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Rational  approximation to functions like x ~ in integral norms 

J.-E. ANDERSSON 

w 1. Introduction 

In several papers the degree of rational approximation to the function x" has 
been investigated. Let us denote by R,, v(x ") this degree of approximation in LP[0, 1] 
by rationals of order at most n. The most precise results so far have been given by 
GANELIUS [8] for the case p =  co and VJA6ESLAVOV [14] for the case 0<p  <- ~.  How- 
ever, none of these results are satisfactory unless ~ is a rational number. 

Our result in this direction removes the restriction on e but instead we have to 
impose new ones on p. Though we can get results also for p <  1 we shall state our 
first theorem only for such values on p for which we have perfectly matching esti- 
mates both from below and above. 

T h e o r e m  1. Let l < p < ~  and ~ > - l / p .  There are positive constants B= 
=B(e ,p )  and C=C(e,p)  such that 

B lsin arc[ <= R,,,v(x~). n-1/2P exp 2re ]/n(~+ l/p) <= C 

for n = 1 , 2  . . . . .  

R e m a r k .  The estimate from below is included here only for the sake of com- 
pleteness. It was proved by VJA~ESLAVOV in [14]. In the same paper the estimate from 
above was given only for rational ~ (with a C(e, p) not depending continously on e). 
The same phenomenon takes place also in the paper [8] by GANELXUS. Therefore the 
main conclusion of our theorem is that the algebraic properties of e are not important 
for the degree of approximation. 

The main object of our study is, however, the degree of rational approximation 
in the Hardy spaces H p to functions analogous to x ~, e.g. ( 1 -z )  ". 

The method that we shall use is not specially designed for approximating (1 - z )  ". 
For instance it can be applied to prove GON~AR'S well-known result for approxi- 
mation of Markov functions. Approximation on the complex unit disc of a func- 
tion f of  the type 

f cl~fx) (1) f ( z ) :=  , where l < a < b ,  
X - - Z  

a 
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by rationals of order n can be done with an error essentially of the size Q-" at most. 
Here 0 is the modulus of the ring domain formed by the complement of the union 
of [z[ <-1 and [a, b]. Without any further information this result is best possible. 
However, with the additional assumption that d# is a positive measure GON~AR 
showed in [10] that the optimal error is of the size Q_2,. 

Since the approximation of (1 - z )  ~ can be transformed to approximation of a 
function of type (1) with a positive measure but with a =  1, it is natural to look for 
a joint method for the two situations. Results in this direction were given by J.~RN~R 
in [12] but with conditions on d/z that exclude (1 - z )  ". 

Before proceeding we introduce some notations. Let U denote the open unit 
disc and T its boundary. The usual Hardy spaces for U are denoted H ~. For func- 
tions f C H  p we define 

i( 1 ;" } [If lip :=  sup f lf(rz)l'ldzl : 0 < r < 1 
T 

with the usual modification for p =  co. The notation [l flip is also used for functions 
in LP(T)  or LP[0, 1]. It shoud be clear from the function which norm is meant. 

In the text the letter C stands for positive constants that are not necessarily 
the same from time to time. When it is essential we indicate in what sense C is con- 
stant or rather on which variables C may depend. 

Finally we remark that whenever power functions as z" occur, we mean the 
principal branch of the function. 

w 2. The order of approximation in H p 

For each 
of the form 

z=(z l ,  ..., z ,)~C" we let N(z) be the class of all rational functions 

n 

r(z)  - p ( z ) / 1 ~  (1 - z k z )  
k = l  

where p is a polynomial of degree at most n. In the proof of a part of our main 
theorem we shall need a result on approximation with a weight. Therefore we shall 
already from the start introduce notations to handle that situation. 

