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Abstract--Uniaxial stress-strain data were obtained from in vitro experiments on 20 
porcine rivers for compressions, elongations and cycles of compression and then 
elongation. There were about 70 cylindrical samples, with diameter 7mm and 
varying height (4-11 mm). The combined compression and elongation test provide 
a unified framework for both compression and elongation for applications such as 
computer-aided surgical simulation. It enable the zero stress state of the experi- 
mental liver sample to be precisely determined. A new equation that combined 
both logarithmic and polynomial strain energy forms was proposed in modelling 
these experimental data. The assumption of incompressibility was justified from a 
preliminary Poisson's ratio for elongation and compression at 0.434-0.16 and 
0.474- O. 15, respectively. This equation provided a good fit for the observed mechan- 
ical properties of liver during compression-elongation cycles and for separate 
compressions or elongations. The root mean square errors were 91.924- 17.43Pa, 
57.55+ 13.23Pa and 29.78+ 17.67Pa, respectively. In comparison with existing strain 
energy functions, this combined model was the better constitutive equation. Applica- 
tion of this theoretical model to small liver samples and other tissues demonstrated 
its suitability as the material model of choice for soft tissue. 
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Med. Biol. Eng. Comput., 2004, 42, 787-798 
J 

1 In t roduct ion  

UNDERSTANDING THE biomechanics of  the liver is important 
for developing computer simulations that could assist in the 
invention of new medical devices and procedures, as well as in 
surgical pre-treatment, planning and training (HAWKES e t  al., 
2003). The properties of  materials are specified by equations. 
Within certain limits of  stress and strain rates, many engineering 
structural materials can be described by idealised equations, 
such as those for the Hookean elastic solid. However, most 
biological materials, including human liver, cannot be described 
so simply, in this paper, we present our investigation 
that attempts to determine better constitutive equations for 
porcine liver tissues from uniaxial compression and elongation 
experiments. 
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A constitutive equation describes a physical property of  a 
material, its derivation should begin with empirical measure- 
ments. There are two alternatives for constitutive modelling: the 
continuum approach and the microstrucmre approach. With 
the first approach, the material is assumed to be a continuum. 
The relevant variables are identified, and these are related in 
a framework that ensures invariance under a change of frames. 
This was our approach in this paper. 

One of the earliest reported mathematical/experimental treat- 
ments of  biological materials in the context of large deformation 
and modem continuum mechanics was that of  Ticker and 
Sacks, in 1964 and 1967, according to VOSSOUGHI (1995). 
Since then, a number of  constitutive models have appeared 
that described the passive material properties of both hard and 
soft tissues. However, few deal with abdominal tissues such as 
the liver, i f  the material is linear, and the deformation is limited 
and infinitesimal, then a simple linear relationship according 
to Hooke's law might be sufficient uniquely to describe the 
stress-strain relationship. For a non-linear material capable of  
undergoing large deformations, the formulation is not unique. 
One constitutive model may well represent one type of soft 
tissue but not the others, or a model may well approximate 
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a portion o f  the stress-strain curve, but not the entire space. 
The numerical complexity of  these non-linear functions is also 
an issue for interactive computing using currently available 
computer hardware and software. 

In DAVIES et al. (1999; 2002) and CARTER et al. (2001), the 
authors described biomechanical modelling with experimental 
indentations of  animal abdominal organs, including liver. Their 
study assumed that the tissues were isotropic, homogeneous 
and incompressible. A non-linear constitutive model based on a 
strain energy polynomial function was used in MILLER (2000) 
to model liver and kidney. The experimental data were from 
in vivo experiments on Rhesus monkeys (MELVIN et al., 1973). 
The experiments approximated tmiaxial compression under 
high strain rates typical o f  car crashes. These non-linear 
models were numerically complex and not suitable for realistic, 
fast medical simulation, in BRUYNS and OTTENSMEYER (2002), 
the authors described in vitro testing of  rat organ tissue using 
indentation and utilised the finite element method to derive as 
initial estimation of  Young 's  modulus for the tissue. A linear 
elastic model was assumed in this case for fast computation. 

Liver is very unique in its micro-anatomy relative to hepatic 
arterial, portal venous (unique dual-input supply) and hepatic 
venous blood with interconnecting lobular sinusoidal anatomy. 
Other organs behave differently when distended with blood 
under normal vascular pressures, it was necessary to have an 
in-depth investigation into the biomechanical properties of  
liver on its own. To date, YAMADA (1970) provides the most 
popular data on the mechanical properties of  animal tissues. 

We first describe the theory of  non-linear constitutive 
equations and our framework. A strain energy function was 
used in the derivation of  non-linear constitutive equations from 
uniaxial experiments. There are also other constitutive equations 
that have no apparent relationship with energy functions. These 
tend to be limited to the uniaxial state of  stress-strain and, hence, 
are not reported in this paper. The energy-based equations 
are generally applicable in multiaxial-based formulations. The 
common energy functions frequently used by various investi- 
gators have polynomial, exponential, power or logarithmic 
forms. A good survey of  the various forms of  strain energy 
equations can be found in VOSSOUGHI (1995). 

In this paper, we proposed a new constitutive equation based 
on a combined polynomial-logarithmic energy function. We 
discuss our theoretical framework and describe our uniaxial 
experiments. In vitro uniaxial experiments have long been used 
to characterise the biomechanical properties of  living tissues. 
Tissue samples were extracted and usually subjected to either 
compression tests or elongation tests. However, we performed 
combined compression and elongation testing in addition to 
these conventional tests. In addition to providing the most 
relevant, unified framework for both compression and elonga- 
tion for applications such as computer-integrated surgical 
simulation, this test enables the zero-stress state to be precisely 
determined. 

Based on our experimental data, a comprehensive set o f  strain 
energy functions were investigated to determine their suitability 
for representing the biomechanical properties of  liver. Our 
observations and new model were further validated with separate 
experiments using smaller liver samples. The new combined 
logarithmic and polynomial model was also used to model a 
compression and then elongation experiment on porcine kidney 
and brain tissues. 

