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Functional size-structure-based models of forest tree 
population dynamics present a unifying explanation for 
population-level patterns and tree community organiza- 
tion, Density-dependent regulation can be explicitly 
replaced by the effect of size-structure-dependent sup- 
pression on demographic processes in functional size- 
structure models, This suppression effect sufficiently 
explains various patterns reported for crowded even- 
aged populations, Further, it stabilizes natural forest 
populations of overlapping generations at a stationary 
state with balanced recruitment and mortality, The 
spatial heterogeneity of light resources created by tree 
size structure offers an opportunity for multiple species 
to coexist by means of trade-offs between demographic 
parameters, The energy correlation of tree species 
diversity at a geographic scale is also attributable to the 
architectural feature of forests, 
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Physiological attributes of a plant individual are strongly 
related to its developmental stage, or size. Individual 
size varies widely even between the same-aged plants 
due to the change in size growth rate with local site 
condition, the intensity of interaction between plants, and 
so on. Such size variability or plasticity of plants makes 
it difficult to describe the population-level dynamics 
(Harper 1977). 

Plant population studies have, however, coped with this 
difficulty, and discovered patterns of density-dependent 
regulation of plant size growth particularly in the even- 
aged monocultures within a generation (Hozumi 1973, 
Harper 1977, Silvertown 1987). These density-dependent 
patterns are complex, and have prevented the inclusion of 
monoculture-level understandings into the dynamics of 
natural populations between generations and natural 
multi-species systems which are dealt with in plant 
community studies. 

* Recipient of the Botanical Society Award of Young Scien- 
tists, 1992. 

Terrestrial plants rely on solar energy for their photosyn- 
thesis. The vertical component of plant size distribution 
or the size hierarchy within a local stand largely affects 
the fate of each plant. To describe the dynamics of plant 
size distribution, we can employ mathematical models 
that allow both theoretical and numerical analyses. We 
can include such functional properties as the size-struc- 
ture dependence of demographic behaviour into the 
model. This article reviews recent studies of functional 
size-structure models of terrestrial plants, which offer a 
new paradigm combining population- and community- 
level studies through functional constraints at the individ- 
ual level. 

I deal primarily with forest tree populations and commu- 
nities throughout here, because the size-structured fea- 
ture plays an emergent role particularly in forest eco- 
systems. Annual and herbaceous perennial systems 
develop size structure with each growing season, and the 
size-structure dependence does not last until the next 
season/until. A tree as a component of forest systems is 
an ecological life form characterized by cumulative devel- 
opment of three-dimensional architecture throughout its 
life. Such a life form is advantageous in exploiting light 
resources at the aboveground part. Newly-formed 
leaves can enjoy better-lit conditions as the surface of 
tree crown gains in height. Consequently, forests, where 
trees co-occur densely, maintain a stout above-ground 
architecture over seasons. The decline in light resources 
along a vertical profile is a stable characteristic of forests, 
and recruits need to grow up through this gradient. The 
shifting gap mosaic of stands initiated by the fall of large 
trees is then another characteristic of forests (Yamamoto 
1992). It introduces temporal-horizontal variation in the 
vertical light gradient and chance opportunities for small 
individuals to receive more light resources. Thus the 
dynamics of forest tree populations depend strongly on 
the size distribution of all trees regardless of species, 
within a forest stand, and on the shifting mosaic among 
stands. 

Tools of Modelling Size Distribution Dynamics 

We can sufficiently describe the dynamics of size- 
structured tree populations by three demographic proces- 
ses, i.e. size growth rate, survival rate (or mortality), and 
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recruitment rate. We derive the size growth rate from 
field censuses as an attribute of each tree, while survival 
and recruitment rates as population- or stand-level mea- 
sures. These three fluxes are measurable by repeated 
censuses of marked trees in permanent plots. 

