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Abstract--The paper presents an algori thm for reducing false alarms related to 
changes in arterial b lood pressure (ABP) in intensive care unit (ICU) monitoring. 
The algori thm assesses the ABP signal quality, analyses the relationship between the 
electrocardiogram and ABP using a fuzzy logic approach and post-processes (accepts 
or rejects) ABP alarms produced by a commercial  monitor. The algori thm was 
developed and evaluated using unrelated sets of data from the MIMIC database. 
By rejecting 98.2% (159 of 162) of the false ABP alarms produced by the moni tor  
using the test set of  data, the algori thm was able to reduce the false ABP alarm rate 
from 26.8% to 0.5% of ABP alarms, while accepting 99.8% (441 of 442) of true ABP 
alarms. The results show that the algori thm is effective and practical, and its use in 
future patient moni tor ing systems is feasible. 

Keywords--Pat ient monitoring, False alarms, Intensive care unit, Arterial b lood pres- 
sure, ECG, Fuzzy logic 

Med. Biol. Eng. Comput., 2004, 42, 698-706 

J 

1 Introduction 

INTENSIVE CARE unit (ICU) monitors generate a high incidence 
of false alarms, which becomes an annoying problem (WATT 
et  al., 1993; LAWLESS, 1994; TSIEN and FACKLER, 1997). 
Clinicians sometimes solve this problem by simply disabling 
the alarms altogether. A better solution, however, would be to 
reduce the incidence of false alarms, without missing true alarm 
events. 

ICU monitors most often produce false alarms when a 
physiological signal is corrupted by artifacts. Although most 
such false alarms can be easily identified by looking at the signal 
quality and by referencing other related signals, ICU monitors do 
not typically have sophisticated signal quality analysis, and they 
generally do not take advantage of the known relationships 
between signals of different modalities. 

Fig. 1 shows examples of arterial blood pressure (ABP) artifacts 
found in the MIMIC Database (MOODY and MARK, 1996). it 
should be noted that some artifacts, such as those in Fig. 1 d, can be 
very similar in appearance to real physiological changes. 

Previous efforts have been made to reduce ICU false alarms 
based on analysis of single or multichannel measurements 
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available from commercial monitors (CREW e t  al., 1991; 
MAKIVIRTA et al., 1991; FELDMAN et al., 1997; RHEINECK- 
LEYSSIUS and KALKMAN, 1998; TSIEN and KOHANE, 1998; CAO 
et al., 1999; TSIEN et al., 2000). Although these studies did not 
directly address the quality of the signals from which the 
measurements were derived, their results encourage further 
research. 

This study presents an algorithm for reducing false ABP 
alarms by assessing the signal quality of the ABP waveform 
and by fusing information from simultaneous electrocardiogram 
(ECG) and ABP signals (ZONG et al., 1999). The process 
employed a fuzzy logic analysis approach. We used separate 
subsets of records from the MIMIC database for development 
and for evaluation. Our results suggest that this algorithm is 
effective and practical and shows promise for use in future 
patient monitoring systems. 

2 Materials and methods 

2.1 D a t a b a s e  

We used 25 multi-parameter records ofiCU patients from the 
MIMIC database, which is freely available from PhysioNet 
(http://www.physionet.org) (GOLDBERGER et al., 2000), for 
the algorithm development set, and 28 different records from 
the same database for the algorithm evaluation test set. The 
development set consisted of a total of 825 h of data taken from 
20 patients (ten male, ten female, age 52-92 years). The record 
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Fig. 1 Examples of  artifacts in ABP signals." (a) transducer flushing, 
(b) motion, (c 9 probably movement induced, (d) proximal BP 
cuff" inflation. 30 per trace 

duration averaged 33 h (ranging from 8.7 to 62.7h in length). 
The test set records were from 26 patients (16 male, ten female, 
age 21-92 years) and totalled 1065 h in duration. The record 
duration averaged 38 h (ranging from 10.6 to 58.5 h). 

Patients involved in this study had a wide range of clinical 
problems, including sepsis, respiratory failure, congestive 
heart failure/pulmonary oedema, haemorrhage, brain injury, 
myocardial infarction, cardiogenic shock and post-operative 
care for cardiac surgery. All patient records contained at least 
multi-lead ECGs and radial ABP, which were used in this 
study. Most records contained additional physiological 
signals, such as pulmonary arterial pressure, pulse oximetry 
(plethysmograph), impedance-based respiration etc. The ECG 
signals were digitised at 500Hz, and other signals were 
digitised at 125 Hz, with 12-bit resolution. The records also 
contained extensive clinical data, including patient history, 
laboratory results, medication, fluid balance and clinical 
observations. 

