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Introduction 

The presence of a sphincter at the termination of the 
common bile and pancreatic duct has been recognized 
for more than 100 years, but it is the technical progress 
(endoscopy and manometry) that importantly has 
resulted in an increased knowledge of the activity 
pattern and function of the sphincter. 

Research in the last two decades has focused on 
pathophysiology in patients with postcholecystectomy 
pain and idiopathic recurrent pancreatitis, but has also 
made major contributions to the understanding of bile 
tract physiology. 

The present paper aims to describe sphincter of 
Oddi (SO) activity and function as it has become 
known with this progress. 

Anatomy 

The first time a ring-like structure at the termination 
of the common bile duct (CBD) was mentioned was in 
1681.1 This was, however, not noticed in the following 
years, and it was not until 1879 that Gage described a 
special muscular arrangement in cats; 2 however, the 
studies were not sufficiently detailed to conclude that a 
true sphincter existed. 

The important contribution was published in 1887, 
in which study Oddi histologically investigated the 
termination of the CBD and the pancreatic duct (PD) 
in several species. 3 He concluded that there was a true 
sphincter, and suggested its role in the regulation of 
bile flow into the duodenum. 
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Hendrickson 4 in 1898 confirmed Oddi's findings 
(Fig. 1) studying histological sections in several direc- 
tions in humans. 

A thorough knowledge of the composition of 
the sphincteric elements was offered by Boyden. 5 
He subdivided the SO into four parts: choledochal 
sphincter, pancreatic sphincter, ampullar sphincter, 
and intermediate fibers. The choledochal sphincter 
and the intermediate fibers were seen in all individuals, 
whereas the pancreatic and ampullar sphincters were 
present in only one-third and one-sixth, respectively. 6 

It should be added that although anatomic studies 
have shown that a pancreatic sphincter segment only is 
present in one-third of individuals, dynamic investiga- 
tions have shown that even after manometrically con- 
trolled complete bile duct sphincterotomy sphincteric 
activity is always present in the pancreatic segment. 7 

Function 

The function of the SO is to regulate biliary and 
pancreatic flow into the duodenum, to prevent bile 
reflux into the pancreas, and vice versa, and to protect 
against duodenoductal reflux. Only sparse knowledge 
of the relation between pancreatic flow and SO activity 
exists. There is, however, no reason not to assume 
that the pancreatic and biliary system are quite alike, 
as supported by the fact that the bile and pancreatic 
secretion to the duodenum has a parallel course. 

Bile flow to the duodenum occurs passively when 
the SO is relaxed. Conversely, total inhibition of bile 
flow follows maximal stimulation of the SO, 8 as can be 
seen after the injection of, e.g., morphine (Fig. 2). In 
addition to this function as a resistor, the SO can 
also act as a peristaltic pump. In humans, this latter 
form of action is probably less important, as will be 
discussed later. 
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Fig. 1. Anatomy of the choledocho-duodenal junction. For 
details, see "Anatomy" in text. (Redrawn from 4) 

In addition to the control of bile secretion into 
the duodenum, the SO is also important in the regula- 
tion of gallbladder filling. Abolition of SO tone by 
endoscopic sphincterotomy blocks gallbladder filling 
on hepatobiliary scintigraphy. 9 Furthermore, studies 
in human autopsies where the SO had been eliminated 
and the cystic duct divided at the junction to the 
gallbladder resulted in no flow through the spiral valves 
of the cystic duct during water infusion into the 
common hepatic duct at physiologic flow rates. 1~ 

The activity pattern of the SO, and thereby its func- 
tion, is the result of spontaneous myogenic activity, 
neurohormonal regulation, and local reflexes, and is 
subject to variation in the fasting state and after food 
intake. 

Basal activity pattern 

The activity pattern of the SO has been determined 
from surgical studies where resistance to flow was 
measured either perioperatively or through a T-drain 
in the postoperative period. 11'12 With improved 
endoscopic and manometric techniques, it became 
possible to directly measure the pressure variation 
within the sphincteric segment. 13'14 It has been shown 
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that the SO is a zone with elevated baseline pres- 
sure at around 10mmHg, and superimposed phasic 
waves at amplitudes around 100 mm Hg (Fig. 3). The 
phasic waves normally propagate in an antegrade 
direction, i.e., toward the duodenum) 5'16 Using 
a microtransducer technique, Tanaka et al. 17 showed 
that, compared to the duodenum, there was a basal 
common bile duct and pancreatic duct pressure of 4 
and 8mmHg, respectively. Thus, not only is there a 
positive gradient from the ductal systems toward the 
duodenum, but the ductal pressure in the pancreas 
is also higher than that in the common bile duct, 
preventing bile from entering the pancreas. 

