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Abstract. It is demonstrated that the longitudinal spectral coherence differs significantly from the 
transversal spectral coherence in its dependence on displacement and frequency, An expression for the 
longitudinal coherence is derived and it is shown how the scale of turbulence, the displacement between 
observation sites and the turbulence intensity influence the results. The limitations of the theory are 
discussed. 

1. Introduction 

Spectral coherence as defined in Lumley and Panofsky (1964) and discussed in detail 
by Pielke and Panofsky (1970), Ropelewski  et al. (1973), Panofsky et aL (1974) and 

Panofsky and Mizuno (1975) is a commonly  used statistical description of the 
t ime-space behaviour  of turbulent velocity components.  In the paper  by Pielke and 
Panofsky it is suggested that the coherence has the form 

coh (n) = exp ( - a ~  -D ) (1) 

for transverse as well as longitudinal displacements with respect to the mean wind 
direction. In (1) n is the frequency in Hz, U the mean wind speed in m sec 1 D the 

displacement in m and a is a dimensionless 'decay pa ramete r '  of the order  10 
(Panofsky, 1973). The idea that the coherence should have this form was 

suggested by Davenpor t  (1961) in an analysis of data from vertically displaced 

cup anemometers .  It seems plausible to assume that the coherence has the same 
behaviour  for lateral displacements. 

The longitudinal coherence,  however,  should be expected to behave differently 

because of the finite travel time of the eddies f rom one anemomete r  to the other. In 
this connection, it is worth mentioning that a straightforward application of Taylor 's  
hypothesis to the longitudinal space-t ime autocorrelat ion function implies that 
longitudinal coherence is unity. Ropelewski et al. (1973) introduced the concept 
'eddy turnover t ime'  ~" to describe 'eddy decay'  in a semiqualitative way. Panofsky 

and Mizuno (1975) suggested a correction for wind direction fluctuations that 
effectively decreased the value of ~-. This idea was modified by Perry etal. (1978) with 
the effect that the influence of wind direction fluctuations is enhanced. In all cases an 
expression of the form (1) was derived. 

In the present  paper,  these ideas are extended in order  to deduce an alternative 
expression based on a change in the assumptions about  z and also to demonstra te  
how tile scale l and the r.m.s, velocity cr of the turbulence affect the expression for the 
longitudinal coherence. 
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2. The Model 

Consider an eddy of size h travelling with the mean wind speed U from station 1 to 
station 2, displaced a distance D along the mean wind. An illustration of the situation 
is given in Figure 1. 
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Illustration of the model geometry. The two stations are symbolized by cup anemometers. 

The frequency n associated with eddies of size A is given by 

n ~ u / ; t ,  (2)  

since an eddy can be considered as a 'wave packet' with wavenumbers concentrated 

at 2rr/h (Tennekes and Lumley, 1972). 
The present model considers an eddy as an entity with a certain mean lifetime rx. 

Since eddies of size h are most active in the eddy destruction (self destruction), we 

assume that 

r, ,  ~ ( B ( A ) / A )  - 1 / 2  , (3)  

where B (h) is the turbulent kinetic energy per unit wavelength. This energy density is 
related to the energy spectrum as defined by Lumley and Panofsky (1964) by 

2 rr E f  2 rr" ~ B(A) = ~--~ \ T , / .  (4) 

The total turbulent kinetic energy 0"2/2 is given by 

e~ 0(3 

0 "2  

0 0 

In the inertial subrange, B(X) is determined entirely by h and the rate of 
dissipation e of turbulent kinetic energy, so that we can write 

B ( h )  - e 2/3;t - 1/3 (6)  

In this case ra is given by 

T h ~ E - 1 / 3 / ~ 2 / 3  , (7) 
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Expressing balance between the rate of production of turbulent kinetic energy and 
e by 

e ~ c r 3 / l  (8) 

where l is the scale of the turbulence, we can rewrite (7) as 

"rx ~ l l / 3 A  2/3/O" • (9) 

Expression (6) is valid only in the inertial subrange, where 

A < I. (10) 

When A is larger than l, B(A) is directly dependent  on I. Assuming that no other 
length scale enters, we can generalize (6) by writing 

B ( A )  ~ E 2 / 3 A - l / 3 g ( l / A )  (11) 

where g( l /A)  is a dimensionless function of the parameter  l/A. 
Similarly, the expression for ra becomes 

'rx ~ ( /1 /3A 2~3lot)g-I~2 ( l /A) .  (12) 

Suppose that an eddy is observed at station 1. Whether  it is observed at station 2 is 
determined by the probability that it does not decay en route and that it 'hits the 
target'  at station 2. The square of the ratio of the number of eddies observed at both 
station 1 and station 2 to the total number observed at station 1 is identified as the 
coherence at frequency n. 

