Analysis Mathematica, 14 (1988) 11—25

Rational approximation to functions like x in integral norms
J-E. ANDERSSON

§ 1. Introduction

In several papers the degree of rational approximation to the function x* has
been investigated. Let us denote by R, ,(x") this degree of approximation in L7[0, 1]
by rationals of order at most n. The most precise results so far have been given by
GANELIUS [8] for the case p=-cc and VialEsLavov [14] for the case O0<p=<. How-
ever, none of these results are satisfactory unless « is a rational number.

Our result in this direction removes the restriction on « but instead we have to
impose new ones on p. Though we can get results also for p<1 we shall state our
first theorem only for such values on p for which we have perfectly matching esti-
mates both from below and above.

Theorem 1. Let l<p<co and o> —1[p. There are positive constants B=
=B(a, p) and C=C(a, p) such that

Blsinan} = R, ,(x)-n~Y* exp 2n Yn(a+1/p) = C
for n=1,2, ...

Remark. The estimate from below is included here only for the sake of com-
pleteness. It was proved by VIACESLAvoV in [14]. In the same paper the estimate from
above was given only for rational « (with a C (a, p) not depending continously on ).
The same phenomenon takes place also in the paper [8] by GANELIUS. Therefore the
main conclusion of our theorem is that the algebraic properties of « are not important
for the degree of approximation.

The main object of our study is, however, the degree of rational approximation
in the Hardy spaces H? to functions analogous to x% e.g. (1—2)%

The method that we shall use is not specially designed for approximating (1 —z)*
For instance it can be applied to prove GONCAR’s well-known result for approxi-
mation of Markov functions. Approximation on the complex unit disc of a func-
tion f of the type

b
¢y f(® = f%_(—?—, where 1 <a<b,

a
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12 J.-E. Andersson

by rationals of order  can be done with an error essentially of the size ¢—" at most.
Here ¢ is the modulus of the ring domain formed by the complement of the union
of |z|=1 and [a, b]. Without any further information this result is best possible.
However, with the additional assumption that dp is a positive measure GONCAR
showed in [10] that the optimal error is of the size ¢—2".

Since the approximation of (1 —z)* can be transformed to approximation of a
function of type (1) with a positive measure but with a=1, it is natural to look for
a joint method for the two situations. Results in this direction were given by JARNER
in [12] but with conditions on du that exclude (1 —z)%

Before proceeding we introduce some notations. Let U denote the open unit
disc and T its boundary. The usual Hardy spaces for U are denoted H®. For func-
tions f€H? we define

Ity = sup (5 [1saplad)”" 0<r <1}

with the usual modification for p=<e. The notation | f||, is also used for functions
in LP(T) or LF[0, 1]. It shoud be clear from the function which norm is meant.

In the text the letter C stands for positive constants that are not necessarily
the same from time to time. When it is essential we indicate in what sense C is con-
stant or rather on which variables C may depend.

Finally we remark that whenever power functions as z* occur, we mean the
principal branch of the function.

§ 2. The order of approximation in H?

For each z=(z, ..., z,)€C" we let #(z) be the class of all rational functions
of the form

r(2) = p(z)/kzjl(l —2,2)

where p is a polynomial of degree at most n. In the proof of a part of our main
theorem we shall need a result on approximation with a weight. Therefore we shall
already from the start introduce notations to handle that situation.

For a real number B we let w, be the function defined by wg(z):=(1—2)* for
z€U. We define for O<p=-< and f such that fw,c H”

& (fs 2, B) :=inf {|(f—7)wpl,: r€R(2), rws€ H™}
on,p(f; B) :=inf{o,(f, 2, B): 2C"}.

and
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The case =0 is, of course, the most interesting one and then we use just the no-
tations ¢,( f, z) and g, ,(f) respectively.

If p=1 then H? is a Banach space so we can use the Hahn—Banach theorem
to see that

@ 2,(f> 2, B) = sup | (w,f)|

where the sup is over all ®€(HP)*, the dual space of H?, with dual norm |®]=1
and such that @ (w,r)=0 for all r¢ Z(z) with the property wyrc H.

When p<1 the space H? is not a Banach space but is contained in the Banach
space BP of all functions f analytic in U and with finite norm

1fllse := %;of n of | f(re®)| (1 —r)&/P=2 dr do.