2 Theories of non-linear constitutive relationships 

A well-known approach for studying non-linear constitutive 
relationships of  bodies capable of  finite deformation is to 
postulate that elasticity has the form of  an elastic potential, or 
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strain energy function, W. The strain energy for an elastic body 
is a function of  the state of  deformation. 

Let X denote a point in the reference configuration. The 
current position of  the point is denoted by x, where x is a 
function of  time. The gradient o f x  with respect to X is called 
the deformation gradient 

F = (1) 

The right Cauchy-Green tensor C is a measure of  the strain the 
body experiences 

C = FTF (2) 

The constitutive assumption of  non-linear elasticity is that the 
stress tensor at point x depends only on the material and the 
deformation gradient at x. i f  the mechanical properties do not 
depend explicitly on the particular point x, the material is said 
to be homogeneous. We have assumed that liver tissue is 
homogeneous in our investigation. 

When a quantity is unchanged with a frame rotation, it is 
said to be invariant. From C, which is a second-order tensor, 
three scalar invariants can be formed by taking the trace of  C, 
C 2 and C 3. They are 

I = trace(C) = Cii , II  = trace(C 2) = CijCji and 

III = trace(C 3) = C~jCjkCki 

However, it is customary to use strain invariants defined as 
follows: 

11 = I ,  12 = ~(12 _ II) and 13 = 1(13 - 31.  II  + 2111) 

= det (C) 

Assuming that liver is isotropic, the strain energy function can 
be expressed as a function of  the above strain invariants, 
W(I1,  I2, 13). We denote "~i as the principal values of  F,  and 
I i is a function of)ci. 

f = )c 2 ( 3 )  

23 

As liver is known to comprise highly incompressible material, 
d e t F  = 212223 = 1. Under uniaxial deformation, the cross- 
sectional area of  the cylindrical sample reduces by 1/2 when 
the height of  the sample is increased by a factor o f  2. By setting 
2 = 23, we have 21 = -~2 = 1 / ~ .  Invariants 11,122 and 13 
under tmiaxial deformation can be evaluated as 11 = 2 + 2/2, 
I 2 = 22 + 1/22 and 13 = 1, respectively. 

For an elastic material, the second Piola-Kirchhoff  stress 
tensor S can be expressed in terms of  strain energy W and 
Green-Lagrange strain tensor E as follows: 

OW OW 
S -- - -  -- 2 (4) 

OF, OC 

The Cauchy stress o- is related to S by 

1 
~r = - F . S .  F r (5) 

J 

where J = detF.  
We can now express a component of  o- in the tensile or 

compressive direction as a partial derivative of  W by the 
invariants 
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As Cauchy stress o- is related to the first Piola-Kirchhoff 
stress tensor T by 

1 
o- = - F - T  (7) 

J 
we can deduce that o- = 2 T. 

From (6), 

2 O W  T ~-~-1 ( 2 2 -  ~ ) 2 0 W [ 2  

Suppose that the original cross-sectional area of the cylindrical 
sample used in our experiment is A 0 and the tensile or 
compressive load is F, then 

F 
T = - -  (9) 

A0 

i f  the original length of the cylindrical sample is L0, the 
displacement 

AL = Lo(2 - 1) (10) 

T in (9) is measured using a precise instrument described in the 
following section. The instrument also concurrently measures 
the displacement in (10). By comparing the experimental 
curve obtained by plotting T against 2 with the theoretical 
curve from (8), obtained using various strain energy ftmctions, 
we seek to determine the strain energy function that can best 
represent the material behaviour of porcine liver tissue. 

Strain energy functions have long been proposed for model- 
ling the mechanical behaviour of biological materials and 
tissues. For solid biomechanics, most of the work has con- 
centrated on blood vessels and myocardium. There are fewer 
reports of work on lung, skin, ligament, tendon, cartilage and 
bone tissue. To the best of our knowledge, there is as yet 
no strain energy-based constitutive relationship that is derived 
from extensive measurements on liver. Our assumption for 
the isotropic, homogeneous and incompressible liver model 
is consistent with recent literature (SCHMIDLIN e t  al., 1996; 
FARSHAD et al., 1998; MILLER, 2000; CARTER et al., 2001; 
DAVIES et al., 2002) on modelling of abdominal organs for 
surgical simulation. 

2.1 Polynomial  strain energy funct ions  

The Mooney-Rivlin material is an example of a strain 
energy function with polynomial form (MOONEY, 1940). The 
Mooney-Rivlin material has been adequate for most qualitative 
engineering purposes in modelling hyperelastic solids such as 
rubber. 

Using the following Mooney-Rivlin energy function with 
nine material constants (known as the nine-constant theory), 

W = C1(11 - 3)  -]- C2(12 - 3)  -]- C3(11 - 3)  2 

+ c 4 0 1  - 3)(12 - 3) + cs(12 - 3) 2 + c 6 0 1  - 3) 3 

q- C7(/1 - 3)2(•2 - 3)  q- C8(/1 - 3)(• 2 - 3)  2 

+ C9(I 2 - 3) 3 (11) 

where C1, C2, C3, C4, C5, C6, Cv, C, and C9 are material 
constants. 

We derived the stress-strain relationship from (8). The 
resulting equation was highly complex, with the highest-order 
term having a power of 6 and the lowest-order term having a 
power o f - 5 .  

Equation (12) is the two-constant version of the energy 
function for the Mooney-Rivlin material 

W = ~ ( I I - 3 )  + ~ ( / 2 -  3) (12) 

where C1 and C2 are material constants, and C1, C2 > 0. 
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Partial differentiation of W in (12), with I1 and 12 obtained 
from (8), yielded the following stress-strain relationship. 
Note that 2 is equal to strain plus 1. For ease of discussion, 
we simply refer to T = f(2)  as the stress-strain relationship. 

C1 C2 
T = Cl.~ -]- C 2 .~2 .~3 (13) 

Using non-linear curve fitting, we could evaluate how well this 
stress-strain relationship represented the experimental data. 

The simplest polynomial-based energy function is the neo- 
Hookean model, which was originally applied to incompressible 
non-linear elastic engineering materials. The neo-Hookean 
model is a subset of the Mooney-Rivlin model with C2 = 0. 
There is only one material constant C1 in this equation (14). 

