
Correlation-based decomposition of 
surface electromyograms at low 

contraction forces 

\ 

A. Holobar D. Zazula 

Faculty of Electrical Engineering & Computer Science, University of Maribor, Maribor, Slovenia 

A b s t r a c t - - T h e  paper studies a surface e/ectromyogram (SEMG) decomposit ion 
technique suitable for identif ication of complete motor  unit (MU) firing patterns 
and their motor  unit action potentials (MUAPs) during low-level isometric voluntary 
muscle contractions. The algori thm was based on a correlation matr ix of  measure- 
ments, assumed unsynchronised (uncorrelated) MU firings, exhibited a very low 
computational complexi ty and resolved the superimposit ion of MUAPs. A separation 
index was defined that identif ied the t ime instants of an MU's activation and was 
eventually used for reconstruction of a complete MU innervation pulse train. In 
contrast with other decomposit ion techniques, the proposed approach worked well 
also when the number of active MUs was sl ight ly underestimated, i f  the MU firing 
patterns part ly overlapped and i f  the measurements were noisy. The results on 
synthetic SEMG show 100% accuracy in the detection of innervation pulses down to 
a signal-to-noise ratio (SNR) of lOdB, and 934-4.6% (mean4-standard deviation) 
accuracy with 0 dB additive noise. In the case of real SEMG, recorded with an array 
of 61 electrodes from biceps brachii of  five subjects at 10% max imum voluntary 
contraction, seven active MUs with a mean firing rate of 14.1 Hz were identif ied on 
average. 
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1 Introduction 

DECOMPOSITION OF EMG signals to motor unit (MU) firing 
patterns has proved to be a very important clinical issue. 
Reconstructed sequences of innervation pulses provide the 
basis for research studies and clinical examinations of MU 
control properties (DE LUCA et  al., 1996), recruitment strategies 
(FALLENTIN et al., 1993), inter-pulse interval (IPI) variability 
(CLANCY and HOGAN, 1999), short-term MU synchronisation 
(WEYTJENS and VAN STEENBERHE, 1984) and myo-electrical 
manifestations of fatigue (MERLETTI et al., 1994), to name just a 
few areas of investigation. 

Existing computer-aided EMG decomposition methods have 
been mainly focused on the intra-muscular EMG signals. Being 
based on pattern recognition and clustering in the time domain, 
on spatial filters and on time-scale analysis, they typically 
exploit the differences in morphology of motor unit action 
potentials (MUAPs) and comprise two steps (FARINA et al., 
2001). First, an individual MUAP is identified from the raw 
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inter-muscular EMG. Afterwards, the identified MUAP is 
classified and assigned to the best-fit class of previous by 
decomposed MUAP shapes. Unfortunately, most of the 
methods fail when MUAPs become superimposed. As a result, 
the complete decomposition is possible only if the number of 
simultaneously active MUs is relatively small. 

in the case of surface EMG (SEMG) signals, the filtering 
effect of subcutaneous tissue, which separates the detection 
system from the MUs, attenuates the morphological differences 
of MUAPs (MERLETTI, 1994). Nevertheless, the non-invasive 
nature of SEMG and its wide potential to offer global informa- 
tion about muscle activity have opened numerous application 
areas. The information extracted from SEMG signals is being 
exploited in several different clinical studies, mainly concerned 
with the timing of the muscle activation (MICERA et  al., 
2001), the EMG amplitude modulation (CLANCY and HOGAN, 
1999), changes in the frequency content of the EMG signals 
(BALESTRA et al., 2001) and conduction velocity estimation 
(FARINA et al., 2000). 

However, the decomposition of SEMG signals to constituent 
MUAP trains, even at low muscle contractions, still remains a 
very delicate process. The main difficulty is the high SEMG 
signal complexity, in addition to a high number of superimposed 
MUAPs, no a pr ior i  information about the nature of their 
mixture is available; hence, SEMG signals should be decom- 
posed blindly (AMARI et al., 2002). Only recently, some more 
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sophisticated decomposition methods have begun to emerge. 
Exploiting advanced signal processing techniques, they provide 
new insights of clinical interest as they, for example, work 
towards removal of artifacts (BARROS et al., 1999) and the 
identification of the EMG constituent MUAPs (HOLOBAR and 
ZAZULA, 2003). 