The size projection matrix model (Lefkovitch 1965, 
Caswell 1989) has been applied to describe the size- 
structure dynamics of forest tree populations (Harcombe 
1987). The projection matrix includes all the above three 
demographic processes. A merit of the projection matrix 
model, while outside the interest of this article, is that it is 
applicable not only to any arbitrary size class but to 
qualitative developmental stages. When a projection 
matrix does not change over time, a theoretical conse- 
quence of the matrix model is that the system converges 
to the state where the population size changes 
exponentially while keeping proportionally 'stable' (not 
stationary0 size distribution (Lefkovitch 1965). Some 
studies of forest tree populations have thus concluded the 
stability of 'climax' populations from near-zero intrinsic 
growth rate of simulated populations and the agreement 
between a simulated 'stable' distribution and an observed 
one (Hartshorn 1975, Lodmer and Frelich 1984, Harcombe 
1987). However, these studies were carried out in forests 
which approximate to a steady state where demographic 
rates are strongly controlled by that crowded state. One 
can explicitly include a density-dependent depression 
effect into the projection matrix cells (e.g. Solbrig et  al. 
1988); but such a study has hardly been carried out for 
forest tree populations (Alvarez-Buylla 1994). 

Another approach of modelling size structure dynamics 
is to apply the one-dimensional continuity equation of 
fluid dynamics with a mortality term (Sinko and Streifer 
1967, VanSickle 1977, Metz and Diekmann 1986, Vance et  
al. 1988). To describe the dynamics of a distribution 
density function in terms of size, the equation requires 
continuous size-dependent functions of size growth rate 
and mortality. The recruitment process, which should be 
a function of size distribution of mother trees in a closed 
system, defines the lower boundary condition with respect 
to plant size. Compared with projection models which 
inevitably describe size and time in discrete units, the 
continuity equation model has the advantage of dealing 
with time and size as the continuous variables that they 
are. Convergence to the state of exponential population 
growth with 'stable' size distribution is a theoretical 
consequence of the continuity equation model with time- 
independent demographic functions (VanSickle 1977), just 
as it is in the discrete projection matrix model. We can 
extend the continuity equation model to include the effect 
of variability in size growth rate at the same tree size, by 
adding the diffusion term to the continuity equation (Suzu- 
ki 1966, Hara 1984a, b, Metz and Diekmann 1986). Hara 
(1984a) provides a good guide for derivation of growth, 
diffusion (ingrowth), and mortality functions of the diffu- 
sion equation from the field data. Continuous models 
have been applied to artificial forest stands (Umemura and 
Suzuki 1974) and natural rain forest stands (Nagano 1978, 

Kohyama 1987) where demographic functions were treat- 
ed as time-dependent. 

Demographic functions change with time in crowded 
plant populations, but when we take into account the 
underlying processes of competition for light resources, 
we can express these functions in terms of the instanta- 
neous size structure. Takada and Iwasa (1986) modelled 
the dynamics of size distribution for an even-aged popu- 
lation where the growth rate of a plant of a given size was 
suppressed by the one-sided integration of size distribu- 
tions larger than that size. Kohyama (1989) introduced a 
one-sided competition index and simulated the stand 
development of a warm-temperate rain forest using the 
continuous model. As the data available were dbh (trunk 
diameter at breast height) censuses, Kohyama used 
cumulative basal area, which is the cumulative density of 
section area of trunks for trees larger than the size of the 
subject tree, as a one-sided competition index. The 
section area of a trunk is roughly proportional to the total 
leaf mass of a tree, which is supported by the pipe model 
theory (Shinozaki et al. 1964). Therefore, the cumulative 
basal area above a given size is roughly proportional to 
the leaf mass density above the tree of that size. Yoko- 
zawa and Hara (1992) simulated the change in plant 
weight distribution for an idealized model population. 
They incorporated into the continuity model the physio- 
logical parameters of individual processes, light absorp- 
tion by upper leaves, and allometry between individual 
weight and height. 