in addition to the physiological signals and the clinical data, 
the MIMIC database includes alarm annotations produced by the 
bedside monitors. When an alarm condition (a measurement 
crossing a threshold) is first detected, alarm annotations are 
generated at intervals of 1.024 s, and they continue until either 
the measurement returns to an acceptable range or the ICU staff 
intervenes to silence the alarm. In this study, alarm annotations 
referring to the same alarm condition were treated as a single 
alarm event. A new alarm condition would be defined only after 
an interval of  15 s without an alarm. A few alarm annotations that 
were associated with saturated digital signals were removed, 
because correct ABP measurements were not available (from the 
saturated signal). Each machine-annotated alarm condition was 
carefully examined by the authors, without reference to our 
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algorithm's classification of the event, and judged to be either 
true or false. 

The criteria for manually annotating ABP alarms were as 
follows: For each monitor-generated ABP alarm, at least 30 s (up 
to 5 min) of  ABP and ECG waveforms prior to the alarm were 
scrutinised. The ABP measurements from the ABP waveform in 
this region were also manually checked by means of a graphic 
signal viewing/measuring tool called WAVE (MooDY and 
MARK, 1991), which is freely available from PhysioNet. i f  the 
ABP signal was corrupted by artifacts (as identified by human 
experts) resulting from events such as catheter flush, patient 
movement or a clot-blocked transducer, the alarm was annotated 
as a false alarm, if  the ABP signal was clean, and there was no 
sign of a transducer-caused problem, the manually checked 
measurements from the waveform matched the values obtained 
from the monitor for the alarm, and the changes in the ABP 
signal could be understood by reference to the ECG, the alarm 
was considered a true alarm. When the ABP signal had changes 
that could be either physiological or artifact-related, the ECG 
reference was very important in verifying the cause of the ABP 
changes; see Fig. ld and Fig. 9f  

The development set contained a total of 445 ABP alarm 
events, of  which 319 were true positives and 126 were false 
positives (28.3%). The test set contained 604 ABP alarm events, 
of  which 442 were true positives and 162 were false (26.8%) 
positives. 

2.2 Methodology overview 

Our approach was based on beat-by-beat ABP signal quality 
analysis with incorporation of ECG-ABP relationships. The 
structure of the algorithm is shown in Fig. 2. 

First, ABP signal quality was assessed on a beat-by-beat basis, 
yielding a signal quality index SQli, that had a value between 
0 and 1. SQli was derived from and was associated with each 
beat. Secondly, if QRS information from ECG data was avail- 
able, SQli could be modified, based on analysis of the ECG 
rhythm and ECG-ABP delay time (the time delay between the 
QRS and the following ABP pulse). Thirdly, only ABP measure- 
ments (systolic, diastolic and mean blood pressure) derived from 
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high-quality signals (those signals with high SQli value) were 
used for updating the short-term averaged blood pressure (BP) 
values. Finally, acceptance or rejection of each alarm was based 
on the short-term averaged BP values and recent SQli values 
preceding each alarm. 

2.3 Signal quality assessment o f  the ABP 

Signal quality assessment of the ABP was performed through 
beat-by-beat fuzzy testing of ABP waveform features. This 
process consisted of ABP pulse detection, waveform feature 
extraction, waveform feature fuzzy representation and fuzzy 
reasoning to produce the signal quality index. 

2.3.1 ABP pulse detection algorithm: An  effective ABP pulse 
onset detection algorithm was developed based on the regional 
slope feature of the low-pass filtered ABP signal (ZONG et al., 
2003). The main ascending portion (from the onset to the peak) 
of the ABP pulse possesses the maximum average positive 
slope. A slope sum function (SSF) was defined as shown in 
(1) to enhance the ascending portion of the ABP pulse and to 
suppress the remainder of the ABP signal, to simplify the process 
of ABP pulse detection. 

' { S S F ( k ) =  Z Ayi A y i =  Axi i f A x  i>O 
i=k w 0 if A x  i <_ 0 (1) 

in (1), k is the current sample number, w is a window that is 
approximately equal to the duration of the ascending portion of a 
typical ABP pulse (we chose w =  16, or 128ms at the 125Hz 
sampling rate), A xi = xi - xi _ 1, and xi is the ith ABP sample. 

The relationship between the original ABP and the trans- 
formed signal SSF is shown in Fig. 3. The onset of the SSF pulse 
corresponds with the onset of the ABP pulse, as the SSF signal 
rises only when the ABP signal rises or when noise in the signal 
is not suppressed by the low-pass filter. The ABP pulse can be 
detected through observation of the SSF pulse. 

