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Abstract--The analysis of heart rate variability, involving changes in the autonomic 
modulation conditions, demands specific capabilities not provided by either para- 
metric or non-parametric spectral estimation methods. Moreover, these methods 
produce time-averaged power estimates over the entire length of the record. 
Recently, empirical mode decomposition and the associated Hilbert spectra have 
been proposed for non-linear and non-stationary time series. The application of these 
techniques to real and simulated short-term heart rate variability data under 
stationary and non-stationary conditions is presented. The results demonstrate the 
ability of empirical mode decomposition to isolate the two main components of one 
chirp series and three signals simulated by the integral pulse frequency modulation 
model, and consistently to isolate at least four main components Iocalised in the 
autonomic bands of 14 real signals under controlled breathing manoeuvres. In 
addition, within the short time-frequency range that is recognised for heart rate 
variability phenomena, the Hilbert amplitude component ratio and the instantaneous 
frequency representation are assessed for their suitability and accuracy in time- 
tracking changes in amplitude and frequency in the presence of non-stationary and 
non-linear conditions. The frequency tracking error is found to be less than 0.22% for 
two simulated signals and one chirp series. 
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1 In t roduct ion  

THE AUTONOMIC control mechanisms of cardiac function are 
involved in short-term fluctuations in the time interval between 
consecutive heart beats (STEIN and KLEIGER, 1999; TASK 
FORCE, 1996). This phasic modulated phenomenon, which has 
been extensively studied (STEIN and KLEIGER, 1999), is conven- 
tionally referred to as heart rate variability (HRV) (TASK FORCE, 
1996), with the power spectral distribution of the HRV reflecting 
autonomic chronotropic modulation (ECHEVERPdA et al., 1997) 
and respiratory activity (BROWN et  al., 1993). Consequently, 
power spectral analysis of short-term HRV, adopted for the 
evaluation of autonomic function (STEIN and KLEIGER, 1999; 
TASK FORCE, 1996), quantifies the sensitivity of the heart to 
modulation and can be used to make inferences about the 
dynamic conditions of the central oscillators, the sympathetic 
and vagal efferent activity and the sinus node (TASK FORCE, 
1996). For example, reduced power in the short-term heart rate 
variability could suggest a deficiency in the central control of the 
heart rate, or a diminished response in the sinus node STEIN and 
KLEIGER, 1999). 
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Three main spectral components have been identified in the 
HRV spectra calculated from short-term recordings of 2-5 min. 
These are a very low-frequency component (VLF) below 
0.04Hz; a low-frequency (LF) component, from 0.04Hz to 
0.15 Hz; and a high-frequency (HF) component, from 0.15 Hz 
to 0.4 Hz (TASK FORCE, 1996). 

The physiological information provided by the VLF is 
dubious and not well established (TASK FORCE, 1996). In 
contrast, the efferent vagal activity is a major contributor to 
the power of the HF component (TASK FORCE, 1996), 
whereas disagreement exists about the interpretation of the 
LF component. Some studies suggest that the measuring of its 
power can be used as a quantitative marker for sympathetic 
modulations (if expressed in normalised units), and other 
studies indicate that the LF reflects both sympathetic and 
vagal activity (TASK FORCE, 1996). This latter hypothesis has 
led to the fractional power ratio between the low-frequency 
band and the high-frequency band in the HRV spectra being 
adopted by some investigators as an index of either the 
sympatho/vagal balance or sympathetic modulations (TASK 
FORCE, 1996). 

Nevertheless, ECKBERG (1996), in an extensive review, has 
challenged the notion that the linear increase in sympathovagal 
balance that occurs during upright tilt reflects a shift of 
autonomic predominance from vagal to sympathetic mechan- 
isms, together with the justification of extrapolating this 
to other circumstances. According to ECKBERG (1996), 
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the sympathovagal balance concept imposes non-existent attri- 
butes on the physiological regulatory mechanisms. 

Furthermore, recent studies did not detect an increase in the 
LF R-R interval power in response to steadily increasing 
fluctuations of muscle sympathetic activity achieved by progres- 
sive tilt positions during controlled breathing (COOKE et al., 
1999). This finding has been used as a strong argument against 
the application of the LF power in the R-R interval spectra as a 
non-invasive index of sympathetic nerve activity (COOKE et al., 
1999; KARAMEKER, 1999), with the authors suggesting that the 
origin of the LF oscillations is localised in some pacemaker, 
possibly in the central nervous system, rather than in the 
baroreflex, in addition, within the same study, the respiratory 
fluctuations of the R-R intervals were found to decrease in 
proportion to the tilt angle. Both results suggest that tilt system- 
atically reduces the respiratory gating of sympathetic and vagal 
motoneurone responsiveness to stimulatory inputs (COOKE et al., 
1999). 