Most recent advances in SEMG decomposition show very 
promising applications of time-frequency (TF) analysis 
(HOLOBAR and ZAZULA, 2003) and higher-order statistics 
(HOSs) (ZAZULA and PLEVIN, 2002). The former has been 
proven to work with short, few seconds long, artificial surface 
EMG, perfectly deconvolving it to the innervation trains. On the 
other hand, HOS-based techniques were shown to extract 
correctly the shapes of MUAPs, even when the measurements 
were highly contaminated with noise (ZAZULA and PLEVIN, 
2002). 

In this paper, a novel blind decomposition based on the 
inverse correlation of multichannel surface EMG signals is 
introduced. The technique follows the approaches in 
HOLOBAR and ZAZULA (2003) and ZAZULA and PLEVIN 
(2002) by modelling the MUAPs as a unit sample response of 
a multiple-input-multiple-output (MIMO) linear, time-invariant 
(LTI) system. As such, it assumes stationary MUAPs with 
unchangeable shape and tmsynchronised MUs and is, hence, 
appropriate for the decomposition of SEMG recorded during 
isometric muscle contraction at low contraction force. 
Contrary to the TF approach (HOLOBAR and ZAZULA, 2003), it 
enables the reconstruction of entire innervation pulse trains of 
arbitrary length, even when the number of superimposed 
MUAPs is high. 

Although the derivation presumes more measurements than 
sources, i.e. active MUs, it can be applied when the number of 
active MUs is slightly higher than SEMG measurements 
(throughout the paper we will understand the measurements as 
SEMG recordings). The preliminary tests on synthetic and 
real surface EMG signals of biceps brachii muscle prove the 
method to be a useful tool in both research and clinical 
investigations. 

2 Correlation-based decomposition 

2.1 Data model 

With the assumption of isometric muscle contractions at 
constant contraction forces, the multichannel surface EMG can 
be modelled as an LTI MIMO system (ZAZULA and PLEVIN, 
2002). Each channel in such a system is considered an MU, with 
its response in the form of an MUAP as captured by a surface 
electrode, and the channel inputs correspond to the innervation 
pulse trains 

N L 1  

x~(n) = Z Z h~j(1)sj(n - l) + w~(n) i = 1 , . . . ,  M (1) 
j = l  /=0 

where, taking multiple inputs and outputs, the vector notations 
are as follows: x(n) = [xl(n) , . . . ,  xM(n)] T for the transposed 
vector of M discrete (sampled) surface EMG measurements; 
s(n) = [sl(n) , . . . ,  sN(n)]T for the vector of N trains of pulses 
(sources); and w(n) = [wl(n), . . . ,  wM(n)] T for the noise vector. 
hij(l); l =  0 , . . . ,  L -  1, stands for the MUAP (unit sample 
response with length L) of the j th  source as detected by the ith 
electrode. We further suppose the number of measurements to be 
greater than the number of sources, M > N. 

The additive noise wi(n) is commonly modelled as a 
stationary, temporally and spatially white, zero-mean Gaussian 
random process, being independent from the sources 

E[w(n + z)w*(n)] = o-26(~)1 (2) 
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where E[-] stands for mathematical expectation, 6(-) stands for 
the Dirac impulse (delta function), o -2 stands for the noise 
variance, and • denotes the identity matrix. 

Our goal in blind SEMG decomposition is to reconstruct the 
source pulse trains s ( n ) =  [sl(n), . . .  ,sx(n)] T, given only the 
vector o f measurements x(n) = [Xl (n ) , . . . ,  x M (n)] T. To extend 
(1) to a convolutive MIMO vector form, the vector x(n) has to be 
augmented by K delayed repetitions of each measurement 

x ( n )  = [ x l ( n ) ,  xl(n -- 1), . . .  , x l ( n -  K + 1) , . . . ,  

xM(n), . . .  ,xM(n - K + 1)] r (3) 

where K is an arbitrary large integer that satisfies 

K M  > N(L + K) (4) 

Extending the noise vector in the same manner, (1) can be 
rewritten in a vector form 

5c(n) = Hi (n )  + iv(n) (5) 

H in (5) stands for the so-called mixing matrix of size 
K M  x N(L + K) that contains the unit sample responses hij(l) 

H = " . .  " ( 6 )  

