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Abst rac t - -A  completely non-invasive and unconstrained method is proposed to detect 
respiration rhythm and pulse rate during sleep. By employing wavelet transformation 
(WT), waveforms corresponding to the respiration rhythm and pulse rate can be 
extracted from a pulsatile pressure signal acquired by a pressure sensor under a pillow. 
The respiration rhythm was obtained by an upward zero-crossing point detection 
algorithm from the respiration-related waveform reconstructed from the WT 2 6 scale 
approximation, and the pulse rate was estimated by a peak point detection algorithm 
from the pulse-related waveform reconstructed from the WT 24 and 25 scale details. 
The finger photo-electric plethysmogram (FPP) and nasal thermistor signals were 
recorded simultaneously as reference signals. The reference pulse rate and respiration 
rhythm were detected with the peak and upward zero-crossing point detection algor- 
ithm. This method was verified using about 24 h of data collected from 13 healthy 
subjects. The results showed that, compared with the reference data, the average 
error rates were 3.03% false negative and 1.47% false positive for pulse rate detection 
in the extracted pulse waveform. Similarly, 4.58% false negative and 3.07% false 
positive were obtained for respiration rhythm detection in the extracted respiration 
waveform. This study suggests that the proposed method is suitable, in sleep moni- 
toring, for the diagnosis of sleep apnoea or sudden death syndrome. 

Keywords--Respiration rhythm, Pulse rate, Wavelet transformation, Sleep, Uncon- 
strained monitor 
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1 In t roduct ion  

MONITORING OF both respiration rhythm and heart rate plays 
an important role in the diagnosis of sleep apnoea and 
sudden death syndrome. There are numerous traditional 
methods in respiration measurement, such as the use of spirom- 
eters, nasal thermocouples, body volume changes, transthor- 
acic inductances, impedance plethysmographs, strain gauge 
measurements of thoracic circumference, pneumatic respir- 
ation transducers, whole-body plethysmographs and ECG- 
based derived respiration (MOODY et  al., 1985). However, 
all these methods can cause discomfort and inconvenience to 
the subject and physician, because the sensor must be put on 
the body surface. Heart rate monitoring based on vital 
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signs, such as the ECG, heart sound and finger photo-electric 
plethysmogram (FPP), also requires appropriate sensors to be 
placed on the subject. 

NAKAJIMA et  al. (2001; 2002) developed a low-cost, pillow- 
shaped respiratory monitor to meet the requirement for 
non-invasive and unconstrained measurement. WATANABE 
et  al. (2003) devised a new instrument to obtain the respiration 
rhythm and pulse rate from pulsatile pressure signals acquired 
from two water-filled cuffs under the head of the subject. As the 
main signal components in the respiration rhythm (about 

1 10-20 min-  ) and pulse rate (about 50-80  min -1) axe in 
different frequency bands, the respiration rhythm was sepa- 
rated with a low-pass filter with a passband of 0.1-0.8 Hz, 
and the pulse rate was directly estimated from the raw signal 
with the peak detection method. Apparently, a low-pass filter 
with such a narrow passbandwidth is hard to design and 
requires a large computational cost; and the respiration and 
high-frequency noise in the raw signal will greatly deteriorate 
the estimation of the pulse rate. 

UCHIDA et al. (2003) applied independent component 
analysis (ICA) to separate noise from simultaneously collected 
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two-channel signals. However, because the time lag between 
the two pressure signals does not conform to the instantaneous 
hypothesis of  the ICA linear-mixing model, the respiration 
rhythm and pulse rate related components cannot be separated 
well by the classical ICA algorithm. Therefore a revised 
ICA algorithm may be required to resolve the above 
problem. On the other hand, spectral analysis should overcome 
the problem of spectrum crossover among useful signal 
components, noise and movement artifacts (KANEMITSU 
et al., 2004). 