The HRV power spectral density is usually calculated by 
either non-parametric spectral methods (e.g. windowed FFT), or 
by parametric spectral methods (e.g. autoregressive modelling) 
(TASK FORCE, 1996). In general, these linear methods generate 
comparable results (TASK FORCE, 1996), but assume stationary 
conditions that are difficult to achieve even in short-term records 
under physiologically stable or autonomic controlled conditions. 
ideally, the modulating mechanism of the heart rate should not 
change during the recording, so that the individual spectral 
components are attributed to specific physiological conditions 
(TASK FORCE, 1996). Consequently, these spectral methods 
produce time-averaged estimates of the power over the entire 
length of the record (SCHECHTMAN et al., 1988; SHIN et al., 
1989). Therefore analysis of the transient physiological 
phenomena, involving changes in the modulation conditions, 
demands specific capabilities not provided by the above linear 
spectral methods (TASK FORCE, 1996). 

Time-variant algorithms of autoregressive identification have 
been used to estimate the spectral characteristics of the HRV in 
correspondence to transient phenomena (MAINARDI et al., 
1995). For the analysis of the changes in the autonomic 
regulation, peak/trough and complex demodulation methods 
have also been proposed, allowing the description of the 
amplitude of selected frequency components as a function of 
time (SCHECHTMAN et al., 1988; SHIN et al., 1989). 

Another limitation of the linear spectral methods is imposed 
by the irregularity of the HRV. As the trends of decreasing or 
increasing R-R intervals are not symmetrical, the estimated peak 
at the fundamental frequency is reduced (TASK FORCE, 1996). 
Moreover, the existence of an LF component in the HRV power 
spectrum, which disturbs the power quantification of the auto- 
nomic components, has also been recognised. Although gener- 
ally associated with, and more evident in, long-term records, 
the presence of this component has been detected in short- 
term records, beginning at 10s and lasting no more than 
12min (KOBAYASHI and MUSHA, 1982; SAUL et al., 1988; 
YAMAMOTO and HUGHSON, 1991; CHAN et al., 1997). 

Recently, the empirical mode decomposition (EMD) method 
and the associated Hilbert spectra have been presented for the 
time-frequency adaptive analysis of non-linear and non- 
stationary time series (HUANG et al., 1998). This decomposition 
has the advantage of automatically identifying the intrinsic time 
scales of the data, including the longest scale (i.e. the longer 
period oscillations) defined by the full length of the series, 
without any presuppositions regarding the data's form. Hence, 
the components derived from the decomposition may carry 
actual physical significance (HUANG et al., 1998). 

Given the described nature of HRV series data, it would 
appear that the EMD is a suitable and attractive method of 
analysis. Specifically, it may overcome the current difficulty of 

achieving strictly stationary conditions, be appropriate to reflect 
the non-linear contents of the data, and may allow the study of 
the frequency information carried by the series as a function of 
time. This paper presents the application of the EMD and Hilbert 
transform, first, to a set of simulated HRV series produced by the 
integral pulse frequency modulation (IPFM) model, to achieve 
confidence, secondly, to a set of real HRV short-term data 
obtained during controlled breathing conditions, and, finally, 
to an HRV series involving non-stationary conditions. 

2 Empirical mode decomposition (EMD) 

The EMD relies on the decomposition of the original time 
series into component parts known as instantaneous mode 
functions (IMF), which are suitable for defining a meaningful 
instantaneous frequency (HUANG et al., 1998). These functions 
are symmetric with respect to a local zero mean and have the 
same numbers of zero crossings and extrema. The extraction of 
these components is achieved by means of a decomposition 
based on the assumptions that the series has at least two extrema; 
that the characteristic time scale is defined by the elapsed time 
between extrema; and that, if the signal is unfilled by extrema but 
contains inflection points, a differentiation process applied once 
or more may reveal the extrema. 

The decomposition method is essentially based on the 
identification of the extrema and on a sifting procedure in 
which an upper envelope is created by cubic spline interpolation 
of the local maxima; a lower envelope is created by interpolation 
of the local minima; and the difference between the original data 
X(t)  and the mean ml obtained from the upper and lower 
envelopes is designated as the first component C1 

C1 = X ( t )  - m I (1) 

ideally, this component will be an IMF; if it is not, new extrema 
can be generated, with the existing ones being either shifted or 
exaggerated. Thus this sifting procedure must be applied more 
than once to obtain an IMF. The aims of this repeated procedure 
are to eliminate the riding waves and to achieve a more 
symmetrical wave-profile by smoothing the uneven amplitudes. 
it is suggested (HUANG et al., 1998) that a threshold is used, 
computed by summing the squared normalised differences from 
two consecutive sifting results, between 0.2 and 0.4 as a limit, to 
obtain the desired IMF first component. Once this condition is 
reached, the first component C1 is subtracted from the original 
series X(t)  to leave the first residue R 1 

R I = X ( t ) - C  1 (2) 

As this residue R 1 still contains information for longer scales, the 
decomposition procedure described above is then successively 
applied to the residue to obtain the next component. Each time a 
new component is reached, the new residual information is 
employed as the input information for the continuation of the 
procedure. Hence, the decomposition performs a general separa- 
tion of the original signal into locally non-overlapping time scale 
components (or IMF). 

