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Abstract--Compartmental models are a very popular tool for the analysis of experi- 
ments in living systems. There are three main aspects that have to be taken into 
account: the degree of detail of the model, its a priori identifiability and the 
a poster io r i  (numerical) identifiability. In some cases, where standard approaches 
are adopted, the models can be either a pr ior i  or a poster io r i  unidentifiable. The 
paper proposes model identification within a Bayesian framework, to solve 
a poster io r i  unidentifiability problems. In particular, a stochastic simulation algorithm 
is proposed to perform a Bayesian identification of compartmental models, and an 
empirical Bayesian technique is proposed to propagate information among multiple 
experiments. The power of this methodology was demonstrated by evaluating the 
kinetics of thiamine under several experimental conditions. The complexity of the 
existing model (nine parameters) and limited experimental data (8/12 for each model) 
caused a poster io r i  identifiability problems when standard approaches were adopted. 
The application of the methodology identifies all 28 models (four tissues under seven 
different conditions). 
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1 Introduction 

COMPARTMENTAL MODELS are a very popular tool for the 
analysis of experiments in living systems, with applications in 
many branches of biology (CARSON et al., 1983; JACQUEZ, 
1996). The complexity of the models depends both on the 
available knowledge of the specific problem and on the available 
experimental data. For example, very detailed models can be 
exploited in pharmacology and physiology under tightly 
controlled experimental conditions. 

However, there are three common aspects that have to be taken 
into account when managing compartmental models. First, the 
degree o f detail of the model has to be defined in accordance with 
the goal of the study. Secondly, its apr ior i  identifiability should 
be checked: it should be evaluated if, given the experimental 
design under ideal hypotheses (both model and data are supposed 
to be error-free), it is possible, from a theoretical point of view, to 
identify unambiguously the model parameters (COBELLI and 
DISTEFANO, 1980; GODFREY and DISTEFANO, 1987). if  the 
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system is not a priori  identifiable, it is crucial to establish what 
parameters should be fixed to known values so that the a priori  
identifiability can be obtained. 

A priori  identifiability is a necessary condition for the 
identifiability of the compartmental model: it guarantees a 
good structural design of the experiment (CARSON et al., 
1983). Therefore the third issue that must be considered is the 
so called a posteriori  identifiability. In practice, given real data 
and a particular identification procedure, it is necessary to verify 
whether the estimates of the model parameters are unique and, in 
this case, if they are obtained with sufficient precision. In 
general, this step is performed using standard software tools 
for the analysis of compartmental models that implement non- 
linear identification algorithms. 

Unfortunately, in some cases, it is not possible to satisfy these 
three requirements at the same time. In fact, on the one hand, 
it would be necessary to build a'sufficiently' detailed model and, 
on the other hand, it is impossible/unseemly to perform a 
'sufficiently' rich experiment. Thus the model may be either 
a priori  or a posteriori  unidentifiable, in both these cases, 
a Bayesian approach to model identification can represent 
a suitable solution. When the model is a priori  unidentifiable, 
it is possible to add some information to it, introducing (if 
possible) the a priori  knowledge (as prior distribution), in 
particular of the unidentifiable parameters. This allows us to 
identify the model without fixing unidentifiable parameters to 
arbitrary values or without forcing model simplification or, 
finally, without performing more complex and costly experi- 
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ments. This solution is suitable when the information about the 
unidentifiable parameters is sufficiently detailed. 

Even when the model presents an a p o s t e r i o r i  unidentifia- 
bility, a Bayesian approach to the model identification can be an 
interesting solution. In fact, in this case also, it is possible to 
solve the problem in a satisfactory way by implementing 
powerful optimisation algorithms that are able to take into 
account the prior knowledge of the model parameters. 