Two contrasting models, the discrete matrix model and 
the continuous diffusion model, describe the same proc- 
ess, and they should be mutually related. Actually, when 
we simulate size structure dynamics with continuous 
model in a digital computer, we need to approximate the 
continuous equations to discrete ones, differential to 
difference, and integration to summation. Takada and 
Hara (1994) made a notable contribution to this exercise. 
For the process of plant size projection (excluding repro- 
duction), they proved the fol lowing:the forward and 
backward one-step projection matrix, i.e. a matrix where 
plants of a given size class can move to neighbouring 
smaller or larger class in a unit time step, corresponds to 
the diffusion equation (with size variance term) of the 
continuous model. They also showed that n-step matrix 
corresponds to the 2n-th-order expansion of the diffusion 
model. However, such a bilateral movement is not realis- 
tic for the life form of trees. For plants exclusively with 
positive growth rate, only the forward-direction projection 
occurs. They also analysed the case of forward projec- 
tion, and showed that the one-step projection matrix 
corresponds to the continuity equation without the diffu- 
sion term, the two-step one to the diffusion equation, and 
three-step one to the 3rd-order expansion of diffusion 
equation. The number of steps depends on the resolu- 
tion of observation, or the ratio of size class width to time 
interval. Usually, projection matrices of forest trees have 
forward one-step projections (Hartshorn 1975, Harcombe 
1987), which are described sufficiently by the continuity 
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equation. The positively skewed distribution of size 
growth rate in the same size class is generally observed 
in tree populations. To evaluate the effect of the skew- 
ness in growth rate distribution, we must apply the 3rd- 
order expansion of diffusion equation (Kohyama and Hara 
1989). Takada and Hara further suggested that the 
scheme of difference approximation of the diffusion model 
should be different between the forward-type projections 
and bilateral-type projections. It is worth mentioning 
here the Takada-Hara scheme of the backward difference 
approximation of continuous models for tree populations 
corresponding to the forward projection matrices (Appen- 
dix). 

Population Models and Stationary Distribution 

The populat ion-level consequence of the size- 
structure-dependent regulation of individual plant demog- 
raphy can be tested by size-structure-based models. 

Yokozawa and Hara (1992) modelled the time course of 
an even-aged monoculture. Their model plants have 
conical distributions of leafy crowns, and every plant has 
the same lowest height of crown because of the pruning 
of lower leaves with negative net assimilation rate. They 
calculated gross assimilation and respiration of individual 
plants along a stand-level vertical light gradient, and 
derived individual growth rates depending on the vertical 
leaf distribution. Plants with negative net assimilation 
rate died. Simulation results reproduced well-document- 
ed population-level phenomena (Table 1). 

Kohyama (1989, 1992b) employed a contrasting 
approach for simulating population development. He 
semi-empirically obtained size growth and mortality func- 
tions from data of repeated tree dbh censuses in natural 
rain forests. Growth rate in the same size class de- 
creased linearly, and mortality increased linearly, as the 
cumulative basal area increased. The employment of 
these functions dependent on the cumulative basal area 
means that the model assumed completely one-sided 
competition for light without crown overlap. This one- 
sided-competition model successfully reproduced the 
time course of stand development (Kohyama 1989). The 
same model reproduced population-level phenomena 
(Kohyama 1992b, Table 1), just like the Yokozawa-Hara 
model with no crown stratification. 

Analyses of the sensitivity of population-level 
responses to changing physiological parameters (Hara 
and Yokozawa, 1994) and changing spatial dispersion 
pattern of individuals (Hara and Wyszomirski, 1994) show 
that one-sided competition, or the dominating effect of 
crown hierarchy, diminishes effects of these variations. 

The mixed-cohort simulation, based on the observed 
species-specific parameters of forest trees, gave signifi- 
cant results (Kohyama 1992b): fundamentally the same 
phenomena as occurred in single species cohorts were 
reproduced in terms of the summation of species, but not 
for each species cohort. The results agree with what 
Bazzaz and Harper (1976) found in mixture experiments of 

two winter annual species (Table 1). 
All of these results suggest that (1) population-level 

patterns reported can be explained by a single individual- 
level mechanism, i.e. size-structure-dependent depres- 
sion of growth and survival, and consequently, (2) the so- 
called 'population-level' patterns of density dependence 
are not single-species-level attributes but actually pat- 
terns of groups of individuals of similar life forms irre- 
spective of differences between component species. 

