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Summary. Complete or partial nucleotide se-
quences of five different rRNA species, coded by
nuclear (18S, 5.8S, and 5S) or chloropliast genomes
(5S, 4.55) from a number of seed plants were de-
termined. Based on the sequence data, the phylo-
genetic dendrograms were built by two methods,
maximum parsimony and compatibility. The to-
pologies of the trees for different rRNA species are
not fully congruent, but they share some common
features. It may be concluded that both gymno-
sperms and angiosperms are monophyletic groups.
The data obtained suggest that the divergence of all
the main groups of extant gymnosperms occurred
after the branching off of the angiosperm lineage.
As the time of divergence of at least some of these
gymnosperm taxa is traceable back to the early Car-
boniferous, it may be concluded that the genealog-
ical splitting of gymnosperm and angiosperm lin-
eages occurred before this event, at least 360 million
years ago, i.€., much earlier than the first angiosperm
fossils were dated. Ancestral forms of angiosperms
ought to be searched for among Progymnosper-
mopsida. Genealogical relationships among gym-
nosperm taxa cannot be deduced unambiguously on
the basis of rRNA data. The only inference may
be that the taxon Gnetopsida is an artificial one, and
Gnetum and Ephedra belong to quite different lin-
eages of gymnosperms. As to the phylogenetic po-
sition of the two Angiospermae classes, extant
monocotyledons seem to be a paraphyletic group
located near the root of the angiosperm branch; it
emerged at the earliest stages of angiosperm evo-
lution. We may conclude that either monocotyle-
donous characters arose independently more than
once in different groups of ancient Magnoliales or

that monocotyledonous forms rather than dicoty-
ledonous Magnoliales were the earliest angiosperms.
Judging by the rRNA trees, Magnoliales are the most
ancient group among dicotyledons. The most an-
cient lineage among monocotyledons leads to mod-
ern Liliaceae.
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Introduction

Phylogenetic relationships among the main groups
of seed plants remain obscure and are widely dis-
cussed in the botanical literature (Beck 1976, 1988;
Doyle 1978; Meyen 1984; Crane 1985; Doyle and
Donoghue 1987; Krassilov 1989; and papers cited
therein). In this paper we take a molecular approach
to the problem. The nucleotide sequences of plant
cytosolic 5.8S and 5S rRNAs, chloroplast 4.5S and
5S rRNAs, and also the partial sequences of cyto-
solic 18S rRNA (totally, about 760 positions, ap-
proximately 11,800 nucleotide residues) have been
used to construct phylogenetic trees by the com-
patibility and maximum parsimony methods.
Although it is widely accepted that rRNA is an
appropriate molecule for inferring phylogenetic re-
lations, until recently plant TRNAs were not the
object of close scrutiny in this respect. Molecular
phylogenetic studies of plants were performed most-
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ly by sequencing a single molecular species, be it a
protein or TRNA. There is only one paper in which
the data obtained for different plant molecular spe-
cies were analyzed together (Martin et al. 1985).
Most of the macromolecules considered in that pa-
per were proteins and the only TRNA species was
cytosolic 58 rRNA. Only dicotyledonous angio-
sperms were studied. The authors confronted cer-
tain difficulties while trying to combine individual
dendrograms into a global tree.

In this paper we present the results of phyloge-
netic reconstructions based on the sequences of five
different rRNA species and obtained by the two
methods, compatibility and maximum parsimony.
Preliminary considerations were published earlier
(Rakhimova et al. 1989; Troitsky et al. 1989D).

Materials and Methods

The low molecular weight rRNAs were isolated by the hot phenol
extraction procedure at pH 5.1 and purified by ion-exchange
chromatography on DEAE-Toyoperl 650M (Toyo Soda, Japan)
and electrophoresis on 8% polyacrylamide gel with 7 M urea, pH
8.3 as described in Troitsky et al. (1984, 1989b). The sequencing
was performed by the method of Peattie (1979).

The procedure of total high molecular RNA isolation and
partial sequencing with the use of reverse transcriptase (Liang et
al. 1983) were described earlier (Rakhimova et al. 1989). The
primer for sequencing d(CTTGCTTTGAGCACTCTAATTT)
specifically interacts with the nucleotides 1533=1549 of nuclear-
encoded 18S rRNA [numeration according to Dams et al. (1938)].

Dendrograms were constructed by the compatibility method
(Estabrook 1983; Le Quesne 1983) using the original algorithm
(Omelyanchuk and Kolchanov 1985) briefly described in our
earlier papers (Rakhimova et al, 1989; Troitsky et al. 1989b) and
by the maximum parsimony method using a program from the
PHYLIP package (Felsenstein 1989). The minimal numbers of
fixed mutational events in the branches of the trees obtained were
calculated by the Fitch procedure (Fitch 1971) using a program
from the VOSTORG package (Zharkikh et al. 1990).

