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Abstract. It is shown that a continuous positive linear functional on a commutative nuclear 
*-algebra has an integral decomposition into characters if and only if the functional is strongly positive, 
i.e. positive on all positive polynomials. When applied to the symmetric tensor algebra over a nuclear 
test function space this gives a necessary and sufficient condition for the Schwinger functions of Eucli- 
dean quantum field theory to be the moments of a continuous cylinder measure on the dual space. 
Another application is to the problem of decomposing a Wightman functional into states having the 
cluster property. 

I. Introduction 

Whereas the extremal states of an abelian *-algebra of bounded operators on 
Hilbert space are at the same time the characters of the algebra, this is no longer 
true for algebras of unbounded operators 1. In a previous article [2] an integral 
decomposition theory associated with the weak commutant of families of un- 
bounded operators was used to obtain an extremal decomposition of states on 
nuclear *-algebras. The present paper is concerned with decompositions into 
characters in the commutative case. It is shown that such a decomposition is 
possible if and only if the state, satisfies a positivity condition which is well known 
from the classical moment problem over finite dimensional spaces [3, 4]. This 
result can be applied to Euclidean quantum field theory where the sequence of 
Schwinger distributions defines by assumption a positive linear functional on the 
symmetric tensor algebra over some nuclear space of test functions. The condition 
tells also when a Wightman functional is an integral over states having the cluster 
property. That this is not always the case was shown in [2]. 

The infinite dimensional moment problem has been treated by several authors 
under conditions which at the same time guarantee the uniqueness of the solution, 
cf. e.g. [5] and [1]. Our method is based on the extension theory in [2] which, 
however, has to be modified slightly to fit our purpose. These changes are fairly 
straightforward so we can in most cases refer to [2] for the proofs. This method, 
which might appear somewhat indirect if one is only aiming at a solution of the 
moment problem (i.e. our Theorem 4.3) 2 , has some advantages: It makes explicit 
the intimate connection of the solution with the weak commutant of the operators 

i See e.g. [t], Theorem 5.5. 
2 After this research was completed a more direct proof of Theorem 4.3 was found by G. C. 

Hegerfeldt. A closely related result has also been obtained by M. Dubois-Violette (private commu- 
nication). 
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and the extension theory with subsidiary conditions developed in the next section 
is also useful for other purposes. In Section 5 we treat briefly the non-cyclic case 
where positivity has to be replaced by complete positivity in the sense of [6]. 

2. Positive Extensions 

When not stated otherwise, the notations of this section are those of [2]. Let 
(•, 9 )  be a *-operator family and assume the identity operator 1 belongs to d .  
We shall be concerned with extensions ( d ,  9 )  of ( d ,  9)  which preserve positivity 
of some of the operators in d .  

2.1. Definition. (i) An operator A c d is called positive (on 9)  if Qp, A~o)>0 
for all q~ e 9 .  

(ii) Let N C d  be some subset of positive operators on 9 .  An extension(s~, ~)  
is called ~-positive i r a  is positive on @ for all A c N. We denote the set {AIAcN} 
also by N. 

2.2. Remarks. (i) If N C d  is a family of positive operators, then this holds 
also for the cone generated by the operators B*AB, B e d and A e N, whenever 
the product is defined. 

(ii) Since an extension is assumed to preserve the algebraic structure of d ,  
every extension is positive with respect to the squares A*A when these are defined. 
More generally, a N-positive extension is also positive w.r.t, the cone defined 
above. 

(iii) The closure ( d ,  9 )  of an operator family (cf. [2], 2.4) defines a N-positive 
extension for any family N C d  of positive operators. 

2.3. Definition. Let N be as above, and assume that 1 e N. A bounded operator 
x c ( d ,  @)~ will be called strongly positive (w.r.t. N) and we write x>>0, or some- 
times x ~ 0 ,  if xA is positive on N for all A c N. Instead of x-y>>O we shall also 
write y < x. 

In the following we shall assume that some fixed N with I c N is given and 
instead of "N-strongly positive" etc. we shall simply write "strongly positive" etc. 

2.4. Remark. (i) Because 1 s N, every x>>0 is positive in the usual sense. The 
converse holds if x commutes strongly with the closures J of A e N, because then 
we have x A C x l / Z J x  1/2 for x>0 .  In general, however, the two concepts are 
different. 

(ii) Every x>>0 is also strongly positive w.r.t, the cone defined in 2.2(0. 

2.5. Notation. ~-~ "= {x ~ ( d ,  @)~10~ x ~  1}, 

If we want to stress the dependence on d ,  N, and @ we write ~ [ ( d ,  N, 9)  etc. 

2.6. Lemma. (i) The sets cg[ and ~1 are convex and weakly compact. (ii) Let 
( ~ ,  ~ )  be a N-positive extension and define the mapping ~ as in [2], i.e. ~(x) = P x P 
where P is the projector J4¢~(~)~(@) and x is a bounded operator on AP(~). 
Then we have that x ~ 0  implies Q(x)~0 so Q maps cg-~ (~f, ~ ,  ~ )  into c~[ (s~, ~ ,  9). 

Proof. The statements follow immediately from the definition and the weak 
compactness of the order interval 0_<x_< 1. 
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2.7. Definition. (i) An induced extension (d ,  ~ ,  ~) of (d ,  ~) (cf. [2], Definition 
2.10) will be called regular positive (with respect to ~), if 

(a) It is positive, i.e. (d ,  N) is a positive extension of (d ,  ~). 
(b) Q is one-to-one when restricted to cg[-(dV ~ff, ~, ~)a. 
(ii) We define a relation among ~-positive, resp. regular N-positive induced 

extensions as follows: 

if there is a subalgebra J~ ( Y  such that [s~ V J~, J¢, ~)is a positive, resp. regular 
positive induced extension of (sff Vdt, ~) with respect to ~ C d .  

2.8. I_emma. (i) Let (s~-, ~7-, ~ - )  be the closure of  the induced extension 
( ~ , ~ , ~ ) ,  i.e. J g - = w e a k  closure J f f , ~ -= l in .  span J # - ~  and s~-=extension 
of s~¢ to ~ - .  Then ( d - ,  Jff -, ~ - ) is regular positive iff (~ ,  Jff , ~)  is regular positive. 