H M 1  " " " HVN 

with 

I h.~O) . . .  hij(L ) . . .  0 ] 
Ng = ".. ".. ".. " (7) 

. . .  h a ( 0 )  . . .  h ~ ( L )  

and the extended vector of sources s(n) takes the following 
form: 

s(n) = [s l (n ) , . . . , s  l(n -- L -  K + 1) , . . . , sN(n) , . . .  , 

SN(n -- L -- K ~- 1)] T (S) 

Following the above assumptions, the correlation matrix of 
extended measurements can be expressed as 

T 1 
R~ = lira £ ZYc(n)Sc*(n) = HR~H T + ~21 (9) 

T~oz T 
n=l  

where R~ denotes the correlation matrix of sources, and ~*(n) 
stands for the conjugate transpose off(n).  

2.2 Blind decomposition using the inverse 
correlation matrix 

According to (4), there are at least K M - N ( L  + K) eigen- 
2 2 values of R~ equal to o- . Consequently, the noise variance ~ can 

be estimated by averaging of the K M - N ( L + K )  smallest 
eigenvalues of R~. Subtracting it from the correlation matrix 
of measurements, we obtain 

k x = R x -- ~21 = HR~H T (10) 

Supposing the mixing matrix H of a full column rank 
rank(H) = N(L + K), we introduce the so-called MU acti- 
vity index 

Ind(n) = Yc(n)T Rx  I x ( n )  

= ~(n)rHr(nR~H r) Ins (n )  + Vw(n) 

= s(n)TtlT(M T) lRsI/-/ l/-/s(n) q- Vw(n ) 

= s(n)TRsIS(n)  + Vw(n ) (11) 

where superscript m denotes the matrix inverse, and vw(n ) 
replaces the impact of all noise, if  we neglect the influence of 
noise, the activity index Ind(n) could be thought of as an 
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indicator of a global source activity, it differs from zero only at 
the time instant where at least one source is active. Moreover, its 
value increases with the number of simultaneously active 
sources. The reverse is not generally true. A high value of the 
activity index can either be the consequence of a bigger number 
of active sources or can indicate the activity of only one source 
with a low filing rate (a higher 'weight' on the diagonal of Rfl) .  

2.2.1 Noise-free decomposition: When a sample index no is 
found in which only thejth source is active the entire pulse train 
of thejth source can be reconstructed as 

p,o,j(n) = YC(no)rkx l yc(n) = s(n0)TRslS(n)  

= rj,jT~j(no)~j(n ) (12) 

where rj, j denotes the (j,j)th element of R~ 1. if  Q~0 sources, 
denoted by the group of indices G~ = {j~ 1,---,J~ ,~ }, are 

• . . 0 . , . 0 , ~ ,  0 . . 

active at given sample index no, (12) yields t~e supenmposltmn 
of innervation pulses of all these sources at no: 

p~0,G,,0(n) = r ~ (n0)~;,,0,,(n) Jno,l,Jno,1 JnO,1 

+ r;,,o,,,;,,og;,,o,, (n0)~;,,0,e(n) 
+ - - - + r ,  , L (no)L (n) 

dno,l,dno,Qn 0 dno,1 dno,2 

+ %0,~,;,,0,, ~;,,0,~ (n°)~;,,0,, (n) 

+ r;,,o,~,;,,og;,,o,~(no)~;,,o,~(n) 
+ . . .  + r~ , }, (no)~, (n) (13) 

Jn O,Qn 0 ' i n  O,Qn 0 Jn O,Qn 0 Jno,Qno 

Although (12) resolves our decomposition problem entirely, the 
situation from (13) needs further processing. We must separate 
the overlapping sources having only the information from (13). 
The randomness ofinnervation pulse trains contributes crucially 
to the proposed solution. With low contraction forces, the 
innervation pulse trains do not overlap significantly (up to a 
few percent). Consequently, matrix R~ tends to have high 
diagonal elements in comparison with off-diagonal ones. The 
same then holds for its inverse R s  1 (GOLUB and VAN LOAN, 
1989), and the contributions of the auto-terms rj, j~j(no)~j(n ) in 
(13) can be expected to be much higher than the cross-term 
contributions rj~,j ~j~ (no)~j: (n), Jl ~ J2. 