The algorithm of the compatibility method is based on the
analysis of elementary trees for the quartets of sequences from
the alignment. Three topologies for the elementary tree are pos-
sible for each quartet. Each of the three topologies may be char-
acterized by a number of compatible sites n,, n,, and n,. Ac-
cording to the main theorem of the compatibility method
(Estabrook and McMorris 1980; Omelyanchuk and Kolchanov
1985), each set of compatible sites may be used to construct an
additive tree. It is obvious that only one of these trees reflects
the real process of divergence of the four sequences analyzed. It
is suggested that this is the tree with the maximal number of
compatible sites N ., = max{n,, n,, n,;}. To evaluate the validity
of prevalence of one topology over the other two by the number
of compatible sites, the following criterion was used. Let us sup-
pose the total number of compatible sites in three elementary
treesis M =n, + n, + n,, and these sites are uniformly distributed
among the trees. Then the probability of obtaining, by chance,
in one of the three elementary trees the number of compatible
sites N, {(or even higher) will be

- £ o))

This value may be considered as a first approximation for the
statistical estimation of the choice of the best topology of ele-

mentary trees. If P for a given quartet of nucleotide sequences is
smaller than a certain threshold level P, (P, < 1), this means
that one of the topologies definitely exceeds two others in the
number of compatible sites and may be considered as the best
representation of the true pattern of divergence. For the whole
tree reconstruction all possible C4 quartets of sequences are con-
sidered and for each of them the value of P is calculated. The
tree is constructed by adding in stepwise succession the elemen-
tary trees with increasing P values. The topologies obtained at
lower P values are fixed and are not changed in the process of
addition of elementary trees with higher P.

Results and Discussion

The nucleotide sequences used for phylogenetic tree
building are presented in Figs. 1-5. Phylogenetic
trees constructed for these five different cytosolic
and chloroplast rRNA species of a number of land
plants are shown in Fig. 6. Dendrograms for cyto-
solic 18S rRNA and chloroplast 4.5S rRNA (Fig
6A and B) and those for 5S and 5.8S rRNAs (Fig.
6C-E) were obtained by the compatibility and the
maximum parsimony methods, respectively, Be-
sides the compatibility method, the phylogenetic
dendrograms for 4.5S and 18S rRNAs were also
constructed by the maximum parsimony method,
their topologies proved to be very similar to those
presented in Fig. 6A and B (data not shown). When
the maximum parsimony method was used to an-
alyze the complete sets of data for any rRNA stud-
ied, several dendrograms with different but equally
parsimonious topologies were obtained. To over-
come this difficulty the dendrograms were built step-
wise. At the beginning, partially overlapping, locally
optimal dendrograms were constructed, which at the
next step were brought together into the global trees.
Using such an approach, we supposed that the prob-
ability of similarity arising due to homoplasy is low-
er in sequences that have diverged more recently.

As it follows from Fig. 6, the topologies of the
trees for different rRNA species are not fully con-
gruent. Because in the case of 4.5S8 and 35S rRNAs
it is not possible to find unambiguously the relative
position for all the dicot representatives, corre-
sponding trees include only a part of dicotyledonous
species for which the sequences of these rRNAs are
known. Comparing the individual dendrograms in
Fig. 6 we may conclude that a unimolecular den-
drogram does not allow definite conclusions to be
made concerning phylogenetic interrelatedness of
taxa, even if an rRNA is analyzed.

We may speculate that a global tree derived from
a more representative set of the rRNA sequences
would give us a better insight into the land plant
genealogy, but this is as yet impossible because the
data available for different rRNA species are incom-
plete and overlap only partially. The aim of our
present research is to accumulate data and try to
construct such a tree.
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rRNA

867 [11

1. Lycopadium annot inum

10 20 20 40 50 80 70
GAGUCUGGUAAUCGGAAUGAGUACAAUCUAAAUCUCUUAACGA- GGAUCGAUUGGAGGGCAAGUCUGGUG

21 2.Cycas revoluta NNNNNNNNNNNUUGGAAUGAGUACAAUUUAAAUCCCUUAACGA- GAANCCAUUGGAGGGCAAGUCUGGUG

31 23.Zamia pumila GAGUCUGGUAAUUGGAAUGAGUACAAUCUAAAUCCCUUAACGA- GGAUCC AUUGGAGEECAABUCUGEUG
* 4. Podocarpus nagai NNNUCUGGUAAUUGGAAUGAGUACAAUCUAAACCCCUUAACGA- GGAACCAUCGGAGGGCAAGUCUGEUG
* 5. Taxus baccata GAGUCUGGUAAUUGGAAUGAGUACAAUCUAAAUCCCUUAACGA- GEANCCAUUGGAGEECAAGUCUGGUG
* 2] 6. Ephedra Kokanica GAGUCUGGUAAUUGGAAUGAGUACAAUCUAAAUCCCUUAACGA~ GAANCCAUUGGAGGGUAAGUCUGEUG
2] 7.Gnetum gnemon NAGUCU- GNAAUUGGAAUGAGUACAAUUUAAACCCCUUAACGA - GAAWCCAUUGGAGGGCAAGUCUGGUG
2] 8.Magnolia cobus NNNUCUGGNAAUUGEAAUGAGUACAAUCUGAAUCCCUUAACGA - GNAACCAUUGGAGGCGAAGUCUSGUG
«(Z] 9.Peperomia glabrata AAGUCUGGN AAUUGGAAUGAGUACAAUCUAAALUCCCUUAACGA- GAANCCAUUGGAGGGC AAGUCUGGUG
(2] 10.Delphinium elatum GAGUCU-GNAAUUGGAAUGAGUACAAUCUAAALCCCUUAACGA- GAANCCAUUGEAGGECAAGUCUGGLG