The implications of the SO activity pattern in 
the regulation of bile flow have been briefly men- 
tioned above, and there is general agreement that 
the SO plays a major role in the regulation of bile and 
pancreatic flow into the duodenum. There is, however, 
some controversy as to how this is brought about. The 
main reason for this controversy is probably that many 
studies have been carried out in laboratory animals, 
and there are major differences between species. Cats 
and dogs seem to behave more like humans, whereas 
herbivorous animals are different, as can be exemplified 
by looking at what happens after the injection of the 
hormone cholecystokinin (CCK): This hormone 
stimulates bile flow in all species, but in opossums is 
and prairie dogs, 19 CCK stimulates SO phasic wave 
activity, whereas in cats 2~ and humans, 21 it inhibits the 
SO. Therefore, in the former two species, phasic 
waves probably are important in promoting bile flow, 
whereas in humans, the most important action is that 
of a resistor. 22'23 Variation in tone determines outlet 
resistance. The phasic waves, in humans, have a dual 
role: Only at a modest rate do the antegrade contrac- 
tions allow the SO to act as a peristaltic pump, expel- 
ling bile, debris, and microcalculi, when present. The 
contractions also create a resistance to flow across the 
sphincter so that major flow can take place only 
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Fig. 2. Effect of i.v. injection of 
morphine on sphincter of Oddi activity, 
measured by a single-lumen manometric 
catheter. (After ref. 48) 
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Fig. 3. Sphincter of Oddi contraction 
modalities measured with a triple-lumen 
manometric catheter. Anti-peristaltic 
(a), peristaltic (p), and simultaneous 
(s) waves are seen. (After ref. 49) 
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Fig. 4. Sphincter of Oddi pacemaker 
frequency as calculated from contrac- 
tion wave peak-to-peak intervals (PPI). 
Maximal interval is 6s, corresponding 
to a pacemaker frequency of 10 waves 
per min. (After ref. 50) 

between the contractions. The antegrade direction of 
the phasic contractions further inhibits duodenoductal 
reflux. 

The SO shows pacemaker activity (Fig. 4) of the 
same nature as that in the gastric antrum and the small 
intestine, i.e., phasic variation of membrane potential 
where the firing level of spike potentials, necessary for 
contractions, can be reached only at one point of this 
phasic variation.aS The pacemaker frequency is rather 
constant and close to that of the duodenum; this could 
indicate that pacemaker frequency is determined 
by the duodenum. However, from experimental 

studies in the opossum, it is known that the pacemaker 
frequency is set by the proximal part of the SO. 24 

The SO is subject to the same fasting variation as 
the upper gastrointestinal tract, which variation can be 
subdivided into three phases: phase I is characterised 
by quiescence with little or no activity; phase II consists 
of irregular contractions of increasing frequency and 
regularity, culminating in phase lII, in which there are 
propagated contractions of maximal frequency. 

Long-term measurements have shown that the 
phases in the SO follow those of the duodenum; 
however, the SO is more active than the duodenum in 
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phase I. z5'26 The activity fronts (phase III) start a little 
earlier in the SO than in the duodenum, and this 
indicates that the activity front of the SO is not brought 
about by contractions from the duodenum around the 
SO. This idea is also supported in an experimental 
study in which the SO was autotransplanted into a 
more distal part of the small intestine. The SO phasic 
variation still followed the duodenum, albeit the phase 
III wave frequency was lower. 27 

After food intake, the SO is inhibited in humans. ~6 
This holds true for the basal pressure as well as for the 
phasic wave amplitudes. The inhibition is probably 
brought about by CCK and secretin, facilitating biliary 
and pancreatic flow. 

Neurohormonal regulation 

The nervous supply to the SO comprises extrinsic and 
intrinsic innervation. The sympathetic innervation 
is supplied from the celiac and superior mesenteric 
plexuses, and the parasympathetic from the vagus 
nerve, either directly or via the sympathetic plexuses. 
The makeup of the pathways involved until the effect 
is exerted on the SO is complex and not yet clearly 
understood, a number of different transmitters be- 
ing involved. The action of the nerves includes both 
excitatory and inhibitory mechanisms. 