Wavelet transformation (WT) (MALLAT, 1989; MALLAT and 
ZHONG, 1992) has found many applications in the biomedical 
signal-processing field. WT multiresolution analysis can be 
applied to remove non-white or high-frequency noise 
(TASWELL, 2000), to detect singularity signals (LI et al., 
1995), to perform data compression (HILTON, 1997) and to 
extract the fetal ECG (KHAMENE and NEGAHDARIPOUR, 
2000). In addition, fast WT can be easily realised with either 
the Mallat (MALLAT, 1989) or d trous algorithm (SHENSA, 
1992) for real-time signal processing. 

2. M e t h o d s  

2.1 M e a s u r e m e n t  sys tem and signals 

A schematic representation of  the measurement system is 
shown in Fig. 1. Two under-pillow incompressible tubes, 
30 cm in length and 2 cm in diameter, were filled with 
air-free water, with preloaded internal pressure of  3 kPa, and 
embedded with an arterial catheter 15 cm long in one end of  
each tube. These two tubes were set in parallel under the 
near-neck occiput and the far-neck occiput, at a distance of  
13 cm from each other. Both the static and dynamic com- 
ponents of  the pressure within the tubes were measured by 
pressure amplifiers* connected to the embedded catheters. 
The static pressure component corresponded to the weight 
of  the head, and the dynamic component reflected the weight 
fluctuation of the head caused by breathing movements and 
pulsatile blood flow from the external carotid arteries around 
the head. After filtering with an analogue filter with a pass- 
band of  0 .16-5  Hz, filtered pressure signals were digitised 
onto a PC through a 16-bit analogue-to-digital (AD) converter 
board and stored for batch analysis. 

The pillow was stuffed with numerous fragments of  soft 
material made of  synthetic resins for comfort. Signals could 
be collected non-invasively and unconstrainedly while the 
subject was sleeping in a supine or recumbent position. FPP 
and nasal thermistor measurements were saved together as 
reference data. The sampling rate was 100 Hz for all four 
signals. 

Fig. 2 shows typical measured signals. The upper two rows 
display pulsatile pressure waveforms in the far-neck occiput 
(Fig. 2a) and the neax-neck occiput (Fig. 2b). The lower two 
rows are FPP (Fig. 2c) and nasal thermistor (Fig. 2d) reference 
signals, respectively. It can be observed from Figs 2a and b that 
the respiration rhythm in the near-neck occiput was later 
than in the fax-neck occiput, where there was nearly no 
pulse-related waveform. In Figs 2b and c, pulse waveforms 
found in the neax-neck occiput pressure are almost synchronous 
with those in the FPP beat-by-beat. Furthermore, the respir- 
ation rhythm can be found clearly in both pressure signals 
(Figs 2a and b) and the nasal thermistor signal (Fig. 2d), 
although the former seems earlier than the latter. In this 
paper, only the near-neck occiput pressure signal (Fig. 2b) 
was chosen to detect the respiration rhythm and pulse rate. 

*AP-13, Keyence Corp. 
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Fig. 1 Pillow with two air-free water-filled tubes and data 
acquisition system, including finger photo-electric 
plethysmogram (FPP) and nasal thermistor signal as 
references  

2.2 Principle  o f  wave le t  transformation 

WT has become an attractive data analysis tool in the field of  
biological signal processing. Detailed mathematical theories 
and algorithms can be found in DAUBECHIES (1992) and 
AKAY (1998). 

The WT of a signal x(t) is defined as follows: 

@co 

1 I W~x(t) --  - x( 'r)~( t - -  "r)d.r 
- - S  S 

co 

(1) 

where s is the scale factor, and ~(t) is the wavelet basis 
function. It is called a dyadic WT if s = 2J(j ~ Z, Z is the 
integral set) in MALLAT and HWANG (1992). Two filter 
banks, the low- and high-pass decomposition filters H0 and 
/ /1  and associated reconstruction filters Go and G1, can be 
derived from the wavelet basis function and its scaling function 
(MALLAT, 1992). With the Mallat algorithm, the dyadic WT of 
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Four directly measured signals: (a) far-neck occiput 
pressure, (b) near-neck occiput pressure, (c) finger photo- 
electric plethysmogram (FPP) and (d) nasal thermistor 
signals. (a), (b) are pressure signals, and (c), (d) serve as 
reference data. Each is 40.96 s in length 
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the digital signal (x(n)) can be calculated as follows: 