[ 2)

& 8]
2]
2]
2]

(13
@8]

11. Morus nigra

12.Glycine max

18, Pisum sativum

14. Potamogeton natans

16, Narcissus pseudonarcissus
16. Carex hirta

17.0ryza sativa

18.Zea mays

19. Alopecurus pratensis

20, Trachycarpus fortunea

NAGUCU- GNAAUUGEAAUGAGUACAAUCUAAAUCCCUUAACGA-GAANCCAUUGGAGGECNAGUCUGGUG
GAGBUCUGEUAAUUGGAAUGAGUACAAUCUAAAUCCCUUAACGAUGEAUCCAUUGAAGBECAAGUCUGGUG
NNNUCUGENAAUUGGAAUGAGUACAAUCUAAAUCCCUUAACGA - GNANCCAUUGGAGGGCAAGUCUGGUG
NNNUCUGGNAAUUGGAAUGAGUACAAUCUAAAUCCCUUAACGA- GEAACCAUUGGAGGECAAGUCUGGUG
AAGUCUGGNAAUUGEAAUGAGUACAAUCUAAAUCCCUUAACGA-GAAUNCAUUGGAGGGCUAGUCUGGEUG
GAGUCUGCUAAUUGGAAUGAGUACAAUCUAAAUCCCUUGACGA-GEAUCCAUUBGAGEECAAGUCUGEUS
BUGLICUGGUAALRIGEAALGAGUACAAUCUAAAUCCCUUAACGA-GEGAUCCAULGGAGGGCAAGLICUGGUG
GUGUCUGGUAAUUGEAAUGAGUACAALCUAAAUCCCUUAACGA- GRAUCCAUUGGAGGECAAGLCUGEUG
GAGUCUGENAAUUGEAAUGAGUACAAUCUAAAUCCCUUAAGRA- GEANCCAUUGGAGGGCAAGUCUGEUS
NAGUCUGGAAAUUGGAAUGAGUACAAUCUAAAUCCCUUAAAGA~ GNAACCAUUGGAGGGC AAGUCUGGUG