Looking for the highest values inside p~o,G,,o(n), the prob- 
ability to find a sample index n I correspondilig to the firing 
moment of another group of sources G~ is rather high. Applying 
the calculation from (12) in hi, a superimposition of active 
sources G,~ appears analogously, to (13):. p,~,G,,(n). Again, 
because of the nature of the lnnervatlon pulse trains it is 
highly unlikely that G~ = G~, which means that a selection 

• . 0  1 

of simultaneous pulses m P~0 G (n) and p~ G (n) sorts out only 
those fewer sources that fire af both no and'~nl. The proposed 
elimination can be repeated until the superimposed sources 
detected at sample index no are completely separated. 

2.2.2 Noisy case: in practice, the activity index and any re- 
constructed pulse sequences are additionally corrupted by the 
noise component 

Vw(n ) = 2~-v(n)r(Hr) 1Rsl~(n) + fv(n)r(Hr) 1 

× R s l H  l~-v(n) (14) 

i f  the noises Vvi(n ) are assumed to be white, zero-mean Gaussian, 
they would reflect in the space of sources as coloured, zero-mean 
Gaussian. Analysing the right-hand side o f (14), it is obvious that 
the first term does not hinder the decomposition process, because 
it can merely alter the power (height) of the triggering pulses. 
However, the second term might appear much more devastating. 
it corrupts p,k,G,,k (n) at every possible sample index n, which can 
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make the source-separation approach described for the noise- 
free case practically unfeasible. The necessary noise reduction 
can be implemented either in the space o fmeasurements or in the 
space of sources. Assuming the measurement-additive noises to 
be uncorrelated in time and in space, noise reduction through 
averaging is most obvious. Various noise reduction techniques 
were tested in this study. The best results were obtained by 
averaging several estimates of each innervation train, as detailed 
in the algorithm outlined below. 

2.3 Decomposition algorithm 

The proposed decomposition procedure can be summarised in 
the following eight steps: 

Step 1: Take a multichannel surface SEMG recording of 
isometric muscle contraction and extend the measure- 
ments according to (3). The number of repetitions K is 
given by (4). 

Step 2: Calculate the correlation matrix of extended measure- 
ments, estimate noise variance and apply (10) and (11) 
to calculate the activity index. 

Step 3: Select initial index no for which Ind(no) exceeds a 
• ^ 2  K M  predefined noise threshold, o- }-~i=1 rii, where rii 

denotes the (i,i)th element of R~ 1, and'filter out the 
pulse sequence according to (12). 

Step 4: In a reconstructed train of pulses, find the highest 
pulse according to (13), denote its position by nl and 
calculate p,l,G,,1 (n) as in (12). 

Step 5: Find sample indices nj; j 2, 3, . . . ,  Q (Q is an 
arbitrary integer satisfying Q > K) belonging to the 
Q highest peaks in the product p,0,G,,0 (n) .p,l,G,,1 (n). i f  
the calculation from (12) is applied in all nj sample 
indices, Q additional sequences p,j G,, (n) are obtained. 

Step 6: Only those sequences having po'si~ive value at no, 
P ,  G,, (n0)>0, are averaged to yield the final innerva- 
tlon tram estimation of one single source. 

Step 7: Compare the obtained innervation train with all pre- 
viously reconstructed pulse sequences. Thus the 
obtained train is classified as either a new one or as 
already detected. 

Step 8: Repeat steps 3-7 until any sample index nk exists 
where the global activity index Ind(nk) exceeds the 
noise threshold defined in step 3. 

For each reconstructed innervation pulse train, the corres- 
ponding MUAPs can be obtained by a spike-triggered sliding- 
window averaging technique (DISSELHORST-KLUG et al., 1999). 

3 Simulations and experiments 

3.1 Synthetic signals 

To verify the proposed method, synthetic surface EMG 
signals were generated using the advanced EMG simulator 
(FARINA and MERLETTI, 2001). The influence of two factors 
was evaluated during our simulation: the number of active MUs 
and the signal-to-noise ratio (SNR). The number of active 
MUs was set to 5, 10 and 20, respectively, and the SNR 
ranged from 0 dB to 20 dB, in steps of 5 dB. The other important 
SEMG parameters were set as follows: 

(a) Skin was simulated as a 1 mm thick isotropic layer, and 
subcutaneous fatty tissue was simulated as a 3 mm thick 
isotropic layer. 

