further notation: Let **H** be an *r*-uniform hypergraph with vertex set X. Let $X = X_1 \cup X_2 \cup \cdots \cup X_{\nu}$ be a partition. Suppose now that for

^{*} The work on this paper was done while the authors were visiting AT&T Bell Laboratories in 1985

every $1 \leq i_1 < i_2 < \cdots < i_{r-1} \leq v$, $\mathbf{I} = \{i_1, i_2, \dots, i_{r-1}\}$ the complete r-1 partite graph $\mathbf{K}(X_{i_1}, X_{i_2}, \dots, X_{i_{r-1}}) = \bigcup_{\alpha=1}^{m} \mathbf{G}_{\mathbf{I}}^{\alpha}$ is partitioned into m subgraphs $G_{\mathbf{I}}^{\alpha}$. For $1 \leq i_1 < i_2 < \cdots < i_r \leq v$, $\mathbf{J} = \{i_1, i_2, \dots, i_r\}$ and $1 \leq \alpha_1, \alpha_2, \dots, \alpha_r \leq m$ let $\mathbf{R}(J, \alpha_1, \alpha_2, \dots, \alpha_r)$ be the collection of complete (r-1)-graphs on r-points (viewed as r element sets) in the union of r, (r-1)-partite graphs $\mathbf{G}_{J-\{i_1\}}^{\alpha_1}, \mathbf{G}_{J-\{i_2\}}^{\alpha_2} \dots \mathbf{G}_{J-\{i_r\}}^{\alpha_r}$. Clearly, we can view $R(J, \alpha_1, \alpha_2, \dots, \alpha_r)$ as an edge set of r-graph.

Set now $\mathbf{H}(X_{i_1}, X_{i_2}, \dots, X_{i_r}) = \{H \in \mathbf{H}, |H \cap X_j| = 1, j = i_1, i_2, \dots, i_r\}$ and define the density of \mathbf{H} with respect to r-1 partite graphs $\mathbf{G}_{I_j}^{\alpha_j}$, $j = 1, 2, \dots, r$, where $I_j = J - \{i_j\}$ by $d(\mathbf{G}_{I_j}^{\alpha_j}, j = 1, \dots, r) = \frac{|\mathbf{H}(X_{i_1}, \dots, X_{i_r}) \cap \mathbf{R}(J, \alpha_1, \dots, \alpha_r)|}{|\mathbf{R}(J, \alpha_1, \dots, \alpha_r)|}$ if $\mathbf{R}(J, \alpha_1, \dots, \alpha_r) \neq \emptyset$. If $\mathbf{R}(J, \alpha_1, \dots, \alpha_r) = \emptyset$ we set $d(\mathbf{G}_{I_j}^{\alpha_j}, 1 \le j \le r) = 0$. We set also $r(J, \alpha_1, \alpha_2, \dots, \alpha_r) = |\mathbf{R}(J, \alpha_1, \dots, \alpha_r)|$.

Finally, we say that an r-tuple $(\mathbf{G}_{I_j}^{\alpha_j}, 1 \le j \le r)$ is δ -uniform (with respect to **H**) if for all subgraphs $\mathbf{F}_{I_j}^{\alpha_j} \subset \mathbf{G}_{I_j}^{\alpha_j}, j = 1, 2, ..., r$ satisfying $r(\mathbf{F}_{I_j}^{\alpha_j}, 1 \le j \le r) > \delta r(\mathbf{G}_{I_j}^{\alpha_j}, 1 \le j \le r)$ one has $|d(\mathbf{F}_{I_j}^{\alpha_j}, 1 \le j \le r) - d(G_{I_j}^{\alpha_j}, 1 \le j < r)| < \delta$.

A system $\left\{ \mathbf{G}_{I}^{\alpha}, I \in {\begin{bmatrix} 1, \nu \\ r-1 \end{bmatrix}}, \alpha = 1, 2, ..., m \right\}$ is called δ -uniform if all but δ -proportion of r-tuples $(x_{i_1}, x_{i_2}, ..., x_{i_r}), x_{i_j} \in X_{i_j}$ form a complete r-gon in some δ -uniform r-tuple $(\mathbf{G}_{I_j}^{\alpha}, j = 1, 2, ..., r)$. Now we are ready to state the uniformity lemma.

Let $0 < \delta < 1$ and t, and v be positive integers then there exist $t_0(\delta, t)$ and $n(\delta, t)$ such that for every *r*-uniform hypergraph **H** with vertex set X partitioned into partition classes $X_1 \cup \cdots \cup X_v$, $|X_i| > n(\delta, t)$ there exists a δ -uniform system $\left\{ \mathbf{G}_I^{\alpha}, \alpha = 1, 2, \dots, m, I \in {\binom{[1, v]}{r-1}} \right\}$, where $t \le m \le t_0(\delta, t)$.