(ii) Let (s¢, J], ~) be a positive induced extension. Then the positive part of the 
unit ball Jff [ belongs to ~[(s~VJE, .~, ~). 

(iii) The relation < is an order relation (i.e. transitive and reflexive) among 
regular positive extensions. 

(iv) For every linearity ordered set of regular positive extensions there exists 
a regular positive extension which dominates all the extensions of the set. 

Proof. (i) Since cg[ ( i f -  V Jff -, ~ - ,  ~ - )  fi cg~ ( d V  Jff, ~) the statement follows 
from the fact that an operator is positive iff its closure is positive. 

(ii) Follows from (i) and Remark 2.4(i). 
(iii) And (iv) are proved in the same way as Lemma 2.11. in [2]. 

2.9. Lemma. (1) Let (~ ,  J],  ~)  be a positive induced extension such that the 
restriction ~ I J¢] is one-to-one. Define ~//1" = ~(~), 3ff ~[ : = O(Jff ~ ) and 0 : J/t x +/~ ~ ¢ [  
by the equation 

q~(ma, m2) = ~(~- l(mO" O- 1(m2)) - 

These objects have the following properties: 
(i) ~ is the linear hull of ~ 4(. 

(ii) 24z[ is a convex subset of ~ - ( d ,  N) with 
(a) 1 e S [ .  
(b) X ~ S ~[ implies 1 - x e 2U ~. 

(iii) The product 4) on At  is 
(a) bilinear, 
(b) associative, 
(c) commutative, 
(d) respects the involution, 
(e) has 1 as a unit element, 

and for all mi ~ Jg , k e oU-~ , A ~ ~ and qoi e ~ we have 
(f) ~ij  < q~, ~(m*, k, m;)A~oj> >=0. 

3 s~fV .~ff denotes the algebra generated by .~  and M], or, if ~ is not an algebra, simply the set 
theoretical union of ~ and ~ .  
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(2) Conversely, suppose JC/, ~ ,  and 49 are as in (i)-(iii). Then there exists a 
positive induced extension ( ~ ,  M/l, 9 )  such that O t l f f  is injective, and 

(a) = 
(b) 49(ml, m2) - Q(Q- i(mi) • 0 - i(mz)), 
(c )  

This extension is uniquely determined by (a) and (b) up to unitary equivalence 4. 
For two such extensions (s f l ,  o/ff i, ~ l )  and (~2,  j / ]2 ,~2)  associated with ( j / i ,  
( jC+)i,  49i) resp. (j~2 (~r;)2 492) we have 

j 1 ,  jdl ,  ( 42 ' jd2, 

if and only / f  J//i  CJC/z and 491 =492 ~ 1 X , / ~ l .  

Proof. The verification of (t) is straightforward. Conversely, if we define 
.X( = U~>_02Jg~- then the triple(J~, a f ,  49) satisfies all the hypotheses of Lemma 2.12 
in [2]. The N-positivity of the extension follows immediately from (iii) (f). 

2.10. Lemma. I f  x ~ ~ ,  x +- 21 with 0 < 2 < 1, then 

~ [  :=  {2x +#(1 - x)lO__< 2 < 1, 0=<#____ 1} 

~/~: = l in .span.~  ~- = {c~x + /~(1-  x)je,/3 e IU} 

and 

49(~lx + fll(t -- X), ~z x + flz(1 -- X)):---- ~l~zX + flifl2(1 -- x) 

satisfy all hypotheses of Lemma 2.6. The algebra d] is generated by the identity 
and a projector e with o(e)= x. 

Proof. If 2 x + # ( 1 - x ) ~ J f  "+, then also 1 - ( 2 x + # ( 1 - x ) ) = ( 1 - 2 ) x + ( 1 - # ) x  
( 1 - x ) ~ J t ~ - .  Since Xecg + we have for all A s N  and 2 , # > 0 :  

~ij(q~i, 49(c~ix +//i( 1 -- x), 2x + #(1 -- x), ejx +/~j(1 -- x))Acpj) 

The other properties are also easily verified. 

2.11. Lemma. Let x be as in the previous lemma. Define 

cg+ = {y ~ (sO, 9) '10 ~ y  ~x}  
+ + 

and ga+ i-~, (gi -~ in the same way. Then the extension defined by x is regular positive 
f and only if 

% c ~ _ ~ =  {0}. 

Proof. The w o o f  is a transcription of the proof  of Lemma 2.15 in [2], replacing 
< b y e .  

2.12. Lemma. Let x be as in Lemma 2.10. The extension defined by x is regular 
positive if and only if x is an extremal point of cg+(s¢, ~ ,  ~). 

4 As in [2], unitary equivalence of two extensions (~g~, .//4~, ~), i = I, 2 means there is a unitary 
operator ~°(~1)~a4"(~) which reduces to the identity on aC'(N) and intertwines between ~a and ag "2 
resp. j/]l and ~/{z. 
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Pro@ The statement follows from Lemma 2.11. in exactly the same way as 
Lemma 2.15 in [2] implies Lemma 2.14 in [2]. 

The next result is the counterpart to Theorem 2.16 and Lemma 3.1. in [2]: 

2.13. Theorem. (i) Every regular positive extension is dominated by a maximal 
regular positive extension. 

(ii) A regular positive extension (~£, ~ ,  ~)  is maximal if and only if 

(iii) I f  (~ ,  J~, ~)  is a regular positive extension and if ~ ( ~ )  is separable, then 
~ ( ~ )  is also separable. 

Proof. (i) follows from Lemmas 2.8 and 2.9 and Zorns lemma in the same way 
as in the proof of Theorem 2.16 in [2]. 

(ii) If w'{~- is a proper subset of cg[, there exists by the Krein-Mil'man theorem 
an extremal point x ~ c~- with X ¢ J / i [ .  By Lemma 2.12 this x defines a regular 
positive extension, which contradicts the maximality of (sf, ~ff, ~). 