* 21. Acarus calamus GAGUCUGGUAAUUGEAAUGAGUACAAUCUAAAUCCCUUAACGA-GNAUNC AUUGGAGGGCAAGUCUGGUG

80 Q0 100 110 120 130 140 150 180 170
CCAGCAGCCECECNNAUUCCAGCUCCAAUAANGUAUAUCUGAGUUGUUGC AGUUAAAAAGCUCGUAGUUNNAUCUUGGRAAGUGGCGAA- CGEUCCECCN
CCAGCAACCGCENNAAUUCCABCUCCAAUAAAGUAUGUUUAAGUUGUUGC AGAUAAAAAGCUCGUAGUUNN AUCUUGGGACGECCCGAC- CGEUCUGCUU
CCAGCAGCCGCGGUAAUUCCAGCUCCAAUAGCGUAUAUUUAAGUUGUUGC AGUUAAAAAGCUCGUAGULIGEAUCUUGGEACGECCCGRC- CEEUCCGCUU
CCABCABCCGOGEUAAUUCCAGCUCCAAUAANGAANAUUUAAGUUGUUGCAGAUAAAAAGCUCGUAGUUNNAUCUAGGEUCGUGUCUGU- CGEUCCGCCN
CCAGCAGCCEOGEUAAUUCCAGCUCCAAUAANGUAUAUUUAAGUUGUUGCAGAUAAAAAGCUCGUAGUUNNNUCUUGGEUCGUC ACGGU- UGEUCUGCCU
CCAGCAGCCGCGGUAAUUCTAGCUCCAAUAANGUAUAUUUAAGUUGUUGC AGAUAAAAAGCUCGUAGUUN AAUCUUGGGUCGECGUGEU-CGEUCCEMEU
CCAGCAGCCGCGNNAAUUCCAGCUCE AAUAANGUAUAUUUAAGUUGUUGC AGAUAAAAAGCUCTHUAGUUAAAUCUUGGGA UGEGA-GBU- CGGUCCECAG
CCAGCAGCCACGGUAAUUCC AGCUCCAAUAANGUAUAUUUAAGUUGUUGC AGAUAAAAAGCUCGUAGUDGAACUUUGGGAUGGECAGAC- CBGUCCECCU
CCAGC AGCCGCGNNAAUUCCAGCUCCAAUAANGNNNNUUUAASUUGUUGC AGUUAAAAAGCUCGUABUUGAAGUUUGEGEUUGAGUUC AU- AGGUCCCCUC
CNAGCAGCCGCGGNAAUUCT AGCUCCAAUAANGN ANNUUUAAGUUBUUGC AGAUAAAAAGCUCGUAGUUGEACUUUGGGEAUUGGCCGEC- CGGUCUACUC
CNAGCAGCCGCGNNAAUUCCAGCUCCAAUAANGN AUAUUUAAGUUGUIUGC AGAUAAAAAGCUCGUAGUUGEACCUUGGEUUGGEEUUGAU- CGGUCCGCCN
CCAGCAGCCGCGEUAAUUCCAGCUCCAAUAGCGUAUAUUUAAGUUGLIUGCAGUUAAAAAGCUCGUAGUUGEACCUUGGEUUGEEUCEAU- CEEUCCECCY
CCABCAGCCGOGENAAUUCCAGCUCCAAUAANGAAUAULUAABUUGLUGCAGUUAAAAAGCUCGUAGUUGEACCUUGAGUUEGGUURAU- CGEUCCECCY
CCAGCAGCCGCGNNAAUUCCAGCUCCAAUAANGAAUAUUUAAGUUGUUGCAGAUAAAAAGCUCGUAGUUGGACCUUGGEGEAUGEGEUCEEU-CEEUCUGCCY
CCAGCUGCCGECGANAAULCCAGCUCCAAUAANGUAUAUUUAAGUUGIUGCAGAUAAAAAGCUCGUAGUUNN AUCUCGGGGECNGGGA - GUGCGGEUCCECCY
CAABCGACGECAGUAAULUCCAGCUCCGAUANNGUAUAUUUGAGUUGUUGCAGNUAAAAAGCUCGUAGUUGGACCUUGNGGGUICGECGEUGCUCECCECCY
CCAGCAGCCGCAGUAAUUCCAGCUCCAAUAGCGUAUAUUUAAGUUGUUGCAGUUAAAAAGCUCGUAGUUGGACCUUGEGCECEECCEEECCAGUCCECCY
CCABCABCCGCAGUAAUUCCABCUCCAAUAGCGUAUAUUUAAGUUGUUGC AGUUAAAAAGCUCGUAGUUGEACCUUBEGCCEAACCAGEUGCCECCACCE
CCAGCAGCCGCGGNNAUUCCAGCUCCAAUANNGUAUAUUUAAGUUGNNGCAGUUAAAAAGCUCGUAGUUGEACUULIGG- - CBAGUCGAC~CNGUC----U
CCAGCABCCACGNNAAUUCCAGCUCCAAUAANGUANNUUUAAGUUGNNGCAGAUAAAAAGCUCEUAGUUGEACCUUGEECUGEECCEAC~ AGGUCCECON
CCAGCAGCCGCGNNAAUUCCAGCUCCAAUAANGUAUAULIUAAGUUGUUGC AGUUAAAAAGCUCGUAGUUGGACUUUGGGACGEGECCAAC- CGGUCUACCU
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NNNNGGUGUGCACUGGUCGCNNNNUUCUUUUUGU- CEEGRAACGCGCUCCUGGCCUUAAUUGGCUGGE- ACGOGEAAUCGACCAUGUUACUUU
U--CEEURUGCAUCEAUCGUUUCGUCCNUULUGL- CEGECGGC- GCEUUCCUSGACUUAGUUGCCURGE- UUGCGECUCUGECAUUGUUACUUU
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CU- AGGUGUGCACCGGANGNCUCGUCCCUUCUAC- CGECEAUNGCECUCCUGGECCUUAACUGECCEEG- NCBUGCCACCGRUGCUGLIUACUUL
UG~ ABGUGWEUACCUAUUGACUCGUCCCUUCUGC- CGECGAU- ACGCUCCUGUCCUUAAUUGGECCEEG- UCGUGC - UCCGENGCUGUUACUUY
UCGUGGUGUBCACCNGNCGUCCCGUCCCUUCUAC- CEGCRAU- ACGCUCCUBUCCUUAAUUGECCGEGE- NCGUGE- UCCGENGCUGUUACUUY
-~-DECUGUGCACCNGNCEACUCGUCCCULICURC- CGG~ BAU- GCGCUCCUGGECCUUAAUUGECCNNN- NCGN- - ~ UCCGENGCUSLIVACUUU
C~-CGREUGUGCACCEEUCEECUCGUCCCUICURC - CGECGEAU- GCERCUCCUGUCCUUAACUGGCCEGEGE- UCGUGCCUCCGEUGCCGUUACUUY
C~=UGGUGUGCACCEEUUGECUCAUCCCUUCIIEE - CES- BAU- GCGCUCCUGECCUUAAUUBECCEGE- NCBCGCe- - -- NNCUGLUACUUU
N~-NNGUGUGUACCEGCCGUCUCGUCNCUUUUGE- UGEUGAC- GCELUUCCUGUC CUUAGUUBGUCGEGEG- UCBUGCUUCCAGCECUGUUACULY
UCAGGGUGUGC ACUGUUCGCNNNNNNNNULCUGU- CGGBAAC- BCECUCCUBECCUUAACUGUCCGEE- ACGCGAAUUCGGCNAUGUUACULU
CN-CGEUGUGAACCRACCUAUCCEACCCUUCUGU- CGECGAN- BCGUGCCEAGCCUUAAUVEECCCGECCCCUGCCGRLGECCEE-~ UUACUUY
CA~-CGECAGGCACCEACCUGCUCGACCCUUCUGE - CEGCEAY- GCGCUCCURGCCUUAACUGECCEEGUUICGUGCCUCCEECECCEUUACULY
UACGGGCA-GAACCRACCGECUCGACCCULICUGC - CBGCGAU- GOGCUCCUGGCCUUAACUGGCCERG- UCGUBCTCLICCEE- GCCEUUACLIIIU
CANGGCGA-GCACCGACCUACUCGACCCUUCAGC - CG- CGAL- GCGCUCCUAGCCUUAAUUGGECCEEE- NCG- - - CUCCGEN AUCGUUACUUL
N- AGGGUGLIGCACCGGENCUUCCCEUCCCUUCUGE - CGE-GAU~ GLECUCCUBUCCUUAACUGGACGGE- NC-- - ~ CUCCGENGCCGUUACUUY
C-UCAGUGLGAACCGECCRLCUCEUCC- UUCEEC- CEECHEA- GLGUUCCUGGUCUUAAUUGECCREECTICE - - CUCCGENGCUGUUACUUU