Studies with size-structure models have not yet per- 
fectly reproduced reported patterns in crowded cohorts 
over time (Table1). Yokozawa and Hara (1992) and 
Kohyama (1992b) simulated the convergent upper bound- 
ary line with self-thinning on the density-yield coordi- 
nates, but slopes of these thinning lines did not fit to 
the - 2 / 3  rule of self-thinning (Yoda et al. 1963, Westoby 
1984, but see critical reviews e.g. Weller 1987, Lonsdale 
1990). Two models have simulated dynamics in only one 
size dimension. A simple explanation of the --2/3 rule of 
self-thinning is that the stand canopy develops vertically 
maintaining a state of full coverage of leaf density over a 
projected area (Yoda et  al. 1963, Westoby 1984). There- 
fore, two-dimensional expansion of the size-distribution 
model (such as trunk diameter and tree height) is neces- 
sary to reproduce this pattern. Similarly, the shift of 
cohort-level allometries with stand development (e.g. 
Kohyama et  al. 1990) should be tested in two-dimensional 
size-distribution model (Table 1). Such an expansion of 
continual diffusion model is easily derived (Suzuki 1966), 
and there is no substantial difficulty in possible two-size- 
dimensional simulations. Thus we can expect to get 
results of such simulations in the near future. 

On the other hand, the effect of local-crowding which 
changes the spatial dispersion pattern through self-thin- 
ning is difficult to simulate in size-structure-based 
models (Table1). Individual-based simulation models 
(e.g. Firbank and Watkinson 1985) are more appropriate. 
However, the inclusion of patch-level spatial heter- 
ogeneity into the size-structure model as an alternative 
model has been carried out as is seen later. 

By applying the same framework of a one-sided-com- 
petition model (Kohyama 1989, 1992b), we can describe 
the dynamics of tree populations of overlapping genera- 
tions, as in natural forest stands. The observed recruit- 
ment rate decreases with stand crowding, and we again 
obtain a size-structure-dependent function of recruitment 
rate (Kohyama 1991). The simulation of a functional size- 
structure model including the recruitment process conver- 
ged to unique stationary (not 'stable') size distributions, 
where recruitment and growth were balanced by mortality. 
The agreement of the simulated stationary distribution to 
the observed distribution in primary forest stands was 
satisfactory in two simulations of different rain forests. 
The all-species-averaged data of dynamics were fitted to 
the demographic function in simulations. Variance in 
growth rate of a given size, which may reflect the species 
differences, had little effect on simulation results. There- 
fore, these results suggest the prevailing importance of 
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Table 1. Density dependent patterns reported for even-aged stands, and reproduction by size structure-dependent model 
of a mono-storied cohort (Yokozawa and Hara 1992) 1 and that of multi storied cohort (Kohyama 1992b) 2 

Patterns successfully reproduced by models 
Hyperbolic density yield relationship (Shinozaki and Kira 1956, Watkinson 1980) 1,2 
Upper yield bouneary by self thinning (Yoda et al. 1963, Westoby 1984) 1,2 
Decreasing size variability with self-thinning (Kohyama and Fujita 1981, Weiner and Thomas 1986) 1,2 
Decreasing skewness of size distribution with self thinning (Koyama and Kira 1956, Ford 1975) 1,2 
Density-yield patterns only irrespective of species in multi-species system (Bazzaz and Harper 1976) 2 

Patterns not yet reproduced by models 
The density yield line of self thinning with slope around --0.5 (Yoda et al. 1963, Westoby 1984) 
Change with time in stand level allometries, e.g. trunk diameter versus tree height (Kohyama et aL 1990) 
Change in spatial dispersion pattern with time (Kohyama and Fujita 1981) 

the size-structure-dependent regulation on the average 
growth rate level. 

Sensitivity analysis showed that changing recruitment 
rates had little effect on the stationary size structure in the 
one-sided-competition model, but the effect was remark- 
able in an alternative two-sided-competition model of 
growth rate suppression (Kohyama 1991). Hara (1992) 
analytically confirmed this stabilizing effect of one-sided 
competition and little contribution of variance term under 
the regulation of one-sided competition. 