To extract instantaneous frequency information for each of 
these IMF, the Hilbert transform is applied to each of the 
components to obtain the amplitude and the phase of the 
analytical signal of each component (HUANG et aL, 1998) 

z( t)  = x( t )  + iy(t) = a(t)e iO(t) 

a(t) = [x2(t) + y2(t)]l/2 

/ v ~ n \  (3) O(t) = a r c t a n | J ' - ' |  
\ x ( t ) / I  

dO(t) 
w(t)  = 

dt 
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where y(t) is the HUbert transform for any arbitrary time series 
x(t); z(t) is the analytical signal (a(t) and O(t) are, respectively, the 
amplitude and the phase of the analytical signal); and w(t) 
represents a definition for the instantaneous frequency. Finally, 
by means of the combination of the amplitude and the derivative 
of the phase (i.e. the instantaneous frequency) of each compo- 
nent, it is possible to obtain the resulting amplitude, time- 
frequency, representation of the original series (HUANG et al., 
1998) 

x(t):Reall~aj(t)exp(i[wj(t)dt)}lJ:' \ (4) 

where the subscriptj is used to indicate the amplitude and phase 
obtained by means of the HUbert transform on eachj component 
of the EMD. 

3 Da ta  to  be a n a l y s e d  

To assess the application of the EMD and the HUbert trans- 
form, three simtflated HRV series produced by the IPFM model, 
a chirp multicomponent signal, a set of real HRV short-term data 
obtained during controlled breathing condition and an HRV 
series involving non-stationary conditions, were selected. 

3.1 IPFM model 

This model has been used extensively to reproduce event 
series of modulated heart periods under simplified autonomic 
regulation conditions (DE BOER et aL, 1985; BERGER et aL, 
1986; STEENIS et al., 1994; NAKAO et al., 1997). The model, 
originally presented by BAYLY (1968), transforms a continuous 
input signal into an event series representing the timings of 
cardiac activity. The input signal (too + re(t)), which involves a 
DC component (too) and a modulating sinusoidal component 
(re(t)), is integrated, and, whenever the integrated value exceeds 
a fixed threshold R, a unitary spike is generated, and the 
integrator is reinitialised. The integrated signal is identified 
with the membrane potential of the sinus node cells, which 
rises until the threshold is reached and an action potential is 
generated; the modulating sinusoidal input, generally involving 
two components to simulate the influences of the two autonomic 
limbs, represents the neural influences on the cells. 

3.1.1 Stationa O, simulated HRV data: A composite sinusoidal 
input containing two frequency components of figures 0.12 Hz 
and 0.16Hz, and magnitudes 0.3 and 0.2, respectively, was 
applied to the IPFM model, which generated a simulated heart 
beat events series, with a value 1.05 as a threshold and 1.0 as 
the DC component 

re(t) = 0.3 cos(2~(0.12)t) + 0.2 cos(2~(0.16)t) (5) 

These settings were in accordance with the ones reported by DE 
BOER et al. (1985), except for the amplitude of the high- 
frequency component being 0.2 (i.e. 20% of deviation from 
the mean heart rate) rather than 0.3, in order to have different 
amplitude values for the low- and high-frequency components 
and to enable these values to be distinguished. From this series, a 
regularly sampled (4 Hz) R-R interval signal (shown at the top of 
Fig. 1), with a Nyquist frequency considerably above the 
frequency range of the input components (TASK FORCE, 
1996), was constructed by means of a cubic spline interpolation. 

3.1.2 Non-stationa O, simulated HRV data (changing amp- 
litude): To explore the potential time-frequency tracking 
capabilities of the EMD and the associated Hilbert transform, 
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Results of  EMD for an IPFM simulated series with follow- 
ing settings: m(t) -- 0.3 cos(2~z(0.12)O + 0.2 cos(2~z(O.16)t: 
1.05--threshold valtte; and 1- -DC input component. Top 
graph presents original series, and Cz-C4 are first four 
extracted components using EMD 

a partial high-frequency blockage, simulating a simplified shift 
in the autonomic balance, was produced by changing the 
amplitude of the high-frequency component A1, from 0.3 to 
0.15 during an IPFM simulation, with 1.05 as a threshold 
value, 1 as the DC input component, and the following 
composite sinusoidal input: 

re(t) = 0.3 cos(2:z(0.1)t) + At, cos(2~(0.21)t) (6) 

The above frequency values for the low- (0.1 Hz) and high- 
frequency (0.21Hz) components were selected to produce 
different settings from the ones selected for the series in 
Section 3.1.1 (to demonstrate the potential of the EMD to 
extract these frequencies), and the other parameters of the 
simulation were chosen in accordance with the parameters 
reported by DE BOER et al. (1985). 

Using this new event series, an R-R interval regularly sampled 
at 4 Hz signal (shown at the top of Fig. 2) was constructed by 
means of a cubic spline interpolation. 

3.1.3 Non-stationa O, simztlated HRV data (changing fre- 
quencies): To explore the capabilities of the EMD and the 
associated HUbert transform for tracking changing frequencies 
on the main components, a change in the frequency value of 
the low-frequency component f from 0.1 to 0.12Hz and a 
change in the frequency value of the high-frequency compo- 
nent f ,  from 0.16 to 0.21 Hz were performed at the same time, 
during an IPFM simulation with 1.05 as a threshold value, 1 as 
the DC input component and the following composite sinu- 
soidal input: 

m(t) = 0.3 cos(2~(ji)t) + 0.3 cos(2~(ji,)t) (7) 

The spline interpolated R-R interval signal at 4 Hz derived from 
this simulation is presented at the top of Fig. 3. 