:
§
E
|
|
é
|

Fig. 1. Alignment of partial nucleotide sequences of plant 18S rRNAs. Numbers in brackets are the references to original papers or
compilations; *, our data; if they were published earlier, the reference is given in brackets. The first nucleotide is 867 according to
the alignment in compilation [1] (Dams et al. 1988). Other references: [2] Rakhimova et al. (1989), [3] Nairn and Ferl (1988).
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Chloroplast 4.55 rRNA

10 20 30 40 50 60 70

«[4] 1.Marchantia polymorpha - --UAAGGU-GACGECAAGACUAGCCGUUUAUUUUUA- CGAUAGGUGCCAAGUGGAAGUGCAGUAAUGUA
* 2.Ginkgo biloba ---UAAGGU- CACGECGAGACGAGCCEUUUALICAUCA- CGAUAGGUGUCAAGUGGAAGUGCAGUGAUGUA
* 3.Larix sibirica ~--UAAGGU- CACGGCEAGACGAGCOGUUUAUCAUUA- CGAUAGGUGUCAAGUGGAAGUGC AGUGAUGUA
* 4. Cycas revoluta --~UAAGGU- CACGGCGAGACGAGCCGUUUAUCAUCA- CGAUAGGUGUC AAGUGGAAGUGCAGUGUUGCA
* 5. Ephedra kokanica —==UAAGGU- CACGACGAGACGAGCCGULIVALICAUCA- CRAUAGGUGUCAAGUGGAAGUGCAGUGAUGCA
* 6. Delphinium consolida ~==UAAGGU- CACEECEAGACBAGCCEULLAUCAUUA-CEAUAGGUGUC AAGUGGAAGUGC AGUGAUGUA
{41 7.Spinacia oleracea AGAGAAGGU- CACGECGAGACAAGCCGUUUAUCAUUA- CRAUAGGUGUC AAGUGGAAGUGCAGUGAUGUA
(5] 8.Ligularia calthifolia ~==~GAAGGU- CACBECGAGACGAGCCGUUUAUCAUUA- CGAUABGUGUCAAGUGGAAGUGC AGUGAUGUA
[6] 9. Apium graveoleus —=-GAAGGU-CACGEUGAGACGAGCCEUUUAUCAUUA- CEAUAGGUGUCUAGUGAAABUGC AGUGAUGUA
[7] 10.0enothera berteriana —--GAAGGU-CACGECGAGACGAGCCEUUUAUCAUUA- UGAUAGGUGUCAAGUGGAAGUGC ASUGAUGLA
#{4] 11.Norus nigra = =~UAAGGU- CACGECEAGACEAGCCGUUUAUCAUUA-CCAUAGGUGUCAAGUGEAAGUGC AGUGAUGUA
(8] 1Z.Glycine max ~--BAAGGU- CACGECEAGACGAGCCEUUUCUAAUUAAUGAUAGGUBUCAAGUGGAAGUGCAGUGAUGUA
[6]1 13.Commelina communis ~--UAAGGU- AGCGGCGAGACGAGCCEUUUAUCAUUA- CRAUAGGUGUCAAGUGGAABUGCAGUAAUGUA
{61 14. Allium tuberosum ~~-UAAGGU-CACGGECEAGACGAGCCAUUUAUCAUUA-CGAUABGUGUCAUGUGGAAGUGCAGUGAUGUA
[ 4] 15. Narcissus pseudonarcissus ---UAAGGU-CACGGCAAGACGAGCCGUUUAUCAUUA- CBAUAGGUGCCAGGUGEAAGUGCAGUAAUGUA
[6) 16. Hordeum vulgare —=-UAAGEU- AGCGBECGAGACGABCCGUUUA-~- -~ - -~ AAUAGGUGUCAAGUGGAAGUGCAGUGAUGUA