The decision rule for detecting the SSF pulse onset consisted 
of two procedures: adaptive thresholding of the SSF signal to 
detect SSF pulses of appropriate amplitude, and local searching 
around the detection point to confirm the detection and to 
identify the onset of the pulse. During the thresholding step, a 
threshold base value was established and was initialised at three 
times the mean SSF signal (averaged over the first 1000 samples 
of recording). The threshold base value was adaptively updated 
by the maximum SSF value for each SSF pulse detected. The 
actual threshold was taken to be 60% of the threshold base value. 
When the SSF signal crossed this threshold, the algorithm 
searched for the minimum and the maximum values in a 
150ms window preceding and succeeding the threshold- 
crossing point, respectively. The pulse detection was accepted 
only if the difference between the maximum and minimum 
exceeded a predefined, empirical value. When the pulse was 
accepted, the algorithm searched backward in time from the 
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Typical ABP waveform from MIMIC database and corre- 
sponding slope sum function (SSF) 

threshold-crossing point for the onset of the SSF pulse. The 
onset point was determined when the SSF signal dropped to the 
minimum +1.0% of the maximum SSF value. The calculated 
ABP pulse onset was adjusted by 16ms, or two samples, to 
compensate for the low-pass filter's phase shift. Finally, to avoid 
double detection of the same pulse, a 250ms eye-closing 
(refractory) period was applied, during which no new pulse 
detection was initiated. 

2.3.2 ABP waveform feature extraction: ABP waveform 
feature extraction was performed on a beat-by-beat basis. The 
waveform features used in this study were systolic blood pressure 
(SBP), diastolic blood pressure (DBP), mean blood pressure 
(MBP), maximum positive pressure slope (MPPS), maximum 
negative pressure slope (MNPS), maximum up-slope duration 
(MUSD) (which was the maximum duration that the ABP signal 
continued rising), maximum duration above threshold (MDAT) 
(which was the maximum duration that the ABP signal stayed 
above a threshold), pulse-to-pulse interval (PP), pulse blood 
pressure (PBP) (which was the difference between SBP and DBP 
in a beat) and ECG-ABP delay time (DT) (which was the interval 
between the QRS onset in the ECG and the onset of the following 
ABP pulse; this feature could be obtained only when ECG was 
available). 

At the beginning of the record there was a 20 s learning period. 
During this learning period, each ABP pulse was detected and, in 
each beat cycle (from the previous pulse onset to the current 
one), the waveform features listed above were extracted and 
averaged. The averaged features established in the learning 
period were the initial base feature set. 

After the learning period, the algorithm worked as shown in 
Fig. 4. For beat cycle i, a 2 s detection time window was defined 
from the previous window endpoint, i f  the previous window 
ended at a detected pulse (i.e. if  the flag was set to 1), the 
detection window started at to plus an eye-closing period (At, 
250 ms) to jump over the previous detected pulse. Otherwise, 
the window began at to, as there was no pulse detected in 
the previous window, i f  an ABP pulse was detected within the 
window (between to and tl), the end of the window tl was reset 
to the time of the onset of the detected pulse. Otherwise, the 
window ended as previously set (i.e. 2 s from to). The flag was set 
to 1 or 0, according to whether a pulse was detected or not. The 

t o ~ (previous) t 1 

t l~ t0+2S 

<  u,sedet cted  u,se etected > 
between t0+Atand tl? between toand tl? 

~no ; n o  

flag ~ 0 t 1 ~ onset of pulse flag ~ 0 
flag ~ 1 

measure waveform features between t o and t 1 

fuzzy representation and fuzzy reasoning 

~ SQI i 

Fig. 4 Assessment of  ABP signal quality using ABP itself 
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features of  the waveform within the window, from to to tl, were 
extracted and kept for later analysis. 

2.3.3 Fuzzy representation and reasoning." Based on fuzzy set 
theory and applications (ZADEH, 1965, 1983; PEDRYCZ and 
GOMIDE, 1998; ZONG and JIANG, 1998) and knowledge of  the 
ABP waveform morphology (O'RoURKE et al., 1992; BERNE 
and LEVY, 1997), a group of  linguistic variables was defined to 
describe the local waveform characteristics: 'ABP amplitude_ 
too_high', 'ABP slope_normal', 'ABP keeps_rising_too_long' 
etc. Two standard fuzzy set membership functions, the S 
function (PEDRYCZ and GOMIDE, 1998) and the Z function, 
defined in (2) and (3) and shown in Fig. 5, were used to define 
these linguistic variables (see Table 1). 

During the processing cycle, all the linguistic variables were 
calculated based on the extracted waveform features and 
the reference values in the base feature set, which evolved as 
the signal changed (see Section 2.5 for details). 

