
J. For. Res. 2 : 237 - 242  (1997) 

Analysis of the Relationship between DBH and Crown Projection Area Using a 
New Model 
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Relations of DBH-crown projection area (CPA) were studied for deciduous and coniferous trees with different models, one of which 
is newly derived this time. For DBH-CPA relations, a proposed power-sigmoid function was the most suitable one among four mod- 
els because of its good fit and mechanistic meaning. This model contains the feature that CPA grows with the second power rela- 
tion to DBH, and the increasing rate of CPA slows as DBH increases. With transformation, the power-sigmoid function for DBH 
CPA relation can be applied for individual basal area (IBA)-CPA relations as single-saturate function, and these two functional mod- 
els have high compatibility. Next, the differences of DBH-CPA between deciduous and coniferous tree groups were analyzed with 
power-sigmoid function. The initial increasing rates of CPA against DBH for each group were similar, though the CPA's increas- 
ing rate for the coniferous group tended to decrease earlier than for the deciduous group. Because the power sigmoid function has 
mechanistic meanings, one can separately analyze the attributes of the DBH-CPA relation: the initial increasing rate of CPA and 
final tree form. 

Key words: crown projection area, DBH, mathematical model, power sigmoid function, tree form 

In order to understand forest structure, competition and 
production, it is useful to know the crown-projection area 
(CPA) of trees. In a patch which is recovering from gap 
formation, for example, it is useful to know when individual 

trees begin to compete with neighboring trees, and the size of 
the tree at that time. In such patches, light competition usually 
will not occur until the total CPA of cohort trees in the patch 
exceed the patch area, because there is no overlap of CPA in 

these situations. 
It is important to know when trees cause canopy closure in 

studies of patch dynamics of trees. It is also useful aid for for- 

est-management practices, such as thinning, for estimating the 
critical size that will be affected by self-thinning. Furthermore, 
if we can easily estimate the CPA from the DBH of trees in a 
stand, appropriate tree density can be obtained by comparing 
the total of CPA in a stand and the stand area. 

Thus, the estimation of CPA from their tree size is impor- 
tant on both forest ecology and silviculture. So, what kind of 
measurement should we do? If it is easy to estimate the indi- 
vidual basal area (IBA) of a tree, estimating the CPA using the 
IBA of a tree as a size index may be easy to do, because we 
can visualize the simple proportional relation between CPA 
and IBA. But actually, it is difficult to estimate IBA directly 
in fieldwork. Diameter at breast height (DBH) is the only 

index that we can directly measure with ease. Furthermore, 
we usually have many data sets which include the DBH- 
class distribution in forest management. With these reasons, 
using DBH as an index of tree size may be useful for describ- 
ing the CPA and tree size relationship. 

There have been many studies of the DBH-crown width 
(CW) relationship (Krajicek et al., 1961; Curtin, 1964, 1970; 
Curtis, 1970; Curtis and Reukema, 1970; Arney, 1973; Strub, 

et al., 1975; Zarnovican, 1982; Paine and Hann, 1982; Leech, 
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1984; Tabbush and White, 1988; Farr et al., 1989; Smith et al., 
1992; Larocque and Marshall, 1994), but studies about D B H -  
CPA relations are scarce (Krajicek et at., 1961). In this 

paper, I will present DBH-CPA relationships that can be 
easily measured in the field. Specifically this paper searches 
for a reasonable model to describe the D BH - C P A  relation. 

The character and efficiency of various functional models 
will be presented and discussed. In addition, a new functional 
model will be presented specifically for D B H - C P A  rela- 

tions. To show the usefulness of the new model, another 

functional model for IBA-CPA relationships will be devel- 
oped, derived from the new function for the DBH-CPA rela- 
tion. 

Another objective of this paper is to evaluate the difference 
of tree forms between deciduous broadleaved and coniferous 
tree groups, using the new model for D BH - C P A  relation. 
These two groups were suitable for comparison, because 
these two groups have clearly different characteristics. 