The stationary-state forest simulated by Kohyama (1991) 
has no spatial heterogeneity due to gap dynamics 

(Yamamoto 1992). To include the spatial mosaic of 
stands which reflects processes of gap formation and 
succeeding stand regeneration, it is useful to introduce 
the idea of the demography of a metapopulation, i.e. the 
'population' composed of local populations as units 
(Roughgarden and Iwasa 1986, Gilpin and Hanski 1991, 
Alvarez-Buylla and Garcia-Barrios 1993). The usual 
dynamic models of age-structured populations can be 
applicable to stand age distribution (Fig. la). The age of 
a stand does not correspond to the age of trees therein 
because there usually exists trees which survive gap 
formation and recruitment proceeds in stands of any age. 

(a) 

Gap formation ~ ,  
Gap formation ~ I 

[ i i  i! 

""I~ I Common seed/seedling pool I ~'" 

Fig. 1. Diagram of gap-dynamic size-structured model of forest trees (Kohyama 1993a). (a) Submodel 
of stand 'demography', or the dynamics of stand age distribution ; where dead stands immediate- 
ly reborn to form gap stands. (b) Submodel of tree size distribution; where size-structure- 
dependent suppression occurs locally, i.e. in stand-age-specific manner (solid downward 
arrows), while the potential recruitment rate is the function of the density of seed trees (cross- 
marked) in a whole forest (open upward arrows). 
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So, besides the submodel of stand age distribution, we 
need another submodel describing the size distribution of 
trees in each stand (Fig. 2b). For the second submodel, 
we can employ the continuous model of age-size- 
structured populations (Sinko and Streifer 1967, Metz and 
Diekmann 1986, Vance et al. 1988). Kohyama (1993a) 
presented the size-structure model of tree populations in 
gap-dynamic forests, based on this idea of coupling stand 
demography and the dynamics of individual size structure 
in each stand. The simulation results for species-aver- 
aged system reproduced the gap-dynamic state of a 
warm-temperate rain forest. Now the convergent unique 
equilibrium is such that both stand age structure and tree 
size structure at each stand are maintained at the station- 
ary state. The simulated size distributions fit well to the 
observed distributions in gaps and closed stands. We 
can also apply such a metapopulation model with size- 
structured local populations to the landscape-level 
dynamics of forests. 

Community Models and Conditions 
for Species Coexistence 

Kohyama (1992a) explicitly extended the functional 
size-structured model to a multi-species system. There, 
suppression intensity by larger trees in terms of light 
interception is proportional to individual basal area irre- 
spective of species, or it does not include a species-to- 
species-specific competition coefficient. Usually, there 
exists a convergence in allometries among coexisting 
forest tree species (Ogawa and Kira 1977). The assump- 
tion of the model means that allometry between trunk 
diameter and tree height and that between trunk area and 
leaf mass are not significantly different between co-oc- 
curring tree species. Tree growth rate is suppressed by 
cumulative basal area of larger trees, and recruitment rate 
is suppressed by total basal area. 

Two kinds of model simulation were carried out based 
on the estimated parameters from the repeated census 
data in a warm-temperate rain forest : one used an open 
reproduction system allowing the system-independent 
potential recruitment for each species, and the second 
used a closed system where the recruitment of each 
species relied exclusively on the population within the 
model system. The open-system simulation success- 
fully reproduced secondary succession over time and 
attained a stationary state of a multi-species system after 
several hundred years. The closed-system simulation 
also converged to an equilibrium coexistence between 
species within a limited range of species parameters; 
however, it took a quite long time (more than 10,000 years) 
to attain to a state of stable coexistence (Kohyama 
1992a). 

The gap-dynamic version of the size-structured multi- 
species model, which employed an entirely closed repro- 
duction system at a whole forest level (Fig. 1), again 
simulated convergence to stable coexistence. Compar- 
ed with a gap-averaged model, the inclusion of a gap 

mosaic extended the possibilities of coexistence and 
shortened the time for convergence to equilibrium to 
around a few thousand years (Kohyama 1993a). 