Since the time t of travel from station 1 to station 2 is D / U  the probability PI that 
an eddy does not decay during the transport from station 1 to station 2 is hy- 
pothesized to be 

Pt  - exp ( - D / ( U r x ) ) .  (13) 

The exponential form (13) is an obvious analogy to the decay of radioactive particles. 
The probability that the eddy is observed at station 2 must depend on its size A and 

the amount  of transversal turbulent diffusion during the travel between the two 
stations. The variance ~r~ of the lateral distance from station 2 to the center of the 
eddy, when it has travelled the distance D from station 1, is 

D/U D/U 

o't = dt'  dt" (vt(t')v,(t")) , (14) 

0 0 

where vt is the transversal Lagrangian velocity of the eddy and brackets denote 
ensemble averaging. We assume that vt is stationary and consequently (14) can be 
reduced to a single integral. 

D/U 

o't - -~]OL(~ ' )  d r .  (15) 

0 
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The function Oz.(r) is the Langrangian autocorrelation function. In order to reduce 
the number of parameters,  we have assumed that the variance of vt is equal to o -2. For 
values of D / U  large compared to the Lagrangian time scale TL, the integral can be 
set equal to TL. Since this time scale is also the 'eddy turnover time' rz for eddies of 
size l, we have according to (9) 

D ~  U 

j (1-~-U' / )pL(r )dr  

o 

co 

f pc(r) dr  = TL ~ r t  ~ l/cr. 
0 

(16) 

In the other limit, D / U  << TL, the integral is approximately equal to (D/U)/2. 
Consequently we approximate o -2 by 

2 D 2  o" D 
I (  °"~ for - - - - ~ 1  

2 I \U ]  U l 
O" t 

~rD 
| ° ' D l  for - - - - / >  1. / u  u l  

(17) 

The probability P2 that an eddy of size A is observed at station 2 is the chance that it 
will pass station 2 within the distance A ; on the assumption of axisymmetric Gaussian 

transversal diffusion we find 

h 27  

i I rj2ot, P2 = r dr dO exp ( -  2 2 
2~rcr~ = 

0 0 

A 

= I exp (-r2/2cr2)r dr~or 2 = 1 - e x p  ( - A 2 / 2 o - 2 ) .  

0 

(18) 

Combining (13) and (18) and keeping in mind that the coherence is the square of a 
relative frequency, we arrive at the expression 

coh (/l) 2 2 2 2 = P1P2 = exp ( -  2D/U~'a) x (1 - exp ( - a /20-t ) )2  (19) 

By application of (2), (12) and (17) to (19), the expression for the coherence can be 

written 

I ( 1 - e x p  (-(2ae(nl/u)a)-l)) 2 for a ~ 1 

coh (n) = exp ( -2o~G(nl /U) )  × (20) 
~ ( 1 - e x p  ( -  (2a(nl/U)2)-l)) 2 for a />  1 
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where the function G(~) is given by 

G(~) ~ ~2/3gl/2 (~) 

and 

149 

(21) 

c r D  
= - -  - -  (22) 

U l  

In the inertial subrange 
g(~:) = 1 (23) 

according to (6) and (11). 
For a >> I, a model of homogeneous turbulence (Batchelor, 1953) predicts that 

B ( a )  ~ 0"215A - 6  (24) 

in which case 

g(~:) = ~:17/3 (25) 

and 

G(~:) ~ ~ e7/2 . (26) 

If G(~) can be written generally in a power-law form as 

O ( ~ : ) - ~ " ,  (27) 

where /z  is a slowly varying function of ~c, then the coherence becomes 

I (1 - e x p  (-(2a2~c2)-1)) 2 for a ~< 1 

coh (n) = exp ( -  2as e~') (28) 
~(1 - e x p  ( -  (2a(2)-1)) 2 for a ~> 1 

As seen above, we expect that 2 /3  ~< tz ~< 7/2.  
Kaimal et al. (1972) have given a semiempirical expression for the one-dimen- 

sional, longitudinal energy spectrum for neutral lapse rates. Assuming isotropy we 
can derive an expression for B (a) (B atchelor, 1953). The function G (s e) is in this case 
given by 

G (s ~) = (33) -2/3 (33~:)2(33~ + 3/11)1/2 
(33~ + 1) 11/6 (29) 

Figure 2 shows how G(s c) in (29) behaves as a function of s c = l/2t = n l / U .  The 
coherence is shown for three values of oe in Figure 3. 