3.1.4 Non-stationa O, simztlated standard data (changing fre- 
qztencies): To explore further the EMD and the associated 
Hilbert transform for tracking changing frequencies, a chirp 
multicomponent signal was employed. This signal, presented 
at the top of Fig. 4, involves one component whose frequency 
linearly increases with time and a second component whose 
frequency linearly decreases at a different rate. The absolute 
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Fig. 2 Results o f  EMD for IPFM simulated series with follow- 
ing settings: m(t) -- 0.3 cos(2~z(O.1)t) + 0.3 cos(2~z(O.21)t): 
1.05-threshold value: and 1 - - D C  input component. At  
250s, an amplitude change fi'om 0.3 to 0.15 was introduced 
for high-fi'equencv component. Top graph presents original 
series, and Cz, C2 are used to describe first two components 
obtained bv EMD. IF~ indicates instantaneous fi'equencv o f  
Cz component, and IF2 is" instantaneous fi'equencv o f  C2. Plot 
in bottom graph represents Hilbert amplitude ratio between 
second and first components: (--  - - )  ratio o f  l 

maximum amplitude of  both components was equally estab- 
lished at unity. The initial and target components' frequencies 
were, respectively, selected in the recognised HF and LF HRV 
bands (TASK FORCE, 1996). in addition, the time to reach the 
frequency target for both components was selected to repre- 
sent a recognised HRV short-term evolution. The initial 
frequency of  the first component was selected to be 
0.1857Hz, and the target frequency was selected to be 
0.3643 Hz, whereas the initial frequency of  the second com- 
ponent was selected at 0.1343 Hz, and the target frequency 
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Fig. 3 Results o f  EMD for IPFM simulated series with follow- 
ing settings: m(t) -- 0.3 cos(2~z~)O + 0.3 cos(2~z~,)O: 1.05 -- 
threshold value: and 1 - - D C  input component. At  250s, a 
fi'equeno; value change fi'om 0.1 to O.12 H:  was introduced 
for low-fi'equencv component f ,  and a change fi'om 0.16 to 
0.21 was produced for high-fi'equencv component fb  Top 
graph presents original series, and Cz, C2 are used to 
describe first two components obtained bv EMD. IF~ indi- 
cates instantaneous fi'equeno; o f  Cz component, and IF, is 
used for instantaneous fi'equeno; o f  C2. IFz graph: (- - - -) 
0.10 and 0.12 vahws: IF, graph: (- - - -) 0.16 and 0.21. Plot 
in bottom graph represents Hilbert amplitude ratio between 
second and first components: (--  - - )  ratio o f  l 
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Results o f  EMD for multicomponent chirp signal having a 
fi'equency component increasing fi'om 0.1857 to 0.3643Hz 
and a fi'equency component decreasing fi'om 0.1343 to 
0.0557H: as settings during time window o f  500s. Top 
graph presents original series, and Cz, C2 are used to 
describe first two components obtained bv EMD. IFz indi- 
cates instantaneous fi'equency o f  Cz component, and IF, is 
instantaneous fi'equency of  C2. IFz and IF: graphs: (- - -) 
least-square fitted lines. Plot in bottom graph indicates 
Hilbert amplitude ratio between second and first compo- 
nents: (- - -) ratio o f  l 

was 0.0557 Hz at the final time, in both cases, o f  500 s. The 
signal's sampling rate was set to be equal to 4 Hz. 

3.2 Real 'stationao,' data 

To examine the new techniques on real data, a set of 14 real 
HRV signals, with 2 ms of  resolution, o f  healthy subjects (nine 
women and five men; age range 20-35, mean 25) during short- 
term controlled metronomic breathing at 0.25 Hz was gathered 
from PhysioNet (GOLDBERGER et  al . ,  2000). Based on these 
event series and a cubic spline interpolation, regularly sampled 
(4 Hz) R-R interval signals, 5 min long, were generated (TASK 
FORCE, 1996). An example of  these signals is presented at the 
top of  Fig. 5. 
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Fig. 5 EMD of  real short-term HRV signal fi'om healthy young adult 
during controlled breathing at 0.25 Hz. Top graph presents 
original R-R interval series (s), and C1-C6 are used to 
describe first six components obtained bv EMD. Plot in 
bottom graph represents Hilbert amplitude ratio between 
third and first components: (- - -) ratio o f  l 
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3.3 Real  'non-stationao, '  data 

Finally, to evaluate the EMD and the Hilbert transform on an 
HRV signal involving transient phenomena, a short-term series 
was derived from a 500 Hz sampled ECG (TASK FORCE, 1996) 
of a young man (aged 29). The subject was seated, at rest, for 
5 min, then actively stood up and remained in this upright 
position without movement for the last 6 min of the manoeuvre. 
The QRS fiducial points were detected by a standard 'band-pass, 
derivative and threshold' algorithm (TASK FORCE, 1996) and 
were regularly interpolated at 4 Hz using a cubic spline proce- 
dure (TASK FORCE, 1996). This signal is presented at the top of 
Fig. 6. 