(b) Active MUs consisted of a random number of fibres 
(uniformly distributed between 50 and 300) with the 
circular MU territories of 20 fibres mm 2. The depth of 
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Table 1 Number o f  reconstructed MU firing patterns (mean ± SD) and average firing rate (mean ± SD), average MU depth in muscle tissue 
(mean ± SD) and average number o f  fibres (mean ± SD) o f  identified (+) and missed ( )  MUs against number o f  active MUs and SNR. 
Normalised values" of  morphological index (15) are depicted (mean ± SD) in right-most column. Results were obtained on synthetic SEMG signals" 

Number of SNR, Average Average 
simulated dB number of Average Average depth in Average number morphological 
MUs detected firing rate muscle tissue of fibres index/f,A 

MUs 
+ + + + 

5 20 4.7±0.6 15.5±3.5 15.3±3.9 6.1±1.0 8.3±0.6 156±53 129±65 0.55±0.24 0.23±0.14 
15 4.2±0.6 15.3±3.0 15.9±3.1 6.1±1.0 7.9±1.5 168±45 98±41 0.61±0.21 0.25±0.18 
10 3.9±0.7 15.6±3.2 15.4±3.4 6.1±1.0 7.1±1.4 175±40 96±34  0.63±0.20 0.28±0.19 
5 3.2±0.6 15.5±3.2 15.7±3.4 5.9±0.8 6.8±1.4 173±41 116±53 0.65±0.21 0.32±0.12 
0 2.0±0.9 15.3±3.3 15.5±3.6 5.8±0.4 6.8±1.4 188±40 124±43 0.70±0.22 0.39±0.15 

10 20 8.3±1.3 16.0±2.8 14.9±3.8 6.6±1.0 7.8±1.0 161±47 93±50  0.57±0.22 0.29±0.18 
15 7.0±1.6 15.9±2.9 14.9±2.9 6.6±1.0 6.8±0.9 165±45 100±51 0.59±0.22 0.30±0.19 
10 6.4±1.9 16.0±2.7 15.2±2.8 6.4±1.0 6.5±0.8 170±46 109±46 0.63±0.19 0.31±0.17 
5 4.6±1.7 15.9±2.8 15.0±2.8 6.0±0.9 6.5±0.9 178±48 124±47 0.67±0.16 0.39±0.22 
0 2.6±1.4 15.9±2.8 15.8±2.9 6.1±0.8 6.4±1.0 200±36 132±49 0.68±0.17 0.46±0.24 

20 20 10.4±1.4 15.1±3.2 15.7±2.5 6.0±0.6 7.2±0.9 171±40 125±52 0.49±0.18 0.26±0.14 
15 8.6±1.7 15.8±2.7 15.0±3.6 6.0±0.7 7.0±1.0 176±40 128±50 0.53±0.17 0.27±0.13 
10 5.7±1.3 15.0±3.2 15.9±2.9 5.9±0.5 6.9±1.0 176±48 138±49 0.55±0.18 0.31±0.16 
5 3.5±1.3 15.9±3.0 16.0±2.7 5.7±0.5 6.8±1.0 203±25 139±49 0.69±0.13 0.33±0.15 
0 2.3±1.9 16.0±2.8 15.9±2.7 5.7±0.3 6.5±1.0 206±24 142±50 0.70±0.14 0.34±0.17 

active MUs in the anisotropic muscle layer varied uni- 
formly from 3 mm to 10ram, and additional random shift 
(uniformly distributed between 10 and 10mm) from the 
centre o f  the electrode array in the direction transverse to 
the muscle fibres was applied to each MU. 

(c) The MU filing rate was normally distributed around the 
mean o f  15 Hz, with standard deviation o f  4 Hz. The IPI 
variabili ty was model led as a zero-mean Gaussian variable 
with the variance equal to 20% of  the IPI mean. 

(d) Conduction velocity was assumed to be normally distributed, 
1 1 with a mean o f  4 m s and standard deviation o f  1 m s . 

(e) The innervation zones were assumed to be placed in the 
middle between the tendons, and the semi-fibre length was 
set to 70 mm. The spread o f  innervation zones was limited 
to 5mm.  