This is a result by DUREN, ROMBERG and SHIELDs in [6]. In the same paper they also
showed that
1flze = C(P) | f1l,-

The corresponding result to (2) for O<p<1 is therefore

&) 0,(/. 2, B) = C(p) sup |@(wy /)|

with (H?)* replaced by (BF)*. This observation will be used to get estimates from
below for ¢,(f, 2).

For p<o every ®¢(HP)* or (BF)* if p<1 can be represented in the form
O o(N) = lim [fDe@dl
T

with g€IX(T). If 1=p<< then P€(H?)* and |®|=1 if and only if there is a
geLY(T) with p~*+¢~'=1 and {/gfl,=1 such that (4) holds. In the case 0<p=<l1
Duren, Romberg and Shields gave a complete description of (B?)*. Combined with
results on the boundary smoothness of analytic functions that one can read in eg.
[5] this descriptions shows that there is a C=C(p) such that if
i) p~'=N+3J with N non-negative integer and §¢(0, 1]
(ii) there is a g€ H™ such that | g]|=C where

lgl == lglwtsup {g™+D ()| (1 - |2l*~2: z€ U}

then (4) defines a $c(BP)* with [[d]=1.
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The functions that we shall approximate are transforms of measures. For every
finite measure du on [0, 1] we let 2 be defined by

du(x)
1—xz

) HOES

In order to shorten our notations we introduce a special function.

Notation. For a-+1/p=0 and n=1,2, ... welet

&(n, o, p) 1= " exp (—n V2n(e+1/p)).

Theorem 2. Let O<p=o and o+1/p=0. Suppose that du has the property
that Cyw,(x)dx=du(x)=C,w,(x)dx jfor some positive constants Cy and C,.
i) If p~t is not an integer then there is a C=C(a, p) such that

O, (W =C-e(n,a,p), for n=12,...
il) If 1=p=oco then there is a C=C(a, p)=0 such that
G, () =C-e(n,a,p), for n=12,...
iy If O<p<1 then thereis a C=C(a, p)=0 such that
0np(B) = CnP~ D .g(n,a,p) for n=1,2,...

Remark. The parts i) and ii) give a precise description of g, () if 1<p<-ce.
For all p€(0, -] we can at least say

lim (g,,, (D)7 = exp (~z V2@ +1/p)):

The next sections will be devoted to the proof of this theorem. However, we
start already here with some general observations. Returning to (4) we find that if
p and dy satisfy the conditions of the theorem, ®¢(H?)* and if a+f+1/p=>0 then
we have by Fubini’s theorem that

©) W)= [ Gylx) du(x)
where

_ 1 w@e® _
@) Gp(2) 1= 5 Tf - d¢ for |z]<1.

If 1<g<e and —1<—fg<qg—1 then there is a constant C(f, q) such that

® lw-pGyll, = C(B, 9)- | 8-
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This is a generalization of M. Riesz’ inquality given by BaBENKO [3] that can also
be read in [11].

Formula (6) will be central for the proof of the theorem. Let us also remark
that the use of the weights w;, is needed only for handling part i) for p<1. The
proof is simpler when 1<p-<e< and then it is sufficient with =0.

§ 3. Optimal quadrature in H?

Suppose ¢€(1, =) and let du be a positive measure on (—1, 1) such that for
some constant C
©) |/ 1) dute)| = Cl71,
for all functions fc H

We study quadrature formulae of the form

(10) 1) = [0 dut) ~ 3 (@ )+ b (50) = S,(1)

and let the error of the formulae be defined by
€,,q = inf sup | 1(f) - S, ()|

where the sup is over all f in H? with | f],=1 and the inf is over all 4, b,€R,
k=1,...,n, and —l<x;<..<x,<l. Given g and n we say that S,(f) in (10)
is optimal if e, ,=sup {|{I(/)—S,(Nl: I f1,=1}.

The following lemma was proved in a work together with Bosanov [2] in the
special case du=dx using results in BojaNov [4].

Lemma 1. For each q€(1, ) and n=1,2, ..., there exists an optimal quadra-
ture formula. Furthermore,

1) in this formula b,=0 for k=1, ..., n.

ii) for every Blaschke product B,(x):= ﬁ X with —1<xj<..<x,<l it
k=1 1—xpx
holds that
(1) €,,q = SUp {lff(x)Bﬁ(x) d,u(x)l: £, = 1}

Proof. Though the proof in [2] was carried out only for the case du=dx it
holds in the general case as well if we just replace dx by du in the estimates in [2].