4 Results 

The EMD was applied to the data series described in Section 
3.1.1, and the Hilbert transform was calculated for the first three 
components of this decomposition. Then, the instantaneous 
frequency, i.e. the derivative of the phase of the analytical 
signal, of  each component (C1-C3) was calculated according 
to eqns 3. Fig. 1 presents the results of the EMD on the simulated 
R-R interval; Fig. 7 involves the instantaneous frequency 
representation for these components. 

The amplitudes of the C1 and C2 components are related to 
those (0.2 and 0.3) of the two sinusoidal inputs to the IPFM 
model, as are the centre values of the instantaneous frequency of 
these components (Fig. 7), which oscillate around 0.16 Hz and 
0.12 Hz, respectively, thus being associated with the modulating 
frequency of the settings. Clearly, the component C1 of the 
decomposition is identified as the high-frequency component of 
the IPFM sinusoidal input (i.e. 0.2 cos(2n(0.16)t)), and the C2 
component is identified as the low-frequency component of the 
sinusoidal input (i.e. 0.3cos(2n(0.12)t)); nevertheless, it is 
possible to appreciate a more significant wave-profile distortion 
in the C1 component than in the extracted C2. 

Also evident in Fig. 7 is a different excursion in the 
instantaneous-frequency representations of C1 and C2 that is 
related to the described wave-profile distortion in spite of the 
very similar amplitude settings (see Section 5). Additionally, a 
C3 component, with lower, but not insignificant, amplitude, was 
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Fig. 6 EMDofrealshort- termHRVsignalf i 'omheahhyyoungaduh 
im,oh, ing standing up movement at 300 s. Top graph presents 
original R-R interval series (s), and Cz, C2, C3, C4 are used to 
describe first four components obtained bv EMD. Also shown 
is reconstructed (Cz-C4) series obtained by first four compo- 
nents of  decomposition. Plot in bottom graph represents 
Hilbert amplitude ratio o f  third and first components: (- - -) 
ratio o f  l 
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produced by the EMD. According to the instantaneous- 
frequency results of Fig. 7, the mean frequency of this C3 
component is approximately 0.04Hz, i.e. the difference 
between the two main frequencies. Finally, a C4 component 
with a significantly lower amplitude was also generated by the 
EMD. This component may be an artefact due to the repetition of 
several spline fittings in the EMD sifting procedure (HUANG 
et al., 1998); besides, as each successive IMF component of the 
EMD is obtained through the mean computed via the envelopes, 
a small leakage is always unavoidable (HUANG et al., 1998). 

The first two components extracted when the EMD is applied 
to the high-frequency blockage simulation series described in 
Section 3.1.2 are presented in Fig. 2, with theft instantaneous 
frequencies. At the time 250 s, an amplitude change from 0.30 to 
0.15 was introduced in the simulation for the high-frequency 
component, it is possible to observe this modification clearly in 
the C1 component of Fig. 2. The change in amplitude was not 
present in the C2 component. The instantaneous-frequency 
representations included in Fig. 2 act as verification that EMD 
components C1 and C2 again relate to the two IPFM inputs. 
Clearly, C1 corresponds to the high-frequency setting, whose 
amplitude was intentionally reduced, whereas the C2 component 
corresponds to the low-frequency contents of the IPFM input, 
whose amplitude was kept constant during the entire simulation. 

To produce a time-tracking frequency distribution index, a 
ratio, referred to as the Hilbert amplitude ratio, was defined by 
dividing the amplitude of the analytical function of the low- 
frequency component C2 by the amplitude of the analytical 
function of the high-frequency component C1; the plot in the 
bottom graph of Fig. 2 represents this ratio as a function of time 
(a ratio reference value of one, i.e. the same amplitude for the 
analytical function of both components, is indicated by the 
broken horizontal line). Observing the ratio before and after 
the transition involving the instantaneous reduction of the 
amplitude of the high-frequency component, it is possible to 
note the clear increase in this ratio following the transition. 

The first two components extracted when the EMD is applied 
to the simulation involving changing frequencies on the two 
main components of the series described in Section 3.1.3 are 
presented in Fig. 3, with theft instantaneous frequencies. At the 
time 250 s, frequency changes from 0.1 to 0.12 Hz for the low- 
frequency component and from 0.16 to 0.21 for the high- 
frequency component were introduced in the simulation, it is 
possible to appreciate these transitions by means of the instanta- 
neous-frequency representations included in Fig. 3. In this 
Figure, it is clearly shown that the component C1 corresponds 
to the high-frequency setting, fluctuating around the mean 
frequency value of 0.16Hz before and 0.21Hz after the 
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transition, whereas the C2 component corresponds to the high- 
frequency contents of the IPFM input, fluctuating around the 
mean frequency value of 0.10 Hz before and 0.12 Hz after the 150 
transition. 

Although the simulated changes in the frequency of the two .~ loo 
main components can be appreciated in both instantaneous- ~ 50 
frequency representations, the transition is more easy to follow % 
in the instantaneous-frequency representation of C2, owing to 
the fact that excursion of this component is smaller, reflecting a 0 
lower wave-profile distortion (see Section 5). it is also possible 
to appreciate, as was expected, that the behaviour of the Hilbert 
amplitude ratio in the bottom graph of Fig. 3, defined by dividing 

~" 6 
the amplitude of the analytical function of the low-frequency b 
component C2 by the amplitude of the analytical function of the ~ 4 
high-frequency component C1, does not reflect a major change -~ 
for the distribution of Hilbert amplitudes before and after the % 2 
transition for the main components. Nevertheless, it is possible 0 
to detect a brief event (a ratio value greater than one) reflecting a 
temporarily alteration in this distribution during the transition. 