( f )  A 10 x5  array detection system with ten rows and five 
electrodes per row was centred over the innervation zone, 
the columns aligned with the direction o f  the fibres. 

(g) Rectangular 1 x 1 mm electrodes with an inter-electrode 
distance o f  5 mm were simulated. Measurements were 
assumed to be single-differential. 

(h) Synthetic SEMG signals o f  30 s duration, were sampled at 
1024 Hz. 

Twenty simulations were performed for each number o f  active 
MUs. in each o f  the simulation runs, the depth o f  the active MUs, 
their firing rate, number o f  fibres, shift in the direction transverse 
to the muscle fibres and conduction velocity were randomly 
selected, in addition, signals from each simulation run were 
corrupted by  additive noise (eight realisations of  noise for 
each SNR), resulting in 800 test signals for each number o f  
active MUs. 

3.2 Experimental protocol with real SEMG 

The experiments were conducted with signals from the 
dominant biceps brachii, recorded in Laboratorio di Ingegneria 
del Sistema Neuromuscolare (LISiN), Politecnico di Torino, 
italy. Five healthy male subjects of  age 27.8 -4-2.4 years, height 
177.2 -4- 4.5 cm and weight 70.6 -4- 4 .9kg participated in our 
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study. Surface EMG signals were detected by  an array o f  
13 x 5 electrodes (without the four comer electrodes) o f  size 
1 x 1 mm and o f  inter-electrode distance 5 mm. The experi- 
mental protocol was as follows: 

(i) The dominant arm of  the subject was placed into the 
isometric brace at 120 ° . The skin was slightly abraded 
with abrasive paste and moistened to improve the elec- 
t rode-skin  contact. 

(ii) Three 5s contractions at maximum voluntary contraction 
(MVC) force were performed, separated by 2 min. After- 
wards, a 5 min rest was allowed to the subject. 

(iii) The location o f  the innervation zone in the dominant 
biceps brachii of  the subject was determined using a 
linear array o f  16 electrodes of  size 10 x 1 mm and inter- 
electrode distance o f  10 mm. 

(iv) The array o f  61 electrodes was placed over the 
biceps, with its third electrode row centred over the 
innervation zone and columns aligned with the muscle 
fibres. 

(v) SEMGs of  30s  were recorded at isometric voluntary 
contractions sustained at 5% and 10% of  MVC. After 
each contraction, the subject relaxed for 5 min. 

The detected signals were amplified (gain set to 10 4) by a 
64-channel EMG amplifier*, bandpass filtered ( - 3  dB band- 
width, 10-500Hz)  and sampled at 2048Hz by a 12-bit 
analogue-to-digital (AD) converter. A longitudinal single- 
differential recording technique was used with the adjacent 
electrode pairs along the columns in the electrode array, 
resulting in 56 SEMG recordings. The noise and movement  
artifacts were visually controlled and reduced by  the applica- 
tion o f  water to the skin surface. The contraction force was 
measured by  the torque sensor and displayed on the oscillo- 
scope to provide the visual feedback to the subjects. Before any 
further processing, all the measurements were digitally filtered 
to suppress the 50 Hz interference. However, to preserve their 
original shape, the MUAPs were averaged from unfiltered 
measurements. 

*LISiN; Prima Biomedical & Sport, Treviso, Italy 
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( ) Original ~ynthetic MU innervation train and ( I )  reconstructed innervation train. Owing to simulationprotocol (MUparameters were 
randomly generated for each number o f  active MUs), results for diffbrent, but morphologically simila~ MUs are depicted: M U  (177fibres, 
depth: 5.3 mm, firing rate: 15.2 Hz) in case o f  5 active MUs, reconstructed at (a) SNR = 10 dB and (b) SNR = 5 dB; M U  (181 fibres, 
depth: 5.2 mm firing rate: 15. 7 Hz) reconstructed in case o f  10 active MUs at (c 9 SNR = 10 dB and (d) SNR = 5 dB ; M U  (191 fibres, depth: 
5.2mm, firing rate: 14.7Hz) reconstructed in case o f  20 active MUs at (e) SNR = lOdB and (19 SNR = 5 dB 
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4 Decomposition results 