(iii) The proof is the same as in Lemma 3.1 in [2]. 

3. Standard Extensions for Commutative Algebras. The Cyclic Case 

Let 9A be a commutative *-algebra with a unit element I. The concepts of an 
extension and ~-positivity, which up to now were used for operator families 
carry over to representations ofg.I in an obvious manner. We also recall a definition 
of Powers [1]: A representation H of 9.1 on domain ~ is called standard if H(A) 
is essentially self-adjoint on ~ for all symmetric A 6 9.1 and the spectral projectors 
for different operators commute. 

Let ~ C 9.I be some linear space of Hermitean generators for 9.1, i.e. every 
element ofgA is a polynomial P(A 1 . . . .  A,) with A i e ~ .  I f / / i s  a standard representa- 
tion of ~I, then the spectrum of H(P(A I . . . .  A,)) belongs to the range of the poly- 
nomial P(Xl,...  x,) over 1R", in particular, if P(xl . . . .  x,) is a positive polynomial, 
then//(P(A1, ..., A,)) is a positive operator for all A i E 9.1. To account for more 
general situations we introduce a notation. 

3.I. Notation. If A e is any subset of the algebraic dual ~ *  we define 

~(~f)= {P(A1,..., An)IP(~o(A1), ..., ~0(A,))__>0 for all o~ 6 ~e}. 

3.2. Theorem. Let 1I be a cyclic *-representation of 9.1 with cyclic vector g2 and 
domain ~ = II(gg)o and let ~f and ~(~f) be as above. The following conditions are 
equivalent. 

(i) The functional T(A) = (0, / / (A)[2)  is positive on ~(~): .  
(Ji) The representation H is ~(~)-positive and if (//, ~/~, 9 )  is a maximal 

regular ~(~Lf)-positive extension then 
(a) ~//g~2 is dense in ~ ( ~ ) ,  so Jd is maximal abelian. 
(b) / I  is standard. 
(c) The joint spectrum of/1(A1), ...,H(A,), A i ~ belongs to the closure of 

{(co(A 0, ..., co(A~))le) ~ ~e}. 
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Proof. That (ii)=>(i) follows from spectral theory. The proof of the other 
direction uses similar ideas as the proof of Theorem 7.3 in [1]/We consider the 
algebra d =/I(9.1) V ~ which is generated by ~ +.~h, where Jgh is the Hermitean 
part of d{. For simplicity of notation we denote the elements of V + ~ h  by 
A 1, A2:.. etc. rather than H(AO, ml etc. If S is any finite diemsional subspace of 
~ '  +rid h we let ~ s  denote the algebra generated by this space and define C~s= 
dsf2, .XFs=Ctosure of ~s  in ~° (~ )and  ~ s = H ( ~ ( ~ ) ) c ~  s. If S is spanned by 
A~ ..... AkS'U and Ak+ t .... ,A , e  Jgh we let ~ s  denote the set in the dual S' 
defined by the restriction of ~r to the linear span of {A~, ... Ak} and the spectrum 
of the bounded operators Ak+ ~,... A,. Let So be some fixed subspace and Po = 
P(Aa .... A,) some fixed Hermitean element in ~s0. If S is a finite dimensional 
subspace containing So we consider the set Es of bounded operators C on J f (~)  
satisfying 

(~) IICll < 1, 
(/~) c ~ ~ ( d s ,  ~s,  ~s), 
(7) C(Pg + 1)f2 = f2. 
Es is weakly closed and SI CS2 implies Es~CEs~. We contend that Es is not 

empty for any S. In fact, by the solution to the finite dimensional moment problem 
[3, 4], the operators on s~ s can be extended to multiplication operators on an 
L2-space 2~ s over the closure of ~s.  If (/~g + 1) is the extension of (Pg + t) then the 
inverse (P~ + 1)- 1 exists as multiplication with the reciprocal function. If E s is 
the projector 2,~s~2/~ s we define an operator Cs on ~ ( ~ )  by 

C [ E s ( P g + I ) - I  on H s  
s: 0 on 

This operator satisfies (e)-(7), so Es4:0. Since all Es are closed subsets of the 
weakly compact unit ball we have therefore (~socsEs4=O. If Cs (~socsEs, then 
C sq¢~(H(N)V//l, ~ (~) ,  ~), so by the maximality of the extension we have 
C e / / l  and therefore C(Pg+I)=(Pg+I)C=I on 9. Passing to the closure we 
have that (p2+ 1) is the inverse of the bounded self-adjoint operator C, so 
( ~  1)O= C-tf2 e J/2f2. Vectors of the Form (p2+ 1)Q span the whole of ~,  so 
~f2=~4 ~ and ~ is therefore maximal abelian. Every/I(A) commutes strongly 
with J/2, so the closure/)(A) is affiliated with the abelian algebra ./~= S '  and 
therefore self-adjoint if A = A*. The spectral projectors belong also to •2 so/1  is 
standard. Finally if (Xl ..... x,) is not in the closure of {co(A0 ..... co(A,)lco e ~}  
then there is a polynomial P(A1,..., A,) e N(~e) with P(y~,..., y,)<0 for all 
(Yl,-.-Y,) in some neighbourhood of (Xl, ...x,). If this neighbourhood has a 
nonvoid intersection with the joint spectrum, flhen Qp,/I(P(A 1 ..... A,))9) for 
some q~ in contradiction to N(.~)-positivity of/Jr. 

4. The Moment Problem 

In this section we consider the decomposition of a linear functional on 9.1 into 
characters, i.e. functionals T with T(A*.B)=T(A).T(B). (It is convenient to 
exclude the case T=0,  so this equation implies T(I)= 1.) The decomposition 
theory associated with the maximal abelian algebra ~ of the previous section 
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is particularly nice if 9.I carries a nuclear topology. We shall therefore in this 
section assume that ~ is a commutative, nuclear *-algebra with unit element I, 
and that ~ is a subspace of Hermitean elements in ~I such that the *-algebra 
N(¢/') generated by ~//~ {I} is dense in ~I. V is a real nuclear space with topological 
dual ~U'. If ~C~f  ~' we define ~ ( ~ )  as in 3.1. 