Materials and Methods 
1 Materials 

The data set was selected from natural deciduous broadleaved 
and coniferous forests from Tatewaki et al. (1966). These data 
were samples of natural deciduous broadleaved and conifer- 

ous forests in the cool-temperate zone in the Nikko area, 
central Japan. The data were collected by the patch-sampling 
method, which was suitable for my analysis. Because the 
method usually samples cohorts, which contain almost the 
same species and sizes, triggered by gap formation, the trees 

in a cohort are usually in light competition, and these data are 
desirable for tree-form analysis. Furthermore, because of 
the small plot size, such data will not be influenced by the 

topography of study site, which sometimes causes different 
tree forms. 

The species were classified into two groups: deciduous 
broadleaved and coniferous trees. The deciduous group has 
six species and 247 individuals: Fagus  crenata,  Quercus  
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crispula, Uhnus propinqua, Prunus ssiori, Betula platyphyl- 
la var. japonica and Fraxinus mandshurica vat. japonica. 
The coniferous group has six species and 596 individuals: 
Abies veitchii, Abies mariesii, Tsuga diversifolia, Picea jezoen- 
sis van hondoensis, Pinus parviflora and Abies homolepos. 
2 Methods 

The following models were used to estimate DBH-CPA 
relations: linear, second power, logistic and power-sigmoid 
models. 
1) Linear functional model: 

CPA = a DBH (1) 
where a is a proportional constant. When a tree grows, CPA 
will also grow. In this linear functional model, DBH is used 
as a size index. As a result, it is assumed that CPA increases 
in simple proportion to the increase in DBH. The intercept of 
this function should be zero because CPA must be zero when 
DBH is zero. 
2) Second power functional model: 

CPA = a DBH 2 (2) 

where a is a constant. IBA is an index of size, because it is 
proportional to DBH 2. 
3) Logistic functional model: 

CPA : CPAmax/(1 + (CPAmax/no - 1)/exp (r DBH)) 
(3) 

where CPAmax is a constant which CPA can never exceed, r is 
the rate increase when CPA is the smallest, and no is the 
smallest value of CPA. It is assumed that the rate of increase 
of CPA will slow when DBH is sufficiently large because of 
competition, though CPA will increase exponentially as DBH 
does. Here no = 1, because the value no should be the small- 
est natural number, r and CPAmax are found from data fitting. 
4) Power-sigmoid functional model: 

CPA = CPAmax --  1/exp 
((a DBH / - -  CPAmax In CPAmax)/CPAmax) (4) 

As in the logistic functional model, it was assumed that the 
increasing rate of CPA will slow down when DBH is suffi- 
ciently large. However, the power-sigmoid function has a 
power relation between DBH and CPA when the values are 
small enough, while the logistic function is exponential. As 
mentioned above, this power relation indicates that CPA is 
proportional to IBA, which is proportional to the square of 
DBH. 

While other models are well known, this is the first time the 
power-sigmoid function has been used in this application. 
If a tree has no competition from neighboring trees, the crown 
diameter will grow with the linear relation to its stem diame- 
ter (Krajicek et al., 1961; Curtin, 1964, 1970; Curtis and 
Reukema, 1970; Strub et al., 1975; Zamovican, 1981; Tabbush 
and White, 1988; Smith et al., 1992). Therefore, when it is 
small enough, the crown area will increase in proportion to the 
square of  DBH as follows: 

y : ax 2 (5) 

where y is the crown projection area, x is stem DBH, and a i~ 
a positive constant. 

This function can be transformed as follows: 
dy/dx = 2ax (6) 

As the tree ga'ows, the rate of increase of the crown area will 
slow because of competition with neighboring trees. However, 
the stem will continue growing until the tree dies (Shinozaki 
et al., 1964a). Consequently, the crown area may converge to 
a constant value if stem diameter increases sufficiently. The 
convergence of  crown area to larger stem sizes can be 
described as follows: 

dyldx 2ax( l Y/ymax) (7) 
where, 3'max is a constant and maximum value of  a crown 
projection area. 

When 3' is small enough, it will increase in proportion to the 
square of x. When y is close to )'max, it no longer increases, 
and becomes constant. This equation is solved as follows: 

y : y~nax --  1/exp(ax2/ymax + c) (8) 
where, c is an integral constant. Supposing y = 0 when x = 0, 
the Eq. (8) is altered as follows: 

y : .)'max -- llexp((ax 2 - ymax In ymax)/ymax) (9) 
Figure 1 shows the loci of Eq. (9) with various parameters. 