For a closed multi-species system in models, a stronger 
species in terms of any one parameter of demographic 
processes exclude lesser species, when other parameters 
are retained the same between species. Then, Kohyama 
(1993a) tested every possible pair of parameters with 
counter effect in two-species systems in models. In the 
gap-averaged model, only the trade-off between potential 
maximum size and potential per-capita rate of recruitment 
had a region of stable coexistence (Fig. 2). By contrast, 
in the gap-dynamic model, the range of coexistence was 
wider in the same trade-off, and further, every trade-off 
relationship between parameters (except those with the 
parameter of susceptibility to suppression of recruitment 
rate) had the range of coexistence. It is easy to under- 
stand these results : species stratification is a necessary 
condition for size-structured but gap-averaged systems, 
but it is not necessary in horizontally heterogeneous gap- 
mosaic systems. The trade-off between maximum size 
and reproduction rate reflects the fundamental constraint 
in allocation between vegetative and reproductive growth, 
found in any kind of organism. In gap-dynamic forests, 
less tolerant species can coexist with more tolerant 
species with slower potential size growth rate at the same 
stratum by segregation into local stands at different 
regeneration stages. This trade-off between tolerance 
and potential growth rate is also a consequence of 
physiological processes. 

Patch dynamics in a mosaic landscape cannot itself 
facilitate coexistence of many species, when populations 
are not size-structured (Levin 1976). Multi-site mosaic 
models without size structure for each site have been 
applied to theoretical community studies. Factors which 
allow several species to coexist have been identified as 
the temporal fluctuation in establishment in vacant sites 
(Chesson and Warner 1981, Agran and Fagerstr6m 1984, 
Shmida and EIIner 1984), the local segregation of species 
due to the prevailing establishment success nearby adults 
(Shmida and EIIner 1984), and conversely, reciprocal 
replacement, or the tendency of avoiding within-species 
regeneration in a given site (Whittaker and Levin 1977). 

Titman (1982) theoretically examined resource-popula- 
tion systems. He showed that differences in efficiency of 
use of resources between species play an important role 
in community organization. At most n species can co- 
exist when n resources are subject to competition. He 
also showed that environments with lower rates of supply 
of resources will support more plant species through finer 
segregation in spatial heterogeneity in supply ratio of 
plural resources, which is called the 'resource-ratio 
hypothesis'. Tilman (1988) simulated size-structured ter- 
restrial plant systems, where light (along a vertical gradi- 
ent) and soil nitrogen were the resources of interest. He 
gave results, however, along his resource-ratio hypothesis 
and did not suggest the possibility that the light resource 
alone can promote multiple-species coexistence. 
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Fig. 2. Dependence of the stable equilibrium state of two 
species sysyem on two model parameters in the gap-aver- 
aged size-structured model. Other model parameters are 
identical between two species. Lateral and vertical axes 
give increasing per-capita recruitment rate and the decreas- 
ing potential maximum size for species 2, respectively, keep- 
ing the trait of species 1 on the left bottom corner. The 
intrinsic rate of relative size growth (for trees at 2.718 cm dbh) 
is respectively 0.03, 0.04 and 0.05 cm cm ~ year i for (a), (b) 
and (c). The model and other parameters in Kohyama 
(1993a, Table 2). 

Table 2 summarizes the results of competition models 
of closed systems of sessile organisms in stable environ- 
ments. We can see that the persistent size structure 
plays a fundamentally important role in the organization of 
forest tree communities. A gap mosaic is important, 
however, because it allows more possibilities for species 

to coexist. Tree size structure in local stands and shift- 
ing mosaic of stands in a forest create spatial heter- 
ogeneity in the essential light resources. Therefore, the 
conclusion of size-distribution-mediated coexistence can 
be classified to be a variant of the spatial heterogeneity 
theory of coexistence (Levin 1976, Tilman 1982, 1988). 
However, the case of a forest system is unique because 
that tree populations create a structural pattern of 
resource heterogeneity in space. Hence, to emphasize 
the essential role of forest architecture in the coexistence 
of tree species, Kohyama (1993a) proposed the 'forest 
architecture hypothesis'. 