4.1. Theorem. Let 9.1, ~ and #(~f)  be as above. 7~e Jollowin9 conditions are 
equivalent for a linear functional T on 9.1: 

(i) T is positive on ~ ( ~ )  and the seminorm A ~ T ( A * A )  I/2 is continuous s. 
(ii) T has a weak integral decomposition 

T = L TA# , 

where (A, d#~.) is a standard measure space [8] with ~A d# < oo (A can be taken as 
the unit interval [0, 1]) such that for almost all 2 the following holds true: 

(a) T~ is a character and the restriction T~ ~//" belongs to the weak closure of  ~f. 
(b) {A s #(2f)IT(A ) =0} C {A ~ ~(~)ITz(A)=0}. 
(c) There is a continuous seminorm p on 9.1 and a function cd~ L2(A, d#) such that 

[Tx(A)I<=Cg(A)p(A) for all A e g l .  

Proof. The proof of (ii)~(i) is straightforward. For the other direction, let /7 
be the cyclic representation defined by T and let (//, J¢/, N) be a maximal ~ ( ~ ) -  
positive extension 6. The decomposition is obtained in the same way as in [2], 
them 3.3: The maximal abelian v. Neumann algebra Jff on the separable Hilbert 
space J f ( ~ )  is unitarily equivalent to the multiplication algebra L~(A, d#) on 
L2(A, d#), where d# is a)neasure on the spectrum A of//].  We have thus an integral 
decomposition of .5/f(~): 

where 2/f(2) = ~ for all 2. By the nuclear spectral theorem [9, 10] the "projections" 
~ ( 2 )  are given by continuous linear operators Ex. Since (2 is cyclic for ~/A 
we have EzY24:0 for almost all 2. For these 2 we define 

1 
Tz(A ) = ~ 2 -  i ( E~(2, E~II(A)O ) 

and zero otherwise. By integrating with arbitrary positive functions in Lo~(A, dr) 
one shows in the same way as in the proof of Theorem 11 ch. VIII in [9] or thm. 3.3 
in [2] 7 that Tz is positive on ~ ( ~ )  and (b) holds for almost all 2. T~ is a character 
because J f (2 )=C,  and the estimate (c) is part of the nuclear, spectral theorem. 
Finally, if Ta is not in the weak closure o f ~ ,  then for some A 1 . . . .  A n ~ U we have 
that (Tz(A1),...T;.(An))~IR n is separated from {(o~(AO,...,o~(An))[o)~ } by a 

5 The latter condition holds for all continuous, positive functionals, e.g if 9,I is barrelled, cf. [7] 
thin. 4.t or [-2] thm. 3.7. 

6 The results of the previous section apply strictly speaking to the subalgebra 9/(~)C9.I which, 
however, is dense by assumption, so all statements carry over to 9 /by continuity of the representation. 

v The assumption of [2] that  ~I is separable is in fact superflous, This is so because the mappings 
Ez are all continuous w.r.t, a common seminorm (cf. (c)) and the corresponding normed space is 
separable by nuclearity of 9.I, of. [-11] prop. 3.1.6. 
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neighbourhood. There exists then a polynomial P(xl, . . .x ,)  with P(A l, ... A , )e  
~ ( ~ )  and P(T~.(A1),...,Tx(A,))=T~(P(A1 . . . . .  A,))<0. Hence, T ~ ) ~ e ~  iff T~, 
is positive on ~(~r), and as stated above, this is the case for almost all 2. 

We now want to discuss the case when N is the symmetric tensor algebra 
SOB) over a nuclear space. There is in general more than one natural way of 
defining a topology on the tensor product (even for nuclear spaces), but our choice 
probably covers most of the interesting cases. Let V be a real nuclear space which 
is a strict inductive limit of some countable family of its subspaces: 

= l i m ~ .  

We define the completed n-th tensorial power of 4/r as the inductive limit of the 
completed ~r-tensorial powers [11] of the ~U~: 

The (completed) I1~-tensor algebra over U is the direct sum 

equipped with the locally convex direct sum topology. The symmetric ([;-tensor 
algebra S(~)  is derived from ~ in a standard way. Since ~ is real there is a natural 
involution on S(U), so S(u/) is a commutative, nuclear *-algebra with unit. 

4.2. Lemma, (i) I f  T is continuous and positive on S(°U), then the seminorm 
A~--> T(A*A) 1/2 is continuous. 

(ii) Let ~ C ~". The continuous characters on S(q/-) which are positive on ~(2~) 
are in a one-to-one correspondence to the weak closure ~ via the formula 

T(P(A1 . . . . .  An) ) = e(co(A 1) . . . . .  °,)(An)) 

Proof. (i) By definition of the ~-topotogy, the seminorm is continuous on any 
~ ,  and be definition of the inductive limit therefore on whole S(~/). 

(ii) If o)e ~,  then the formula defines a ~(~e)-positive character on S(~//~). 
T is even continuous in the re-topology on ~ ® ... ® ~ which is in general 
coarser than the topology defined above. Conversely, if T is ~(~e)-positive one 
shows that T ~'K' e f f  as at the end of the proof of Theorem 4.1. 

4.3. Theorem. Let T be a linear functional on S(~//~) and ~ C ~U'. The following 
conditions on T are equivalent. 

(i) T is continuous and positive on ~(~r) with T(I)= 1. 
(ii) T(P(A 1 . . . . .  A,))=SA P(co~(A1) . . . .  , co;~(A,))d#z where (A, d#z) is a standard 

measure space with SA d#~ = 1 and 
(~0 oo;~ ~ 2 f o r  almost all 2. 
(b) The mapping 2~(oz(A) is measurable ]br every A e ~t/-, and there is a positive 

function C e L2(A, d#) such that for every positive integrer n 

Icoa(A)l ~ ~(2)I/"p,(A) 

with a continuous seminorm p, on ~t/. 