For a real number fl we let wa be the function defined by w p ( z ) : = ( 1 - z )  t~ for 
zCU. We define for 0<p  <-oo and f such that f w p E H  p 

and 
Qp(f, z, t )  : -  inf{II(f-r)wpl]p: rE~(z),  rwpEH p} 

Q,,,(f, t )  := inf{~p(f, z, fl): zEC"}. 
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The case f l=0  is, of  course, the most interesting one and then we use just the no- 
tations 0p(f, z) and O.,p(f) respectively. 

If  p => 1 then H p is a Banach space so we can use the Hahn--Banach theorem 
to see that 

op(f, z, t )  = sup I'~(wa/)l 

where the sup is over all ~E(HV) *, the dual space of H p, with dual norm l[~ll=l 
and such that ~ ( w p r ) = 0  for all rCN(z) with the property wprCH p. 

When p < l  the space H p is not a Banach space but  is contained in the Banach 
space B p of all functions f analytic in U and with finite norm 

I 2~ 1 

f f If(rei~ II/IIB, :=  ~ 'z  o 

This is a result by DUREN, RO~CmERG and SHIELDS in [6]. In the same paper they also 
showed that 

I[f[]Bp ~ C(p)][fllw 

The corresponding result to (2) for 0 < p <  1 is therefore 

(3) op(f, z, t) ~ C(p) sup la~(wa f) l  

with (HP) * replaced by (BP) *. This observation will be used to get estimates from 
below for 0p(f, z). 

For p<~o  every ~C(HP) * or (BP) * if p < l  can be represented in the form 

(4) ~ ( f )  = lira ff(rOg(~) dr 
T 

with g~D(T) .  If l=<p<oo then ~C(HP) * and lI~ll=l if and only if there is a 
g(L~(T) with p - l + q - l = l  and llg[lq=l such that (4) holds. In the case 0 < p < l  
Duren, Romberg and Shields gave a complete description of  (BP) *. Combined with 
results on the boundary smoothness of  analytic functions that one can read in eg. 
[5] this descriptions shows that there is a C=C(p) such that if 

i) p-l=N+(3 with N non-negative integer and 64(0, 1] 
(ii) there is a gCH "~ such that Ilg[l~C where 

II gll : :  Il gl[=~ + sup {[g(N+l)(z)l (1 -Izl)~-o: z~ u}  

then (4) defines a ~E(BP) * with II~11<-1. 
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The functions that we shall approximate are transforms of  measures. For every 
finite measure d/~ on [0, 1] we let/~ be defined by 

dp(x)  
(5) ~(~) := f 1 - x z  

In order to shorten our notations we introduce a special function. 

N o t a t i o n .  For a + l / p > 0  and n = l , 2  . . . .  we let 

T h e o r e m  2. Let O<p<-oo and a + l / p > 0 .  Suppose that d# has theproperty 
that C1 w,(x) dx <= d# (x) <= C2w~ (x) dx for some positive constants C1 and C2. 

i) I f  p-1 is not an integer then there is a C = C ( a , p )  such that 

Q,,v(fO <- C. e(n, o~, p), for  n = 1, 2, .... 

ii) I f  l<=p<=~ then there is a C = C ( ~ , p ) > O  such that 

O,,p(P) >= C. e(n, o~, p), for  n = 1, 2, ... .  

iii) I f  0 < p < l  then there is a C = C ( a , p ) > O  such that 

~,,p(ft) >- Cn(V-wP.~(n, ~,p) for  n = 1, 2, .... 

R e m a r k .  The parts i) and ii) give a precise description of 0,,p(/~) if l < p <  oo. 
For all pC(0, oo] we can at least say 

l im (o,,~ (~)F ~ = exp (-~ r ~- lip)). 

The next sections will be devoted to the proof of  this theorem. However, we 
start already here with some general observations. Returning to (4) we find that if 
p and d# satisfy the conditions of  the theorem, ~E (HP) * and if ~ + fi + lip > 0  then 
we have by Fubini's theorem that 

1 

(6) r (wp p) = f ap (x) ar (~) 
0 

where 

1 wp(~)g(~) d~ for 
(7) G ~ ( z ) : = ~ f  1 - z ~  

If  l < q < ~ o  and 

(8) 

[z] < 1. 