Note that if $|X_1| = |X_2| = \cdots = |X_v|$, similarly to Szemeredi's uniformity lemma one can achieve here that the same statement is true with m + 1 classes \mathbf{G}_I^{α} , $\alpha = 0$, 1, ..., *m* for every $I \in {\binom{[1, \nu]}{r-1}}$ such that $|\mathbf{G}_I^0| < \delta \prod_{i \in I} |X_i|$ and $|\mathbf{G}_I^1| = |\mathbf{G}_I^2| = \cdots = |\mathbf{G}_I^m|$.

We start with one auxiliary claim which we shall state without proof and we will use later:

Let μ_b , d_b , $b \in A$ be positive reals satisfying $\sum_{b \in A} \mu_b = 1$. Set $d = \sum_{b \in A} \mu_b d_b$. Let $B \subset A$ be a subset such that $\sum_{b \in B} \mu_b \ge \delta$ and $\sum_{b \in B} \mu_b d_b \ge \delta(d + \delta)$. Then $\sum_{b \in A} \mu_b d_b^2 \ge d^2 + \frac{\delta^3}{1 - \delta}$.

Let $X = X_1 \cup \cdots \cup X_v$ be an arbitrary partition of the vertex set of **H** with large (this will be specified later) partition classes. For every r-1 tuple $1 \le i_1 < i_2 < \cdots < i_{r-1} \le v$, $I = \{i_1, i_2, \dots, i_{r-1}\}$ set $\mathbf{K}(I) = \mathbf{K}(X_{i_1}, X_{i_2}, \dots, X_{i_{r-1}})$ and let $\{\mathbf{G}_I^{\alpha}\} = \{\mathbf{G}_I^{\alpha}, I \subset \{1, 2, \dots, v\}, |I| = r - 1, \alpha = 1, \dots, t\}$ be an arbitrary system of (r-1) partite (r-1) graphs such that $\bigcup_{\alpha=1}^{t} \mathbf{G}_I^{\alpha} = \mathbf{K}(I)$.

If we are lucky this system is δ -uniform and we are done. Suppose that this is

not the case. For an *r*-tuple $J = \{i_1, i_2, ..., i_r\}$ set $I_j = J - \{i_j\} d(J, \alpha_1, \alpha_2, ..., \alpha_r) = d(\mathbf{G}_{I_j}^{\alpha_j}, j = 1, 2, ..., r).$ Also, if $a = (\alpha_1, \alpha_2, ..., \alpha_r), \quad 1 \le \alpha_i \le t$ then we set $\lambda_{J,a} = \frac{r(J, a)}{\sum_{K} \left\{ \prod_{j \in K} |X_j|, K \in \binom{[1, v]}{r} \right\}}$ to be the ratio of the number of *r*-tuples in $\mathbf{R}(J, \alpha_1 ... \alpha_r)$

to the number of all r-tuples which intersect each of the sets X_i in at most one element.

We define the smoothness of the present partition by $\sigma(\{\mathbf{G}_{I}^{\alpha}\}) = \sum \lambda_{J,a}(d(J,a))^{2}$ where the summation is made over all (at most $t^{r} \binom{v}{r}$ classes of a and J.)

Note that smoothness is a weighted average of squares of densities and therefore it never exceeds 1. For each nonuniform *r*-tuple $(\mathbf{G}_{I_i}^{\alpha_i}, i \in J)$ choose (r-1)-partite (r-1)-graphs $\mathbf{F}_{I_1}^{\alpha_1} \subset \mathbf{G}_{I_1}^{\alpha_1}, \mathbf{F}_{I_2}^{\alpha_2} \subset \mathbf{G}_{I_2}^{\alpha_2}, \dots, \mathbf{F}_{I_r}^{\alpha_r} \subset \mathbf{G}_{I_r}^{\alpha_r}$ such that $r(\mathbf{F}_{I_j}^{\alpha_j}, j = 1, 2, \dots, r) > \delta r(\mathbf{G}_{I_i}^{\alpha_j}, j = 1, 2, \dots, r)$ and $|d(J, \alpha_1, \dots, \alpha_r) - d(\mathbf{F}_{I_j}^{\alpha_j}, j = 1, 2, \dots, r)| \ge \delta$.

For each r-1 tuple *I* there are at most $(v-r+1)t^r$ different \mathbf{F}_I 's occuring in the nonuniform *r*-tuples, i.e., for which the second equation holds. Let \mathbf{F}_I^{μ} , $\mu = 1, 2, ..., q(I)$ $(1 \le q(I) \le (v-r+1)t^r)$ be the list of all these (r-1)-partite (r-1)graphs. We have clearly $\mathbf{F}_I^{\mu} \subset \mathbf{K}(X_{i_1}, ..., X_{i_{r-1}})$, where $I = \{i_1 ... i_{r-1}\}$. Let us consider the Venn diagram of the system $\{\mathbf{F}_I^{\mu}, 1 \le \mu \le q(I)\} \cup \{\mathbf{G}_I^{\alpha}, 1 \le \alpha \le t\}$, in the set $\mathbf{K}(X_{i_1}...X_{i_{r-1}})$ i.e., the coarsest partition $\mathbf{K}(X_{i_1}...X_{i_{r-1}}) = \mathbf{E}_I^1 \cup \cdots \cup \mathbf{E}_I^{p(I)}$ satisfying either $\mathbf{E}_I^{\nu} \subset \mathbf{F}_I^{\mu} \cap \mathbf{G}_I^{\alpha}$ or $\mathbf{E}_I^{\nu} \cap \mathbf{F}_I^{\mu} \cap \mathbf{G}_I^{\alpha} \ne \emptyset$ for all v, μ and α . Clearly $p(I) \le t2^{q(I)}$ holds.