[41 17.Zea mays

4] 18.Triticum aestivum
» 5] 19. Acorus calamus

{41 20.Spirodela oligorhisa ~=~UAAGGU-CACGGCUAGACGAGCCGUUUAUCAUUA- CGAUAGGUGUCAAGUGGAAGUGC AGUGAUGUA

80 90 100
1.  UGUAGCUGAGGCAUCCUAACAGACCGAGAGAUUUAAAC
2. UGCAGCUGGAGCAUCCUAACAGACCGAGAGAUUUGAAC
3. UGCAGCUGAGGCAUCCUAACAGACCGAGAGAUUUGAAC
4. UGCAGCUGAGGCAUCCUAACAGACCGAGAGAUUUGAAC
5. UGCAGCUGAGACAUCCUAACAGACCGAGAGAUUUGAAC
6. UGCAGCUGAGGCAUCCUAAUAGACCAAUAGACUUGAAC
7. UBCAGCUGAGGCAUCCUAACAGACCCACAGACUUGAAC
8. UGCAGCUGAGGCAUCCUAACAGACCGGUAGACUUGAAC
9.  UGCAGCUGAGGCAUCCUAACAGACCGGCAGAUULIGAAC
10,  UGCABCUGAGACAUCCUAACAGACCGCUAGACUUGAAC
11,  UGCAGCUGABGCAUCCUAACAGACCGSUAGACUUGAAC
12,  UGCAGCUGAGGCAUCCUAACAGACCGGUAGACUUGAAC
13.  UBCAGCUGAGGCAUCCUAACABACCGAGAGAUUUGAAC
14, UGCAGCUGAGGCAUCCUAAUAGACCAAGAGAUUUGAAC
15.  UGCAGCUGAGGBCAUCCUAACAGACCGAGAGAUUUGAAC
16.  UBCAGCUBAGGCAUCCUAACGAACCGAACGAUUUGAAC
17. UBCAGCUGAGGCAUCCUAACGAA-CGAACGAUUUGAAC

18, UGOAGCUGAGGECAUCOUAACEAA- COAACGAULUGAAC Fig. 2. Alignment of plant chloroplast 4.5S rRNA sequences. Designations are

16,  UBCAGCUGAGSCAUCCUAACAGACCGAGAGAUUUGAAC the same as in Fig. 1. [4] Troitsky et al. (1989b), [S] Bobrova et al. (1987), [6]
20. UGCAGCUGAGGCAUCCUAAU-GACCGAGAGAUUUGAAC Cheng et al. (1986), {7] Schuster and Brennicke (1987), [8] Nazar et al. (1987).
5.8S rRNA
10 20 30 40 50 60 70

*(8]  1.Mnium rugicum -~ AUAACCCUCAGCAACGEAUAUCUUGGCUCUUGC AACGAUBAAGAACGCAGCAAAAUGCRAUACGUAG
* 2. Taxus baccata CUUGGECACUCUCEECAACEEAUAUCUCEGEOUCUCEE - ACGAUGAAGAACGUAGCEAAAUGCBAUACUUAG
#[10] 3.Ephedra kokanica CUUACGACUCUCGECAAUGEAUAUCUCGECUCUCGC AUCBAUBAAGAACGUAGCGAAAUGCEAUACUUAG
* 4. Gnetum gnemon CCCADBACUCUCGACAAUGEAUAUCUCGECUCUCGU- UCGAUGAAGAACGUAGCGAAAUGCGAUACUUGE
* 5. Piocea excelsa UAAAUGACUCUCGGECAACGEAUAUCLICEECUCUUGU- ACGAUGAAGAACGUAGCGAAAUGCGAUACUUAGR
» 6. Potamogeton natans AUCAUGACUCUCEECAACGEACAUCIUBECUCUCGCAUCGAUGAAGAACGUAGCGAAAUGCEAUACUUGE

£111 7. Triticum aestivum CACACEACUCUCGECAACGEAUAUCUCGECUCUCECAUCGALUGAAGAACGUABCBAARUGCEAUACCUGE

[11] B.Oryza sativa CACACGACUCUCGGCAACGEAUAUCUCGECUCUCGCAUCGAUGAAGAACGUAGCBAAAUGOGAUACCUGE

[12]1 9.Lycopersicen esoulentum CAAACGACUCUCGECAACGRAUAUCUCGECUCUCGCALCGAUGAAGAACGUARCGARAUBOGALIACULGE