A2~x(n) = Z h0,2, kA2~ ix(k) (2) 
k E Z  

D2~x(n) = Z hl,2n kA2J ix(k) (3) 
k ~ Z  

where A~x(n) and D~x(n) are the approximation and detail 
components, respectively, in the 2 ~ scale, and x(n) (or A2ox(n)) 
is the raw signal; h0 and hi are the filter coefficients of  H0 and 
H1, respectively. Therefore A~x(n) and D~x(n) (j ~ Z) can 
be extracted from x(n) (or A2ox(n)) using (2) and (3) recursively. 
The 2 ] -  1 scale approximation signal can also be reconstructed 
from the U scale approximation and detail components 

k E Z  k E Z  

(4) 

where go and gl are the filter coefficients of Go and G1, respect- 
ively. }(n) (or A2ox(n)) can finally be reconstructed by 
repeatedly using (4). Noise in D~x(n) can be removed with 
the soft- or haxd-threshold method before A2~ ix(n) is 

reconstructed. It should be pointed out that the sampling rate 
of  the U scale approximation and detail is just ~ / 2  ~, where 
is the sampling rate of  the raw signal. 

Fig. 3 shows decomposed waveforms of  the pulsatile press- 
ure signal measured in the near-neckocciput. The raw signal 
shown in Fig. 3a is decomposed into s = 2/, (j = 1 -6 )  
scales. Details from the 2~-2~scales  are shown sequentially 
in Figs 3b-g, and the 26 scale approximation is shown in 
Fig. 3h. The 26 scale approximation corresponds well to the 
respiration wave in the nasal thermistor signal (Fig. 2d), and 
the 24 and 2 ~ scales' detail contain most of  the signal energies 
and similar peaks to the pulse rate in the FPP. This implies that 
the 26 scale approximation (spectrum ranges from about 0 to 
0.8 Hz) can be used to reconstruct the respiration rhythm, 
and the pulse rate can be synthesised from the 24 and 25 
scales' detail (spectrum ranges from about 2 to 6 Hz) with 
the soft-threshold denoising method introduced in MALLAT 
and ZHONG (1992). 

2.3 Detection of pulse rate and respiration rhythm 

The respiration- or pulse-related waveform can be recon- 
structed from the 26 scale approximation or 24 and 2 ~ scales' 

Fig. 3 
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Wavelet decomposition of pressure signal from sensor in near-neck occiput region. (a) Raw signal (near-neck occiput pressure). (b)-(g) 
Waveforms reconstructed from detail components in 2 j (j = 1-6) scales, respectively. (h) Waveform reconstructed from approximation 
component in 26 scale 
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details, respectively. The algorithm for detecting the pulse rate 
from the FPP and extracted pulse waveform is a refinement 
of  the ECG pea]( search algorithms described in PAN and 
TOMPKINS (1985) and HAMILTON and TOMPKINS (1986). The 
characteristic point for pulse rate detection is defined as 
the pea]( with the highest amplitude and the largest slope in 
one heartbeat. To detect characteristic points from the FPP 
and extracted pulse-related waveform, both signals were first 
filtered through a first-derivative operator, and then points 
corresponding to the pulse peaks were determined by the zero- 
crossing point algorithm with a locally adaptive threshold. The 
characteristic point in the nasal thermistor signal and extracted 
respiration waveform is defined as the upward zero-crossing 
point, which corresponds to the middle of  the exhaling process. 