I 
O x<~a 

2 ( x - a ] 2  a + b  
\b - a/ a < x <~ 

S(x; a, b) = (2) 
2 

l _ 2 ( x - q  a+b \ b - a }  2 <x <~ b 

1 b<x  

Z(x; a, b) = 1 - S(x; a, b) (3) 

From these linguistic variables, three composite variables 
were defined using fuzzy conditional statements (FCSs): 
ABP amplitude_normal (AN), ABP slope_normal (SN), and 
ABP with_blocked_transducer (WBT). These statements are 
as follows: 

IF [not 'ABP_ amplitude_too_ large' (AI1L)] and 

[not 'ABP_ amplitude_ too_small' (A TS) ] 

T H E N  'ABP_ amplitude_ normal' (AN) 

[lAX = (1 - #ArL)/X (1 -- #ArS) (4) 

where operator /x  is the standard fuzzy intersection (ZADEH, 
1965); and #A(X) A#B(x)=min[#A(X), #B(X)], for all x in the 
appropriate domain. 

IF [not 'ABP_ slope_ too_ large' (SILL)] and 

[not 'ABP_slope_too_small' (STS)] 
T H E N  'ABP_ slope_ normal' (SN) 

[ISN = (1 - #srL)/x (1 - #srs) (5) 

IF ['ABP_pulse_pressure_decrease' (PPD)] and 

[ 'ABP_ diastolic_pressure_ increase' (DBPI ) ] and 

[not 'premature_ABP_pulse' (PrP)] 

T H E N  'ABP_ with_ blocked_ transducer' ( WBT) 

[IWBT = ~PPD /k ~DBPI /k (1 - #PrP) (6) 

Finally, a conclusive linguistic variable signal_quality_good 
(SQG) was defined to describe the signal quality in the localised 
period. The signal quality index, SQli, was assigned as the 
certainty degree of  SQG, as seen in (7). 

IF ['ABP_ amplitude_ normal' (AN)] and 

['ABP_ slope_ normal' (SN)] and 

[not 'ABP_ keeps_ rising_ too_ long' (KRTL)] and 

[not 'ABP_ stays_ high_ too_ long' (SHTL)] and 

[not 'AB P_ with_blocked_ transducer' ( WB T) ] 
T H E N  'signal_quality_good' ( SQG) 

SOl i = [ISQ G = [lAX /k [ISX /k (1 - [IKRTL ) /k 

(1 - #SHrL)/X (1 - #wBr) (7) 

The base feature set, established during the initial learning period, 
evolved using weighted averaging as the ABP waveforms 
changed. Only those ABP episodes with good signal quality 
(SQli > 0.5) were counted into the weighted averaging process. 

2.4 Use of ECG-ABP relationships 

The ECG and ABP signals are closely related in terms of  
rhythm and timing. When an ECG signal was available, the SQli, 
as described above, could be modified, based on analysis o f  the 
ECG-ABP relationships. Fig. 6 summarises this procedure. 

The analysis o f  the ECG-ABP relationship began after the 
SQli was derived from the current ABP episode, i f  the current 
ABP episode contained a detected ABP pulse (flag = 1), then the 
preceding QRS complex was checked, i f  the preceding QRS was 
not premature, and the ECG-ABP delay time fell within the 
expected range, indicating that the ABP pulse was associated 
with a real beat, or i f  the beat was premature (in which case the 
algorithm did not attempt to predict the timing of  the ABP pulse), 
then SQIi was not modified. Otherwise, the pulse could be an 
artifact, and SQli was set to zero. i f  no ABP pulse was detected in 

Table 1 Linguistic variables" and their definitions 

Variable 
name Description and definition Paxameter explanation 

ATL 
ATS 
STL 
STS 
KRTL 
SHTL 
PPD 
DBPI 
PrP 

ABP_amplitude_too_large: #ArL--S (SBP SBPa; 20, 60) 
ABP_amplitude too small: PArs--Z (DBP; O, 20) 
ABP_slope_too_large: #srL-- S (MPPS/MPPSa; 1, 3) 
ABP_slope_too_small: #srs = S (MNPS/MNPSa; 1, 3) 
ABP_keeps_rising_too_long: gr~rL- S (MUSD; 200, 500) 
ABP_stays_high_too_long: gSHrL- S (MDAT; 400, 800); 
ABP pulse l)ressure_decrease: gPPD-- Z (PBP/PBPa, 0.5, 0.9); 
ABP_diastolic_pressure_increase: gDBPI = S (DBP/DBPa; 0.8, 1.1); 
Premature_ABP l)ulse: #PrP = Z (PP/PPa; 0.75, 0.95) 