- 1  < - f l q < q - 1  then there is a constant C(fl, q) such that 

IIw-p apllq --< C~, q). llgIlq. 
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This is a generalization of  M. Riesz' inquality given by BABENKO [3] that can also 
be read in [11]. 

Formula (6) will be central for the proof  of  the theorem. Let us also remark 
that the use of  the weights wp is needed only for handling part i) for p <  1. The 
proof  is simpler when l < p <  oo and then it is sufficient with /3=0. 

w 3. Optimal quadrature in H q 

Suppose qC(1, ~o) and let d# be a positive measure on ( - 1 ,  1) such that for 
some constant C 

(9) ] f f (x )  d~(x)[ -<_ CIl/l[~ 

for all functions fC H ~. 
We study quadrature formulae of  the form 

(10) I(f) := f f(x)d#(x) "~ 7_. (akf(Xk)+bkf'(Xk))=: S.O c) 
k=1 

and let the error of  the formulae be defined by 

e,,q := infsup ] I ( f ) -S , ( J ' ) [  

where the sup is over all f in H q with Hf[]q<_-i and the inf is over all ak, bkCR, 
k = l ,  . . . ,n,  and - l < x l < . . . < x , < l .  Given q and n we say that S . ( f )  in (10) 
is optimal if e . ,q=sup { ] l ( f ) - S , ( f ) [ :  [lf]]~<-l}. 

The following lemma was proved in a work together with BO~ANOV [2] in the 
special case d/~ = dx using results in BOJANOV [4]. 

L e m m a  1. For each qC(1, o~) and n = l ,  2 . . . .  , there exists an optimalquadra- 
ture formula. Furthermore, 

i) in this formula bk=O for k= 1, ..., n. 

ii) for every Blaschke product B,(x):=k=]~ ~ X--Xk with - - l < x l < . . . < x , < l  it 
= 1--XkX 

holds that 

(ii) e.,~ <-sup {If f(x)B~(x)dIx(x)l: Hfl[g ~ i} 

P r o o f .  Though the proof  in [2] was carried out only for the case d#=dx it 
holds in the general case as well if we just replace dx by d# in the estimates in [2]. 

R e m a r k .  The result that all the bk" s vanish will be fundamental for our estim- 
ates for Q,,p(•). 
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The next lemma gives an estimate for e,,q by (11) in the special case that we 
are intrested in. 

L e m m a  2. Let p, qC(1, co) be conjugate exponents, i.e. p - l + q - l = l .  Suppose 
that fl+ l/p>O and that dl~ is a positive measure with its support on [0, 1] such that 
dl~(x)<=(1-x)Pdx for xC[0, 1]. Then there is a constant C=C(fl,  p) such that 

e,,q ~= C~(n, fl, p) 
for n = l , 2 ,  .... 

P roof .  The proof is a slight modification of a result in [1] for fl=O. The 
condition f l+l/p>O guarantees that (9) is fulfilled. For - l < x l < . . . < x , < l  we 
find in (11) by H61der's and Fej6r--Riesz' inequalities that 

(12) e,,q <= C[IwpB~l], <= C l i w - , l l ,  �9 [Iw~+,B.~It 

for all r <  lip, the norms being on [0, 1]. 
In [1] we used a result by GAVELIUS [7, p. 142] to see that for every R > 0  there 

is a constant C=C(R)  such that if O<-fl+r<-R then the nodes xk can be choosen 
so that on [0, 1] 

w#+ r = Cex 

We take r=(1-n-l /a)/p in (12) and observe that O<=fl+r<=fl+l at least if n is 

large enough. Since ]/'2n(fl+ r) >=]/2n(fl+ 1/p)-C(fl ,  p) and IIw_,llp=n 1/~p we find 
that 

e,,q<=C~(n, fl, p), for n =  1,2 . . . .  , 

with a constant C=C(fl,  p). 
In our investigations of Q,,p(/2) we shall also need to know that the nodes 

xl, ..., x, that were used in the proof of lemma 2 are essentially optimal for estimat- 
ing % a. It seems natural to state this result already now. 

n Z - -  Z k 

L e m m a  3. Let zl, ..., z, EU and B~(z):= __/[..__= 1--2kZ . Then there is constant 

C such that 
1 

f (I -x  lB.(x l _-> c exp + 0) 
0 

for V > - I  and n = 1 , 2  . . . . .  