Since the locus of this function forms a sigmoid curve, it is 
like the logistic function, although the function derived in this 
study has a power function in its early stage, and the logistic 
function is exponential in its early stage. From these char- 
acteristics,  the derived function can be called the "power- 
sigmoid function." The power-sigmoid function is widely 
applicable to elements with an obvious power relationship 
between two terms such as stem DBH and the crown projec- 
tion area. 

The least squares method is used for model fitting with the 
Newton method. 

Results 
Figure 2 shows scattered diagrams that fit each D B H -  

CPA model. Residual variances are shown on Table 1. 
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Fig. 1 Loci of the power-sigmoid function with various parameters 
(at >a2 >a3, ymaxl >ymax2 >ymax3). 



Shimano 239 

c~ 

0 

C" 
0 ~ 

0 0 
~t 
t- 
o f 

300 

250 

200 

150 
I00[ 

50 

100 
50 
Oi 

Liner 
o 

Deciduous o ~ o 

o o Oo o o  ::OoS / 
o j - ,  

o ~ 

Con i fer ous 
OCgD 

o ' 

logist ic 
o 

~ o ~  

o o o o 

o O ~ ~  

0020 
~'" 

20 40 60 80 100 120 140 

DBH 

Second power / 

power-slgmoid 
o ooj 

o ~ ~ / 
QO O O 

~ u ~ ' ~ ,  ~ , 

~ o  c~  

2o 40 60 so ,00,20,40 

(cm) 

Fig. 2 DBH-CPA relations of deciduous broadleaved and coniferous 
trees with various models. 

The residual variance of power-sigmoid-function model of 
the DB H- C P A  relation is less than all other models for both 
deciduous broadleaved and coniferous trees. The second 
model is another power function. On the other hand, variances 
of linear and logistic models are large, suggesting that they do 
not fit well. The parameters found by the least squares 
method are shown in Table 2. 

Figure 3 shows the relations between actual (observed) 

Table 1 Residual vmiances and multiple correlation coefficients (R) for 
each functional models. 

Residual variance 

Linear Second Logistic Power 
power sigmoid 

Deciduous trees 639.4 482.9 723.9 428.2 
Coniferous trees 92.3 96.6 79.4 70.0 

R (multiple correlation coefficient) 

Linear Second Power 
power Logistic sigmoid 

Deciduous trees 0.909 0.935 0.901 0.934 
Coniferous trees 0.860 0.855 0.861 0.876 

Table 2 Parameters of each models. 

Second Power Linear Logistic power sigmoid 

Equation (1) (2) (3) (4) 
Parameter a a CPAma• r CPAma• a 
Deciduous 

trees 1.511 0.019 214.0 0.077 482.3 0.024 
Coniferous 

trees 0.699 0.014 62.0 0.099 95.6 0.021 

CPA and an estimated one. On this figure, when the estimated 
value of CPA is similar to the observed one, the dots lie on a 
straight line with an inclination of 45 degrees. Table 1 shows 
the correlation coefficient "R" that represent the fit between 
actual and estimated CPA. The fits of the second power 
function and the power-sigmoid function on the DBH -CP A 
relation are higher than those of the two other functions. For 
coniferous trees, the power-sigmoid functional model has 
the best fit. 

In the coniferous data (Fig. 2), the largest two points of 
DBH did not con'espond with other points, though these two 
points were from natural forests. Therefore, the fit of each 
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Fig. 3 Relations between CPA and the estimated on for deciduous broadleaved and coniferous trees fiom DBH-CPA analysis. 
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Table 3 Residual variances and multiple con'elation coefficients (R) for 
each functional models in coniferous date without larger two points in 
DBH. 

Linear Second Logistic Power 
power sigmoid 

Residual variance 91.5 74.2 77.5 67.7 
R 0.857 0.879 0.859 0.876 

function was examined without these two points. In this 
case, the power-sigmoid function had the best fit (Table 3). 