SBP: systolic BE mmHg; SBPa: systolic BP base 
DBP: diastolic BE mmHg 
MPPS: maximum positive BP Slope; MPPSa: MPPS base 
MNPS: maximum negative PB slope; MNPSa: MNPS base 
MUSD: maximum up-slope duration, ms 
MDAT: maximum duration up threshold, ms 
PBP: pulse blood pressure; PBPa: PBP base 
DBP: diastolic blood pressure: DBPa: DBP base 
PP: pulse-pulse interval; PPa: PP base value 
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the current ABP episode, but the ECG rhythm was regular, this 
suggested the ABP non-pulse episode was due to artifact, and the 
SQli was set to zero. i f  the ECG rhythm was irregular, the SQIi 
was accepted without modification, as such rhythms can be 
accompanied by the loss of  ABP pulses. 

In this study, a previously developed ECG beat detection and 
classification algorithm, Aristotle (MOODY and MARK, 1982), 
was employed to obtain QRS times of occurrence and types of  
QRS complex. According to the QRS occurrence time and QRS 
type obtained from Aristotle, the prematurity of  the current QRS 
and the regularity of  the current ECG rhythm can be determined. 

To identify premature QRS complexes, a fuzzy variable 
'premature QRS (PrQ)' was defined as 

#PrQ = Z(RR/RRa; 0.75, 0.95) (8) 

where RR was the current RR interval, and RRa was the recent 
short-term averaged RR interval, if#prQ > 0.5, the current beat 
was considered as a premature QRS. 

The variable 'delay time_match (DTM)' was used to deter- 
mine whether the QRS and the detected ABP pulse were a 
match. DTM was defined as follows: 

~DTM = S(DT/DTa; 0.4, 0.9)/~ Z(DT/DTa; 1.1, 1.6) 

(9) 
where DT was the current QRS-ABP delay time, and DTa was 
the averaged QRS-ABP delay time established during the 
learning period. 

The linguistic variable 'QRS on time (QOT)' was defined as 

~ Q O T  = S(RR/RRa; 0.75, 0.95) m Z(RR/RRa; 1.05, 1.25) 

(10) 

i f  #QOV > 0.5, the QRS was considered as on time. Aristotle 
provides QRS labels including normal (N), ventricular prema- 
ture contraction (VPC), supra-ventricular premature contraction 
(SVPC) etc. 

To determine if the ECG rhythm was regular, the 15 s period 
ending at the current time was considered, if, in this range, more 
than half of  the QRS complexes were either on time or labelled 
as normal, the ECG rhythm was considered regular. 

After the ECG-ABP relationship analysis procedure, the final 
SQli was acquired to determine the effective short-term ABP 
measurements and to update the base feature set, as discussed in 
the following Section. 

Fig. 7 shows an example of the ABP signal quality index 
(SQI) derived from the ECG and ABP data from record 254 in 
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Fig. 7 Example of  ABP signal quality index (SQI) (30 s). SQI signal 
lags ABP signal by one beat interval 

the MIMIC database. Low values of  SQI correspond to poor 
ABP signal quality (note that there is a one-beat delay from the 
ECG and ABP signals to the SQI signal). 

2.5 Measurements from good-qualiiy signals 

After the final SQIi was determined, the base features were 
updated with the current waveform feature values if the corre- 
sponding SQli was high enough (>0.5). Not all base features 
were updated. The features that needed updating were SBPa, 
DBPa, MBPa, MPPSa, MNPSa and PPa. The updating 
mechanism is shown in (11). 

NNa = 0.875"Na + 0.125"N (11) 

where Na was the previous value in the base feature set, N was 
the feature value from the current waveform, and NNa was the 
updated base feature value. 

The algorithm obtained the instantaneous ABP measurements 
(systolic, diastolic and mean blood pressures) for each beat or 
episode when it completed the SQI analysis. The algorithm also 
produced the short-term averaged ABP measurements derived 
from instantaneous measurements, with SQli > 0.5. Values 
associated with poor signal quality were not counted in the 
averaged measurements (see Fig. 8). The short-term averaging 
method is given by (11). For each beat, ifSQli > 0.5, the current 
average value NNa was primarily based on the previous aver- 
aged value Na, with a small adjustment based on the current 
value N. ifSQli <_ 0.5, the average value was not modified. The 
output of  the algorithm included the instantaneous beat-by-beat 
measurements, SQli, and the short-term averaged ABP measure- 
ments. The SQI and the short-term averaged ABP measurements 
were used as a basis for the algorithm's decisions regarding the 
alarms. 

When we compared the ABP measurements produced by the 
monitor and those derived from our algorithm (see the example 
in Fig. 8, with data from MIMIC record 212), we could see that 
most unexpected spikes in the monitor' s measurements had been 
removed. 