Integral Representations for Schwinger Functionals and the Moment Problem 263 

(iii) T( P(A ~ .. . . .  A.)) = ~g P(co(A ~) . . . .  , co(A.))dvo~ 

where dv is a measure on the a-algebra generated by the weakly closed sets in V '  
and having the following continuity property: 

For every polynomially bounded continuous function f on IR" the integral 

~y, f (o)(A 1) . . . .  , co(A,))dvo~ 

exists and is jointly continuous in A 1 . . . . .  A, ~ ~ .  

Proof, That (iii) resp. (ii) imply (i) is obvious s. For  (i)~(ii) we apply Theorem 4.1 
and Lemma 4.2. (i) to S(~), In order to get the estimate (ii) (b) for co~ we note that 
by Theorem 4.1. (ii) (c) we have 

IT;~(A1 ®. . .  ® A,)[ = lo)~(A1).., cox(A3t ~ C(2)p(AI ®. . .  @ A,) 

with cg e Lz ' cg(2)>__ 0 and p a continuous seminorm on ~K "e'. When restricted to 
~ ' ,  we can take p of the form q , ® , . . .  ®,q, ,  so 

Icox(A)[ N cg(2)l/"q,(A) 

on U~. By definition of the inductive limit this implies 
(ii) (b) on whole ~ .  
The measure on ~ '  is defined as the image of the measure on A under the 

map F:2~-,cox, i.e. we define a a-algebra ~,~, on V '  as 

Z~'  = (MIF-  ~(M) ~ Za}  

where ~A is the a-algebra on A, and 

v(M): = p(V- I(M)) 

for M ~ ~¢,.  A function f on Sf' is then v-integrable if and only if 

f , (2):  = f(F(2)) 

is #-integrable on A in which case 

~M f (Co)dvo~ = ~F- ' (M) f ,(2)d#~ . 

The a-algebra ~ ,  contains all weakly closed sets: If z is weakly closed, then 
coz ~ "ciff the character T~ defined by 0) 4 is positive on ~(z), according to Lemma 
4.2. (i). All T). are continuous w.r.t, a fixed seminorm p on S(U) and in this semi- 
norm, S(~)  and therefore also N(z) is separable. For  every P ~ ( z )  the set 
{2[Ta(p)>0} is/~-measurable and {2lcoz E z} is measurable as a countable inter- 
section of such sets. But {2[co~ e z} is the pre-image of z under the map F, so z is 
v-measurable. 

It remains only to check the continuity property of dr. By (ii) (b) it holds for 
all polynomials so we have only to consider bounded continuous functions f .  
Now, since 

~Z7=1 [°9(Ai)[2d% 

s We note that the continuity property in (iii) or (ii) (b) imply continuity of T in the z-topology 
on ~®...@~. 
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is continuous in A~, ...A,, there exists for every e~, e z >0  a neighbourhood of 
zero ~/C ~U such that the set M~={co[~[co(A°-Ai)la>el} has measure <~z if 
A ° - A ~ q l  for i=1 ,  ...n. Since f is continuous, it is uniformly continuous on 
every disc {(xl . . . .  x , ) l~[x° -x l lZNr}  for r<oe .  Given e > 0  we first choose og, 

such that v(M1), sup If[ < ~ and then ~'2 C ~//1 such that for A ° -  A i ~ 5"~ 2 

I f(co(A ° ) . . . . .  co(A°))-f(e)(A 1),-.., o)(A,))l, v(¢F'\M1) < ~. 

Under these conditions 

S lf(co(A °) . . . .  , co(A°))- f(co(A1),..., co(A,))ld% < e 

which completes the proof of the theorem. 
In the next section the set 5 e C ~ '  will be the dual of a convex cone in ~U. 

As a final remark in this section we give for this case a description of ~(~e) which 
is somewhat more direct than the original definition 3.1. in that no explicit reference 
is made to the dual space ~U'. 

4.4.Lemma. Let Q be a subset of " f  and define Q'+ = {(~7/"lco(A)>0 for all 
A ~ Q}. Let 2K(Q) denote the closed convex cone in V 9enerated by Q. 

Then 

~(Q' + ) = { P(A 1 . . . . .  A,)IA i ~ ~U, P real, 
P(xl , . . . ,  x , )>0 for all (x 1,... x,) such that y lA ,  +. . .  + y,A,  ~ Y (Q)  
implies x ly l  +. . .  + x,y,>=O}. 

In particular, 

~@(~U') = {P(A1, ..., A,)]A i ~ ~U, P(xl, ..., x,)>_O for all (x,, ... x,) ~ IR"}. 

Proof. The latter statement is a particular case of the former with Q = {0}, 
because we can always choose A 1, ..., A, linearily independent, 

Suppose P(A1 .. . . .  A,) ~ ~(Q' + ), Ai ~ V linearily independent, and let S be 
the linear span of the A[s. Assume (xl,  ..., x , ) e  IR" satisfies the stated condition. 
We define a linear functional co on S by co(~=tyiAi)=Y'~'~=lxiyi which is then 
positive on X(Q)nS .  By the bipolar theorem, the restrictions of the functionals 
in Q'+ to S is weakly dense in the dual cone of o~(Q)nS. Since P is continuous 
on IR", this implies P(x 1, ..,, x,) = P(co(A 0, ..., co(A,)) > O. 

The other inclusion is clear because if co e Q'+, then co is also positive on 
~Y('(Q), so ylA1 + . . .y ,A,  ~ ~ ( Q )  implies co(A1)y 1 + ... +co(A,)y,>O. 

5. The Non-Cyclic Case 

In this section we want to indicate how the preceeding arguments have to be 
modified if the representation does not have a cyclic vector. The generalized 
version of Theorem 3.2 will be proved with the aid of an extension theorem of 
Powers [6] which has to be used instead of the Hahn-Banach theorem in the 
cyclic case. We refer also to [6] for a more thorough discussion of the notions 
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of positive matrices of operators and completely positive maps which occur in 
the sequel. 

Let ( d ,  N) be a *-operator family and let M(N) denote the set of matrices A u 
with A u ~ su/ and all but finitely many Au=O. 