Fig. 4 presents the results for the two main components of the 
decomposed chirp signal presented in Section 3.1.4. Clearly, it is 
shown that C1 corresponds to the chirp's component whose 
frequency increases with time, whereas C2 represents the 
component involving a decreasing frequency with time. % 
A least-square line was fitted to the instantaneous-frequency 
representation of the first and second components. These results, 
shown as broken lines in Fig. 4, are in accordance with the 
original settings of the chirp signal: the intercepts for the first and 
second components are 0.1857 and 0.1344Hz, respectively, Fig. 8 
which are precisely the initial frequencies of the settings. The 
slope for the first component is 3.5718 x 10 -4 Hz s-  1, which is 
very similar to the original chirp settings (0.01% absolute error 
difference), and the slope for the second component is 
-1.5748 x 10-4Hzs  -1, again close to the original settings 
(0.22% absolute error difference). Furthermore, it is also 
possible to appreciate, in Fig. 4, particularly by means of the 
Hilbert amplitude ratio presented in the bottom graph, a larger 
wave-profile distortion at the beginning of the test where the two 
components have similar frequencies. 

The interpolated real signals under controlled breathing 
conditions, presented in Section 3.2, were decomposed by the 
EMD, and the instantaneous frequency of each component was 
also calculated. In addition, the Hilbert amplitude ratio of C3/C1 
(involving the central frequencies corresponding to the conven- 
tional LF/HF ratio) was also determined. An example of the 
results of the EMD for these real signals is presented in Fig. 5. 
Note that C1, C2, C3 and C4 have amplitudes of the same order, 
although the amplitude of C1, which is related to the power 
concentration due to the controlled breathing, is predominant. 

The final trace in Fig. 5 shows the Hilbert amplitude ratio ~ 05 
between the third and first components, its value, below one ~;_ 
during most of the record, reflects the high-frequency predomi- --- 0 
nance of the controlled breathing condition. The periods where 
the ratio goes above one suggest moments where the regular ~ ~ 05 
breathing pattern was not completely followed. ~- ~ 0 

The power spectral density of the six components is presented 
in Fig. 8. it can be seen that the frequency excursions of C2 and 
C4, in particular, are not wholly contained within the currently 
recognised autonomic spectral bands (i.e. the low-frequency 
band from 0.04 to 0.15 Hz, and the high-frequency band from 
0.15 to 0.4Hz (TASK FORCE, 1996)). However, to complete a 
detailed analysis of the frequency behaviour of the components 
as a function of time, it is necessary to employ the instantaneous- 
frequency representation, obtained by means of the Hilbert 
transform, that is presented in Fig. 9. Here, changing frequencies Fig. 9 
for the components can be noticed, and the overlap of the 
recognised autonomic bands is even more evident for the 
excursions of the C2 and C4 components. 

o! 

2°it !,o ' 

C1 

I 0.1 0.2""~"0'.3 0.4 

C3 
8 

I 

,, 
i 

0.1 0.2 0.3 0.4 

C5 

i!J I 

0.1 

C2 

0.2 ̂  -0'.3 

C 4 

0.4 

10 

0:2 0:3 0.4 

C6 
5 

I 
4 I 

I 3 

01.1 012 013 0.4 ' 0'.1 012 013 0.4 ' 
frequency, Hz frequency, Hz 

Power spectral density o f  f irst  six components presented in 
Fig. 5. (- - -) Graphic delimitation o f  low- and high-fi'equenca: 
autonomic spectral bands at 0.04, 0.15 and 0.40Hz 

Furthermore, according to the conventional delimitation of 
the spectral autonomic band, it is possible to appreciate that the 
high-frequency band involved the expected component that can 
be related to the controlled breathing frequency as well as an 
additional component. Although the contribution of this compo- 
nent is not very relevant for the conventional overall power 
quantification of the HF band, the possibility of isolating it from 
the rest of the band may indicate information with physiological 
significance. 

In general, the application of the EMD on the 14 real 
controlled breathing signals consistently produced the isolation 
of at least four main components, with frequency excursions 
localised in the current recognised spectral bands of the auto- 
nomic modulation. 
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and 0. 40 Hz 
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To illustrate the elimination of the non-autonomic contents of 
the HRV by means of the EMD, the left-hand side of Fig. 10 
presents the traditional power spectral representation for the 
original R-R series of Fig. 5, obtained by means of a non- 
parametric calculation (the windowed FFT was applied after the 
original DC of the series had been removed) (TASK FORCE, 
1996). Fig. 10b presents the traditional power spectral repre- 
sentation for the reconstructed series, adding only the first four 
components of the decomposition, it is possible to observe the 
elimination of the very low-frequency contents through this 
reconstruction. 