2.6 Criteria for reducing false ABP alarms 

The patient monitor used for collecting MIMIC records 
produced ABP alarms based on some sort of  short-term averaged 
systolic ABP measurements. There was a delay, of about 10 s, 
before the monitor issued an alarm annotation. 

Our algorithm judged the ABP alarms produced by the 
monitor based on the SQli and the averaged ABP measure- 
ments. This judgment was based on the 15 s prior to the onset 
of  the alarm condition annotated by the monitor, i f  all the SQli 
in this 15 s interval were good ( ~> 0.5), suggesting that the 
signal quality in this region was not a problem, the alarm was 
judged as true. i f  there were four or more bad SQli (<0.5) in 
this interval, indicating that the signal quality was bad, the 
alarm was judged as false, i f  there were up to three bad SQli, 
then the systolic ABP measurement from the monitor and the 
averaged systolic ABP measurements from the algorithm were 
compared, i f  at least three of our algorithm's measurements 
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Fig. 8 Systolic blood pressure against time." (a) SBP measurements" 
produced by monitor," (b) SBP measurements from our algorithm 

were within 10 mmHg of the monitor's measurement, then the 
alarm was judged as true. This situation means that the signal 
quality in this episode was balanced between good and bad. 
The monitor that produced the alarm, based its measurements 
on the recent ABP signal, i f  the monitor's measurement was 
close enough to the averaged measurements derived from our 
algorithm, then the monitor's measurement was confirmed, and 
the alarm was accepted. 

3 Results 

As detailed in Table 4 in the Appendix, the development data 
set contained 25 records averaging 33 h in length. These ranged 
between 8.7 and 62.7 h (a total of  825 h). The monitors produced 
445 ABP alarms, of  which 126 (28.3%) were false based on our 
visual review, it was found that the algorithm rejected 117 of 
these 126 false alarms (92.9%) and only two true alarms (as 
summarised in Table 2). Thus the algorithm reduced the false 
alarm rate in the development data set from 28.3% to 2.8%, at a 
cost of  rejecting 0.4% of 319 true alarms. 

Table 2 Algorithm performance on the development data 

Algorithm true false total 

Truth true 317 2 319 
false 9 117 126 

Sensitivity: 99.4% 
Positive predictive accuracy: 97.2% 

Table 3 Algorithm performance on the test data 

Algorithm true false total 

Truth true 441 1 442 
false 3 159 162 

Sensitivity: 99.8% 
Positive predictive accuracy: 99.3% 

We repeated this experiment using the test data set, 28 records 
averaging 38 h in length, with a range of 10.6-58.5 h (1065 h in 
all). Table 5 in the Appendix shows the detailed evaluation 
results for the test data. The monitors produced 604 ABP alarms, 
of  which 162 (26.8%) were false based on our visual review. The 
algorithm rejected 159 (98.2%) of these false alarms, reducing 
the false alarm rate from 28.6% to 0.4%, while rejecting only one 
(0.2%) of the 442 true alarms. Table 3 has a summary of the 
algorithm's performance. 

Fig. 9 includes examples of  false alarms rejected (Figs 9a-c), 
false alarm accepted (Fig. 9d), true alarms accepted (Figs 9e and 
J )  and true alarms rejected (Figs 9g- i )  from both the develop- 
ment and test data sets. 

4 Discussion 

The algorithm performed very well on the development set, 
rejecting almost all of  the false positive alarms. Significantly, its 
performance on the test set was even better, supporting the 
hypothesis that the algorithm can be applied usefully to real- 
world data that have not been used for development. Any 
algorithm designed to reject false positives, however, can be 
expected to reject some true positives as well. Of particular 
concern in this study was the possibility that a clinically 
significant true alarm could be erroneously rejected. For this 
reason, we carefully examined the three cases in which true 
alarms were rejected by our algorithm (Figs 9g-i). 

The two true alarms rejected by the algorithm in the 
development data set were distorted signal waveforms with 
real ABP changes; one was with hypertension, as shown in 
Fig. 9g, and the other was with hypotension, Fig. 9h. in Fig. 
9g, there is transient hypertension accompanying patient 
movement. The alarm limit was 220mmHg (for systolic 
ABP), and this alarm was annotated as a true alarm. The 
algorithm judged the ABP signal quality as not perfect (two 
beats with low SQI value), and the ABP measurements 
obtained by the algorithm did not meet the alarm limit at the 
time of the monitor's alarm; thus the algorithm marked the 
alarm as a false alarm, in the case of  Fig. 9h, a hypotension 
alarm was present with the alarm limit at 85mmHg (for 
systolic ABP). A catheter flush just prior to the alarm event 
caused the algorithm to deem the ABP signal quality low 
enough (four or more beats with low SQI value) to reject the 
alarm. Arguably, neither of  these two cases was clearly a true 
alarm. 