3. Discussion and Concluding Remarks 

It is useful to review the conditions and assumptions used to derive (20). First of all, it 
was assumed that the decay part is an exponential function of the time of travel t 
divided by an eddy lifetime. Ropelewski etal .  (1973) made the same assumption, but 
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Fig. 2. The function G in neutral conditions, assuming a semi-empirical longitudinal spectrum of Kaimal 
et al. (1972) and isotropy for .~ <0.01 L The full line shows log (G(UX)) as a function of log (//)t). The 
dashed line represents G(I/it )/(//it)2/3 as a function of log (l/it). Note that the slope is approximately 1 for 
nl/U =//it ~0.1 and that it approaches its limiting value 2/3 as//it approaches infinity. For practical 

purposes the slope is equal to 2/3 for it < L 

they assumed that the lifetime is determined by A and the r.m.s, turbulent velocity. 
Instead of (3), they assumed that rx - A / o "  -M-1/3e-1 /3 ,  which in the present  model 

is true only for a limited range of )t. The frequency associated with the turbulent 
eddies is assumed to be U / A  in their model  also. The argument  in the exponential  
function thus becomes 

or D nl  cr n D  
(30) 

u l u = u u 

and they obtain the same analytical form for the longitudinal coherence as for 
transversal coherence. This is consistent with the experimental  findings of Perry et al. 

(1978), f rom which they concluded that the longitudinal coherence is given by (1) 
with a of the order  4-6,  depending somewhat  on the intensity of the turbulence and 
its scale. 

The model  described in the preceding section is similar to the model of Perry et al. 

(1978) in the sense that the coherence decay is at tr ibuted to the effect of destruction 
and lateral diffusion of eddies. Here  the similarity stops. The present  model  deviates 
f rom their model in several ways. The most significant difference probably lies in the 
ways the models account for coherence loss due to eddy destruction. Perry et al. 
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Fig. 3. The longitudinal coherence as function of the dimensionless frequency nt/U for three values of a. 
The full lines represent (20) with G given by (29). The dashed lines show the coherence, if the effect of 

lateral diffusion is neglected. 

(1978) assume that this loss is of the form exp ( - c  • ~rw/U" D / l  •nl /  U), trw being 
the r.m.s, vertical velocity component.  Here  a more general frequency dependence is 
derived, namely exp ( - 2 .  t r /U • D / l  • G(nl /U)) .  The function G depends on the 
form of the turbulent energy spectrum. Unfortunately it is not possible on the basis of 
the data taken by Perry et al. (1978) to determine whether or not this generalization 
is justified. This is so because according to Figure 2 these data are taken in a range 
where we expect G(n l /U)  ~ nl/U. For larger values of the dimensionless frequency 
nl/U, we should expect G ( n l / U ) ~  (nl /U) a/3. Mizuno (1976) measured the longi- 
tudinal coherence at a height of 200--400 m by means of two tethered balloons. 
Presumably the condition rill U > 1 was fulfilled, but he gives no information about l 
(neither directly nor indirectly by reporting the depth of the boundary layer (see 
Kaimal et al., 1976)). Consequently it becomes difficult to draw definite conclusions 
from this work. 

The present model accounts for the coherence loss due to lateral diffusion by the 
square of the probability/)2 that the eddy does not miss target at station 2.  In this 
picture the analytical form (18) for P2 is derived. The parameter  a = o ' / U .  D / l  
determines how rapidly the coherence decreases with the dimensionless frequency 
nil U. Perry et al. (1978) assume that the lateral wind direction fluctuations are 
responsible for a coherence loss of the form exp ( - C .  o'~/U. D / L y .  n D / U )  
- e x p ( - C  • cr, /U • (D/Ly) 2. nLy/U).  Here  cry and Ly are the r.m.s, lateral velocity 
and the scale of the lateral turbulence. We see that not only is their analytical 
expression for diffusion coherence loss different from the present one, but.it also has 
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another key parameter. Even if we assume that l - L y ,  we see that their key 
parameter is o-~/ U . (D / l )  2. 

To decide whether the approach described in this paper is correct and fruitful, it 

seems necessary to perform carefully designed experiments and to initiate additional 

theoretical investigations. In particular, the assumption that eddies decay spon- 

taneously in analogy to radioactive particles may not be a good model. Strictly 

speaking, the similarity considerations can only establish that P1 is a universal 

function of o - / U .  D / t .  G ( n l / U ) .  The specific functional behaviour should be 

verified on the basis of the formal definition of spectral coherence (Lumley and 

Panofsky, 1964). Relevant discussions by Comte-Bellot and Corrsin (1971) and 

Tennekes (1975) will probably prove helpful in further pursuit of these ideas. 

It seems to be demonstrated - at least qualitatively - that longitudinal coherence 

behaves differently with the frequency than does the transversal coherence, and it is 

consequently difficult to develop a model for coherence that is neither transversal nor 

longitudinal. Before this is done it will probably be difficult to interpret experimental 

results, except when the mean wind direction is either perpendicular to or parallel 

with the line between measuring points. 
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