The role of the vagus nerve has not been solved. No 
studies have investigated the influence of vagotomy on 
the SO in humans. Results of experimental investiga- 
tions have been contradictory; however, it seems that 
efferent vagal stimulation inhibits the SO. 2s In vitro 
studies of the SO in cats have demonstrated adrenergic 
alfa- and beta-neurones. Alfa-receptor activation 
stimulated the SO, and beta-receptor activation in- 
hibited it. 29 The importance of this system is con- 
troversial, and, under basal conditions, the role of 
sympathetic and parasympathetic innervation is 
probably limited. 3~ 

The intrinsic nervous system is more important, and 
immunohistochemical studies have shown abundant 
neurones in the SO segment. 31 Non-adrenergic, non- 
cholinergic inhibitory innervation is an important 
feature, and inhibition has been suggested to occur 
via the transmitters, vasoactive intestinal polypeptide 
(VIP) 32 and nitric oxide. 33'34 

Although many questions are still unsolved, it is 
known that neural regulation involves both excitatory 
and inhibitory pathways. The role of the inhibitory 
system is probably mediation of CCK-induced and 
extrinsic neural relaxation of the SO. Cholinergic 
excitatory neurones may be involved in SO stimulation 
during phase III of the interdigestive period. 

Tetrodotoxin, a drug that blocks neural conduction, 
increases the phasic activity of the feline SO, indicat- 
ing that the inhibitory nervous system is most im- 
portant in the regulation of basal SO activity. 35 

Hormonal influence on the SO has been extensively 
studied, although most investigations have been carried 
out in laboratory animals. Species differences have 
already been mentioned above. This problem may be 
partly overcome by looking into the mechanism of 
action of hormones. However, in order to establish 
the physiological role of hormones in humans, it 
is necessary to conduct studies with hormones in 
physiological doses, and this has been done in only a 
few investigations. 

CCK is a potent inhibitor of SO basal and phasic 
activity, and is probably the most important factor in 
the inhibition of SO activity after food intake. 36 CCK 
has a direct stimulatory action on the SO muscle, but 
it also has a stimulatory action, which is more potent, 
on intrinsic inhibitory nerves, and therefore gives rise 
to an overall inhibition of the SO. 37 Furthermore, the 
stimulatory effect of CCK on the gallbladder, with 
subsequent reflex relaxation of the SO, further con- 
tributes to SO inhibition. 38 

Secretin inhibits the SO, but in physiologic doses 
only the pancreatic part of the SO is affected. 39 It is 
hard to understand that such a small sphincter as the 
SO can have a dual activity pattern in its differ- 
ent ductal segments; however, it is not only in studies 
on the action of secretin that differences have been 
observed; differences have also been found in basal 
recordings in patients suspected to have SO 
dysfunction. 4~ 

Glucagon inhibits the SO in pharmacological doses, 
but has no effect at physiological levels. 4a 

Other agents, such as glucagon-(l-21)-peptide, 42 
gastrin, 14 and somatostatin, 43 have been studied only 
in pharmacologic doses. 

Reflex regulation 

The SO is influenced both by local reflexes and by 
reflex pathways from more distant organs. 

A reflex between the gallbladder and the SO was 
first described by Wyatt, 44 who found that mechanical 
stimulation of the gallbladder inhibited resistance to 
the flow through the SO. More recent studies have 
shown that increases in gallbladder pressure inhibit the 
SO. 38'45'46 During periods of low gallbladder pressure, 
the SO is stimulated. The reflex operates within 
physiologic ranges of gallbladder pressure, and has 
been demonstrated in cats, dogs, and humans. The 
reflex is rational and assures gallbladder filling when 
empty (low pressure), and diversion of bile to the 
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Fig. 5. Influence of increase in common 
bile duct (CBD) pressure on sphincter 
of Oddi activity. (After ref. 47) 

d u o d e n u m  when  the ga l lb ladder  is full or  is actively 
cont rac ted .  

A similar  reflex be tween  the c o m m o n  bile duct  and  
the SO (Fig. 5) has been  shown in cats 45 and  huma ns .  47 

This reflex is especially impor t an t  in the post- 
cholecys tec tomy state, in that  it allows the flow of bile 
into the d u o d e n u m  at high secret ion rates f rom the 
liver. A b s e n c e  of this reflex would  result  in per iods  of 
high c o m m o n  bile duct pressures at a magn i t u de  able  
to p roduce  pain.  

The  reflex is med ia ted  by inhib i tory  nerves  r u n n i n g  
a l o n g  the c o m m o n  bile duct ,  and  it is abol i shed  by 
local inf i l t ra t ion anesthesia  at the cyst ico-choledochal  
junc t ion .  45 

Nerve  damage  dur ing cholecys tec tomy with extensive  
dissect ion a round  the junc t ion  of the cystic duct  
and  the c o m m o n  hepat ic  duct  may,  through reflex 
b lockade ,  be  a factor in the pos t -cholecystec tomy pa in  
exper ienced  by pat ients .  
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