This paper proposes a Bayesian formulation for compart- 
mental model identification. Moreover, in the Appendix, its 
possible implementation through a simulation algorithm is 
discussed, together with some technical details. A second issue 
focused on in this paper is the combined use of  multiple 
experiments (when they are available) as a further strategy to 
deal with compartmental model a p o s t e r i o r i  tmidentifiability. As 
a matter of fact, in biomedical science, several experiments are 
carried out to evaluate the differences in a substance's kinetics 
between a reference group (the controls) and one or more 
'treated' groups. The basic hypothesis for such a study is that 
the kinetic parameters in the treated groups have moved away 
from those of the controls. In other words, the kinetic parameters 
of the treated subjects are modifications of  the corresponding 
parameters of  the controls. Such an assumption can be easily 
encoded into a Bayesian model. A standard method consists in 
resorting to a hierarchical structure for the probability densities 
of the kinetic parameter that can be used to propagate informa- 
tion among different experiments and then among different 
groups. 

in this paper, we propose a more efficient computational 
strategy, based on the so-called empirical Bayes approach, that 
allows us to estimate the model parameters from the data of the 
control group and then to propagate such information among 
different groups through a prior distribution specification, 
without building a complex population model. 

We apply our method to a study characterised by aposter ior i  
identifiability problems, involving the assessment of  the 
thiamine (Th) kinetics in rats under different conditions. 

2 Bayesian approach to compartmental 
model identification 

Given a generic compartmental model M, denoting with 
{tl, t 2 . . . . .  tN} the N instants at which the measurements are 
collected and assuming that each measurement is affected 
by noise, we can write the output equation in its input/output 
form as 

m i = m ( o ,  u, ti) + v i (1) 

where m i is the vector of the measurements taken at time ti, vi is 
the vector of measurement errors at time ti, u are the input 
variables, and 0 are the compartmental model parameters. 

The stochastic approach to such an identification problem 
considers all variables (i.e. experimental data, model parameters, 
measurement errors) as stochastic variables, described through 
their probability distributions, in particular, a common assump- 
tion is that measurement errors are independently and normally 
distributed, and that their standard errors are proportional to the 
measurement values. Therefore we can write 

vi ~ N(O, Z~) (2) 

2 2 2 where Z~ = diag((CV -[m 1 , m 2 . . . . .  ])), diag is the diagonal 
matrix, and C V  is the so-call~d co'efficient of  variation. Thus 

p(milO ) = N(M(O,  u, ti), Z~) 

To describe exhaustively the stochastic model, an assumption 
about the a priori  distribution of the unknown-parameter vector 
has to be made. A usual choice leads us to consider the 
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compartmental model parameters 0 i as a priori  independent 
and normally distributed, so that 

0i - N( i, (3) 

where 0i, 52 are fixed parameters, embedding prior knowledge 
of the model parameters. 

Having defined the probabilistic model, the goal of  the 
Bayesian approach is to obtain the posterior distribution of the 
compartmental model parameters 0. it is easy to see that 

p(Olml, m 2 . . . . .  raN) oc p(O)p(ml,  m 2 . . . . .  mNlO ) 

h N h ( (oi~_i)2_~ 
= I-Ii=l p(Oi) I-'Ii=l P(milO) oc I-Ii=l exp \ -  252 ] 

N ( exp )) 1 7  (m i - M(O, u, ti))rZ~ l(mi - M(O, u, ti) )Z 
i=1 2 

(4) 

where h is the number of  parameters in 0. 
Unfommately, in this case, the posterior distribution of 0 

cannot be derived in closed form, so that it is necessary to resort 
to an iterative strategy based on simulations, known as the 
Markov chain Monte Carlo (MCMC) (GILKS et al., 1996). The 
MCMC allows us to derive the desired sample posterior 
distribution and therefore to compute the posterior moments 
using sample statistics. Details of  the computational procedure 
applied in this paper are reported in the Appendix. 