4.1 Decomposition of synthetic signals 

The influence of the MU firing rate, the depth of MUs in the 
muscle tissue and the number of MU fibres were investigated on 
synthetic SEMGs. The theory predicts a decomposition perfor- 
mance drop with increasing MU firing rate. MUs with high firing 
rates are expected to have high zero-lag correlation, which 
attenuates the detected firing pulses in (12). The performance 
should also drop if the MU depth increases and the number of 
MU fibres decreases. Both factors are strongly correlated, as they 
both affect the amplitude of a MUAP as detected on the skin 
surface. Shallow MUs with a high number of muscle fibres are 
expected successfully to resist the influence of noise. For reasons 
of clarity, we combined the joint influence of all three factors in 
the following morphological index: 

aIM ~M=~ Am (15) 

where A m stands for average peak-to-peak amplitude of a 
MUAP, as detected by the mth electrode, and ~ denotes the 
average MU firing rate. The higher the value of the morpholo- 
gical index, the stronger the contribution of the MU to the SEMG 
recordings. The decomposition results are presented in Table 1. 
Only the MUs with at least 90% innervation pulses recognised 
correctly were assumed to be identified. 

identified MUs exhibit almost a perfect match with their 
reference trains. On average, more than 95 -4- 3.34% of pulses 
were accurately recognised. The reconstruction of MUAPs also 
proved to be very robust, in the case of 20 MUs, the average first- 
norm difference between the original and the decomposed 
MUAPs, compared with the MUAP amplitude span, yielded 
5.1% with an SNR of 20dB, 6.3% with an SNR of 10dB 
and 7.1% with SNR of 0dB. Owing to space-limitation 
reasons, the representative results are only briefly exemplified 
in Figs 1 and 2. 

4.2 Decomposition of real SEMGs 

In the case of real SEMG signals, of course there are no 
reference innervation trains available. Hence, the performance 
must be evaluated by other, indirect measures. The ones used in 
this study were: the regularity of the reconstructed firing 
patterns, the nature of IPI variability and the shape of the 
reconstructed MUAPs. Assuming short-term, low-level contrac- 
tions, the MU innervation trains are known to follow regular, 
relatively slowly changing pulse patterns. 

IPI irregularities are often modelled as realisations of a 
Gaussian random variable whose maximum value in normal 
conditions should not exceed the 50% limit of the mean IPI 
(FARINA and MERLETTI, 2001). Any larger irregularity (in the 
sense of the discussion above) must therefore be taken as an 
early warning of a possibly wrong decomposition. Similarly, the 
reconstructed innervation pulses can be evaluated with respect 
to the IPI distribution. Several statistical tests (Jarque-Bera, 
Kolmogorov-Smirnov, Lilliefors etc.) were applied to test the 
probability that the obtained IPI realisation follow Gaussian 
distribution (so-called p-value in hypothesis test terminology). 
A possible non-stationarity of the MU firing rate was compen- 
sated by the modelling of the mean IPI as a linear function of 
time. 

The last criterion based on the MUAP shape is the most 
intuitive one. A single-differential recording technique implies 
relatively firm limitations to the shapes of MUAPs. Variability 
is only expected in the peak-to-peak value, the length of 
MUAPs and minor shape details (mainly in the MUAP tail 
regions). Furthermore, spatially adjoining electrodes are 
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expected to detect very similar MUAP shapes. By examining 
the MUAP shape in different channels, the relative positions of  
the detected MU with respect to the array of  electrodes should 
be traceable. However, above all, the number of  successfully 
reconstructed MU trains was considered the most significant 
performance criterion. Results are summarised in Table 2. 
Figs 3-5 depict an example of  the decomposition of  SEMG 
signals recorded during the 10% MVC measurement obtained 
from subject 1. 
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(x)  IPI variability in innervation pulse train of  third MU from 
Fig. 3. Firing pattern was reconstructed from 30 s real SEMG 
signal recorded during isometric 10% MVC measurement 
of dominant biceps brachii of subject 1 (age 25 years, height 
170cm, weight 63kg). Mean firing rate was estimated 
13.6Hz. ( ) Slight decrease of  firing rate in time was 
detected 

5 D i s c u s s i o n  

We ran extensive simulations to understand the influence of  
the most important parameters on a successful SEMG decom- 
position and, at the same time, to evaluate the performance of  
our novel decomposition approach. In the cases of  five and ten 
active MUs, almost perfect reconstruction of  simulated pulse 
trains was achieved down to the SNR of  10 dB. The recon- 
structed MU trains showed a precise match with their reference 
values. Even more, there was hardly any misplaced pulse (i.e. 
the so-called true negative statistics), in the case of  20 MUs, 
only half  the active sources were successfully reconstructed. 
This phenomenon can partly be explained by the fact that there 
were several MUs active at each arbitrary time moment. A 
straightforward calculation shows that, having 20 MUs active 
with an average firing rate of  15 Hz and an average MUAP 
length of  20 samples, when the measurements are sampled at 
1024Hz, 5.85 sources, ~j(n), should be active at each sample 
position on average. 