For $J = \{i_1, \dots, i_r\}$, $I_j = J - \{i_j\}$ and for two *r*-tuples $a = (\alpha_1 \dots \alpha_r)$, $b = (\beta_1, \dots, \beta_r)$, $1 \le \alpha_i \le t$, $1 \le \beta_i \le p(I)$ write b < a if $\mathbf{E}_{I_j}^{\beta_j} \subset \mathbf{G}_{I_j}^{\alpha_j}$ for every $j = 1, 2, \dots$, *r*. Set also $\mu_b = \frac{r(\mathbf{E}_{I_j}^{\beta_j}, 1 \le j \le r)}{r(\mathbf{G}_{I_j}^{\alpha_j}, 1 \le j \le r)}$ and $d_b = d(\mathbf{E}_{I_j}^{\beta_j}, 1 \le j \le r)$. We will now compare the smoothness of the new system $\{\mathbf{E}_I^{\beta_j}\} = (p_1 + 1)$.

We will now compare the smoothness of the new system $\{\mathbf{E}_{I}^{\beta}\} = \left\{ \mathbf{E}_{I_{\beta}}, I \in {\binom{[1,\nu]}{r}}, 1 \le \beta \le p(I) \right\}$ and old system $\{\mathbf{G}_{I}^{\alpha}\} = \left\{ \mathbf{G}_{I}^{\alpha}, I \in {\binom{[1,\nu]}{r}}, 1 \le \alpha \le t \right\}$. We have $d(J,a) = d(\mathbf{G}_{I_{j}}^{\alpha}, 1 \le j \le r) = \sum_{b} \{\mu_{b}d_{b}; b < (\alpha_{1}, \dots, \alpha_{r})\}$ and clearly $\sum_{b \le a} \mu_{b} = 1$.

According to this we have clearly $d(J,a)^2 \leq \sum_{b \leq a} \mu_b d_b^2$. However, if the *r*-tuple $(\mathbf{G}_{I_1}^{\alpha_1}, \mathbf{G}_{I_2}^{\alpha_2}, \dots, \mathbf{G}_{I_r}^{\alpha_r})$ is not δ -uniform, then by the Claim we have moreover $\sum_{b \leq a} \mu_b d_b^2 \geq d(J,a)^2 + \frac{\delta^3}{1-\delta}$. On the other hand from the assumption that the old system $\{\mathbf{G}_I^{\alpha}\}$ is not δ -uniform i.e., that $\sum \lambda_{J,a} \geq \delta$ we infer that $\sigma(\mathbf{E}_I^{\beta}) = \sum \lambda_{J,a} \left(\sum_{b \leq a} \mu_b d_b^2\right) \geq \sigma(\{\mathbf{G}_I^{\alpha}\}) + \frac{\delta^4}{1-\delta}$ holds. Thus, on assumption that $\{\mathbf{G}_I^{\alpha}\}$ is not δ -uniform we get a system, the smoothness of which is larger and the difference is at least $\frac{\delta^4}{1-\delta}$.

If the new partition is δ -uniform then we are done, otherwise, we repeat this procedure replacing $\{\mathbf{G}_{I}^{\alpha}\}$ by $\{\mathbf{E}_{I}^{\beta}\}$ and instead of $\{\mathbf{E}_{I}^{\beta}\}$ we obtain a new system as long as we get a δ -uniform system. This can be repeated, however, at most $\frac{1-\delta}{\delta^{4}}$ times, otherwise, we obtain a partition with smoothness bigger than 1. Thus, if

 $n > n(\delta, t)$ is sufficiently large, we have to arrive to a system which is δ -uniform.

References

- 1. Erdös, P., Frankl, P., Rödl, V. (1986): The Asymptotic Number of Graphs not Containing a Fixed Subgraph and a Problem for Hypergraphs Having no Exponent. Graphs and Combinatorics 2, 113-121
- Frankl, P., Füredi, Z. (1987): Exact Solution of Some Turan-Type Problems, JCT A 45, 226-262
- 3. Szemeredi, E. (1976): Regular Partitions of Graphs, Proc. Colloq. Int. CNRS, pp. 399-401. Paris CNRS

Received: August 10, 1989 Revised: October 24, 1990