2.1 Multiple experiments." an empirical Bayes approach 

As discussed in Section 1, let us suppose that K different 
experiments (denoted by e 0 . . . . .  ek 1) are available and that e 0 
is the experiment carried out on the control group. Generally, 
there are two possible ways to estimate the compartmental 
models: either considering each experiment independently or 
considering all the data 'together'. in the first case, adopting the 
Bayesian model discussed above, the parameters 0 i and 52 in eqn 
3 can be fixed for each experiment at different values in 
accordance with the prior knowledge. 

On the other hand, supposing that the experiments are carried 
out on a common underlying population, following standard 
Bayesian statistics, all the experiments are considered jointly, 
and the parameters 0 i (and 52) are treated as stochastic variables 
too, drawn from a common probability distribution depending 
on other hyperparameters (WAKEFIELD e t  al., 1994). More 
specifically, a hierarchical model should be built in which 0 i 
(and 82) are drawn, for example, from a normal distribution with 
hyperparameters # and z. The resulting hierarchical stochastic 
model allows an information flow from one experiment to the 
others, without pooling the data together directly. Unforttmately, 
such an approach turns out to be highly demanding from a 
computational viewpoint. Thus, in this paper, we propose a more 
efficient approach based on an empirical Bayes framework 
(CARLIN and LOUIS, 1996), in which experiments are cons(dered 
separately, but their 0 prior distribution (i.e. the values of  0 i and 
82) is chosen in accordance with the 0 estimate obtained from 
another experiment. 

in particular, we propose the following strategy: 

(a) Assuming that the experiment on the control group e 0 can 
be more easily repeated and that its data set is more 
complete, choose for e 0 a flat a priori  distribution (large 
variance), so that the Bayesian estimate is mainly data 
driven. 

(b) Use as prior distribution for the models e 1 . . . . .  ek 1 the 

estimate obtained from e 0. in particular, fix 0i equal to the 
point estimate obtained in e0, and 5i equal to its standard 
deviation increased, for example, by two times. These 
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choices express the a priori assumption that each model 
parameter in the treated subjects is close to that of the 
control group (same mean value), but, as the standard 
deviation is doubled, that some differences may exist. 

(c) When the experiments follow a particular design for which 
a partial order can be derived (i.e. increasing dosages of a 
drug), it is possible to use a chain scheme for assessing 
priors, in which the parameter estimates of e i are used as 
priors for el+ 1 instead of using the estimates of e 0 as 
reference values for all the experiments. 

At each scheduled time, four rats from each group were killed, 
and measurements were taken. Then, following the naive pooled 
data approach (a method of estimating mean (population) 
pharmacokinetic parameters from data collected in a population, 
by first averaging the concentration at each time point and then 
fitting a model to the averaged data), at each time point, the mean 
value of the four measurements was computed and then the set of 
all the mean values was considered as coming from a single 
(mean) subject to fit a (mean) Th kinetic model. Obviously, this 
approach neglects the intra-individual variability, which, in any 
case, was limited by the fact that the rats were genetically similar. 

3 Case study: thiamine kinetics 

Th, also known as vitamin B1, is a vitamin that is involved in 
cellular metabolism in different phosphorylated forms (CooPER 
and PINCUS, 1979; BETTENDORFF, 1994; RINDI, 1996). in 
plasma, there are only two forms of this vitamin: Th itself and 
thiamine monophosphate (ThMP) (RINDI et al., 1968; REGGIANI 
et al., 1984). Such forms pass through the cell wall with different 
mechanisms, which can be active or not. Within the cell, they are 
transformed mainly by reactions ofphosphorylation and depho- 
sphorylation. ThPP, the co-enzymatic form, cannot cross the 
cytoplasmatic membrane and is totally confined inside the cell. 

In the present study, we investigated in vivo the alterations of 
Th metabolism induced in rat nervous tissue by three different 
structural analogues of Th (amprolium, oxythiamine, pyrithia- 
mine) used at different dosages. We explored the sciatic nerve 
and three brain regions (cerebellum, brainstem and cerebral 
cortex) characterised by different Th kinetic parameters. 