The real series (described in Section 3.3) involving the 
transitory phenomena (standing up movement ) was decomposed 
by the EMD and is presented in Fig. 6. In addition, Fig. 6 also 
presents the Hilbert amplitude ratio between the corresponding 
low-frequency component C3 and the high-frequency compo- 
nent C1. it is possible to identify the transitory event of this series 
at 300 s (top of the Figure), which would make it inappropriate to 
apply the traditional methods of frequency analysis; however, 
using the results of the new techniques, it is possible to examine 
the series by means of the reconstructed series (i.e. adding 
C1 + C2 + C3 + C4 of the EMD, also presented in Fig. 6 and 
labelled C1-C4), where the non-linear trends have been filtered, 
or by means of the Hilbert autonomic ratio presented in the 
bottom plot. The transitory event was followed by this ratio, and 
the values of the ratio after this event indicate a different 
distribution, i.e. probably new autonomic conditions, for the 
rest of the manoeuvre. Besides, after this event, a different 
behaviour for the instantaneous-frequency representations of 
the first four components can also be appreciated in Fig. 11, 
perhaps showing a shift to higher frequencies during the upright 
position in all of  the components. 

5 Discussion 

The results of the application of the EMD and the Hilbert 
transform to the IPFM simulated series, involving a composite 
sinusoidal input with two frequency components, demonstrate 
how these techniques enable the isolation of both original main 
modulating components. The amplitude of the C1 and C2 EMD 
components is related to the composite sinusoidal input of the 
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IPFM model, and the mean value of the instantaneous frequency 
of these components (Fig. 7) is associated with the modulating 
frequency of the settings. Additionally, a C3 component with 
lower, but not insignificant, amplitude was also produced by the 
EMD. 

According to NAKAO et al. (1997), when two components 
coexist in the IPFM input, additional interference components, 
which are not produced by the individual inputs, appear In the 
output of the IPFM. in the spectral representation obtained from 
the IPFM events series by means of the spectrum of cotmts, this 
non-linear interference, which depends on the IPFM settings, is 
presented as harmonic distortions that can occur in all the 
possible combinations of the main input frequencies. Given 
the instantaneous frequency results of Fig. 7, the mean frequency 
of the C3 component is approximately 0.04 Hz, which is a value 
that can be obtained by a combination (i.e. the difference (DE 
BOER et al., 1985)) of the two main frequencies, 0.12 and 
0.16 Hz. Hence, using the EMD it was apparently also possible 
to recover the recognised (DE BOER et aL, 1985; NAKAO et al., 
1997) non-linear interference embedded in the IPFM output. 

NAKAO et al. (1997) have pointed out that this non-linear 
effect depends on the IPFM input settings and, even if few 
dominant frequencies are introduced in the IPFM input, the 
resulting interference could produce harmonics over a wide 
frequency range. Moreover, a very different excursion was 
also found (Fig. 7) for the instantaneous frequency (IF) of C1 
and C2 (in spite of the very similar amplitude settings), owing to 
a different wave profile distortion. 

Before proceeding with this preliminary interpretation, it is 
convenient to discuss the theoretical meaning of the IF and how 
we obtained it, as several other approaches have also been 
proposed for the analytical signal phase derivative estimation 
of monocomponent signals (BOASHASH, 1992). 

According to COHEN (1995), it is natural to define the IF as the 
derivative of the phase of the analytic signal, because its average 
over time is the average frequency. Therefore it is possible to 
consider the IF as the average of the frequencies existing at a 
particular time; the conditional standard deviation about this 
average, or the instantaneous band-width, is then related to the 
spread of frequencies at a particular time. Consequently, HUANG 
et al. (1998) proposed that, to obtain a meaningful IF, restrictive 
conditions have to be imposed on the data: the series must be 
locally symmetric with respect to the zero mean level, as well as 
having the same number of zero crossings and extrema. The 
intrinsic mode functions derived from the original data by the 
EMD procedure meet these restrictions and, hence, allow 
the calculation of the IF by means of the simple derivative of 
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the phase of the analytical signals of these functions (HUANG 
et at., 1998). 

According to HUANG et at. (1988), the conditions under which 
spurious harmonics are generated in the traditional Fourier 
analysis are non-linearity and non-stationarity. In their new 
method (EMD, Hilbert transform), these distortions are reflected 
in the IF as an intrawave modulation (i.e. any profile deformation 
within a wave), and they consider that this modulation has a 
clearer meaning from a physical point of view. Therefore, taking 
this assumption for the case of an IPFM derived series, it is 
possible to presume that the excursion of the IF is related to the 
amount of distortion produced by the combination of the IPFM 
original settings. 

Theoretically and experimentally, it has been shown (BAYLY, 
1968; DE BOER et at., 1985; STEENIS et at., 1994) that, in the 
spectral representation of events series produced by an IPFM 
model, a side-band distortion that can obscure the desired 
spectrum in the lower-frequency range is present. This distortion 
has been modelled as new harmonics in the analytical expres- 
sions derived by BAYLY (1968) and NAKAO (1997). The 
distortion is dependent on the mean heart rate R, the modulation 
amplitude m4 and the modulation frequency (DE BOER et at., 
1985; STEENIS et at., 1994), with more distortion occurring for 
larger modulation depths (i.e. m4/R)  and higher modulation 
frequencies. 