To avoid the influence of  small amounts of  noise, the zero 
line was locally adapted to compensate for the baseline drift, 
and only upward zero-crossing points with deep enough 
valleys ahead would be recognised as candidate points. 
Fig. 4a is the raw measured pressure signal in the neax-neck 
occiput. Figs 4 b - e  show the FPP signal, extracted pulse 
wave, nasal thermistor signal and extracted respiration wave 
(their detected characteristic points are also marked with • in 
the Figure), respectively. 

2.4 Performance evaluation of detections 

Time shifts of  detected points between reference and 
extracted signals can be found in Fig. 4. Time shifts between 
the FPP and extracted pulse in Figs 4b and c cannot be 
observed visually, whereas those between the nasal thermistor 
and extracted respiration in Figs 4d and e can be clearly 

identified. Because only the pulse rate and respiration rhythm 
every minute, other than the detected time of characteristic 
points in either reference or extracted signals, are concerned, 
a performance evaluation method for detection of the pulse 
rate and respiration rhythm is defined below. 

(i) Count the number of  detected peaks in the FPP and 
extracted pulse within each minute as real pulse rate 
RPR and estimated pulse rate EPR, respectively. 

(ii) For each minute where EPR is higher than RPR, the false 
positive number FPN is defined as EPR-RPR.  Summing 
all of the FPNs gives the total false positive number 
TFPN. Similarly, for each minute where EPR is lower 
than RPR, the false negative number FNN is given by 
RPR-EPR. Summing all of  the FNNs gives the total 
false negative number TFNN. 

(iii) The false positive rate FPR and false negative rate FNR 
are calculated as follows: 

TFPN 
F P R -  × 100(%) (5) 

TRBN 
TFNN 

F N R -  × 100(%) (6) 
TRBN 

where TRBN denotes the total number of  real heartbeats. 
(iv) Similarly, count the number of  detected upward zero- 

crossing points in the nasal thermistor and extracted 
respiration signal within each minute as the real respi- 
ration rhythm RRR and estimated respiration rhythm 
ERR, respectively. 

Fig. 4 
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(v) For each minute where ERR is higher than the RRR, the 
false positive number F P N is defined as E R R - R R R .  
Summing all of  the FPNs gives the total false positive 
number TFPN. Similarly, for each minute where ERR is 
lower than RRR, the false negative number FNN is 
given by R R R - E R R .  Summing all of the FNNs gives 
the total false negative number TFNN. 

(vi) As performance evaluation indexes for respiration 
rhythm, the false positive rate FPR and false negative 
rate FNR are given as follows: 

TFPN 
FPR - -  - -  x 100(%) (7) 

TRRN 
TFNN 

FNR - - - -  x 100% (8) 
TRRN 

where TRRN denotes the total number of real respirations. 

2.5 Subjects 

The neax-neck occiput pressure data were collected from 
13 healthy subjects (five female and eight male fourth-yeax 
students, from 21 to 22 years of  age) at the School of  Health 
Sciences, Kanazawa University, Japan. Approximately 2 h of  
data were acquired from each subject during sleep. As refer- 
ence data for the pulse rate and respiration rhythm, the FPP 
and nasal thermistor signal were collected simultaneously. 

3 Results 

Fig. 5 shows a 64 min profile of  estimation results and their 
errors: Fig. 5a shows RPR (marked ×)  from the FPP and EPR 
(marked O) from the extracted pulse waveform. Fig. 5b shows 

the relative estimation error percentage, derived by 
( E P R - R P R ) / R P R  × 100(%). Similarly, RRR (marked × ) from 
the nasal thermistor and ERR (marked O) from the extracted res- 
piration waveform axe shown in Fig. 5c. The relative estimation 
error percentage, derived by ( E P R -  RRR) /RRR × 100(%), 
is shown in Fig. 5d. It can be reckoned that most relative 
estimation errors, for either the pulse rate or respiration 
rhythm, are within 4-10%. 