5.1. Definition. (i) A matrix {Au}CM(~ Q is called positive on ~ if 
~ij(~oi, Auq @ >=0 for all (Pi ~ @. 

(ii) If ~M (M(~/ )  is some subset of positive matrices on ,@ we call an extension 
(sJ, @) NM-positive if {Au} is positive on N for all Aij E ~M" 

5.2. Definition. Suppose NM contains the matrix {6il,6jl,I} where I is the identity 
operator. We say that x E ( d ,  ~);. is completely strongly positive with respect 
to ~M if {xAu} is positive for all {Au} ~ ~M- We write then also x >> 0 or x >> 0. 

In analogy with notation 2.5 we define cg~-(sO, NM, ~)  as the set of all operators 
in the weak commutant  such that x and 1 - x  are completely strongly positive 
w.r.t. ~M. An extension is then called regular if ~ is injective when restricted to 

The results of Section 2 are easily adapted to thus new situation and by exactly 
the same methods as before one proves: 

5.3. Theorem. (i) Every regular ~ M-positive extension is majorized by a maximal 
regular ~M-positive extension. 

(ii) A regular ~g-positive extension (xJ, Jg, ~) is maximal if and only if 

= M ; .  

(iii) I f  (s~;, Jg, ~) is a regular positive extension of (~d, ~) and ~gt~(~) is separable, 
then ~ ( ~ )  is also separable. 

As in Section 3 the concepts defined above for operator families carry over to 
representations of a *-algebra g[ in an obvious fashion. From now on we suppose 
that N is commutative and that ~U, ~ *  and ~ are as in Section 3. 

5.4. Notation. 

~M(Z) = {Pu(A1, ...A,)IA i ~ ~U, Pij(cg(A O...o)(A,)) pos. definite for all co e ~e}. 

5.5. Theorem. Let H be a NM(~)-positive representation ofg.1 and let (fI, Jff~ , ~) 
be a maximal regular ~M(Z)-positive extension. Then 

(a) Jff is maximal abelian. 
(b)/J  is standard. 
(c) The joint spectrum of FI(AO...III(A,),Ai~K" belongs to the closure of 

{(co(A1)...co(A,)), co 6 ~e}. 
Conversely, every standard extension with (C) is ~M(£f)-positive. 

Proof. We introduce two commutative *-algebras: 

~ :  = {f:'f*--*tl21f(co)=F(co(A1) . . . . .  co( A,)), A i ~ V 

F polynomially bounded and continuous on IR"} 

and 

732: = {p:~*~Clp(oJ)= P(CO(A1) . . . . .  co(A,)), A~ ~ ~K' P a polynomial on IR"}, 
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which is a subalgebra of 9~. We let ~ resp. ~ denote the algebraic tensor products 
932 Q ~  resp. g~ QJA. The representat ion/I  of 9.I defines in an obvious way a 
representation of 9)l on ~ and since//(9.1) commutes with -~  we have in fact a 
representation of N on ~ which we again call /1, by abuse of notation. This 
representation o f ~  is completely positive with respect to Q ~ : =  {{Pij} @1} c M(~), 
where the {Pij} are such that {pit(co)} is pos. definite for all coe~,  and we may even 
extend QM to an algebraically admissible cone in the sense of [6] by multiplying 
the matrices in QM from both sides with a matrix in M(_~) and its adjoint and 
taking convex combinations. In analogous way we define _QM = {{f/j} (31} C M(M) 
where {f/j(co)}. pos. definite for all co ~ ~ ,  and extend QM to an algebraically 
adminible cone. By Powers' extension theorem [6] (it is easy  to verify that the 
hypotheses of this theorem are fulfilled) we many extend/7 to a QM-positive map 
~b of N into bilinear forms on N. As in [6] we use the notation <~olq~(f)l~v ) for these 
bilinear forms. Suppose f e ~ C ~ and 0__< f < 1. By positivity of q~ we have for all 
A, B e M, tp, ~p ~ ~ : 

[ < q)[~o( A * f B )ltp > [ <= ( qol~( A * A )ko > 1/2 ( Ip[dp( B* B)[tp > 1/2 _= [/I(A)~0[I. II/I(B)~II 

and also, for {Bij} ~ QM and ~0 i ~ 

0 ~ 2ij(~oit~(fBij)l(pj> < ~ij<q~it4(Bij)koj). 

Therefore, we have a well defined operator 

b ~ c~-[ ( 1I (B), ON, ~)  = ~-~ (~(91) V ~//~, ~,(~<T), ~ )  =J/ l[  

if we put 

<//(A)~,0, b//(B)~,> = <q~ld(A* fB ) lw) .  

Let P(A1 . . . .  A , ) ,A i s  ~ be a Hermitean element of 91. The function p(co)= 
P(co)(A 1),... co(A~)) takes then only real values, so f_+ (co) = (p(@ + i)- 1 is a bounded 
function in 9)I. f_+ can be written asa linear combination of functions g~ with 0__< g~ < 1, 
so f+ defines an operator in Jr .  If follows that II(P(At), ..~ A~))+_iI has on 
an inverse in J / so / I (P(A~,  ..., A,)) is essentially self-adjoint. ~/~ commutes strongly 
with/I(9.I) and therefore with all bounded functions of the self-adjoint operators. 
If ~A~ is any commutative v. Neumann algebra commuting with all bounded 
functions of every operator in/I(91) V ~ ,  then 

so ~ is maximal abehan by maximality of the extension. That conversely every 
standard extension with (c) is ~M-positive follows from spectral theory. 

5.6. Remark. Since theorem 5.6 is a generalization of theorem 3.2 we have 
just given an alternate proof of the latter theorem. 