Remark. The result that all the b,” s vanish will be fundamental for our estim-
ates for g, ,(A)-



16 J.-E. Andersson

The next lemma gives an estimate for e, , by (11) in the special case that we
are intrested in.

Lemma 2. Let p, g€(1, =) be conjugate exponents, i.e. p~1+q~1=1. Suppose
that f4+1/p=0 and that du is a positive measure with its support on [0, 1] such that
du(x)=(1—-x)*dx for x€[0,1]. Then there is a constant C=C(p,p) such that

en,q = Ce(n, B, p)
for n=1,2, ...
Proof. The proof is a slight modification of a result in [1] for B=0. The
condition f+1/p=>0 guarantees that (9) is fulfilled. For —l<x;<...<x,<1 we
find in (11) by Holder’s and Fejér—Riesz’ inequalities that

(12) €nq = C”WﬁBr?Hp = C"W—rnp : ”WB+rB3“°o

for all r<1/p, the norms being on [0, 1].

In [1] we used a result by GANELIUS [7, p. 142] to see that for every R=>0 there
is a constant C=C(R) such that if 0=$4-r=R then the nodes x, can be choosen
so that on [0, 1]

g+ B2 = Cexp(—nV2n(B+7)).

We take r=(1—n""%/p in (12) and observe that 0=f+r=p+1 at least if » is
large enough. Since V2n(B+r)=V2n(B+1/p)—C(B,p) and |w_,||,=n""*" we find
that

e, =Ce(n,B,p), for n=1,2,..,

with a constant C=C(g, p).

In our investigations of g, ,(f1) we shall also need to know that the nodes
X1, «ees X, that were used in the proof of lemma 2 are essentially optimal for estimat-
ing e, ,. It seems natural to state this result already now.

n

Z_
Lemma 3. Let z,...,2,€U and B,(z):== ][] —*__ Then there is constant
k=1 1— 232

C such that
f (1—x)"|B,(x)| dx = CVn exp (—=VnG+1))

for y=—1 and n=1,2, ....

Proof. This lemma is essentially due to NEWMAN [13] we only have to make
some modifications. For r¢(0.5, 1) we let

w(x) = C, [l/gc-(l -x)]7* for x€(0,r)
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r

where C, is choosen so that f w(x)dx=1. Then using Jensen’s inequality we get
0

1 r
[=x71B,@)] dx = [ (1—x)|B,(0)|(wx)w(x)dx =

(13) Clexp f(log |B, ()| +(y+ 1) log (1 —x)+0.5log x)w(x) dx.

Here we observe that

flog(l Xwx)dx = C,- 2_[’M dx =

) =

1 ] dx =—C,(1+0.5log?(1—7)).

=G fl"g“*x) e+ s

To take care of the rest of the integral we use Newman’s observation that

flo f—w| dt _ =

- BT T2~ 4
for all weU and hence

1 _ —1/2 2

X—Zz X T

Jlog i T =g

for all zc U. The integral in (13) is therefore not smaller than
—~C,[(y+Dlog2(1 —r)-+(r+1)n%.

The definition of C, gives the estimate C,=|ln (1—r)}~%. We now pick r so that
log (1—r)=—n[n(y+1)"1%% Then by our estimates for (13) the lemma follows.

§ 4. Upper estimates for ¢, ,(2)

In order to include the case p<1, p~! non-integer, we make estimates for the
approximation with weights which could be compared to similar results in [15].

Lemma 4. Suppose that p€(l, ) and ¢€(0,0.5). Let B:=N+y where N is
a non-negative integer and y a real number such that y+1/p€(e, 1 —&). Furthermore
we assume that du is a positive measure on (0, 1) such that du=w,dx where a+y+
+1/p=¢. Then there is a constant C=C(a, p, &, N) such that

() = Ce(n, a+p, p)
Jor n=1,2, ...

2 Analysis Mathematica
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Proof. It is enough to consider n>N. Let x,...,x,_5 be the optimal
nodes for quadrature of type (10) at n—N points for H%, p~14-g~1=1, and with
respect to the measure wydp. After letting x,=1 for k=n—N+1,...,n we can
define z6€ C” by z:=(xy, ..., X,)-

We now return to the observations in section 2 and especially to (2) and (6)—(8).
The condition @(r)=0 for r€#(z) gives G,(x;)=0 for k=1, ..., n—N. Applying
the optimal quadrature formula for

P(wpl) = f w_g(x) G (x)wg (x) du(x)
we therefore obtain
14 [DWp) = [W_p Gyl umn,q-

However, it is not immediate that w_,G,€H? since the conditions on f leading
to (8) are fulfilled only if N=0. With our z we find that the function g fulfils

fU-0" wyQg@dl =0 for k=1,..,N.
T
Since

(=27 = 3 (=)A= A=) ()= A=D1 =20

we see in (7) that
Gy(2) = —(~ Z)_NWN(Z)Gﬁ-N(Z)

and hence |w_,Gyl,=lw-,G,ll,. The conditions on y, however, guarantee that
fw_,G,ll,=C(, q)-ligll,=C(y.q). In fact it is possible to replace the constant
C(y, ) by a constant depending only on & and p.