Discussion 
Shinozaki et al. (1964a, b) and Kira (1965) hypothesized 

that there was a proportional relation between leaf amount and 
non-photosynthetic tissue, called the pipe-model theory. This 
theory holds that in order to maintain and sustain a quantity of 
leaves, pipes with proportional cross-section areas are need- 
ed, and the pipes should lead to the ground (Kira, 1965). 
Shinozaki et al. (1964a) called this "the unit-pipe system," and 
showed that an individual plant is a unit-pipe system. Accord- 
ing to this concept, an increase of leaf quantity should be pro- 
portional to the IBA of the tree trunk. This relation is the sec- 
ond power relation of DBH-CPA.  

In nature, however, there is the effect of competition with 
neighboring trees. The rate of increase of CPA is restricted, 
though CPA will expand as DBH grows. Shinozaki et al. 

(1964a) indicated that this phenomenon also could be 
explained by the pipe-model theory. When a tree is small 
enough that light competition is not an important factor, the 
tree can be identified as a unit-pipe system. After that, lower 
branches in the canopy will begin to die because of shade from 
neighboring trees. While branches and leaves fall off, the 
pipes which run from the branch to the ground will remain in 
the trunk (Yoda, 1971). In other words, the discarded pipes 
remain. As a result, the actual IBA will have a much larger 
cross-section area than necessary to produce leaves (Shi- 
nozaki et  al., 1964a). Such a relation has been widely con- 
firmed in many tr~e species (Yoda, 1971). 

The increasing rate of CPA will slow when tree size is 
affected by competition, while IBA will grow with a similar 
rate of increase as time goes by. This is why it is assumed that 
there is a reduction in the rate of CPA in power-sigmoid and 
logistic models in DBH-CPA relations. This decrease of the 
rate of crown growth has been shown in many studies (Curtin, 
1970; Maeda and Miyakawa, 197l; Arney, 1973; Paine and 
Hann, 1982; Leech, 1984; Maeda et al., 1989; Farr et al., 

1989; Smith et al., 1992; Larocque and Marshall, 1994). 

DBH-CPA Relations 
It is clear from the graphs that the CPA value rises with 

DBH. Can the linear relation be found? Even if it fits well, 
the linear relation should not be acceptable because CPA 
should be in proportion to the square of DBH, as empha- 
sized above; the linear relation has no mechanistic meaning. 
In fact, it does not fit well. 

The second power model is not only a good fit but also has 

mechanistic meaning because it assumes the unit-pipe system. 
Further, this model agrees with many past models showing the 
linear relation between DBH and CW (Krajicek et al. ,  1961; 
Curtin, 1964; Curtis and Reukema, 1970; Strub et al., 1975; 
Zarnovican, 1982; Tabbush and White, 1988; Smith et  al., 

1991). The fits are somewhat high with low variances and 
high multiple correlation coefficients. In this model, howev- 
er, it is not assumed that the rate of increase will slow due to 
competition when the stand matures. As mentioned above, 
many studies treating the D B H - C W  relation indicated a 
decrease in the rate of increase of CW as DBH increased 
after canopy closure. 

The power-sigmoid model based on the second power 
function, moreover, shows that increases in CPA will slow as 
DBH increases. Therefore, the power-sigmoid model should 
fit much better than the second power model, if a decrease in 
the rate of CPA occurs. The value "R" of power-sigmoid- 
function model was the highest in the D B H - C P A  relation in 
conifer trees because of the decrease of the rate of  CPA. 
Further, the variance of the power-sigmoid model was also the 
lowest in coniferous and deciduous forests data sets. 

The decrease of the increasing rate of CPA is assumed in 
the logistic model, as in the power-sigmoid model. While the 
power-sigmoid function has a power relation between DBH 
and CPA when those values are small, the logistic function has 
an exponential relation between DBH and CPA. Therefore, 
the logistic model is suitable for relations which have a clear 
exponential relation between two terms. In this analysis, 
however, the logistic model is not suitable because there was 
a clear power relation between the two terms. Actually, the 
logistic model fit worse than the power-sigmoid model in 
this case. 

Because the power-sigmoid function is mechanistic, we can 
examine each parameter. Parameter "a" in Eqs. (4) and (9) is 
the proportional constant of squared DBH against CPA when 
there is no competition from neighboring trees. The larger "a" 
is, the greater the rate of increase of CPA against DBH. The 
pa rame te r  "yraax" in formula (9) or  "CPAmax" in formula (4) is 
the maximum value possible for CPA; because of competition 
from neighboring trees, CPA cannot increase infinitely. In the 
case of deciduous trees, CPA will not always reach its maxi- 
mum value. Hence, parameter "CPAmax" indicates the degree 
of decrease of the rate of CPA, rather than the maximum 
CPA. Consequently, small "CPAmax" indicates a large 
decrease in the CPA rate. 