W = C1(I 1 - 3) (14) 

2.2 Exponential  and logarithmic strain energy funct ions  

Equation (15) is an exponential form of strain energy due to 
FUNG (1967) and DEMIRAY (1972) 

C1 
W = ~72 (e G(I13) _ 1) (15) 

where C 1 and C 2 are material constants, and C1, C 2 > 0. 
Partially differentiating W in (15) with I1 and OW/OI 2 = O, 

we obtained from (8) the stress-strain relationship. 
In VERONDA and WESTMANN (1970), the authors proposed 

the following energy function: 

W = Cm(e c3(I~ 3) _ 1) + C2(12 --  3) -]- g(13) 

As we assumed that liver tissue is incompressible, 9(13) = O. 

W = Cm(e c3(I~ 3) _ 1) + C2(I 2 - 3) (16) 

For cat's skin, VERONDA and WESTMANN (1970) suggested the 
following values for the material constants: C 1 = 0.00394, 
C2 = -0.01985, C3 = 5.03. Partially differentiating W in (8) 
with I1 and 12, we obtained from (16) the stress-strain relation- 
ship. 

A related class of exponential equations with logarithmic 
form was proposed by Hayashi and Takamizawa (TAKAMIZAWA 
and HAYASHI, 1987; HAYASHI, 1993). They concluded from 
their investigations that the logarithmic form is far superior to 
the polynomial form and somewhat better than the exponential 
form. The equation was intended for transversely anisotropic 
material. We proposed the following logarithmic equation for 
isotropic material: 

W = -C1 ln(1 - C2(11 - 3)) (17) 

The main difference between (17) and the original Hayashi 
equation is the absence of invariant 14 in the former. This 
invariant was not applicable with an isotropic material. We 
assumed that liver is an isotropic material in this paper. The 
original equation of Hayashi was listed as 

W = - C 1  l n ( l -  1 C 2 ( I  1 - 3 ) 2  q - ~ C 3 ( 1 4  - 1) 2 

+c4(11  - 3)(14 - 1 ) ]  
/ 

2.3 Equations f rom p o w e r  law stress-strain model 

The fourth type of commonly used constitutive relationship is 
the power law of the form T = K S  ~, where Tis the Lagrangian 
stress tensor, S is the strain or strain rate tensor, and K and n 
are the material constants. The advantage of the power law 
stress-strain function is its simplicity. Equation (18) was 
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originally proposed by TANAKA and FUNG (1974). it was used 
to model the zero-stress state of blood vessel walls in NIL et al. 
(1995). 

f = C 1 ( 2 -  1) ~ (18) 

The power law energy function has also been used extensively 
in mechanical engineering. The Odgen model, as described in 
HISADA and NOGUCHI (1995), for example, was originally 
proposed for incompressible, rubber-like materials. In ZOBITZ 
et  al. (2001), the extrafibrillar matrix of tendon material was 
formulated as a hyperelastic material using the Odgen form of 
strain energy function. 

@ C,  (20.5~,, ~0.5~,, 0.5~,, w=z:~ ,~ .  1 + -~2  +;~3 ) 

T = @ ~ C ' ( 2 ~ "  - 2 °'5~" 1) (19) 
z..., 2 
n=l 

A variant of the Odgen model was proposed in BOGEN (1987) 
to describe passive myocardial behaviour where C1 and C2 
are material constants. The equations were as follows: 

C1(2c~ 2 c: 2 c: 1) W = ~ - ~  1 + + - 

O" = C1(.~ C2 -]-.~ 2cz) (20) 

The Cauchy stress a is related to first Piola-Kirchhoff stress T 
by (7). Hence, the first Piola-Kirchhoff form of the Bogen 
equation used in our studies is 

T = C1(• C2 1 ~_ .~ 2c 2 1) (21) 

2.4 C o m b i n e d  energy  f u n c t i o n s  

We observed in our preliminary investigations that stress- 
strain equations derived from the polynomial strain energy 
function could fit the complete compression and elongation 
cycle. However, these equations generally have higher standard 
errors compared with exponential functions when used to 
represent independent compression or elongation, it is therefore 
meaningful to combine the exponential and polynomial strain 
energy functions to produce a more representative constitutive 
equation. 

The first reported attempt to apply the combined equation 
was in FUNG et al. (1993). FUNG et al. proposed a strain 
energy expression that combined polynomial and exponential 
forms. This expression followed from their finding that linear 
(Hooke's law), exponential and power law models did not fit 
the entire stress-strain curve obtained from their experiments 
with canine thoracic aorta. As HAYASHI (1993) reported that 
the logarithmic form of strain energy function was somewhat 
better than the exponential form, and our preliminary investi- 
gation also revealed that the logarithmic form was indeed better, 
we focussed on the combined logarithmic and polynomial 
model here. The application of the combined exponential and 
polynomial equations is not reported in this paper. 

The combined logarithmic and polynomial model can be 
derived in the same spirit as the derivation in FUNS et al. 
(1993). At low strain, the logarithmic component in the com- 
bined model was small, and the polynomial component was 
the dominant one. Their roles were reversed at high strain. The 
combined logarithmic and polynomial model is therefore 
advantageous in describing the entire stress-strain curve. 
Note that the Veronda and Westmann model (16) also has 
both exponential and polynomial terms. The Veronda and 
Westmann model was a sum of an exponential function and 
a polynomial originally for constitutive modelling of the skin. 
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it did not have the numerical advantages described above 
from combining the strengths of exponential and polynomial 
forms. Equation (22) is our proposed combined logarithmic 
and polynomial equation for isotropic materials 

W = @ l n ( 1  - C2(I 1 - 3)) + C3(I  1 - 3) (22) 

To simplify the discussion, we have referred to this equation 
as the combined logarithmic and polynomial model. 