The lemma then follows from (14) and lemma 2 (for the measure w,dp).

We can now proceed with the proof of part i) of theorem 2. The case 1<p=<oo
follows at once from lemma 4 by letting N=y=0. So let us assume that O<p<1
and as before p~1=N+6. Since p~1is not an integer we have 0<d=<1.

For n=1,2, ..., we define

B:=pt—05-n""2=: N+y
where y=38—0.5—n""2 Let s be the conjugate exponent of 2/p, i.e. s=(1—0.5p)"™.
For each n we pick an r€Z, so that [(Z—r)wyl,=2¢,,.(4, f). With the notation
h=fi—r we find by Holder’s inequality and lemma 4 that

1112 = [wp,ls [ hwslg = Cn'®(2,,2(8, Py = Cn'exp (—np V2n(a+B+1/2)).
Hence we get
an,p () = Ce(n, o, p)

with C=C(a, p). This concludes the proof of part i) of theorem 2.
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§ 5. Lower estimates for o, ,(/)

We start with part i) of theorem 2, i.e. estimates for 1=p=e. Let
z=(z,, ..., )€ U" be given. We denote by B, the Blaschke product

— d Z—2Z
Bn(z) A k]=]]-. I—EkZ

and by B, the product B,(z):=B,(z). In what follows we let g be the conjugate
exponent of p. For each »n we define a function g by

g(2) :== C,- 2(1—2)~*B,(2) B,(2)
where s=¢g~'—n~"2 The constant C; is choosen so that | g[,=1. Since
”g“q = Cs"W—s“q = Cs' Cn1/2q

with C=C(g) we find that C;=C~1n~"%,
We now define a linear functional @ on H? by

8(f) =5 [FOEOTL.

Then [[®]=]gll,=1 and for z¢U it holds that

é(z) == o((1-(-)2)™) = g(2).
Consequently @(r)=0 for each r€ Z(z). We also see that

1

o) = [ g(x)du(x).

1]
By Lemma 3 we get

() = C,-CYnexp(—nyQ2n+1)(ea—s+1) = Cn® exp(—nV2n(x+1/p))

with C=C(a, p). Hence g¢,(f, 2)=C(a,p)e(n, o, p) for all zeU” and and con-
sequently part ii) of the theorem follows.

When O<p=<1 it is possible for the approximating rational functions to have
poles also on 7. But for each n we can pick zcU" so that g,(f, 2)=2¢,, ,(D).
Therefore we can assume z€U”™ when we prove the estimate from below. The
proof is somewhat more complicated than for 1=p=< and we need an auxiliary
function. Let for y€(0.5, 1) the function ¢=¢, be defined for z4[1, <) by

@(2) :=[1-(1-2))[1+(1—-2)"].

This ¢ defines a conformal mapping w=¢(z) of the sector —zn(2y)l<arg(l—z)<
<n(2y)~! onto |w|<l1.

2%
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Let z be as above. We define a point weU" by w,=¢(z,), k=1, ...,n, and
Blaschke products B,, B, by

B,(w) := kil—vi—_%:"v and B,(w):= B,().
Moreover, for each n we define g by
g(2) = C,0(2)(1-¢(2)) B,(¢(2) B, (¢ (2)
where yli=1+2(nVn)™, s:=(p~'—1)y~! and Co=n""?2 With this C, we
shall show that there is a constant C=C(p) such that
(15) g+l V @)1 —|z)~? = C

for all z¢U. From section 2 we know that this means that
o(f) = lim [f0DIg@d
T
defines a linear functional on B? with | @] =C(p). As above we find that &(r)=0
for r€ Z(z) and with Y:=¢~!