P roo f .  This lemma is essentially due to NV.WMAN [13] we only have to make 
some modifications. For rC(0.5, 1) we let 

w(x) := C, [Vx(1 - x ) ]  -1 for xC(O, r) 
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where C, is choosen so that f w ( x ) d x = l .  Then using Jensen's inequality we get 
0 

1 r 

f [1-x)'lB.(x)l dx = > f ( l - -x)V[B,(x)[(w(x))- lw(x)  dx >- 
0 0 

r 

(13) C;-x exp f ( l o g l B , ( x ) l + ( v + l ) l o g ( 1 - x ) + O . 5 1 o g x ) w ( x ) d x .  
0 

Here we observe that 

i ~ l o g ( I - x  2) log(1 - x ) w ( x )  dx = C,. 2 dx > 
1 - x  ~ = 

0 0 

[1-5 -~ c, f l o g ( l - x ) .  + dx =~-C,(1 +0.51og~(1-r)). 
0 

To take care of the rest of the integral we use Newman's observation that 

t - w dt ~z 2 
-1 log 1 -  t ~ >= 4 

for all wC U and hence 

11 x - z  
" ~ - x  dx > - - - T  

for all zC U. The integral in (13) is therefore not smaller than 

- c ,  [(~ + 1) log  ~ (1 - r) + (n + 1) ~2]. 

The definition of C, gives the estimate C,-<lln (1-r)1-1. We now pick r so that 
log ( 1 - r ) = - r c [ n ( ~ + l ) - l ]  1/~. Then by our estimates for (13) the lemma follows. 

w 4. Upper estimates for O.,p(Ft)  

In order to include the case p <  1, p-1 non-integer, we make estimates for the 
approximation with weights which could be compared to similar results in [15]. 

L e m m a  4. Suppose that p~(1, ~) and e6(0,0.5). L e t  f l :=N+7 where N is 
a non-negative integer and y a real number such that 7+ 1/pE(e, 1 - e ) .  Furthermore 
we assume that d# is apositive measure on (0, 1) such that d#<-w, dx where c~+7+ 
+ l]p>=e. Then there is a constant C = C ( e ,  p, e, N)  such that 

~.,.@) <- C~(n, ~ + ~, p) 
for n = l , 2  . . . . .  

2 Analysis Mathematica 
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Proof .  It is enough to consider n>N. Let xt . . . .  , x , -n  be the optimal 
nodes for quadrature of type (10) at n - N  points for H ~ , p - ~ + q - l = l ,  and with 
respect to the measure wad #. After letting x , = l  for k = n - N + l  . . . .  , n we can 
define zEC" by z :=(xl ,  . . . ,x , ) .  

We now return to the observations in section 2 and especially to (2) and (6)--(8). 
The condition ~ ( r ) = 0  for rC~(z) gives Gp(xk)=0 for k = l  . . . .  , n - N .  Applying 
the optimal quadrature formula for 

1 

�9 (we ) = f w_ O,)ap( )wAx) du(x) 
0 

we therefore obtain 

(14) [~(wp/~) <- Ilw_aaaH q. e,-N,q. 