3 Materials and methods 

The recent interest and progress in measuring the mechanical 
properties of tissues have been fuelled by developments in 
computer-integrated surgery, where precise information about 
the elastic properties of living tissues is desired. Surgical 
instruments have been equipped with force-sensing capabilities, 
allowing elasticity measurement during surgery (CARTER et al., 
2001; MUTHUPILLAI et al., 1995). PATHAK et  al. (1998) applied 
indentation methods for in vivo experiments on the skin. 
However, these techniques lacked well-defined boundary con- 
ditions during the experiment and often failed to address the 
complex material properties of tissue with nonlinear constitutive 
equations. 

MR elastography (KYRIACOU e t  al., 1996) was a possible 
method for non-invasive imaging of elastic properties in non- 
homogeneous organs. This method spatially maps and quantifies 
small displacements caused by propagating harmonic mechan- 
ical waves. Nevertheless, the resulting very small displacements 
and frequency range could not predict the tissue behaviour in 
the range of strains and strain rates observed during surgical 
interventions. 

Uniaxial tests have long been used to measure the mechanical 
properties of both soft and hard tissues (YAMADA, 1970). 
MILLER and CHINZEI (1997) described a uniaxial compression 
test to measure the mechanical properties of brain tissue. We 
reported our preliminary work on uniaxial experiments with 
porcine liver in SAKUMA et  al. (2003). Indentation tests were 
used in DAVIES et al. (2002) to determine the mechanical 
properties of spleen tissue. To simulate the deformation of 
liver tissue more realistically, we needed precise measurements 
of the mechanical behaviour from compression and elongation 
experiments. Hence, in addition to performing the conventional 
compression and elongation tests on liver tissue, we measured 
the force-displacement during a cycle of compression and 
elongation. This combined compression and elongation test 
also enabled the zero-stress state to be precisely determined 
for the tension test. 

We found that, by compressing a cylindrical liver sample 
of diameter 7 mm with a force of less than 1 N, we could start 
the tension test at the zero-stress and -strain state, in our other 
work on investigating the strength of liver, we found that the 
yield stress and strain were approximately 2.5 x 10SPa and 
69.5% for compression. With this yield stress, the compressive 
stress achieved by 1 N was one order of magnitude less than the 
yield stress. We also found that the resultant force-displacement 
relationship before and after preconditioning did not change 
with 1 N of preconditioning load. The combined compression 
and elongation cycle was clearly a simpler method compared 
with the use of lasers for initial state estimation (MILLER and 
CHINZEI, 1997). 

Fresh porcine livers were purchased from a local slaughter- 
house for these experiments, it is generally believed that the 
mechanical properties of pig liver are close to those of human 
liver. The weight of a whole porcine liver was 1.5-4-0.2kg. 
Test samples were cylindrical in shape, with a fixed diameter 
of 7 mm and heights ranging from 4.5 mm to 11 mm. 

Medical & Biological Engineering & Computing 2004, Vol. 42 



210mm 

Fig.  1 

I . . . . "  ) . ,  

1 
'".,..,... 

330 m m  

Whole poreine liver with test sample. Eight groups of  samples 
were extracted from diffbrent locations (Az, A2, Bz, B2, Cz, C2, 
Dz, 1)2) in live~ Average mass densities at these locations 
were 1.070, 1.078, 1.030, 1.074, 1.058, 1.074, 1.074 and 
1.057 g cm s, respectively 

surgical knife 
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Fig.  2 Overview of  experimental procedure. Sequence flows from left 
to right. Sample was first extracted from liver surface. Test 
unit was" made and placed under testing machine for 
experiments" 

Fig. 1 shows a typical whole liver and one of the liver samples 
used in the experiments. Before testing, samples were visually 
inspected for visible vessels and large pores. We looked for 
vessels from all sides of the sample. Those samples with vessels 
or obvious pores were discarded. As the samples were rather 
small, at 7mm diameter, and generally less than 10mm in 
height, and because they were extracted near the liver surface, 
we were quite certain that the presence of a vessel in the sample 
was not significant, even if missed by the inspection. 

The density of porcine liver referred to or implied mass 
density and was determined by dividing the measured weight 
of the specimen by its volume. The volume of the cylindrical 
sample was easily determined, as its radius and height were 
measured during the preparation. Digital scales were used to 
weigh the sample before and after the experiments. We assumed 
that liver tissue was isotropic. A digital video camera was 
placed in front of the sample and recorded the deformation 
during the experiment. From the recorded planar images, we 
calculated the area of the sample, based on the number ofpixels. 
The area remained roughly constant before, during and after 
the various experiments. The difference in area at any recorded 
instant of the experiment was at most 2%. As there was no 
change in weight before and after the experiment, we assumed 
that the density, and specifically the weight of the liver, did not 
change before, after and during the various experiments. 
Additionally, based on a study of 24 elongation and 15 
compression experiments, we determined that the Poisson's 
ratios for elongation and compression were 0.43-4-0.16 and 
0.47 -4- 0.15, respectively. Hence, the porcine liver tissue sample 
was possibly incompressible. This is an important condition for 
the application of the various energy based constitutive models 
described in Section 2. 

Fig. 2 illustrates the experimental procedure. The tissue 
sample to be tested was extracted from the pig liver using a 
disposable surgical knife. Surgical bond* was used to glue 
the sample to the attachments. To establish maximum bonding 
between the tissue and the attachment unit, we tested the 
adhesion between liver tissue and various surfaces, including 
wood, steel, cloth and rubber. Adhesion to the rubber plate was 
maintained with the highest tension used in our experiments. 
This was twice that obtained using wood, which had the 
lowest value. At a temperature of 20 -4- 3°C, the surgical bond 
was able to sustain a stress of up to 380 kgcm -2. 

Force and displacement were measured during the loading 
test by an Eztest precision instrument t. This instrument had a 
resolution of -4- 1% and could support loading rates ranged from 

*Adhesive A, Sankyo Co. Ltd, Tokyo, Japan 
tShimadzu Co. Ltd, Japan 

0.5 to 1000mmmin -1. We used a load cell that was capable 
of measuring a force up to 20 N. Experiments were performed 
between August and December 2002, with 70 samples taken 
from 20 pig livers. Environmental temperature was about 
22°C. Humidity was kept between 60% and 70% to prevent 
drying of the test pieces, in the combined compression and 
elongation test, the sample was first compressed, returned to 
its stress-free position and then elongated. Preconditioning with 
periodical loading and unloading was carried out in all tests. 