The single rejected true alarm in the test data set occurred 
when the systolic ABP suddenly increased following a long, 
slow attenuation of the ABP signal (see Fig. 9i). in this case, 
the algorithm adapted to the attenuated ABP signal and 
determined its signal quality to be good; when the signal 
suddenly increased to normal scale, the algorithm was not 
able to recognise the cause; it calculated a low SQI and thus 
rejected the alarm. This situation might be avoided by introdu- 
cing an extra waveform base feature set and additional rules 
into the algorithm. The second feature set would keep the 
waveform features that are from the patient's most normal 
state. When the SQI derived from the first base feature set 
became low for a certain time, the second feature set would be 
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Examples of  algorithm's judgment on ABP alarms: (a) false alarm caused by artifact (probably movement induced), rejected (four or more 
bad SQI,.), 1 min trace; (b) false alarm caused by obstructed cathete~ rejected (four or more bad SQIi), 1 min trace; (cg false alarm caused by 
cuff inflation, rejected (/'our or more bad SQIi ), 1 min trace; (d) false alarm due to clot-blocked transduce~ accepted (SQI,. are all good within 
15 s), 2 min trace; (e) true alarm related to ABP increase, accepted (SQI,. are all good), 1 min trace; (f)  true alarm related to ventricular 

fibrillation, accepted (one bad SQI,~ BP measurements" meet alarm limit), 30 s trace; (g) true alarm related to ABP increase and patient 
movement, rejected (two bad SQI,., BP measurements" do not meet alarm limit), 1 min trace; (h) true alarm right after catheter flush, rejected 
(four or more bad SQIi), 1 min trace; (i) true alarm related to sudden increase in ABP signal, rejected (four or more bad SQIi), 2 min trace 

used to verify the low calculated SQI of the current ABP 
signal, i f  the SQI from the second feature were good (i.e. 
>0.5), then the first obtained SQI would be modified, and the 
existing feature set would be updated from the current wave- 
form features, in this way, the algorithm could avoid misbe- 
having when the ABP signal returns to a normal clean state 
from a damped situation, as in Fig. 9i. 

The nine false alarms that the algorithm did not reject in the 
development set were due to ABP signals obtained while 
the transducer was blocked by blood clots. Such signals 
show the systolic ABP gradually dropping and the mean and 
diastolic ABP staying almost the same. The algorithm includes 
special fuzzy conditional statements, see (6) and (7), for such 
situations. As a result, many of these false alarms were rejected 
if the signal features changed in a short time (see Fig. 9b). 
When the signal features changed gradually (see Fig. 9d), then 
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the algorithm could misinterpret this as a real ABP change. 
Most false alarms (eight out of nine) were contained in two 
records (453, 454) relating to one patient. The three false 
alarms not rejected in the test set contained artifacts that the 
algorithm could not identify. 

The additional ECG-ABP relationship was particularly useful 
whenever artifacts appeared similar to real physiological 
changes. Figs ld and 9c show episodes of ABP with artifacts 
similar to the real change in ABP associated with VT/VF, as 
seen in Fig. 9f Without checking the ECG-ABP relationship, 
the algorithm would produce an SQI signal that continued to be 
good in the artifact region, because the algorithm considers this 
kind of ABP change to be real by looking at the ABP signal 
alone. Using the ECG-ABP relationship, the algorithm modified 
the SQI, as shown in Fig. 9c, and was able to reject this kind of 
false alarm without rejecting true alarms, as in Fig. 9f in most 
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other situations, as in Fig. 7 and the rest o f  Fig. 9, the E C G - A B P  
relationship did not significantly affect the SQI. 

5 Conclusions 

Artifact is a major factor responsible for false alarms, it is 
useful to derive a signal quality control index to reduce these 
false alarms. Sometimes, artifacts appear similar to real physio- 
logical changes; thus additional information from other related 
signals is crucial. 

This paper presents an approach to reducing false ABP alarms 
based on both the analysis o f  ABP signal quality and the use o f  
E C G - A B P  relationships. Fuzzy feature representation and 
reasoning provide a comprehensive and effective way to 
assess signal quality for each ABP episode. Data suspected o f  
being artifact-corrupted are marked but not discarded. ABP 
measurements from the data with good SQI appear more reliable 

than those without adequate signal quality control. By using this 
approach, false ABP alarms are significantly reduced, with only 
a small number o f  rejected true alarms. Note that the number o f  
alarm events missed by the monitors themselves was not 
determined in this study. 