IBA-CPA Relations 
We can specifically transform the power-sigmoid function 

for the I B A - C P A  relation. It is assumed that CPA is in pro- 
portion to the square of DBH until competition with neigh- 
boring trees begins. On the other hand, CPA is assumed to be 
in proportion to the IBA till competition begins, as follows: 

CPA = CPAmax - -  1/exp 
((a IBA -- CPAmax In CPAmax)/CPAmax) (10) 

where a is a proportional constant and CPAmax is also a con- 
stant which the CPA value cannot exceed. This functional 
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model  can be called the "single-saturate function" because: 
1) the basic relation between IBA and CPA is linear (single 
powered) and, 2) the value of CPA will saturate in the end 
(Fig. 4). 

These two models, the power-sigmoid and single-saturate 
models, have compatible characteristics. Consequently, it 
is expected that the value of CPAmax from the power-sig- 
mold model is equal or very close to that of the single-saturate 
model. Furthermore, since 

CPA = al DBH 2 in power-sigmoid (al is a proportional 

constant) and CPA = a2 IBA in single-saturate model (a2 is a 
proportional constant) in the original assumption, the relation 
is expected to be: 

CPA = al  DBH 2 = a2 IBA (11) 
Because I B A - - r e  (DBH/2) 2, the relation is expected to 

be: 
al DBH 2 = a~ 7z (DBH/2) 2 (12) 

therefore, 
al = (rd4) a2 (13) 

The parameter  values of CPAmax in the power-sigmoid 
model  are very close to those of the single-saturate model: 
482.31 and 482.30 for deciduous trees, 95.64 and 95.65 for 
conifers, respectively. For deciduous trees, the value (Tz/4)a2 
in Eq. (13) is 0.02422, is close to at (0.02418) of the power- 
sigmoid function. For  coniferous trees, the value (Tz/4)a2 is 
0.0205818, similar to the al (0.0205819) of the power-sigmoid 
function. 

This compatibil i ty shows that the power-sigmoid function 
can be used for the D B H - C P A  relation and the single-saturate 
function for the I B A - C P A  relation. Because the power-sig- 
moid function for the D B H - C P A  relation is easily applied to 
the single-saturate function of the I B A - C P A  relation, the 
compatibility of values is also high. Furthermore, the single- 
satm'ate function should be suitable for the D B H - C W  relation 
as well. 

D e c i d u o u s  v e r s u s  C o n i f e r o u s  Trees  

Next, the D B H - C P A  relation was analyzed with special 
attention to the differences and similarities between decid,aous 
broadleaved and coniferous trees. The power-sigmoid model 
was used for analysis because of its efficiency. 

Curves regressed by the power-sigmoid function are shown 
in Fig. 5. In the early developmental stage, until about 10 or 
20 cm in diameter, the loci of the two regressions are appar- 
ently the same. This is similar to parameter "a" in the power- 
sigmoid function. The values of parameter "a" are 0.024 
and 0.021 in coniferous and deciduous groups, respectively. 
Because the difference of these two values is fairly small, there 
will be few differences in the D B H - C P A  relation when there 
is no competition due to their small size, though their final tree 
forms are very different. Their final tree forms can be found 
by using CPAmax. The conifers with low value of CPAmax 
have smaller CPA than the deciduous trees. Hence it follows 
that the decrease of  CPA's increasing rate occurs in much 
smaller DBH than that of deciduous trees. 
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Fig. 5 Loci regressed by power-sigmoid function for deciduous 
broadleaved and coniferous trees. 

C o n c l u s i o n  

It was confirmed that the tree form could be effectively ana- 
lyzed using the power-sigmoid model. In the case of  the 
coniferous and deciduous trees, the model indicated that the 
rates of increase of CPA against DBH were not so different 
though their final tree forms were different. Such character- 
istics were understood because the model is not statistical but 
mathematical. 
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