Note that, from the theoretical treatment above, we refer 
to stress and strain in the Lagrangian sense. Thus, for a one- 
dimensional sample loaded in tension, the tensile stress T is 
the load divided by the cross-sectional area of the sample at 
zero-stress state. The 'stretch ratio' or 'compression ratio' 2 
is the ratio of the length or height of the sample stretched or 
compressed under the load divided by the initial length at the 
zero-stress state. 

For the investigation into the heterogeneity of porcine 
liver, test sample lengths of 10-4-1 mm and loading rates of 
10mmmin -1 were used. Fig. 3 compares the stress-strain 
curves from the visceral side, diaphragmatic side and edge of 
the liver. We observed that samples extracted from the 
upper surface (diaphragmatic side) of the liver were noticeably 
harder than those from other parts of the liver. This was 
possibly owing to the presence of a thin capsular layer on the 
liver surface. As we were mainly interested in computer-aided 
surgical simulation, with surgical devices such as needles 
approaching the liver from the top, samples extracted from the 

0.5- 

0 E 
Z 
% 

0 5  x 

-1.0- 

Fig.  3 

diaphragmatic edge / visceral 
/ / 

/21 / / 

-1.5 
0.4 016 018 1.0 112 114 116 118 210 212 

stretch ratio 

Stress-strain relationships for tissue extracted from diffbrent 
parts" o f  live~ Total of  21 samples were extracted from 2 
poreine livers'. Diameter and height o f  cylindrical samples" 
were 6-7mm and 4-5mm, respectively. Loading rate was 
lOmm min z 
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diaphragmatic side of  the liver were used in our biomechanical 
analyses of  liver properties. 

We briefly studied the effect of  temperature on the mechanical 
properties of  liver. We compared the force-displacement 
curves obtained at various temperatures (22°C, 37°C and 
80°C). At 80°C, the liver tissue was close to vaporisation. The 
material behaviour of  liver tissue was essentially the same at 
22°C and 37°C. As we wanted to perform as many tests as 
possible, experiments were conducted at room temperature 
(22°C). 

Fig. 4 shows the stress-strain relationship of liver tissue 
obtained at the constant loading rates of 1, 2, 5, 10, 20, 50, 
100 and 200 mmmin  -x. These corresponded to strain rates of  
0.003, 0.006 0.030, 0.061, 0.151, 0.303 and 0.606 s -x, respec- 
tively. The effect of strain rate on porcine liver was shown to 
be relatively insignificant. Hence, in this investigation, we did 
not need to consider further the visco-elastic properties of  
porcine liver. 

As has been reported for other animal tissues (FUN~, 1993), 
porcine liver exhibited tissue relaxation. We observed during 
these experiments that, when the liver sample was compressed, 
and then the compression was maintained, the amount of  
force measured by Eztest x gradually decreased. At low 
loading rates ( 1 - 2 m m m i n - ) ,  some tissue relaxation was 
observed, whereas very fast rates (50-200 mm min -x) resulted 
in large increments between data points. We found that 
the loading rate of  10mmmin -x was the most suitable. This 
corresponded to a strain rate of  between 0.041s -x and 
0.015s -x, as our samples ranged in height from 4mm to 
11 mm. This was consistent with values required for our 
targeted application, computer-aided surgical simulation, with 
a low strain rate of  0.01 s -x reported as typical for neurosur- 
gery. Slightly higher strain rates were included in our study, 
because we needed to predict the initial response of liver to a 
surgical probe, in general, higher strain rates occur during 

abdominal surgery. By testing all samples at the same rate, 
the confounding effects of  the relatively insignificant tissue 
visco-elasticity were further minimised. 

4 Results and discussions 

Figs 5-7 show the mean and median stress T against the 
stretch ratio 2 curves corresponding to compression only, 
elongation only and combined compression and then elongation 
measurements, respectively. The standard deviation from 
the mean stress is also indicated in the respective Figure. A 
constitutive equation in the T = f ( 2 )  form is considered to fit 
the experimental data if the theoretical curve follows the shape of 
the average curve, and the standard error is small. We defined 
standard error as root mean square errors (RMSEs), calculated 
from the difference between the theoretical estimate and the 
experimental measurement. An error of  more than 120 was 
considered a bad fit. The mismatch between experimental and 
theoretical curves was apparent with this error. We were seeking 
to model the entire stress-strain curve in the physiological 
region, up to values of  about 30% strain. Models with 
few material parameters were preferred for the purpose of 
computational efficiency. Software for non-linear least-square 
data fitting using the Gauss-Newton method assisted us in 
estimating the coefficients for the non-linear functions. 

Almost all the constitutive models provided good fits for 
the experimental data over the elongation region. The fits for 
the simpler models, the neo-Hookean and the Mooney-Rivlin 
(two-constants), were not acceptable for fitting the entire curves. 
The Mooney-Rivlin model with nine constants produced 
smaller residual errors than its simpler version. This was 
mainly owing to the higher-order constants. Nevertheless, 
there were sign changes in the values of  material constants in 
these polynomial-based models. 
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Both exponential and logarithmic models were comparable in 
representing the experimental data, with the logarithmic models 
somewhat better. This is in agreement with previous reports 
(HAYASHI, 1993). The combined models were better than these 
models, with respect to their RMSEs. The average error 
for fitting the maximum, mean and minimum experimental 
data in the combined logarithmic and polynomial model 
was 29.78-4-17.67Pa. This was the next best after the 
Mooney-Rivlin (nine-constant) model with 26.63-4-9.63 Pa. 
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Fig. 6 Stress (T)-stretch (2) graphs from uniaxial elongation 
measurements" with poreine liver tissue. There were 11 
samples" from 4 livers'. Diameter and height o f  cylindrical 
samples" were 7mm and 8.5-11mm, respectively. Loading 
rate was 10 mm min z. (__) Mean and (- -) median values" o f  
experiments'. Standard deviations from mean values" are 
indicated with horizontal bars" 