3.1 Experiment 

The study involved 240 adult Wistar albino rats divided into 
seven groups (one group of 48 rats for control and a group of 32 
rats for each of the six treatments). At appropriate times, a single 

1 4  1 4  dose of 30 ~tg of labelled Th (thiazole-[2 C]Thiamine, C-Th), 
corresponding to 1.25 ~tCi, dissolved in 0.5 ml saline, was given 
through intraperitoneal injection to rats starved overnight with 
water ad libitum. Th analogues were administered together with 
labelled Th to the rats of six treated groups. In particular, 

(i) groups 1 and 2 received amprolium in doses, respectively, 
100 and 1000 times higher than that of 14C-Th 

(ii) groups 3 and 4 received oxythiamine in doses, respec- 
tively, 100 and 1000 times higher than that of 14C-Th 

(iii) groups 5 and 6 received pyrithiamine in doses, respec- 
tively, 10 and 100 times higher than that of 14C-Th. 

All the rats, during the day of the injection, received a Th- 
deficient diet. 

The rats were killed by decapitation at fixed time intervals: 
{0.25, 0.5, 1, 2, 6, 12, 24, 48, 96, 144, 192, 240} h after 14C-Th 
administration for the control group and {0.25, 0.5, 1, 2, 6,12, 
24, 48 } h for the treated groups. Blood was collected, and plasma 
was separated according to PdNDI et al. (1984). After decapita- 
tion, the cerebral cortex, brainstem (medulla and pons), cere- 
bellum and sciatic nerve were dissected according to PdNDI 
et al. (1980) and utilised immediately for Th compound 
determinations. 

The number of sampling times for the treated rats was limited 
owing to the belief, before experiment, that the Th dynamics in 
rats undergoing analogue treatment was fast enough to be 
described completely by data collected over 48 h. From an 
a posteriori analysis, it was clear that this hypothesis was 
wrong and that the slowest time constant was difficult to 
derive from the collected data. However, because of cost 
problems, it was decided not to repeat the experiment. 

3.2 Compartmental model o f  thiamine kinetics 

A compartmental model for Th kinetics in nervous tissue has 
been already proposed and widely discussed (PdNDI et al., 1984; 
1987; PATRINI et al., 1993; NAUTI et al., 1997) and is reported in 
Fig. 1. 

This model uses three compartments to represent the intra- 
cellular pools of Th (pool 1), ThPP (pool 2), ThMP (pool 3) and 
two compartments to describe Th (pool 6) and ThMP (pool 7) in 
plasma, it assumes that ThPP is produced only by pyropho- 
sphorylation and that ThPP is dephosphorylated in two steps: the 
first one produces ThMP, and the second produces Th. The 
intracellular biochemical reactions involving Th phospho-esters 
are 

7h ~ k  7hPP YhPPase 7hMP YhMPase~ 

Moreover, the compartmental model includes two delay 
compartments (pools 4 and 5) to describe the plasmatic Th and 
ThMP flow into the cells (REGGIANI et al., 1984). Finally, a loss 
in the Th and ThMP compartments models the Th and ThMP 
exit from the tissues by their release into the plasma or by their 
metabolism to molecular forms not recognisable as Th or its 
phospho-esters. 

3.2.1 Mathematical formulation o f  the compartment model: in 
our tracer experiment, in accordance with RINDI et al. (1984), 
PATRINI et al. (1993) and NAUTI et al. (1997), we can assume 

cell 

. . . .  . . . .  

k l  4 "~ P k 3 5  

( r  ..... k46  ................ 