[11] 10.Lupinus luteus CUAAAGACUCUCGGECAACGAEAUAUCUCEECUCUUGCAUCGAUGAAGAACSUAGCEAAAUBCGAUACUUGG

[111 11.Vicia faba AGAAUBACUCUCSGECAACSEAUAUCUAGGCUCUUBCAUCGAUBAAGAACGUAGCBAAAUBCEAUACUUGE

113) 12. Cucumis melo -CAACGACUCUCGECAACGEAUALCUCGECUCUCGCAUCGAUBAAGAACGUAGCEAAAUGCGAUACUUGSE

[14] 13 Vigna radiata AAAACBACUCUCBECAACGEAUAUCUCGECUCUUGCAUCGAUBAAGAACGUAGCGAAAUGCEAUACULGS

80 80 100 110 120 130 140 150 160
1. UGUEAAUUGCAGAAUUCCGOGAAUCAUCGAGLCULIUGAACGCAAGLIUGCECCCRABEE- - ~ UCGUCCEABGEC AUULCCEUUABAGCGUCACC-
2. UBUGAAUUGCAGAAUCCCGUGAALCAUCGAGUCUULBAACGT AAGUUG- BCCCEEAGE -~ - UCAECCEABRGCACGUICUGCUUBEACELICECAC
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Although the differences in the topology of the
trees in Fig. 6 are obvious, they share some common
features that will be the object of our consideration
here. The topologies of the trees suggest that the
divergence of all the main groups of extant gym-
nosperms occurred affer the branching off of the
angiosperm lineage. These groups are Cycadales
(Cycas, Zamia, Encephalartos), Coniferales (Meta-
sequoia, Podocarpus, Taxus, Larix, Picea), Gink-
goales (Ginkgo), Gnetales (Gnetum), and Ephedrales
(Ephedra). The taxonomic status of these groups
may differ in the systems suggested by botanists, but
there is a general view now that these groups rep-
resent all the major gymnosperm lineages (Doyle
1978; Meyen 1984; Crane 1985; Doyle and Dono-
ghue 1987; Beck 1988; Krassilov 1989). As the time
of divergence of at least some of these taxa is trace-
able back to the early Carboniferous, we have con-
cluded that the genealogical splitting of gymno-
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Fig. 4. Alignment of plant cytosolic 5S rRNA sequences. Designations

GGCGAGAGUAGUACUAGGAUGGELIGACCUCCUGERAAGUCCUIGUGUUBCAUCCC-  are the same as in FlgS 1-3. [15] Wolters and Erdmann (1988), [16] Me-
GECEARAGCAGUACUAGGAUGGELGACCUCCUGBBAAGLCCUCGUGUUGCACCCY-  lekhovets et al. (1988).

Fig. 5. Alignment of plant chloroplast 5S rRNA sequences. Desig-
nations are the same as in Figs. 1—4. [15] Wolters and Erdmann
(1988), {17] Zhou et al. (1988).

sperm and angiosperm lines of descent occurred
before this event, i.c., at the Devonian-Carbonif-
erous boundary, approximately 360 million years
(Myr) ago, shortly after the branching off of the Pter-
idophyta lineage (Rakhimova et al. 1989).
Naturally, proceeding from molecular data alone,
one cannot imagine the morphology of these ancient
extinct angiosperms. Here two possibilities may be
discussed. One is that such ancestral forms had al-
ready possessed some specific angiospermous fea-
tures. The absence of unequivocal angiosperm fos-
sils in pre-Cretaceous strata may be due to the
scarcity of proangiosperms or their poor preserva-
tion in some special habitats (Axelrod 1970). The
second hypothesis, which seems more realistic to
us, is that up to the early Cretaceous, when massive
angiosperm radiation occurred, these plants have
had mostly gymnospermous features, which masked
their differentiation from extinct gymnosperms.
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In any case, the molecular data at our disposal
show that none of the gymnosperm lineages could
have been an ancestral one for angiosperms. We
have suggested therefore that ancestral forms of an-
giosperms ought to be searched among Progymno-
spermopsida (Rakhimova et al. 1989). This conclu-
sion may explain why attempts to deduce
angiosperms from gymnosperms have failed, even
though nearly all major groups of gymnosperms were
considered as putative ancestors for angiosperms
(Doyle 1978). So the genealogical splitting of angio-
sperm and gymnosperm lineages occurred long be-
fore the formation of the characteristic sets of mor-
phological characters of these two groups. It should
be noted that in the unrooted tree built from the
partial ribulose bisphosphate decarboxylase se-
quences, gymnosperms also formed a distinct clus-
ter separated from angiosperms (Martin and Dowd
1986).