The isotropic logarithmic model was third with 46.87-4- 
13.74Pa. The average error of the Veronda and Westmann 
model and the Fung-Demiray model were 42.91 -4- 5.41 Pa and 
61.86 -4- 9.17Pa, respectively. The best-fit Mooney-Rivlin 
(nine-constant) model had the following material constants 
for minimum, mean and maximum curves, respectively: 
[-2.97 x 104, 3.14 × 104, --5.36 × 104, 1.32 x 10", 7.86 x 
104, 3.23 × 104, 2.34 × 104, --1.10 × 104, --4.45 × 104], 
[--0.24 x 104, 0.26 x 104, --4.38 x 104, 0.22 x 104, 5.20 × 104, 
--1.86 x 104, 3.42 x 104, 2.93 x 104, 0.11 x 104] and [0.12 x 104, 
- 0 . 1 1  × 1 0 4 ,  5 . 47  x 104, 0.08×104, - 6 . 6 3  ×104, 3.61 ×104, 
--2.70 x 104, --3.04 x 104, --3.47 x 104]. The curve fit by 
the combined logarithmic and polynomial model was achieved 
using the following material constants for minimum, mean 
and maximum curve, respectively: [-348.51, 3.03, -328.95], 
[-337.77, 2.22, -287.78] and [-322.35, 1.51, -210.33]. 

Not all equations provided good fits for the experimental 
compression data. The Tanaka model could not match the 
compression stress-strain curve, in fact, the errors associated 
with power models were large. Mathematically, a power 
equation such as the Tanaka model could not represent compres- 
sion, as the theoretical stress computed using this equation was 
always positive for all positive stretch ratios. The exponential 
and logarithmic models were comparable in representing 
the experimental data. The combined model was good. The 
Mooney-Rivlin (nine-constant) model had the smallest RMSE. 
The higher-degree terms of the polynomial function were 
responsible for the small RMSEs. The average errors for 
the Mooney-Rivlin (nine-constant) model and combined 
logarithmic and polynomial model were 48.98-4-28.69Pa 
and 57.55-4-13.23 Pa, respectively. The average errors of the 
isotropic logarithmic model, Fung-Demiray model and Veronda 
and Westmann model were 110.2-4-58.93, 154.3-4-115Pa 
and 154.9-4-115Pa, respectively. The best-fit Mooney- 
Rivlin (nine-constant) model had the following material 
constants for minimum, mean and maximum curves, 
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Fig. 7 Stress (T)-stretch (2) graphs from uniaxial combined compression and elongation measurements" with poreine liver tissue. There were 65 
samples from 18 livers'. Diameter and height o f  cylindrical samples were 7 mm and 4-  7 mm, respectively. Loading rate was 10 mm min z. 
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respect ively:  [ - 1 . 9 8  × 104, 1.91 × 104, 5.75 × 104, 
- 0 . 6 1 x 1 0 4 ,  7 .3 .95x104 ,  1 .18x104 ,  2 . 7 2 x 1 0 4 ,  1 .42x104 ,  
- 0 . 3 3  x 104], [0.03 × 104, 0.0024 × 104, - 0 . 7 3  × 104, 
- 0 . 0 7  × 104, 0.72 x 104, - 1 . 9 8  x 104, 0.43 x 104, 0.80 × 104, 
- 0 . 2 4  x 104] and [ - 0 . 2 7  x 105, 0.26 x 105, 0.96 x 105, 
- 0 . 0 9  x 105, - 0 . 9 1  x 105, 0.28 x 105, 1.09 x 105, 1.45 x 105, 
- 1 . 2 1  x 105]. The curve fit by  the combined  logari thmic and 
po lynomia l  mode l  was ach ieved  using the fo l lowing material  

constants for min imum,  mean  and m a x i m u m  curve, respec- 
t ively: [ - 6 7 6 7 . 5 8 ,  1.12, - 2 8 1 2 . 7 8 ] ,  [ - 7 8 8 1 . 1 0 ,  1.65, 
- 3 9 4 1 . 4 0 ]  and [ - 9 9 2 2 . 5 8 ,  2.42, - 5936 .80 ] .  

Table 1 shows the results o f  fitting the above constitu- 
t ive equations to exper imental  data for compress ion  and 
then elongation.  Failure to match  the exper imental  data 
( R M S E >  120Pa)  was partly due to the difficulties in repre- 
senting both negat ive  and posi t ive domains  numer ica l ly  in 

Table 1 Parameters o f  various models representing combined compression and then elongation experimental data. Models" were ranked in 
accordance with average RMSE ± SD 

Average 
Model Minimum curve Mean curve Maximum curve RMSE ± SD, Pa 

Mooney-Rivlin C1 -- 0.20 x 104 C1 -- 0.16 x 103 C1 -- 0.23 x 104 38.71 ± 21.99 
(nine-Constmats) (11) 

C2-- 0.15 x l04  C2--0.14 x 103 C2-- 0.27 x 104 
C3-- 0.61 × 10 4 C 3 -  0.12 × 10 4 C 3 -  0.99 × 10 3 

C 4 - -  0.30 x 104 C 4 - -  0.62 x 103 C 4 - -  0.32 x 104 
C5 -- 0.19 x 10 4 C5 -- 0.41 x 10 3 C5 -- 0.15 × 10 4 

C6 -- 3.16 x 10 4 C6 -- 0.72 x 10 4 C6 -- 1.03 x 10 4 

C7-- 3.35x104 C7-- 1.43x104 C7-- 2.18x104 
C8-- 0.76 x 103 C8--0.91 x 104 C8--0.31 x 103 
C9--0.55X104 C 9 -- 0.92x103 C9--1.40x104 
C1-- 457.21 C1-- 342.44 C1-- 214.73 Combined logarithmic mad 

polynomial (22) 

TAKAMIZAWA mad HAYASHI 
(1987) (17) 

BOGEN (1987) (18) 

Ftmg-Demiray (15) 

Veronda and Westman (16) 

Odgen (19) 