Our results indicate that this approach appears to be effective 
and practical and should be considered for use in future 
monitoring systems. 

Acknowledgments" This work was supported in part by the 
Research Resource for Complex Physiologic Signals, 
NIH/NCRR,  grant P41 RR 13622, and by grants from the 
Hewlett-Packard Research Grants Program and from Nikon 
Kohden. 

The authors would like to thank Thomas Heldt for his review 
of  the manuscript and for his help in preparing the Figures. 

Appendix 

Table 4 Results o f  ABP false alarms on development data set 

Record Length of 

number record, h Total TP TPk TPr FP FPr FPk 

211 21.5 27 27 26 1 0 0 0 
212 41.3 29 25 25 0 4 4 0 
222 22.4 25 21 21 0 4 4 0 
226 31.8 15 5 5 0 10 10 0 
230 19.0 19 18 18 0 1 1 0 
231 42.0 4 2 2 0 2 2 0 
237 42.7 6 0 0 0 6 6 0 
252 28.2 6 2 2 0 4 4 0 
253 42.5 22 17 17 0 5 5 0 
254 42.5 23 11 11 0 12 11 1 
262 42.7 3 3 3 0 0 0 0 
404 22.3 6 0 0 0 6 6 0 
405 22.9 6 0 0 0 6 6 0 
410 23.5 18 6 6 0 12 12 0 
413 21.4 18 15 15 0 3 3 0 
415 42.0 10 10 10 0 0 0 0 
451 31.2 26 18 18 0 8 8 0 
452 33.7 15 13 13 0 2 2 0 
453 46.7 26 17 17 0 9 6 3 
454 42.6 42 27 26 1 15 10 5 
456 47.2 50 31 31 0 4 4 0 
471 62.7 15 8 8 0 7 7 0 
472 8.7 7 7 7 0 0 0 0 
477 30.0 26 25 25 0 1 1 0 
480 19.5 16 11 11 0 5 5 0 

Sum 825 445 319 317 2 126 117 9 
Average 33 18.4 12.8 12.7 0.1 5.0 4.7 0.4 

Total -- total alarm annotations from beside monitors; TP -- total true positive alarms; TPk -- true positives accepted by 
algorithm; TPr -- true positives incorrectly removed by algorithm; FP -- total false positive alarms; FPr -- false positives 
removed by algorithm; FPk -- false positives remaining after processing of algorithm. PPA gross -- 71.69% ~ 97.24%; 
PPA average -- 64.63% ~ 98.42% 

Table 5 Results o f  ABP false alarms on test data set 

Record Length of 
number record, h Total TP TPk TPr FP FPr FPk 

213 49 49 46 46 0 2 2 0 
221 24 17 17 17 0 0 0 0 
224 47 8 0 0 0 8 8 0 
225 46 7 2 2 0 5 5 0 
240 30 31 31 31 0 0 0 0 
248 34 4 3 3 0 1 1 0 
276 58 9 6 6 0 3 2 1 

(continued) 
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Table 5 Continued 

Record Length of 
number record, h Total TP TPk TPr FP FPr FPk 

281 11 4 3 3 0 1 1 0 
291 22 4 0 0 0 4 4 0 
401 25 8 2 2 0 4 4 0 
408 48 21 2 2 0 19 19 0 
409 43 40 28 28 0 12 12 0 
411 46 16 5 5 0 11 11 0 
414 25 45 41 41 0 4 4 0 
417 12 9 3 3 0 6 6 0 
418 27 3 0 0 0 2 2 0 
427 58 53 33 33 0 16 16 0 
430 52 1 0 0 0 1 1 0 
438 52 12 9 9 0 3 3 0 
439 46 27 17 17 0 10 10 0 
442 35 5 0 0 0 5 5 0 
443 51 20 6 5 1 8 8 0 
444 54 38 38 38 0 0 0 0 
446 27 48 31 31 0 12 12 0 
449 42 37 21 21 0 16 15 1 
474 38 10 5 5 0 4 4 0 
476 18 33 31 31 0 2 2 0 
484 43 66 62 62 0 3 2 1 

Sum 1065 604 442 441 1 162 159 3 
Average 38 23.0 16.4 16.3 0.0 5.8 5.7 0.1 

Total --total alarm annotations from bedside monitors; T P -  total true positive alarms; T P k -  true positives accepted 
by algorithm; TPr--true positives incorrectly removed by algorithm; FP--total  false positive alarms; FPr--false 
positives removed by algorithm; FPk--false positives remaining after processing of  algorithm. PPA 
gross -- 73.79% --+ 99.32%; PPA average - 56.72% --+ 99.24% 
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