1 1

o) = [ g()dut) = [ g(®)duoy(t) =

0 0
1
=C, [ (1= (1—y @)y ()|B, (D)1 dr.
0

For  we have the estimates C=(1 -y ())(1—-)"""=C~and ¥ ()=C(1—1)-1*
for all t€(0,1) and some constant C=0. Consequently

1
() = C,- C [ (L—ty+er=241|B (1)2¢ dt
1]

and by lemma 3 and the definition of C;
B(f) = CnWD=020) . gl exp (— 1 Y 2n(s+(a+ 1)fy)) =
= Cn'~ @2 exp (= V2n(x+1/p)).

As in the previous case this gives the estimate for g, ,(£).

In order to finish the proof it remains to show the estimate (15). It is obvious
that | gll.=2"? so we can concentrate on g+,

Let I be the boundary of the intersection of the disc |z]<2 and the sector
@~Y(U). It consists of a part of the circle |z]=2 that we denote by I'; and the union
I, of two segments. Observe that |p({)|=1 for { on and inside I". Hence for |z]<1
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we get

lg(N+1)(Z)| = CzsN! f Il_(P(C)|s |d¢).

[{—z|{N+?
We first observe that

j —0OF |4 < 2541y,

|N+2
For (eI, and zcU the inequality |{—z|=[1-{|sine is valid with &:=

i=n(y~1=1)2=n"Y% Moreover |1—@({)|=2|1-(]* for {€l;. These estimates
yield

1— .
f (PI(IQL |d¢| = 2° f II LI’Ilv_,_z dl] = 2° (s1n g) rflC“ZPS_N_2 ).

Note that ys—N —2=06—3 so that the whole expression can be estimated by
CnM?-Y/2(1 —(2])°~2, Our choice of C, therefore gives |g™+V(z)|=C (1 —|z[)’-2
where C=C(p) and consequently also (15).

Thereby theorem 2 is proved.

§ 6. Approximation of (1 —2)*

To be able to apply the preceding results to the problem of approximating
(1—2z2)* we have to represent it as a Markov—Stieltjes function. A standard use of
Cauchy’s integral formula gives for zeU

(I_Z)‘Z:__smmx f (t—l) t+_l_f(l:i) &

2ni J
where I' is the circle [{|=
We define a measure du by du(x):=w(x)dx with

(1—x)*x—*"1 for x¢[0.5,1]
w(x) == {
2 for x¢€]0, 0.5],

Then we have for z¢U that
(16) a(l —2z)* = sinze - fi(2)+g(2)

where g is analytic in |z|<2. We can get an estimate for ¢, ,((1—z)) from theorem 2
if we can show that the function g is not significant for the order of approximation
of (1—2z)* This will be a consequence of the following lemma.
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Lemma 5. Suppose that for f,gcH” there are positive constants a, b, c, A, B
such that

) Al <g(f) ke <4 for k=12,...
i) ¢,(g) < Be—™ for m=12,...

If 0,(f+8)=0 forevery n=1,2, ..., then there is a constant C such that

p s Ct=g,(f+9e.(f)=C
or n=1, 2, ....

Proof. Because of the condition ¢,(f+g)=>0 it is enough to show that lim sup
and lim inf of ¢,(f+g)/e.(f) are positive numbers.
For all natural numbers k and m it holds that

an Ok+2m() = 0n(8) = Opsnm(f+8) = (N +0a(2)

To each n we pick m so that g, (g)<g.,(f). Because of i) and ii) this can be done
with m such m=dyn for some d independent of n. Then we let k:=n—m. We
may assume that k=1 and we observe that —d= Vntm —Yn=d. From i) it
follows that limsup g,_,.(f)/e,(f) is finite and that liminf g, ,(/)/e.(f) is
positive. Since moreover lim sup ¢,,(g)/¢,(f)=0 the desired properties for lim sup
and lim inf of ¢,(f+g)/e.(f) follows from (17).

With f:=sinza- /i and g as in (16) the conditions of the lemma are satisfied
if & is not an integer. Hence we have the following consequence of theorem 2.

Theorem 3. For l<p<oco and o= —1/p there are constants B=B(a, p)=0,
C=C(a, p) such that

Blsinan|e(n, o, p) = 0,,,((1—2)%) = Ce(n, o, p)
for n=1,2, ...