C 2 = 9.77 C 2 = 1.99 C 2 = 4.71 
C3= 119.78 C3= 136.08 C3= 221.21 
C1=752.57 C1=168.01 C1=175.08 

C2-0 .61  C2-4 .11  C 2 -  9.27 
C3 - 0.20 C3 - 0.82 C3 - 1.27 
C 4 -  0.29 C 4 -  1.17 C 4 -  1.89 
C 1 -  47.87 C 1 -  43.98 C 1 -  83.553 
C2 - 3.90 C2 - 5.44 C2 - 6.4399 
C1 - 525.32 C1 - 670.65 C1 - 1209.2 
C2 - 2.618 C2 - 4.570 C2 - 6.829 
C1 - 99.45 C1 - 72.62 C1 - 87.56 
C2 -- 2.62 C2 -- 4.58 C2 -- 6.84 
C1 -- 1.58 x 105 C1 -- 4.12 x 105 C1 -- 5.06 x 105 
C2-- 2.96x105 C2-- 7.70x105 C2-- 8.23x105 
C3 -- 1.54 x 105 C3 -- 4.03 x 105 C3 -- 3.78 x 105 

91.92 ± 17.43 

134.6 ± 23.06 

153.5 ± 50.13 

187.6 ± 87.02 

188.2 ± 87.26 

411.8 ± 39.37 
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Fig. 8 Comparison of  theoretical and experimental stress (T) stretch (2) graphs for combined compression and elongation experiments'. (--) 
Mean values of  experiments. Standard deviations from mean values are indicated with horizontal bars. (- - -) Theoretical estimation 
from Mooney-Rivlin (nine-constant) model. (-.-.) Theoretical estimation from combined logarithmic and polynomial model 

some of these equations. Exponential and logarithmic models did 
fit these data, but with relatively high errors. There was no clear 
advantage in using exponential or logarithmic forms of equa- 
tions over high-order polynomial equations. The combined 
energy model and Mooney-Rivlin (nine-constant) model were 
the only models that could adequately represent these data. Fig. 8 
compares the theoretical estimations from the best-fit Mooney- 
Rivlin (nine-constant) model and the combined polynomial and 
logarithmic model with the mean value of the experimental 
stress-strain data. 

Generally, the exponential and logarithmic models repre- 
sented the stress-strain curves better than the polynomial 
models during compression or elongation. The polynomial 
models with adequate orders were preferred for combined 
compression and elongation over exponential or logarithmic 
models. However, the best constitutive models appeared to be 
the ones that combined both logarithmic and polynomial 
forms. These combined logarithmic and polynomial equations 
provided a good fit for the stress-strain relationships in the 
tests involving compression followed by elongation, as well 
as consistently matching the independent compression and 
elongation data. This combined model was the next best 
after the Mooney-Rivlin (nine-constant) model in terms of 
RMSE. As our objective was to obtain relatively simple 
constitutive equations for fast computer simulation, the 
smaller number of material constants required in the combined 
equation was advantageous. Another disadvantage of the 
Mooney-Rivlin (nine-constant) model was that its material 
parameters varied widely: a parameter could be positive in 
one representation and negative in another. This pitfall was 
typical of polynomial-based constitutive equations, it could 
cause very different mechanical behaviour in 3D cases, it 
would also pose serious accuracy issues during numerical 
analysis, such as the finite element method (HISADA and 
NOGUCHI, 1995). 
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Mean values across samples have been used particularly for 
analysis involving a large number of samples (MILLER and 
CHINZEI, 1997; MILLER, 2000). In our study, the results from 
curve-fitting the average stress-strain curve are consistent 
with those of individual samples. We defined the median 
stress-strain curve of a porcine liver as the experimental 
stress-strain curve that was closest to the median value of all 
the stress-strain curves obtained with samples from that 
liver. We curve fitted the median stress-strain curve of six 
porcine livers with the combined logarithmic and polynomial 
equation and the Mooney-Rivlin (nine-constants) equation. 
Table 2 shows the parameters and RMSEs for fitting each 
individual porcine liver. The RMSEs of each curve fit fall 
within the range defined earlier for both equations. For the 
Mooney-Rivlin (nine-constant) model, its material parameters 
varied widely: a parameter could be positive in one repre- 
sentation and negative in another, which happened in all six 
porcine liver samples. Hence, in view of the smaller number and 
more consistent material parameters, the combined logarithmic 
and polynomial model is indeed the better constitutive model. 

To validate further the suitability of the combined logarithmic 
and polynomial equation, we performed separate experiments 
with small liver samples. The small liver samples had diameters 
of only 3 mm. Four test samples from one pig, under the 
same experimental conditions, were tested. Fig. 9 shows the 
theoretical results and the average for the experimental results 
for these tests. The theoretical results obtained using this 
model agreed with the elongation results using these small 
liver samples. 

We repeated the analyses for liver with porcine kidney 
and brain tissues. The experimental conditions and procedures 
were the same for all three types of soft tissue. A close fit 
was possible with the combined logarithmic and polynomial 
model. The combined logarithmic and polynomial model could 
model these tissues with similar errors and small deviations 
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Table 2 Parameters" and RMSEs of Mooney-Rivlin (nine-constants) (11) and combined logarithmic and polynomial (22) models" in representing 
combined cycle of  compression and elongation experimental data of  6 porcine livers" 

Mooney-Rivlin (nine-constaxlts) (11) Combined logarithmic and polynomial (22) 

material parameters RMSE, Pa material paxameters RMSE, Pa 

Liver 1 C1 -- 0.19 X 104 C6-- 1.58 x 104 18.66 C1 -- 1.67 X 104 95.35 
C2--0.22x104 C7-- 0.81x104 C2--0.571 
C3--0.29 x 104 C8-- 1.07 x 104 C3-- 4.50 x 103 
C 4 - -  0.002 x 104 C 9 -- 0.61 x 104 
C5-- 0.41 X 1 0  4 

Liver 2 C1 -- 0.11 x 10 4 C6-- 3.95 X 10 4 24.88 C1 -- 4.23 X 10 4 90.76 
C2--0.15 x104 C7-- 3.41 x104 C2--0.23 
C3--0.97 x 104 C8-- 6.65 x 104 C3-- 4.58 x 103 
C 4 - -  0.49 x 104 C 9 -- 4.79 x 104 
C5-- 0.52 X 1 0  4 