However, it is not immediate that w_aGpEH q since the conditions on fl leading 
to (8) are fulfilled only if N =  0. With our z we find that the function g fulfils 

f(1-O-~wa(f)g(~)dr = o for k = 1, ..., N. 
T 

Since 

(1 - z~ ) - I  = 
N 

~,  ( -  Z)-k(1 -- z)k--l(1 -- ()--k-- (-- Z)--N(1 -- Z)N(1 -- ()-- N(1-- Z() -1 
k = l  

we see in (7) that 
GAz) = - ( -  z)-Nw,,(OGp_N(z) 

and hence ]lw_pG~Ilq=ltw_~G~ll~. The conditions on 7, however, guarantee that 
[]w_~G~[]q<=C(7, q).I]g]]q=C(y, q). In fact it is possible to replace the constant 
C(7, q) by a constant depending only on e and p. 

The lemma then follows from (14) and lemma 2 (for the measure wpdy). 
We can now proceed with the proof of part i) of theorem 2. The case 1 < p <  co 

follows at once from lemma 4 by letting N = ? = 0 .  So let us assume that 0 < p < l  
and as before p - l = N + 6 .  Sincep -1 is not an integer we have 0 < 6 < 1 .  

For n =  1, 2, ..., we define 

fl := p - ~ - 0 . 5 - n  -1/~ =:  N + y  

where 7 = 6 - 0 . 5 - n  -1/2. Let s be the conjugate exponent of 2/p, i.e. s= (1 -0 .5p)  -1. 
For  each n we pick an r E ~ ,  so that II(/~-r)wpll~<-20,,~(/~, fl). With the notation 
h = / ~ - r  we find by HSlder's inequality and lemma 4 that 

IIhH~" <- llw-p, llsllhwpl[~ <= Cnl/~(2~,.2(1~, fl))t, ~ Grill, exp (--rcp l / 2n (~+f l+  1/2)). 

Hence we get 
<- C (n, p) 

with C=C(~,  p). This concludes the proof of part i) of theorem 2. 
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w 5. Lower estimates for ~., p (/~) 

We start with part ii) of theorem 2, i.e. estimates for l==_p-<~. Let 
z=(z l ,  ..., Zn)C U n be given. We denote by B n the Blaschke product 

B.(z) := /1 z-z  
k=l 1--ZkZ 

and by Bn the product B.(z):=B.(~). In what follows we let q be the conjugate 
exponent ofp.  For each n we define a function g by 

g(z) := cs. z(1-z)-SB.(z)B.(z) 

where s = q - l - n  -1/2. The constant Cs is choosen so that ][g[]q=l. Since 

Ilgllq=< Csll q "< C~ �9 Cn 1/~q 

with C=C(q) we find that Cs>-C-ln -I/~q. 
We now define a linear functional �9 on H p by 

~ ( f )  := ~~z / f ( ~ ) g ( ( ) ~  d(. 

Then II~ll-<llgllq=l and for zC U it holds that 

~(z) := ~ ( ( 1 - ( .  )z) -a) = g(z). 

Consequently ~ ( r ) = 0  for each rEN(z). We also see that 

1 

(p) = f g(x) 
0 

By Lemma 3 we get 

@ (/l) ~ C,. C ]/n exp ( - n  l/(2n + 1) (~ - s + 1)) -> Cn a/z1' exp ( -  rc l/2n (a+ alp)) 

with C=C(e,p).  Hence ~p(p,z)>-C(cqp)e(n, e,p) for all zCU" and and con- 
sequently part ii) of the theorem follows. 

When 0 < p <  1 it is possible for the approximating rational functions to have 
poles also on 7". But for each n we can pick zCU" so that ~(/~, z)<-2Q,,p(/~). 
Therefore we can assume zC U" when we prove the estimate from below. The 
proof is somewhat more complicated than for 1 <-p<= ~ and we need an auxiliary 
function. Let for ~E (0.5, 1) the function ~o=~0r be defined for z{[1, ~) by 

~p(z) := [ 1 - ( 1 -  z)']/[l + ( 1 -  z)'l. 

This ~ defines a conformal mapping w = 9 (z) of the sector - n  (2~)-1< arg (1 - z ) <  
<~z(27) -1 onto Iwl<l.  