Genealogical relationships among gymnosperm
taxa cannot be deduced unambiguously on the basis
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of the available rRNA data (see Fig. 1). The only
inference may be that the taxon Gnetopsida, in-
cluding Gnetales and Ephedrales, is an artificial one,
and Gretum and Ephedra belong to quite different
lineages of gymnosperms. This contradicts widely
adopted schemes, specifically those inferred recently
from the cladistic analyses of morphological traits
of extinct and extant plants; but some authors have
come to similar conclusions on the basis of tradi-
tional evidence (see Meyen 1984; Crane 1985; Doyle
and Donoghue 1987; Beck 1988; Krassilov 1989).

Recently Martin et al. (1989), proceeding from
the glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) gene sequences of nine flowering plant
species, postulated that the divergence of angio-
sperms occurred much earlier than is generally ac-
cepted, i.e., 150 Myr ago. These authors built a tree
for angiosperm sequences only and placed the root
between the two monocots, maize and barley, and
seven dicots. According to the authors, this was the
earliest branching event, which occurred about 320
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Myr ago. Their estimates are based on the assump-
tion of the constancy of molecular evolution rates
in different lineages. Criticized by Goodman (1981),
Antonov and Troitsky (1986), Britten (1986), and
Gillespie (1986), this hypothesis cannot be taken for
granted. In particular, our data in Fig. 1 indicate
that the rate of rRNA evolution in plants may not
be equal in different phylogenetic lineages. Accord-
ing to the data of Martin et al. (1989), the rate of
GAPDH evolution in different eucaryotes may vary
twofold. The observed nonconstancy of the rates is
quite sufficient for shifting the position of nodes on
the tree considerably. For more correct estimates of
the tree topology, an outgroup of angiospermous
plants is badly needed. Such outgroups have been
used by Wolfe et al. (1989) in their analysis of chlo-
roplast DNA sequence data, and it only confirmed
the inequality of the rates of molecular evolution
in different lineages and shifted the time of mono-
cot—dicot divergence up to 200 Myr ago. Both Mar-
tin et al. (1989) and Wolfe et al. (1989) analyzed
too few species. Moreover, the only monocots in
their considerations were domesticated cereals. In
our analysis we used the necessary outgroups, tried
several kinds of rRNA from different cellular com-
partments, included far more species, mostly from
wild flora, avoided the moot molecular clock hy-
pothesis, and operated only with the paleobotanical
datings on the appearance of first gymnosperms.
Moreover, there are some grounds to believe that
in general the rRNA data are more informative in
plant phylogeny reconstruction than the protein data
(Archie 1989).

The other point of interest in the rRNA dendro-
grams is the relative position of monocots and di-
cots. It is widely accepted now that the ancient an-
giosperms were close to extant Magnoliales from
which other dicotyledonous groups, as well as
Monocotyledones, arose. According to some of the
trees in Fig. 6, extant monocotyledons are a para-
phyletic group located near the root of the angio-
sperm branch. The other trees at least do not con-
tradict such an evolutionary pattern. We may
conclude that either monocotyledonous characters
arose independently more than once in different
groups of ancient Magnoliales or that monocotyle-
dons rather than dicotyledonous Magnoliales were
the earliest angiosperms. The latter suggestion scems
more plausible by virtue of its greater parsimony
and gives fresh impetus to the hypothesis of a mono-
cotyledonous origin of angiosperms (Burger 1981).
It is worth mentioning that no definite proof of the
ranalean hypothesis (Takhtajan 1969), either neon-
tological or paleontological, exists. On the other
hand, available data indicate the early diversifica-
tion of monocotyledons. The fossil leaves and pollen
with characters similar to extant monocotyledons

have been found in the earliest strata of the Potomac
group (Beck 1976; Doyle 1978; Dahlgren and Ras-
mussen 1983; Krassilov 1989).

Judging by the trees in Fig. 6A and B, containing
the greatest number of monocotyledon species,
Magnoliales are the most ancient group among di-
cotyledons. The most ancient lineage among mono-
cotyledons leads to Liliaceae.

When this paper was ready for publication, we
learned about the study of Zimmer et al. (1989)
concerning an attempt to reconstruct flowering plant
evolution from an analysis of 185 and 268 rRNA
partial sequences from 39 species. Although the con-
clusions from this work agree with ours in the early
appearance of monocotyledons in the evolution of
angiosperms (Bobrova et al. 1987; Troitsky et al.
1989b; Rakhimova et al. 1989), they differ with
respect to relationships between gymnosperms and
angiosperms. Zimmer et al. (1989) are inclined to
think that Gnetales may be the sister group of an-
giosperms, even though they consider this sugges-
tion not to be fully proven, as the branching order
of gymnosperm taxa cannot be deduced unambig-
uously.

Finally we believe that the future progress of plant
phylogenetics will depend not only on paleo- and
neobotanical, but on molecular evidence as well. Yet
we would stress that due to some discrepancies in
the trees for different molecular species more data
on various molecules from a larger set of plant spe-
cies are needed in order to infer the pattern of seed
plant molecular evolution.
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