In the coexistence of tree species, Hara (1993) pointed 
out the importance of the diffusion term, i.e. the variance 
in size growth rate among trees of identical size at the 
same time. He applied the gap-averaged version of the 
multi-species model of Kohyama (1992a), and found that 
inferior species in terms of susceptibility to suppression 
can coexist with superior species when the variance term 
of inferior species is sufficiently larger. Hara carried out 
simulation for 1,500 years which were usually one-order 
shorter than the time system requires to attain to a steady 
state in my simulation results (Kohyama 1992a, 1993a). 
He tested only for the trade-off between suppression 
susceptibility and growth-rate variance. Thus, we need 
further analyses to answer how differences among 
species in the variance of size growth rate contributes to 
the coexistence of plant species. 

It is still worth evaluating the preliminary results of Hara 
(1993) in relation to those of other studies. Begon and 
Wall (1987) analysed an abstract (i.e. not size-structured) 
two-species competition model which took into account 
the within-species variation in population growth rate. 
They found stable coexistence mediated by the variation. 
Within-species variation in their model can be realized in 
a size-structured model through either the variation 
between individuals of different sizes (Kohyama 1992a) or 
the variation between individuals of the same size (Hara 
1993). We have not yet measured any species with 
obviously wider variance in size growth rate than other 
coexisting species (Kohyama and Hara 1989, Kohyama 
1992a), although we can expect that pioneer species will 
have wider variation along a light regime than non-pio- 
neers. The shifting gap mosaic of forests allows pio- 
neers to coexist with non-pioneers (Kohyama 1993a). 
Coexistence between species with different variances in 
growth rate, suggested from the gap-averaged diffusion 
model (Hara 1993), possibly support the gap-mosaic- 
mediated coexistence of pioneers and non-pioneers, 
concluded from the explicit gap-dynamic model (Ko- 
hyama 1993b). 

Botkin et  at. (1972) proposed an individual-based simu- 
lation model of multi-species forest systems. Since 
then, this model has been revised and used to describe 
dynamics in various forests (Shugart 1984, Huston et al. 
1988, Botkin 1992, Urban and Shugart 1992). As these 
so-called 'gap models' (Shugart 1984) simulate the fate of 
each individual, the usual spatial scale of simulation is in 
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Table 2. Consequences of competition models for sessile 
perennial organisms without temporal fluctuation factor 

Gap-averaged Gap-dynamic 

Size averaged No coexistence * No coexistence �9 
Size structured Coexistence by Coexistence by 

stratification various trade offs 

Only in particular case when the ratio of per capita repro- 
ductive rate to mortality is identical between species, 
'meta stable' (sensu Levin 1976) coexistence occurs. 

a patch of limited area, or in a gap surrounded by the 
background forest. The assumptions and the modelling 
scheme of gap models are fundamentally the same as my 
size-structure-based multi-species model (Kohyama 
1992a, b, 1993a). Therefore, a difficult but possible simu- 
lation study with a closed-system individual-based model 
should reach the same conclusions as of the forest 
architecture hypothesis, though it has not yet been carried 
out. The same difficulty in otherwise more realistic gap 
models prevents straightforward extension of individual- 
based simulation to gap dynamics and landscape-level 
dynamics. For this kind of extension, it is necessary to 
employ a hierarchical procedure to relate fine-scaled gap 
models to broader-scaled models (Horn et al. 1989, 
Shugart et al. 1992). An advantage of the simpler size- 
distribution-based model is the capacity of straight- 
forward extension to metapopulation-level without worry- 
ing about the total number of individuals in simulation 
(Kohyama 1993a). 

Tree Species Diversity and the Forest 
Architecture Hypothesis 

The forest architecture hypothesis can explain to a fair 
extent the geographic pattern of tree species diversity 
(Kohyama 1993b). Recent extensive investigations 
(Adams and Woodward 1989, Currie 1991, Rohde 1992) 
show that the prime determinant of tree species diversity 
is available environmental energy which also determines 
primary productivity. As Whittaker (1972) and Begon et 
a/. (1986) describe, environments with high light energy 
supply will offer a wider range of light gradient, thus 
support more tree species in a vertical profile of forest. 
However, this explanation is insufficient because of a 
critical drawback, or 'a further consequence', 'that the 
tallest species must be able to operate over the whole 
range of light intensities, as they grow up from ground 
level to the upper canopy' (Begon et a/. 1988, p. 793). 
The functional size-structure models have enabled us to 
overcome this drawback (Kohyama 1992a, 1993a). 