l 
i 
l plasma 
L . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Fig. 1 Compartmental model of  thiamine kinetics" in nervous tissues 
(J?om R1NDI et al. (1984)) 
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that all transfer processes between different compartments are 
linear, in fact, although in general these transfer processes can 
also be intrinsically non-linear, in our case the (local) linearity 
assumption is allowed, the concentration of the labelled 
compounds being very low. Then, the compartmental model 
of Fig. 1 is described by the following system of differential 
equations: 

dqm(t) 
dt - kl4q4(t) + kl3q3(t) - (k21 + k°l)ql( t )  (5) 

dq2(O 
-- k21qm(t) + k32q2(t ) (6) 

dt 

aq3(t) 
dt - k35qs(t) + k32q2(t) - (k13 + k°3)q3(t) (7) 

dq4(t) 
dt 

- -  k46q6(0 --  kl4q4(t)  (8) 

d q s ( 0  
- -  k57q7(t) - -  k35qs(t ) (9) 

dt 

where t is the time (h), and qi is the concentration (nCi ml-1 in 
plasma and nCig -1 in cells) of the labelled Th in the ith 
compartment. As, in our experimental setting, pools 1, 2, 3, 6, 
7 are sampled, whereas pools 4 and 5 are not measurable, the 
dynamic system ofeqns 5-9 can be rewritten in a more synthetic 
way 

y(t)  = M(O, u, t) (10) 

where y(t)  = [qm(t), q2(t), q3(t)] T (i.e. the quantity of intra- 
cellular 14C-Th, 14C-ThPP and 14C-ThMP for unit mass of 

tissue), u(t)  = [q6(t), qT(t)] T (i.e. the plasma concentration of 
14 14 C-Th and C-ThMP), Mis the Th kinetic model expressed by 

T .  
eqns 5-9, and 0 = [k0m, k03, k21 , k32 , k13 , k14 , k46 , k35 , k57 ] IS 
the vector of the model parameters. 

3.3 Identification o f  thiamine Mnetic model  

Given the compartmental model of Fig. 1 and the data set, the 
goal of our analysis was to investigate how, for each of the four 
nervous tissues, the compartmental parameters (and then the Th 
kinetics) change in the seven different groups of rats. 

First of all, we checked successfully the aprior i  identifiability 
of the compartmental model of Fig. 1 with respect to our 
experimental setting using a software tool called global iden- 
tifiability (GLOBI) (AUDOLY et al., 1998). 

After this preliminary step, we tried to identify the compart- 
mental model using standard methods (e.g. non-linear least 
squares or maximum likelihood) implemented in commercial 
software packages, as SAAM ii (SAAM INSTITUTE, INC., 1997). 
Unfortunately, because of the complexity of the model (nine 
parameters) and the limited number of experimental data avail- 
able in analogue treated rats (eight data), these algorithms were 
not able to find satisfactory solutions. In fact, in a large number 
of cases, the minimisation algorithm was not able to converge to 
a solution, or, in some cases, it proposed a solution that 
unfortunately represented only a local minimum of the cost 
function and not the global one; this problem was identified by 
obtaining different solutions starting from different points in the 
parameter space. These reasons prompted us to adopt the 
methodology proposed in Section 2. 

3.4 Results 

All 28 compartmental models (four nervous tissues in seven 
groups of rats) have been identified successfully with the 
procedure proposed in the paper, in particular, in accordance 
with the empirical Bayesian approach presented here, the apriori  
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distribution for 0 in the control group was assumed to be 'not 
informative' (i.e. avery large variance was adopted: 0 i = 0.5 and 
~i = 10), so that the estimation procedure was completely driven 
by data. The apr ior i  distribution for 0 in the groups treated with 
analogues at the lowest dosage (groups 1, 3 and 5) was set on the 
basis of the estimates obtained in the controls, whereas the 
distribution in the groups treated with analogues at the highest 
dosage (groups 2, 4 and 6) was set on the basis of the estimates 
obtained in the corresponding low-dosage groups. 

By using the MCMC algorithm reported in the Appendix, after 
40 000 runs we obtained the joint sample posterior distributions 
of the parameters, and we computed the first and second moments 
and the 95% confidence intervals for each kinetic parameter. For 
example, Fig. 2 shows the posterior distributions of the model 
parameters related to phosphorylation (k21) and dephosphoryla- 
tion (k32 , k13 ) in the cerebellum of control rats (group 7). 