If 9.1 is a nuclear *-algebra a n d / / a  continuous representation we obtain an 
integral decomposition by combining Theorem 5.5 with the nuclear spectral 
theorem: 

5.7. Theorem. Let 91 be a commutative, nuclear *-algebra, ¢P and ~ C ~ '  as in 
thm. 4.t and ~(~.~)  as above. Suppose (f~, o~, ~)  is a maximal regular ~M(~LQ-posi - 
tire extension of some strongly continuous ~M(~)-positive representation (II, @) 
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of 91 on a separable Hilbert space ~ ( ~ ) .  7hen there is a standard measure space 
(A, d#) such that J/~ is unitarily equivalent to the algebra of all bounded multiplication 
operators on L2(A, dp) and the/I(A)'s  are equivalent to multiplication operators 
with measurable functions 2~--//;~(A) which satisfy the followin 9 conditions: 

(a) There are disjoint measurable sets Ai, i= 1, 2, 3,. . .  with A = UiAi such that 

Itlz(A)t <- c~(2)pi(A) for 2 ~ A i 

where ~ c L2(A, d#) and Pl is a continuous seminorm on 91. 
(b) The completion of ~ in the graph-topology is equivalent to 

{~o ~ LzI(2~II  z(A)~o(2)) ~ L 2 for all A ~ 91} 

and this domain is a core for all [I(A), A = A* ~ 9,I. 
(c) Restricted to ~ the linear functional A ~ F I  x(A) belongs to the closure of ~ 

for almost all 2. 

Proof. Since the proof is analogous to that of theorem 3.3 in [2] and theorem 4.1 
we give only a sketch: By the usual spectral theorem we obtain the decomposition 
of the maximal abelian algebra ~ and of every single operator /~(A). Since 
~tf(~) is separable by theorem 5.3 there is a countable set {f2i} of vectors in 
such that the linear span of U il)(N)f2i is dense in ~ ( ~ ) .  By multiplying with 
suitable characteristic functions (corresponding to projectors in J/Z) we can arrange 
that the sets A~= {2]t2i(2)=~0} are disjoint. Their union must be equal to A, up to 
a null set, since otherwise we could find a nonzero vector orthogonal to all/)(9.1)g?~. 
If we apply the nuclear spectral theorem to the maps A-~FI(A)f2i~I]~(A)Qi(2 ) 
we get (a). (In order that II~(A)=f2~(2)-I(H(A)f2i)(2) is in L2 we might have to 
change the measure on Ai by multiplying it with [~?i(2)[z). Statement (b) follows from 
the fact that every/)(A), A = A* is essentially' self adjoint on ~ and (c) follows as in 
theorem 4.1. 

6. Applications to Quantum Field Theory 

In this section we discuss two applications of theorems 4.1 and 4.3. The first 
concerns Euclidean quantum field theory [2]. In this theory it is assumed that the 
Schwinger functions are the vacuum expectation values of a commutative field 
defined on Euclidean space-time. These functions define therefore a positive 
functional on the symmetric tensor algebra over the space of test functions for 
the Euclidean field operators. The usual test function spaces Y and ~ satisfy 
all requirements for the application of theorem 4.3, which gives a necessary and 
sufficient condition for the Schwinger functions to be moments of a continuous 
cylinder measure on 5 p' or ~ ' .  

The second application is to Wightman theory. In E2] it was shown that there 
exist extremal Wightman states which do not correspond to field theories with 
a unique vacuum. We want to investigate under what conditions this can happen. 
As a starting point for the subsequent discussion we recall some results from [13]: 

Let d denote the algebra of field operators of a tempered Wightman field de- 
fined on some domain ~ in a Hilbert space W. Let Po be the projector on the 
vectors invariant under the translation group (and therefore also the Lorentz 
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group) and define ~ o = P o  J& We assume there is a cyclic set 5(oC~;~ 0 of inva- 
riant vectors, i.e. such that ~ = linear span s ¢ ~  o is dense in ogg. Let ~ be the 
completion of ~ in the graph topology induced by d and define O o = ~ n ~ o  
and O= lin. span d 0  o. With these notations the following theorem holds: 

6.1. Theorem. (i) Po ~q C 0o 
(ii) The operators A o = P o A P  o with A e d generate a commutative algebra 

d o  on 0o. 

Proof. See [-13], Theorems 1 and 2. 
The operators A e d define a representation of the test function algebra 5 P over 

Schwarz space [14], and the mapping ~ ~f - - - ,A( f )  e d is assumed to be strongly 
continuous, i.e. f - -*A(f)q)  is a continuous map ~ - - , ~  for all ~o e 9 .  Since it 
might not be obvious that the map f~-~PoA(f)Poq) is continuous for cp ~ 0 (i.e. 
PoP z . ~ C ~ o ) ,  we make use of the following lemma: 

6.2. Lemma. Suppose 1-1 is a strongly continuous *-representation of a barrelled 
*-algebra 9.1 on a dense domain ~n  in a Hilbert space 2/fi1. I f  H is any extension of  
11 to a *-representation of  9:1 on domain ~ a C ~ = ~ ,  then H is also strongly 
continuous. 

Proof. Since 91 is barrelled, we have only to show that the absolutely convex, 
absorbing set 

{AHI/I(A)(Pll =< i} 

is closed in 9.I for every ~0 ~ @a. Now, since ~u is dense in ~(fa we have 

II/-)(A)g,[I = sup lop,/I(A)9)I • 

If A ~ A  is a converging net in 9.I with l[/)(A~)q~ll < 1 for all A~, then also 

l<~,/)(A~)go>l = I<//(A*)~,, q~>I < 1 

for all ~o e Nn, I1~11 < 1, so 

I<~0,/I(A)~o>l = I<//(A*)w, ~P>I = lim [(17(A*)~v, e>l < 1 
~t 

Taking the supremum over ~p yields ll//(A)~o[I < 1. 

6.3. Corollary. I f  ~ is a barrelled *-algebra, then the closure n of a continuous 
*-representation 17 is also continuous. 

Proof This follows from 6.2 because the closure of a *-representation is also 
a *-representation, cf. [1] Lemma 2.6. 

Because of this last result and Theorem 6.1 we may consider the algebra d o  
as a continuous representation of the symmetric tensor algebra over ~ .  We define 
the topology of d o  as the corresponding quotient topology. 

The decomposition theories o f d  and d o  are related by the following theorem, 
which is similar to theorem 3 in [,13]. 