Pulse beat detection results from the FPP and extracted 
signal are tabulated in Table 1. The analysed data collected 
from 13 subjects were about 1500min in length, and the 
total number of heartbeats counted was 91187 pulsations. 
The average value 4- standard deviation for FNR and FPR 
were 3.03% 4- 3.15% and 1.47% 4- 0.63%, respectively. 

Table 2 summarises the respiration detection results from the 
nasal thermistor and extracted signal. The analysed data were 
collected simultaneously with those in Table 1. The number 
of  total respirations counted was 23 021 breathing movements. 
The average value 4- standard deviation for FNR and FPR 
were 4.58% 4- 3.23% and 3.07% 4- 2.50%, respectively. 

4 Discussion 

WATANABE et al. (2003) proposed a digital filtering method 
to extract desired waveforms from the measured neax-neck 
occiput pressure signal. A bandpass filter (0.1-0.8 Hz) gave 
the respiration-related signal, and the near-neck occiput press- 
ure signal was directly regarded as the pulse-related signal. 
However, such a narrow, low-band filter requires a very high 
order to implement, and the respiration wave in the near- 
neck occiput pressure signal will influence the detection of  
the pulse rate. Moreover, the measurement noise and pulse- 
related signal sometimes overlap in the frequency domain. 
These would lead to failures in signal separation and would 

Fig. 5 
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Table l Pulse beat detection results from FPP and reconstructed Table 2 Respiration detection results from nasal thermistor and the 
signal reconstructed signal 

Number of heart 
beats detected by False rate, % 

Number of respirations 
detected by False rate, % 

Data 
Subject length, reconstructed 
number min FPP signal signal negative positive 

1 131.7 7891 7707 4.14 1.82 
2 133.4 9081 8875 2.80 0.53 
3 66.7 4747 4636 2.86 0.53 
4 48.3 2919 2960 0.21 1.61 
5 66.7 3723 3733 0.86 1.13 
6 133.4 6681 6754 0.27 1.36 
7 100.0 4708 4519 6.27 2.25 
8 266.0 18029 17727 3.57 1.90 
9 133.4 8680 8590 2.66 1.62 

10 128.7 6014 6137 0.22 2.26 
11 66.7 5242 4522 13.87 0.13 
12 33.3 1870 1921 0.05 2.78 
13 186.7 11602 11652 0.66 1.40 
AVG 3.03* 1.47" 
SD 3.15" 0.63* 
Total 1495.0 91187 89733 

*Weighted average, weighted by number of heart beats per case 
FNR measures percentage of heartbeats undetected by algorithm while 
real beat exists, defined as FNR = TFNN/TRBN x 100(%) 
FPR measures percentage of misdetected heartbeats by algorithm 
where no real beat exists, defined as FPR = TFPN/TRBN x 100(%) 

increase the fa lse  negative or posit ive rate in the characteristic 
point detection. The spectral analysis method in KANEMITSU 
et al. (2004) cannot realise the beat-by-beat  analysis and fails 
when the signal-to-noise ratio is too low. 

It can be observed from Fig 2a and b that there exists a time 
lag between the far-neck occiput and neax-neck occiput pres- 
sures. Because pressure variations, due to the breathing move- 
ment and pulsation, reach the two measurement sites (i.e. the 
far-neck occiput and the near-neck occiput) by two different 
transmission routes, this implies that a simple additive model  
is not accurate enough to describe the pressure variations in 
two occiput sites. The phenomenon leads to dissatisfaction 
with the instant mixing requirement in the linear ICA model 
(HYVNRINEN, 1999) and therefore to incomplete separation of  
the pulse- and respiration-related signals (UCHIDA et al., 2003). 

Because the W T  performs essentially as a bank of  bandpass 
filters (LI et al., 1995), this potential is successfully used to 
separate signals into different frequency components.  It is 
well  known that the fundamental frequencies of  the respiration 
rhythm and pulse rate are located in different frequency bands. 
Through WT multiresolution decomposit ion and synthesis, the 
respiration- and pulse-related waveforms can be separated 
from each other in the measured pressure signal. 