2* 
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Let z be as above. We define a point wE U" by 
Blaschke products B,, B, by 

W - -  W k B,(w) := and B,(w) := B,(~). 
k=l 1-- ~gW 

Moreover, for each n we define g by 

g(z) := C~q~(z)(1-~o(z))~B.(q~(z))B.(q~(z)) 

where 7 -1 := l+2Qr] /n )  -1, s : = ( p - l - 1 ) ?  -1 and C~:=n (1-p-b/2. 
shall show that there is a constant C=C(p) such that 

(15) [g(z)l + Ig(N+a)(z)l (1 - - I z l )  ~-~ - -  C 

for all zE U. From section 2 we know that this means that 

r ( f )  = lim f f(rC) (g (~) d( 
r ~ l - -  

T 

wk=q~(z,), k = l ,  ..., n, and 

With this C~ we 

defines a linear functional on B p with [[q~[I <-C(p). As above we find that @(r)=0 
for rEN(z) and with O:=q~-i 

1 1 

q~(~) = f g(x)d#(x) -= f g(~(t)) d#o~(t) >= 
0 0 

1 

c, f (1 --t)~(1-~(t)) 'O'(t) lB,(t)I2tdt .  
0 

For r we have the estimates C -<_ (1 - O (t)) (1 - t) - 11~ _ C -  1 and ~'  (t) ~- C (1 - t) - 1+ 1/~ 
for all tE(0, 1) and some constant C > 0 .  Consequently 

1 

�9 >- c,. c f dt 
o 

and by lemma 3 and the definition of C~ 

~b (~) =>- Cn(1/~)-(1/~p). nll~ exp ( -  ~ ]/2n (s + (a + 1)/?)) => 

Cn 1-0/~") exp (-Tr ] /2n(a+ a/p)). 

As in the previous case this gives the estimate for Q..p(/i). 
In order to finish the proof it remains to show the estimate (15). It is obvious 

that [Igll=~21/p so we can concentrate on g(U+l). 
Let F be the boundary of the intersection of the disc Iz[ < 2  and the sector 

q~-l(U). It consists of a part of the circle ]z] =2  that we denote by F~ and the union 
F~ of two segments. Observe that lq~(~)[<-I for ~ on and inside F. Hence for [zl<l  
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we get 

We first observe that 

C,N! /II-~o(~)l ~ 
Ig(N+l)(z)l ~= 27t [ff__zlN+= Id~l. 

f I1-r162 ~ Idff] < 2~+1= 
r, I ~-zlN+= = " 

For ~EF,, and zEU the inequality [ { - z [ ~ l l - { l s i n 8  is valid with ~:= 
:=~(7-1_1)/2=n-~/2.  Moreover ]1-~0(~)[_-<2]1-~1~ for {EFt. These estimates 
yield 

f l1-~o(~)1 * 2, 11-[1 r* 2, zlr,_N_2 
r, 1~- z[ N+2 Idffl <= ~,f ig_zlN+= [dffl <- (sin 8) -r* r, f Ig- Idffl. 

Note that 7 s - N - 2 = 6 - 3  so that the whole expression can be estimated by 
Cn(1/P-l~/~(1-lz[) ~-~. Our choice of  C~ therefore gives Ig(U+l)(z)l<=C(1-[zl) ~-~ 
where C=C(p) and consequently also (15). 

Thereby theorem 2 is proved. 

w 6. Approximation of (1 - z )  ~ 

To be able to apply the preceding results to the problem of approximating 
(1 -z ) "  we have to represent it as a Markov--Stieltjes function. A standard use of  
Cauchy's integral formula gives for zE U 

( l_z)~  - sinrc..___._~ f (t-1)~dt+l_.~_ f (1-~)~ d~ 
1 t - z  2~i r ~-z  

where F is the circle [~] =2.  