Liver 3 C1 -- 0.23 X 104 C6-- 5.54 x 104 40.15 C1 -- 6.38 x 102 104.69 
C2--0.26 x 104 C7-- 1.67 x 104 C2-- 1.62 
C3--0.63x104 C8-- 2.85x103 C3-- 4.14x102 
C 4 - -  0.13 x 10 4 C 9 -- 1.36 x 10 4 

C5-- 0.89 x 104 
Liver 4 C1 -- 0.02 X 10 4 C6-- 0.92 X 10 4 20.22 C1 -- 5.94 X 10 3 91.44 

C2--0.053 x 104 C7-- 0.02 x 104 C2--0.75 
C3--0.42 x 104 C8--2.54 x 103 C3-- 2.14 xl03 
C 4 - - 0 . 1 1  x 1 0  4 C 9 -  1.28×104 
C5-- 0.46 x 104 

Liver 5 C1--0.11 x104 C6--3.62 x104 45.55 C1-- 8.55 x104 105.83 
C2-- 0.07x104 C 7 -- 4.38x104 C2--0.57 
C 3 - -  0.50 X 104 C8 -- 0.24 X 103 C 3 - -  9.63 x 103 
C4-- 0.25 x104 C 9 -- 1.09 x104 
C5-- 0.15 x104 

Liver 6 C1-- 0.09 X 10 4 C6-- 0.25 X 10 4 35.37 C1-- 1.67 X 10 4 106.67 
C2--0.12 x 104 C7-- 0.65 x 104 C2 -- 0.28 
C3--0.19x104 C8--2.11x103 C3-- 0.19x104 
C 4 - -  0.09 x 104 C9 -- 0.95 x 104 
C5-- 0.15 xl04 

in material parameters. The polarity of  the parameters did 
not change in the combined model. This demonstrates the 
suitability o f  our combined logarithmic and polynomial energy 
function as the model o f  choice for soft tissues in general, 
and liver tissue in particular. Note that experiments with 
porcine kidney and brain tissues are preliminary at five test 
samples each. 
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Validation of  combined logarithmic and polynomial equation 
using experimental  results" f rom  smal ler  samples.  Sample  
diameter  was" 3ram, with heights" ranging f rom  5ram to 
6ram. N u m b e r  o f  samples" tested was  4. Load ing  rate was  
l O m m  rain z. S tandard  deviations f rom mean experimental  
values are indicated with horizontal  bars'. (--)  Experiment," 
( -  - - )  Theoretical estimation 

5 Conclusions 

in this paper, we have presented our model o f  the mechanical 
behaviour o f  liver based on conventional continuum 
mechanics, for surgical simulation applications. Our results 
obtained from in v i t ro  uniaxial measurements showed that 
liver tissue deforms differently under compression and elonga- 
tion. Thus, instead o f  relying on separate compression and 
elongation experiments to define the material properties o f  
liver, we believe that a cycle with both compression and 
elongation should be used. To the best o f  our knowledge, 
this report is the first to express biomechanical properties o f  
biological tissue based on complete cycles o f  compression 
and then elongation. The existing constitutive models did not 
fit this complete cycle o f  compression and elongation well. 

We investigated and confirmed the hypothesis that a con- 
stitutive equation with both polynomial and logarithmic forms 
could best represent the stress-strain relationship o f  a complete 
cycle o f  compression and elongation, in fact, our combined 
logarithmic and polynomial equation provided an excellent 
fit over the entire stress-strain curve for separate compression 
and elongation. Besides demonstrating that our proposed 
combined logarithmic and polynomial model is the preferred 
model to represent the liver biomechanical properties, in a 
preliminary investigation, we found that this theoretical model 
could represent the stress-strain relationship o f  other soft tissues, 
such as porcine brain and kidney tissues. 

The value o f  a model is in predicting actions based on theory 
o f  formulated quantitative mechanical properties and principles 
o f  physics, it is clear that our experimental and theoretical 
results agree under the conditions o f  our experimental design. 
Unfortunately, biological tissue properties change with disease, 
and this is the environment in which computer-aided surgery 
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is performed. We are aiming eventually to introduce parameters 
o f  pathology such as stiffness, from diseases such as cirrhosis, 
and compare cadaver results with experimental predictive 
data. Under normal conditions, the liver is heavily perfused 
with blood, both from hepatic arterial and portal venous sources. 
This perfusion imparts a certain degree o f  turgidity that is not 
present in unperfused samples. This will influence the defor- 
mation properties. The samples should be infused with solution 
resembling blood serum at a pressure consistent with that 
found in the liver. We are enhancing our current experimental 
measuring system to administrate the infusion process. 

We agree with a reviewer that the biphasic model is a possible 
approach to the integration o f  the effect o f  blood pressure that will 
enhance the realism of  surgical simulation o f  liver therapies. As 
was also hihlighted by the reviewer, the biphasic model poses a 
sufficient challenge, both theoretically and experimentally. The 
resultant biphasic model will possibly be highly complex and 
interactive, but near real-time computation is impossible with 
existing hardware. Hence, our work described here is possibly a 
more practical approach to surgical simulation. A practical 
application o f  our work includes simulation of  liver deformation 
from RF needle insertion, in this application, the medical image 
of  a patient's liver was classified into vessels and liver tissues. A 
finite element model o f  the liver was then created with elemental 
material properties defined according to the classified image. The 
defined material property and modelling o f  the liver tissues were 
related to the work described in this paper. 

We assumed that liver is an isotropic material in this investi- 
gation, in another ongoing study, we have found that the 
correlation o f  coefficients obtained from the experimental data 
with those from theoretical predictions was generally better 
when transverse isotropy was assumed. This observation is in 
agreement with a study on constitutive modelling o f  lung tissue 
(VAWTER et al., 1980). We have observed that liver tissue has 
some transverse anisotropy characteristics, and we are currently 
investigating these characteristics further. We also plan to carry 
out non-linear finite element simulations based on the tensor 
forms of  our combined logarithmic and polynomial models 
(ONODERA et al., 2001). 
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