6.4. Theorem. (i) Every b ~ (~¢, 0)'~ commutes with the representation of the 
Poincard 9roup and therefore with P0. 

(ii) Let ~U-~ ( J ,  ~) denote the order interval O < b <_ 1 in the weak commutant 
(~ ,  O) w and let ~o  denote the convex cone generated by elements of the form 
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PoA(f  * x f )Po in ~4 o. The restriction map 

b~-+bo = b ~Jf o 

defines a homeomorphism (i.e. a topological bijection) ~ ( ~ ¢ ,  O)-~c#~ (Zdo, ~o, 0o) 
where both sets are furnished with the weak operator topology. 

Proof. For (i) we refer to [14] Theorem 4. 
(ii) Suppose b ~ "¢K~-. Since b commutes with Po and weakly with A, b commutes 

also weakly with ~¢o. If Ao=PoA(f*xf )Po,  then (go, bAogo>=(A(f)~o, bA~)(p> 
for go e 0o, so bAo >0 and (1 - b)Ao >0 on 0o. Moreover, b is uniquely determined 
by its restriction to Jgo, for ~o  CJfo is cyclic for d and therefore separating for 
the weak commutant. The map b~bo is weakly continuous and t¢'~- is weakly 
compact, so it remains only to show that every bo ~ cd+ is the restriction of some 
b ~ ¢#1 +. Now, the right hand side of 

(A~)~tNA(g_)~p> = (bogo, PoA(f* x q)~> 

is a well defined bilinear form in the vectors A(f)go and A(B)~o, go, ~p e 0o. indeed, 
it vanishes if A(_.g)hv = 0 and also if A(f)q)= 0, because bo commutes with d o  so 
the right hand side is also equal to (PoA(9* +f)go, bop). Both bo and (1-bo) 
are strongly positive with respect to No. Therefore, the bitinear form is bounded 
by 0 and 1 so it is given by a bounded operator b with 0 < b_< 1. By definition, 
this operator commutes weakly with d ,  so it leaves ~ o  invariant. Finally, 
b o = b I ~  follows from the equality (go, b~p)= (go, bo~p) for go, ~ E ~o because ~o 
is dense in ~ o  according to theorem 6.1. (i). 

6,5. Remark. Theorem 6.4 stays true if 0 is replaced by 9 and 0o by 9o :=  lin. 
span d o ' o ,  because 9COC~,  so ~[(d ,O)= 'CK+(d ,  9) and cd[(do,0o)= 
~i ~(do, 90). 

It is not difficult to infer from Theorem 6.4 that the regular induced extensions 
(,~, S ,  ~) of (d ,  9)  are in a one-to-one correspondence with regular No-positive 
induced extensions (~?o, JEo, ~o) of (do,  9o) in the following sense: The Hilbert 
space Jg(~o) is canonically embedded in 5f(~) as the space of invariant vectors 9 
and the following diagram commutes: 

~-~~o 
~$ $ Oo 
Jg-~ J#o 

where the horizontal arrows stand for the restriction of the operator on ~ ( ~ )  
resp. ~( ,9)  to ~ ( ~ o )  resp. ~ ( 9 o )  and Q resp. Qo are the mappings (d ,  9 ) ' ~ ( d ,  9)~ 

t - ' ~  t resp. (do,  9o)w (do,  9o)w defined as in lemma 2.6. (i). The restriction maps are 
ultraweakly continuous isomorphisms and since the extensions are regular, also 
the vertical arrows stand for bijective mappings which are homeomorphisms for 
the weak topology when restricted to the unit balls Jffl resp. (Jffo)1. We do not 

9 i.e. invariant under the extended representation q) of the Poincar~ group on ~f'(~) which is 
defined in the following way: If g~U(g) is the representation on ~(@), then ~(9)mq~:=mU(9)q) for 
£ e_x~, ~o e ~. 



270 H.J .  Borchers and J. Yngvason 

write down a formal proof of these statements, since they are not essential for 
theorem 6.6. 
Since we want to apply the results of section 4 we now assume there is at least 
one cyclic vector f2 ~ x~f o and define @ = s~4(2 and ~o = S¢of2. Let W denote the 
Wightman state defined by ~ and I~}) the corresponding state on sJo. 

6.6. Theorem. The following statements are equivalent: 
(i) W has a weak integral decomposition 

W=~AW)~d#z 
with A, d# as in theorem 4.1, and W~ a Wightman state with cluster property for 
almost all 2. 

(ii) Wo has a weak integral decomposition 

Wo = Wo d#  

A, d# as above and Wo~, a ~o-positive character for almost all 2. 
(iii) W o is positive on ~(~'o+), defined as in Lemma 4.4. 

Proof. The equivalence of (ii) and (iii) follows from Theorem 4.1. The equiva- 
lence of (i) and (ii) should be fairly clear from the consideration above, but can 
also be shown directly as follows: Given a decomposition of W 0 into ~o-positive 
character we define 

Wo (Aoff)) . 

W z is a positive linear functional and ~Wz(f)d#~=Wo(Ao(f))=W(f). Every 
decomposition of Winto states is a decomposition into Wightman states, so we have 
only to check the cluster property. For  any f,_g we have 

W~(f)Wz(g) = Woz(Ao(f))Woz(Ao(_g))= Woz(Ao(f)Ao(_g)) 

because Woz is a character on ~¢o- Let 2-~m(2) be any bounded measurable 
function on A corresponding to an operator m ~ ( d ,  ~)~.If a e IR 4 is any translation, 
we have 

[. { Wz(f ×~(,~)- W~(f) Wz(.g)Im(;)d#~= < A( f  *)O, mA(._g(,~)f2) 

- (Ao(f*)f2, mAo(g)f2). 

Since weak lira A(_g(,~)f2=Ao(..g)(2 and m commutes with Po, this vanishes 

for all m. By the estimate (ii) (c) in Theorem 4.1 and since 

IWz(f × g(,~)l-<_ Wx(f* × f)1/2.  Wz(g* ×_g)~/2, 

we may interchange limes and integral and obtain 

lim l~ , ( f  x_g(j = Wz(f)Wa(~) a.e. 
a ~ o o  

To get a null set independent o f f  and g we appeal to separability (or nuclearity) 
o f _;_;_;_;~. 

The other direction (i)=~(ii) is obvious since a decomposition of W into clu- 
stering states implies a diagonalization of Po. 
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