Interesting information can be derived about the action of 
the analogues on phosphorylation and dephosphorylation 
(k21, k32, k13 ) and on the uptake of Th. 

To extract, from all these data (252 marginal posterior 
distributions), some physiological information about the action 
of the analogues on phosphorylation and dephosphorylation 
(k21 , k32 , k13 ) and on the uptake of Th, a number of analyses 
have been performed. To illustrate the discussion, we report the 
results related to the control (group 7) and oxythiamine groups 
(3 and 4) in the brainstem (see Table 1). 

(a) The effect of the analogue on a parameter is considered 
statistically significant if the confidence intervals of the 
parameter estimate before and after the treatment do not 
overlap. Using this approach, we can say that, for example, 
oxythiamine certainly increases the dephosphorylation rate 
from ThPP to ThMP (k32), and that progressively higher 
doses induce a corresponding increase in the rate. How- 
ever, the dephosphorylation rate from ThmP to Th (k13) 
and the phosphorylation rate (k21) do not increase signifi- 
cantly in the treated rats. 

(b) To evaluate the effect of the analogue on the uptake of Th, 
it is necessary to recall the meaning of the variation of the 
two compartmental parameters k14 and k46 

(i) pool 4 (see Fig. 1) is introduced to model the transport 
through the cellular membrane, in particular, the 
transfer function from pool 6 and pool 1 is a low- 
pass filter 

k46k14 
H ( s )  _ - -  

S -]- k14 

(ii) k14 is the pole of the low-pass filter 
(iii) k46 is the static gain that describes the low-frequency 

spectral characteristics 
(iv) k46k14 is the transfer constant of the system that can be 

viewed as an instant gain at high frequencies. 

In the light of the remarks mentioned above, we can 
observe in Table 1 that, under oxythiamine treatment at 
high doses, k14 increases, so that the transport rate of Th 
from plasma into cells increases too. However, k46 
decreases considerably, so that the total amount of Th 
going into the cerebellar cells after a low-frequency input 
of Th in plasma, for example after a meal, is reduced with 
respect to that of the control rats. Finally, the transfer 
constant is decreased: this means that lower quantities of 
Th flow instantaneously into the brainstem cells after a 
high-frequency variation in Th plasma concentration. Of 
course, similar considerations can be addressed to the 
ThMP uptake mechanism. However, in the following, we 
consider only Th, its uptake being the most relevant input 
in the cell. 
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Fig. 2 
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Table 1 Parameter estimates of Th compartmental model Fig. 1 in brainstem tissue for group 7 (control), group 3 (treated with low oxythiamine 
dosage) and group 4 (treated with high oxythiamine dosage). For each paramete~ mean, standard deviation and lower and upper bound of  95% 
confidence intervals" (respectively the 2.5 and 97.5 percentile of  the posterior distribution) are reported 

k01 k03 k21 k32 k13 k14 k46 k35 k57 k14. k46 k35. k57 

Group 7 
Mean 0.0422 0.315 7.82 0.233 1.72 0.513 0.606 0.21 0.271 0.311 0.0563 
Standard deviation 0.0538 0.0173 0.336 0.0119 0.0859 0.0221 0.0208 0.022 0.0281 0.0108 0.00318 
Median 0.0186 0.314 7.83 0.233 1.71 0.512 0.606 0.209 0.269 0.311 0.0563 
2.5% 0.000983 0.28 7.12 0.209 1.54 0.468 0.566 0.17 0.219 0.289 0.0503 
97.5% 0.193 0.348 8.45 0.256 1.88 0.556 0.65 0.256 0.333 0.333 0.0626 