Furthermore, in contrast to the ICA method described in 
UCHIDA et al. (2003), the W T  approach can extract the respir- 
ation- and pulse-related waveforms from only one channel 's  
pressure signal. In addition, computational  complexi ty can be 
greatly reduced, because only the corresponding components 
in characteristic scales need to be decomposed and recon- 
structed, unlike the t ime-consuming recursive optimisation 
calculation used in the ICA method. 

The detection performance is evaluated using F P R  and F N R .  
From Tables 1 and 2, it can be observed that F N R  is higher than 
F P R  in both the respiration rhythm and the pulse rate. This 
implies that most of  the estimates tend to be lower in value 
than the reference data, and that few estimates have a higher 
respiration rhythm or pulse rate value than the reference data. 
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Data 
Subject length, thermistor reconstructed 
number min signal signal negative positive 

1 131.7 1680 1791 4.05 10.65 
2 133.4 2421 2376 2.35 0.50 
3 66.7 1004 943 7.17 1.10 
4 48.3 936 781 16.7 0.11 
5 66.7 913 927 0.77 2.30 
6 133.4 1881 1865 2.87 2.02 
7 100.0 1341 1299 3.88 0.75 
8 266.0 3924 3894 3.54 2.78 
9 133.4 2127 2070 6.86 4.18 

10 128.7 2244 2310 1.56 4.50 
11 66.7 777 773 3.22 2.70 
12 33.3 563 526 11.19 4.62 
13 186.7 3210 3118 5.61 2.74 
AVG 4.58* 3.07* 
SD 3.23* 2.50* 
Total 1495.0 23021 22673 

*Weighted average, weighted by number of respiration cycles per case 

In Table 1, F N R  in case 11 is much higher than that in the 
others. Because F N R  measures the percentage of  heartbeats 
undetected by the algorithm when a real beat  exists, where 
real beats axe measured by the FPP sensor with relatively 
less loss, the increase in undetected beats leads to the increase 
in F N R  value. Two main possible reasons are considered 
responsible for the detection performance deterioration. One 
is the artifact induced by body movement.  When a subject 
turns over in bed frequently during sleep, the measured press- 
ure pattern distorts, and the characteristic points for the res- 
piration rhythm and pulse rate cannot be properly detected 
from extracted signals. Another factor is sensor loss. When 
sensors axe not well posit ioned beneath the pi l low under the 
head, they fail to sense pressure variations. Then, neither 
the respiration- nor pulse-related signals can be reconstructed 
well. 

Because only one channel of  the pressure signal is used to 
extract the respiration rhythm and pulse rate, the measurement 
instrument configuration is greatly simplified. However,  to 
improve detection performance, more robust algorithms and 
reliable detection strategies, as well as hardware designed to 
handle sensor loss and movement  artifacts, would be helpful. 

Future research should be conducted to enhance the real- 
t ime detection algorithm to meet practical needs. At  the same 
time, clinical data regarding various sleep disorders should 
be collected and assessed so that the accuracy and reliabil i ty 
of  this system as a sleep disorder monitor can be evaluated. 

5 Conclusions 

In this paper, a method to estimate respiration rhythm and 
pulse rate from the near-neck occiput pressure signal, which 
is completely non-invasive and unconstrained, being measured 
during sleep, was proposed and verified. The pressure signal 
is decomposed into detail and approximation components 
with the WT multiresolution analysis method. The respiration 
rhythm can be detected by the waveform reconstructed 

6 from the 2 scale approximation component,  and the pulse 
4 5 rate can be obtained from the 2 and 2 scale detail components 

after noise depression with the soft threshold method. This 
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method provides a reliable and simple means to monitor for 
sleep apnoea and sudden death syndrome during sleep. 
Further, combining LEG and the present method will provide 
a powerful and convenient approach to search for the relation- 
ships between LEG, sleep stage, respiration rate and pulse rate. 
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