We define a measure d# by d#(x):=w(x)dx with 

1 - x ) ' x  -=-1 for xC[0.5,1] 

w(x) := for xE[0,0.5], 

Then we have for zE U that 

(16) ~z(1 - z )  �9 = sin he.  ~ (z )+  g(z) 

where g is analytic in [zl <2.  We can getan estimate for ~,, p ( (1-z)  ") from theorem 2 
if we can show that the function g is not significant for the order of  approximation 
of  (t - z )  ". This will be a consequence of the following lemma. 



22 J.-E. Andersson 

L e m m a  5. Suppose that for f ,  gCH p 
such that 

i) A - l < ~ k ( f ) . k - " e b ~ < A  for k = l ,  2 . . . . .  

ii) O,,(g) < B e - "  for m = 1, 2, . . . .  

there are positive constants a, b, c, A, B 

I f  Q,( f+g)>O for every n = l ,  2, ..., then there is a constant C such that 

C-1 <= o.( f+g)/o.( f )  <= C 
for n = l , 2  . . . . .  

P roof .  Because of the condition 0 . ( f + g ) > 0  it is enough to show that lim sup 
and lim inf of o . ( f+g) /o . ( f )  are positive numbers. 

For all natural numbers k and m it holds that 

(17) Qk+2m(f)--~m(g) ~ ~k+m(f-~-g) ~ ~k ( f )  + P,, (g)" 

To each n we pick m so that Qm(g)<~ , ( f ) .  Because of i) and ii) this can be done 

with m such m<=dl/n for some d independent of n. Then we let k : = n - m .  We 

may assume that k=>l and we observe that -d=<l/n---------~m-1/n_<-d. From i) it 
follows that l imsup ~,_, , ( f ) /Q,( f )  is finite and that lim inf~,+m(f)/Q,(f)  is 
positive. Since moreover lira sup Qm(g)/Q,(f)=O the desired properties for lim sup 
and lira inf of Q,(f+g)/~,( f )  follows from (17). 

With f :=sin 7rcr and g as in (16) the conditions of the lemma are satisfied 
if ~ is not an integer. Hence we have the following consequence of theorem 2. 

T h e o r e m  3. For l < p < ~  and ~ > - l / p  there are constants B=B(~,p)>O, 
C=C(~,p) such that 

B [sin ~ l  e (n, ~, p) =< Q,,v ((1 - z)') <- C8 (n, ~, p) 

for n = l ,  2, .... 

7. Approximat ion  o f  x ~ on  [0, II 

Except for the introduction we have only considered approximation in H v. 
We shall, hovever, finish by giving a proof of the upper estimate in theorem 1. This 
estimate will follow in the same way as for ~,,v((1 - z )  ~) as soon as we have proved 
the following counterpart of theorem 2. For fCLV=LP[O, 1] we here use the no- 
tation 

R. ,p(f)  := inf{Ilf-rHv: rCN.}. 

T h e o r e m  4. Let 1 - < p < ~  and ~ > - l / p .  Suppose the measure dkt on (0, 1) 
fulfils A-lw~dx<=dp<=Aw, dx for some constant A. Then there are constants B= 
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= B ( e , p ) > 0  and C=C(e ,p)  such that 

for n = l ,  2, .... 
n "~ Rn, p(~)" n -1/2p exp (2re 1/n(~ + I/p)) <= C 

Proof .  In analogy with the HP-case we let 

R,(p, z) := inf{llf-rll : rC~(z)} 

for each zCC" such that N ( z ) ~ L  p. As in section 2 we have 

1 

R,O,  7) = sup l f  p(t) g(t) dt] 
0 

with the sup over all gCL q (where p - l + q - l = l )  
1 

f r(t)g(t)dt=O for all tEN(z). We observe that 
0 

1 1 

f ~(t) g(t) dt = f a (~) d# (x) 
0 0 

where 

G(z) := i g(t) dt z(~[1,~). -i-zT? ' 
0 

such that [Igll~=l and 

The function G is analytic in particular in the domain D bounded by [1, 2] and the 
circle [zl=2. Let ~o be the conformal mapping of Iw]<l onto D normalized by 
~o(0)=0 and qr It follows by the inequalities of M. Riesz and Fej6r--Riesz 
that H=Goq~. (~o') vq belongs to H q and that there is a constant C(q) such that 