The functional size-structure-based multi-species 
model suggests that (1) larger or taller forest can support 
more species; (2) the higher are all demographic rates, 
the faster the whole system attains a stable equilibrium ; 
and (3) systems with higher tree growth rate relative to 
other demographic rates can support more species. 
These facilitative factors work multiplicatively in high 

energy environments such as tropical lowland rain forests. 
The coexistence condition analysis showed that the 

larger the size differences are, the easier it is for species 
to coexist (Kohyama 1993a, Fig. 2). Taller stature and a 
less asymptotic curve of tree height against trunk diame- 
ter in tropical rain forests than other types of forests (Kira 
1978) provide wider opportunities for tree species to 
coexist by means of stratification. 

If a high energy environment accelerates all demo- 
graphic parameters at the same magnitude, a clear conse- 
quence is that the system will converge to a stable 
equilibrium faster, while the possibility of coexistence at 
equilibrium is the same as in the slower system. Actu- 
ally, it is more probable that trees grow faster compared 
with other demographic rates in more productive tropical 
rain forests (Kohyama 1993b). When only the potential 
size growth rate of trees is increased, the size-structure 
model suggests that the range of coexistence becomes 
wider (Fig. 2). 

There exists a general tendency that tropical rain for- 
ests have one-order higher tree species richness than 
extra-tropical forests. It is difficult to explain this by any 
one resource axis. However, taking into consideration 
the correlated increase of high stature and primary pro- 
ductivity along the energy gradient, it is possible to 
explain an order difference of diversity from the forest 
architecture hypothesis. The reason why the energy 
correlation of diversity is only clear in forest trees among 
plant life forms (Grubb t987) can be also answered by the 
persistently size-structured feature of forest communities. 

In conclusion, the condition that the size structure of 
plant populations determines the spatial distribution of 
available light resources effectively explains various pat- 
terns at both the population and community levels. We 
can draw a positive view in the synthesis of plant ecologi- 
cal studies such that the physiology-based description of 
species traits will directly facilitate the understanding of 
populations and communities, by means of the size-struc- 
ture-based modelling. 
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Appendix. Continuous size-structure models and Takada-Hara (1994) schemes of discrete approxi- 
mation for tree populations (recruitment process as a boundary condition excluded) 

Definition of symbols (units) 

t, 3t 
x, ztx 
f(t, x) 
G(t, x) 
O(t, x) 
M(t, x) 

Time and a small time interval (year) 
Plant size and a small size interval (cm) 
Distribution density function of size x at time t (cm -1 m -2) 
Mean growth rate of size xa t  time t (cm year -1) 
Variance of growth rate at size x at time t (cm 2 year -1) 
Mortality at size x at time t (year -1) 

Continuity equation corresponding to the forward one-step projection matrix 
(1) Basic equation 

~f(t, x) = ~[G(t, x)f(t, x)] _ M(t, x)f(t, x) 
Ot ;)x 

(2) Difference approximation 

f(t+At, X) - f(t, x) = G(t, x)f(t, x) - G(t, x-z~x)f(t, x-z~x)_ztt. M(t, x)f(t, x)At 
z~x 

Diffusion equation corresponding to the forward two-step projection matrix 
(1) Basic equation 

Of(t, x) = 1 ~2[D(t,x)f( t, x)] a[G(t, x)f(t, x)] . M(t, x)f(t, x) 
0t 2 0x 2 ~3x 

(2) Difference approximation 

f(t+At, x) - f(t, x) = 1 D(t, x)f(t, x) - 2D(t, x-3x)f(t, x-ztx) + D(t, x-2ztx)f(t, x-23X) A t 
2 (Ax)2 

. 3  G(t, x)f(t, x) - G(t, x-ztx)f(t, x-ZL,").At + 1 G(t, x-ztx)f(t, x-Ax) - G(t, x-2ztx)f(t, x-2ztx)./t t _ M(t, x)f(t, x)At 
2 z~x 2 AX 