Group 3 
Mean 0.0209 0.223 8.18 0.42 1.95 0.466 0.61 0.439 0.611 0.283 0.268 
Standard deviation 0.0236 0.0112 0.263 0.0151 0.0735 0.0265 0.0286 0.0217 0.0255 0.0121 0.0103 
Median 0.0119 0.224 8.18 0.42 1.94 0.466 0.609 0.438 0.61 0.283 0.268 
2.5% 0.000712 0.2 7.7 0.392 1.8 0.416 0.552 0.399 0.562 0.259 0.249 
97.5% 0.0908 0.246 8.68 0.448 2.08 0.519 0.664 0.483 0.664 0.306 0.288 

Group 4 
Normal 0.0367 0.22 7.27 0.551 1.74 0.656 0.369 0.583 0.414 0.242 0.241 
Standard deviation 0.0319 0.0116 0.193 0.0166 0.0553 0.039 0.0182 0.0303 0.0197 0.0106 0.00885 
Median 0.0266 0.222 7.27 0.551 1.74 0.656 0.37 0.582 0.414 0.241 0.241 
2.5% 0.0013 0.193 6.87 0.518 1.62 0.581 0.336 0.524 0.378 0.222 0.224 
97.5% 0.111 0.239 7.64 0.583 1.85 0.734 0.403 0.643 0.452 0.264 0.259 

From this analysis, the following general conclusions can be 
drawn. 

Phosphorylation and dephosphorylation: As is apparent from 
the value of the labelled Th compounds in the cell, the effect of  
all the analogues is to create a cellular Th deficiency. However, 
different analogues have different effects on the phophoryla- 
tion/dephosphorylation reactions: oxythiamine causes, in every 
tissue, an increase in the transfer rate from ThPP to ThMP (k32) 
and, in almost all regions (excluding the brainstem), an increase 
from Th to ThPP (k21); amprolium decreases k21 and increases 
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k32 ill all the regions apart from the sciatic nerve, where k32 is 
also decreased; finally, pyrithiamine decreases all the transfer 
constant values. 

Thiamine uptake: in  rats treated with oxythiamine, the high- 
frequency gain k14- k46 is unchanged after analogue adminis- 
tration, in  contrast, in amprolium-treated rats, the static gain k46 
and the product k14 - k46 are decreased with respect to those of 
normal rats. Pyrithiamine has the same effect as amprolium; the 
only difference is related to the sciatic nerve, in which the 
product k14 - k46 is maintained nearly constant. 
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Overall thiamine metabolism: The reduction in Th contents in 
tissues, induced by oxythiamine administration, is partially 
compensated by an increase in the rate of Th intracellular 
metabolism, its mild effect is confirmed by the value of the 
produc t  k14 - k46 , which is unchanged or only slightly changed 
after analogue administration. Amprolium and pyrithiamine 
have stronger effects on Th metabolism, with a decrease in the 
static gain of Th uptake (k46) and a consequent reduction in the 
produc t  k14 - k46. The strongest effect was found in pyrithia- 
mine-treated rats. The velocity of intracellular biochemical 
reactions is progressively lowered, regardless of the analogue 
administered. Finally, the sciatic nerve shows a slightly different 
behaviour compared with the other tissues. In fact, the Th 
metabolism is progressively decreased with the increase in the 
analogue dose, even in oxythiamine-treated rats. Moreover, the 
sciatic nerve seems to maintain the same capability of taking up 
Th, even in pyrithiamine-treated rats. However, this fact may be 
due to the relatively low content of (labelled and unlabelled) Th 
present in the sciatic nerve, even in normal rats, or to the different 
role of this tissue, which is part of the peripheral nervous system. 

Finally, as an example, Fig. 3 shows the data fitting for the 
concentrations of labelled Th, ThPP and ThMP in the brainstem 
for groups 7, 3 and 4. it highlights clearly some problems related 
with the model identification: the slowest time constants of the 
dynamics in treated rats are not easily derivable from the data, 
because of the reduced sample size. Although not shown, for 
simplicity, the reconstructed curves are always provided with 
their posterior distributions that allow us to derive soundly the 
reliability of the estimates. 