Consequently, and in summary, the results of Fig. 7 also 
suggest the use of the excursion of the instantaneous frequency 
to unmask and quantify the IPFM spectral distortion, perhaps 
owing to the inherent non-linearities of the model, that are 
present even when a simple (one-component) sinusoidal input 
to the model is selected. At present we are exploring this 
possibility. 

The application of the EMD to the 14 real signals consistently 
produced the isolation of at least four main components (C1, C2, 
C3 and C4) with comparable amplitudes (Fig. 5), and, as 
illustrated in the Fourier and instantaneous-frequency spectral 
representations of Figs 8 and 9, with overlapping frequency 
excursions localised in the currently recognised spectral bands of 
the autonomic modulation. According to HUANG et at. (1998), 
one of the most remarkable considerations of the EMD method is 
that the meaning of the produced components can be physical (or 
for these data, physiological), rather than the traditional ortho- 
gonal meaning associated with the linear decompositions; there- 
fore the finding of these independent autonomic components for 
the real HRV series may be extremely important: it seems that, 
with traditional frequency analysis, these components are 
merged, perhaps because of the practical, yet arbitrary, delimita- 
tion of the spectral bands (when using non-parametric methods), 
or because of the lack of sensitivity due to the extreme 
dependence in the selection of the model order by spectral 
parametric methods. 

On the other hand, it seems that, by the reconstruction of the 
real HRV series under short-term conditions using the first four 
components of the EMD, it was possible to recover the 
autonomic power that was masked by the very low-frequency 
contents (Fig. 10). This can be confirmed in the different value of 
the ratio (LF/HF) after the reconstruction. Besides, for the case 
of the manoeuvre involving the standing up movement (Fig. 6), 
this reconstruction (C1-C4) filtered the trends, specifically the 
non-linear ones around the transition at 300 s. 

The definition of the Hilbert amplitude ratio of two of the main 
autonomic components of the decomposition seems to be a 
convenient time tracking index for the frequency distribution in 
the HRV series, which may be adequate for the proper assess- 
ment of the dynamic and transient amplitude changes of the 
HRV components. This can be easily verified in the top and 
bottom plots of Figs 2 and 6, respectively, where the ratio 
indicated the high-frequency partial blockage simulation and 

was influenced by the transitory phenomena. In these Figures 
and in Fig. 5, it is clear that a ratio above one can be associated 
with the reduction of high-frequency oscillations in that parti- 
cular zone of the original HRV trace, in contrast, a ratio below 
one can be associated with the loss of predominance of the low- 
frequency oscillations, in subsequent evaluations of this ratio, 
other combinations of the Hilbert amplitude for the main 
autonomic components should also be explored. 

Finally, by means of the EMD and its associated Hilbert 
transform, it was also possible to detect, as a function of time, the 
changing frequencies of the components of the HRV. This can 
be noticed in the instantaneous-frequency representations of 
Fig. 3 reflecting the expected changes due to the simulation, in 
the representations of Fig. 11 that seem to reflect a shift to higher 
frequencies after the transition, and in the representations of 
Fig. 9 indicating a dynamic evolution for the main frequency 
components, in spite of the controlled breathing conditions for 
this real signal. Therefore these techniques appear to be useful, 
as well, for proper assessment of the dynamic frequency changes 
in the autonomic regulation. These capabilities for tracking 
frequency changes during short-term windows of time and in 
the HRV frequency bands were also verified by the frequency 
representations of the decomposed chirp signal. Additionally, 
the excursion of this instantaneous frequency and the Hilbert 
amplitude ratio revealed a very interesting distortion (which is 
perhaps more difficult to appreciate and evaluate via alternative 
techniques). A notorious intrawave modulation, perhaps 
reflecting a real non-linear distortion between components, is 
evident at the beginning of the test, where both components have 
similar frequencies. 

6 Conclusions 

By means of the EMD, it was possible to recover and isolate 
the original IPFM settings, including the non-linear interfer- 
ence present in the IPFM output, it has also been suggested 
that the excursion of the instantaneous frequency could be used 
as a way to unmask and quantify the spectral distortion; hence, 
subsequent studies of the behaviour of the instantaneous 
frequencies obtained from simulated and real HRV series 
should be relevant. In addition, for real HRV signals, the 
EMD permitted the isolation of at least four components with 
overlapping and dynamic frequency excursions localised in the 
currently recognised spectral bands of the autonomic modula- 
tion: it apparently permitted the separation of the very low- 
frequency contents as well. In addition, the definition of the 
Hilbert amplitude ratio using the main components of the 
EMD seems to produce a convenient time tracking index of 
the distribution of high- and low-frequency oscillations in the 
HRV spectrum (even in the presence of non-stationary condi- 
tions). Finally, the instantaneous-frequency representations 
appear to reveal accurately the frequency changes that can 
be found in HRV data. 

in conclusion, the results of this paper suggest the use of the 
EMD and the associated Hilbert spectral representation as 
powerful techniques for HRV data time-frequency analysis, 
owing to the capabilities of independently isolating the main 
frequency components, the possibility of dealing with non- 
stationary and non-linear embedded phenomena, and perhaps 
owing to its suitability for a proper assessment of the dynamic 
and transient changes in amplitude and in frequency of the HRV 
components. 
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