As stated earlier, the sources with the highest amplitudes are 
privileged during the reconstruction process, whereas the 
deeper MUs with lower amplitudes or with strong influence 
of  noise are covered by other stronger MUs. increasing the 
sampling frequency brings little benefit as it also increases 
the average MUAP length (measured in samples). In the case of  
ten active MUs, the expected average of  superimposed MU 
firings drops to 2.92, and the suppression of  weak MUs is not 
so obvious. 

Surprisingly, no significant influence of  the MU firing rate 
was noticed in this study. Although the MUs with low firing rate 
should theoretically be dominant among successfully recon- 
structed sources, the results show no significant difference in 

Medical & Biological Engineering & Computing 2004, Vol. 42 493 



Fig. 5 
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the average filing rate between the groups of identified and 
missed MUs (Table 1). One of the possible explanations could 
be that a significantly lower noise reduction is achieved through 
averaging for less active MUs. However, further detailed 
investigation of this phenomenon is necessary. 

As expected, the performance also drops with lower SNRs. At 
an SNR of 0 dB, only two active MUs were identified on 
average. The results (Table 1) do not depend on the number of 
active MUs, which suggests that only the strongest MUs (in the 
sense of peak-to-peak amplitude) were detected, whereas all 
the others were treated as background noise. Also, the average 
value of the morphological index If, A in Table 1 speaks in favour 
of this explanation. 

The results from the experimental part coincide with those 
from the simulations. Although no direct evaluation of the 
proposed decomposition approach was established, much 
indirect evidence exists. First, all the reconstructed innervation 
trains exhibit highly regular filing patterns. Secondly, none of 
the statistical tests applied could reject the hypothesis of 
Gaussian IPI variability. Finally, the MUAPs reconstructed by 
the spike-triggered sliding window averaging technique, using 
the detected MU filings as triggers, show a perfect match with 
expectations. Not only do they indicate the position of the 
MU with respect to the electrode array, but they also reveal 
the innervation zone location and, even the MU conduction 
velocity. 

Our study clearly proves that the proposed decomposition 
approach successfully resolves the superimpositions of 
MUAPs, as well as temporal overlapping of the firing patterns. 
The latter is very important from the physiological point of 
view, as it enables investigations of short-term MU synchroni- 
sation phenomena. The separation of sources, as introduced in 
Section 2.3, can be considerably affected by noise. Being 
filtered by the inverse correlation matrix of measurements, 
the noise appears coloured in the sources, space. The energy 
of noise in the sources' space therefore depends on the MUAP 
characteristics. 

The greater the differences in MUAPs, the better the condi- 
tional number of the correlation matrix of measurements, and, 
consequently, the smaller the influence of noise. As stated 
above, different approaches to noise reduction, such as short- 
term temporal (and spatial) averaging of measurements, repeated 
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reconstruction of sources (13) using different subsets of 
measurements in each trail, various noise filtering techniques, 
time-scale processing with wavelets etc., were tested in this 
study. Their detailed explanation and evaluation reach beyond 
the scope of this discussion. 

6 Conclusions 

In this paper, a novel SEMG decomposition approach, 
suitable for the identification of innervation trains, was intro- 
duced and evaluated. A thorough and detailed study of the 
factors influencing its performance was carried out. As demon- 
strated by both the simulation and experimental results, the 
approach is significantly noise-resistant and perfectly resolves 
not only the superimposition of MUAPs but also the short-term 
MU synchronisation. The method presented thus contributes 
a useful tool for the investigation of central motor control 
strategies, MU recruitment and derecruitment and filing 
patterns, and for other basic and applied physiological investiga- 
tions in the field of neurophysiology. 
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