4 C o n c l u s i o n s  

in this paper, we have proposed a methodology for the 
identification of compartmental models within a Bayesian 

framework, it allows us to cope successfully with identification 
problems in particularly critical contexts, it offers three main 
advantages 

(a) the possibility of including a priori  information about 
model parameters (this solution is particularly interesting 
when the data set is poor and/or a posteriori identifiability 
problems occur) 

(b) ability to derive the correct (also asymmetric) confidence 
intervals for the estimated parameters of the model 

(c) the necessity of making explicit all the statistical hypoth- 
eses under which the obtained results are valid. 

Moreover, for what concerns point (a) in this paper, we have 
suggested an interesting strategy to propagate the information 
between different experiments following an empirical Bayesian 
approach. This solution is particularly appealing when, to limit 
the computational time in a reasonable way, we cannot build a 
full population model considering all the experiments together. 

The methodology presented here can be applied to a variety of 
areas of medicine, where problems with model identification 
could be found. In this paper, we have applied our methodology 
to a complex identification problem, concerning Th kinetics, that 
was affected mainly by two different difficulties: first, few 
measurements were available in each pool for analogue-treated 
subjects; in particular, the lower dynamics components were 
missed in the treated rats. Secondly, data came from 'destructive 
experiments' and therefore from different subjects; this is a 
source of variability embedded in the experimental data. in this 
particularly difficult context, the application of classical 
approaches to compartmental model identification did not 
allow us to obtain useful results. Thanks to our proposed 
Bayesian approach, it was possible to overcome all the identifia- 
bility problems and to address physiologically relevant conclu- 
sions by comparing the results obtained for a large number of Th 
kinetic models related to the different nervous tissues. 
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Appendix 

MCMC algorithms are based on two fundamental steps: the 
generation o f  a Markov chain and a subsequent Monte-Carlo 
integration. The first step is performed thanks to a theorem that 
allows us to generate a Markov chain that converges in distribu- 
tion to a 'target' distribution (e.g. the posterior distribution) by 
sampling from a convenient probability distribution. The second 
step uses Monte-Carlo integrations o f  the Markov chain to 
derive the desired posterior moments. The MCMC methods 
differ from each other in the way the Markov chain is created. 

In this paper, we adopted a single-component Metropolis- 
Hastings (BELLAZZI et al., 1997; MAGNI et al., 1998). in 
particular, the scheme proposed for the Th study generates the 
Markov chain drawing samples iteratively for the compart- 
mental parameters Oi, as follows: 

(i) a candidate sample ~)i is extracted from a proposed 
distribution q 

q(~)il®} c"~)) = N(®} c"~), max(0.6®} c"~), 0.005)) 

where O(c"r) is the current sample o f  the chain for the ith --i 
element o f  0 

(ii) the vector ~) is built by updating the ith element o f  current 
sample ®¢"~)with the proposed sample ®i 

(iii) the proposed sample is accepted with probabilities 

^ (c,r) ^ 
• [1 f(O)q(O  Io ) 

where the f tmctionfis  

f(fi) = e x p (  -(fii-~i)2~2~ ] 

x H exp 
i=1 2 

where fii is the ith component of  fi 
(iv) if the candidate is accepted, it becomes the ~h component 

of  the new sample o f  the chain (®}new) = ®i), otherwise 
the ith component of  the new sample o f  the chain is like 
the old one (®I new) = ®}cur)). 

This procedure has to be repeated for each 0 i to generate a whole 
sample of  the Markov chain; of  course, a suitable number of  
samples are required to ensure the convergence of  the chain and 
a good description of  the target distribution. To detelmine this 
number, we applied the criterion proposed by RAFTERY and LEWIS 
(1996). it is important to note that the step (iii) of  the algorithm 
requires us to solve the differential eqns 5-9 several times for each 
run of  the MCMC scheme. This is obviously very expensive in 
terms of  the computational efforts required by the algorithm. 
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