7. Approximation of x* on [0, 1]

Except for the introduction we have only considered approximation in HP.
We shall, hovever, finish by giving a proof of the upper estimate in theorem 1. This
estimate will follow in the same way as for ¢, ,((1—2)%) as soon as we have proved
the following counterpart of theorem 2. For f¢L?P=L”[0, 1] we here use the no-
tation

-Rn,p(f) :=inf {”f'—rnp' re'%n}'

Theorem 4. Let 1<p<o and a=>—1/p. Suppose the measure dp on (0, 1)
SJulfils A 7w dx=du=Aw,dx for some constant A. Then there are constants B=
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=B(x, p)>0 and C=C(a, p) such that

B=R, () -n~YVPexp(2nVn(@+1/p) = C
for n=1,2, ....

Proof. In analogy with the H?-case we let
R,(#,2) = inf {|f—r]: reR(@)

for each z€C" such that #Z(z)SL”. As in section 2 we have

R,(p,7) = sup| [ 4(1) g(1)

with the sup over all g€L? (where p~*+g~'=1) such that lel,=1 and
1
[ r(®g(®)dt=0 for all re#(z). We observe that

]

1 1
[ 2@e@dt = [ G(x)dpx)
where ’ ’

6= [ 1g£2z

0

dt, z¢[l, =).

The function G is analytic in particular in the domain D bounded by [1, 2] and the
circle [z|=2. Let ¢ be the conformal mapping of |w|<1 onto D normalized by
¢(0)=0 and ¢’(0)=0. It follows by the inequalities of M. Riesz and Fejér—Riesz
that H=Gog-(¢’)"/* belongs to H? and that there is a constant C(gq) such that

17, = C(glel,

The symmetry gives that ¢ maps [0, 1) onto [0, 1) so that

(18) [ 6@ dutx = [H@av()

where dv is the positive measure defined by dv(r):=(¢’(¢))~"duoe(r). On [0, 1)
the mapping ¢ has the properties

a) Cl~P=1—0() =C|l—13,
b) Cll—t =¢'(H) = Cll—{
for some constant C. Our conditions on du therefore imply that

dv(t) = C(1 —nxtur gy
for some C.
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We now proceed as in section 2. Let w=(wy, ..., w,) be the optimal nodes for
quadrature with respect to dv in H? and let z:=(zy, ..., 2z,) with z;:=@(w), k=

1
=1, ..., n. Observe that if fr(t)g(z‘)dt=0 for all re#Z(z) then H(w,)=0, k=

0
=1, ...,n. When we apply the optimal quadrature formula to (18) we therefore
get by lemma 2 that
R, (8, 7) = Ce(n, 20+ 1/p, p).

This gives the estimate from above in the theorem.

To obtain the estimate from below we could proceed as in section 5 but instead

we have choosen to use the results of that section. Unfortunately we need to intro-

duce another conformal map. Let ¥ be the mapping of |w|>1 onto the complement

of [0, 1] such that ¥(«)=c and ¥’(e=)>0. Then we define a linear transformation
S: L?[0, 1]-H? by

1 fo¥P(u)- ¥ (w)'?
Sf(w) 1= 5— Tf d

u, for |wj<1.
U—w

By M. Riesz’ inequality there isa C=C(p) such that ||Sf||,=C| f|l, if l<p<ee.
Moreover a simple calculus of residues gives S(%,NLP)=2%,NH?. Consequently
2, p(Sf) = CR,,,(f)

for each feL?[0,1]. With f=j we find that
1
sey _ [ ()

0

where this time dv(u)=(¥’(1/w))~Y9u¥ (1/u)du(1/¥(1/u)). The function ¥ has
properties of the same type as ¢ above so for dv we have

dv(u) = C(1—u)*+1P dy

for some C. But this means that

0n,p(S0) = Be(n, 2a+4-1/p, p)

by theorem 2. Hence the wanted estimate follows.
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Pamronaanran annpoxcumamist GyHKuuii Tana x* B HATErpajbHRIX HOpMax

SIH-2PUK AHIOEPCCOH

OcroprO# pe3ynbTaT paboTH KacaeTcsa MOPANKOB PaUdOHANBHEIX npubmmkennit 8 H? dynx-
1 Tana MapkoBa—CTHIITEECA ¢ HEKOTOPBIMH ClICLaNbHBIME YCIOBHSAME Ha Meprl. Kak crencr-
Bue, MONIYUCHO pacOpOCTPAHEHNE HA CIyYail HPPALMOHAILHEIX IOKA3ATENeH o TEX ONECHOK MOPAIKE

palOHANBHBIX NpuOmkenHmi dyHkumit x* 8 L7[0, 1], 1<p< e, XOTOpHIE panee GLLIHA W3BECTHEI
I pPAallHOHANBHEIX O-
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