I[/-/llq ~ C(q)llgllq, 

The symmetry gives that ~o maps [0, 1) onto [0, 1) so that 

1 1 

(18) f C(x)a#(x) = f H(t)dv(t) 
0 0 

where dv is the positive measure defined by dv(t):=(q~'(t))-l/qd#o~o(t). On [0, 1) 
the mapping r has the properties 

a) C-1I l - t [  ~ =< 1-~o(t) =< C[1- t [  2, 

b) C-111-tl =< 9'(t) <= C I l - t l  

for some constant C. Our conditions on d# therefore imply that 

for some C. 
dr(t) <= C(1-t)~'+l/Vdt 



24 J.-E. Andersson 

We now proceed as in section 2. Let w=(wl,  ..., w,) be the optimal nodes for  
quadrature with respect to dv in H q and let z :=(z l ,  ..., z,) with Zk:=q~(Wk), k= 

1 
=1,  . . . ,n.  Observe that if f r(t)g(t)dt=O for all rCN(z) then H(Wk)=O, k= 

0 
=1,  ..., n. When we apply the optimal quadrature formula to (18) we therefore 
get by lemma 2 that 

Rp(•, z) <= Cs(n, 2~+ lip, p). 

This gives the estimate from above in the theorem. 
To obtain the estimate from below we could proceed as in section 5 but instead 

we have choosen to use the results of  that section. Unfortunately we need to intro- 
duce another conformal map. Let T be the mapping of Iwl > 1 onto the complement 
of[0, 1] such that T(oo)= o~ and T'(oo)>0. Then we define a linear transformation 

S: LP[0, 1]~H p by 

1 f fegt(u). ~//(U) I/p du, for [wl < 1. Sf(w) := ~ u - w  

By M. Riesz' inequality there is a C=C(p) such that IlSfllp<-Cllfllp if  l < p <  ~. 
Moreover a simple calculus of  residues gives S (N .  NL p) = N. N H  p. Consequently 

,,, p (Sf) <= CR,,, (f) 

for each fELP[O, 1]. With f--/~ we find that 

i dv(u) s;~(w) = i-Vw 
o 

where this time dv(u)=(g"(1/u))-l/quT'(1/u)dp(1/g~(1/u)). The function 7 ~ has 
properties of the same type as ~0 above so for dv we have 

dr(u) >- C(1 - u) ~'+1/~ du 

for some C. But this means that 

O.,.(S~z) ~- Bs(n, 2c~+ l/p, p) 

by theorem 2. Hence the wanted estimate follows. 
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P a ~ o u a ~ , H a ~  anupoKeHMam~ dpynKunfi Ttma x ~ B HUTerpa~bm~x HopMax 

5IH-3PHK AH~EPCCOH 

OCHOBHOI'~ peay~I, TaT pa6oTI,I racaeTc~ nop~KOB pauttoHaJ~I~IX npa6nH)reHm2 B H p qbymr 
I I ~  THHa MapI~oBa--CTHHTLCCa C HeKoTop~IMH ene~HaYlbHI,IMH yCJIOBHHMH Ha MepI, I. KaK CJ'le~CT- 
B~te, HonyqeHo pacnpocTpaHerme Ha cnyqa~ Hppa~Hona.n~,LX noKa3aTeneii ct Tex O~eHOK nop~/v~a 
patt~onansrmlx np~6~i~reHm2 qby~u~ x ~ a LP[O, I], l < p <  ~, KOTOpBIe paHee 61,1ml ~aBeCT~Sl 
~-~ patmoHaJILm~Lx ~t. 
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