L^{p} -norm convergence of series in compact, totally disconnected groups

G. GÁT and R. TOLEDO

The notations that we use in this paper are similar to those in the books of HEWITT-ROSS [6] and SCHIPP-WADE-SIMON [10]. Let σ be an equivalence class of continuous, irreducible, unitary representations of a compact group G. Denote by Σ the set of all such σ . Σ is called the dual object of G. The dimension of a representation $U^{(\sigma)}$, $\sigma \in \Sigma$, is denoted by d_{σ} , and let

$$u_{i,j}^{(\sigma)}(x) := \langle U_x^{(\sigma)}\xi_i, \xi_j \rangle \quad i, j \in \{1, \dots, d_\sigma\}$$

be the coordinate functions for $U^{(\sigma)}$, where $\xi_1, \ldots, \xi_{d_{\sigma}}$ is an orthonormal basis in the representation space of $U^{(\sigma)}$. According to the Weyl-Peter theorem, the system of functions

$$\sqrt{d_{\sigma}}u_{i,j}^{(\sigma)}, \quad \sigma \in \Sigma, \ i, j \in \{1, \dots, d_{\sigma}\},$$

is an orthonormal basis for $L^2(G)$. If G is a finite group, then Σ is also finite. If $\Sigma := \{\sigma_1, \ldots, \sigma_s\}$, then

$$|G| = d_{\sigma_1}^2 + \dots + d_{\sigma_s}^2$$

A topological space X is connected if it is not the disjoint union of any two nonvoid sets that are both open and closed. A component of a topological space is a connected subset which is properly contained in no other connected subset. A topological space is totally disconnected if all of its components are points. We now restrict our attention to infinite, compact, totally disconnected groups. It is known that these groups have a countable neighborhood base $G = G_0 \supset G_1 \supset \cdots$ at the identity *e* consisting of open and closed normal subgroups which satisfy the property that for every $n \in \mathbf{N}$, the factor structure G_n/G_{n+1} is finite [9]. Moreover,

Received March 1, 1994; in revised forms May 26, 1994 and February 21, 1995.

Research supported by the Hungarian National Foundation for Scientific Research, Grant # F007347; and by the "Alapítvány a Magyar Felsőoktatásért és Kutatásért", which is the foundation of the Hungarian Credit Bank, Grant # 485/94.

G is a complete direct product of these factor structures. Hence an infinite, compact, totally disconnected group can be constructed in the following way.

Denote by $m := (m_k : k \in \mathbf{N})$ a sequence of positive integers such that $m_k \geq 2, k \in \mathbf{N}$, and by G_{m_k} a finite group with order $m_k, k \in \mathbf{N}$. For simplicity, we will use the same notation for the operation of G_{m_k} , $k \in \mathbf{N}$, and denote by e the identity of these groups. Suppose that each group has a discrete topology, and a right and left Haar measure μ_k with $\mu_k(G_{m_k}) = 1$. Thus, each group has a similar measure such that the measure of every singleton of G_{m_k} equals $1/m_k, k \in \mathbf{N}$. Let G_m be the compact group formed by the complete direct product of G_{m_k} with the product of the topologies, operations, and measures (μ) . Thus, each $x \in G_m$ consists of sequences $x := (x_0, x_1, \ldots)$, where $x_k \in G_{m_k}, k \in \mathbf{N}$. Define G_0 by means of the set of finite sequences of $G_m, I_0(x) := G_m$,

$$I_n(x) := \{ y \in G_m : y_k = x_k, \text{ for } 0 \le k < n \} \quad (x \in G_m, n \in \mathbf{N}),$$

 $I_n := I_n(e)$. The sets I_n form a countable neighborhood base at the identity in the product topology on G_m .

If $M_0 := 1$ and $M_{k+1} := m_k M_k$, $k \in \mathbb{N}$, then every $n \in \mathbb{N}$ can be uniquely expressed as

$$n = \sum_{k=0}^{\infty} n_k M_k, \quad 0 \le n_k < m_k, \ n_k \in \mathbf{N}.$$

This allows us to say that the $(n_0, n_1, ...)$ sequence is the expansion of n with respect to m. We often use the following notations:

$$|n| := \max\{k \in \mathbf{N} : n_k \neq 0\}, \quad n_{(k)} := \sum_{j=0}^{k-1} n_k M_k, \quad n^{(k)} = \sum_{j=k}^{\infty} n_k M_k.$$

Now we denote by Σ_k the dual object of G_{m_k} . Let $\{\varphi_k^s : 0 \leq s < m_k\}$ be the set of all normalized coordinate functions of the group G_{m_k} , and suppose that $\varphi_k^0 \equiv 1$. Thus, for every $0 \leq s < m_k$ there exist $\sigma \in \Sigma_k$, $i, j \in \{1, \ldots, d_\sigma\}$ such that

$$\varphi_k^s = \sqrt{d_\sigma} u_{i,j}^{(\sigma)}(x) \quad (x \in G_{m_k}).$$

Let ψ be the product system of φ_k^s , namely

$$\psi_n(x) := \prod_{k=0}^{\infty} \varphi_k^{n_k}(x_k) \quad (x \in G_m),$$

where

$$n = \sum_{k=0}^{\infty} n_k M_k$$
 and $x = (x_0, x_1, ...).$

The Weyl-Peter theorem and Theorem (27.43) in [6] ensure that the system ψ is orthonormal and complete in $L^2(G_m)$. Since the set $\Im \in L^1(G_m)$ of all finite complex linear combinations of the coordinate functions, called polynomials, is dense in $L^1(G_m)$, we can state the following

Theorem 1. The system ψ is orthonormal and complete in $L^1(G_m)$.

We remark that if G_{m_k} is the discrete cyclic group of order $m_k, k \in \mathbb{N}$, then G_m coincides with the Vilenkin group, and ψ is the Vilenkin system [10], [17].

For $f \in L^1(G_m)$, we define the Fourier coefficients and partial sums by

$$\widehat{f}_k := \int_{G_m} f \overline{\psi}_k \ d\mu \ (k \in \mathbf{N}), \quad S_n f := \sum_{k=0}^{n-1} \widehat{f}_k \psi_k \ (n \in \mathbf{P}, \ S_0 f := 0),$$

where \mathbf{P} is the set of positive integers.

The Dirichlet kernel is defined by

$$D_n(x,y) := \sum_{k=0}^{n-1} \psi_k(x) \overline{\psi}_k(y) \quad (n \in \mathbf{P}, \ D_0 := 0)$$

It is clear that

$$S_n f(x) = \int_{G_m} f(y) D_n(x, y) \, d\mu(y).$$

The Dirichlet kernel plays a prominent role in the convergence of Fourier series. The following formulas will be useful in this regard. The case of Abelian groups G_{m_k} , $k \in \mathbb{N}$, is discussed by VILENKIN [1, 17]. We follow his method.

Lemma 1. If $n \in \mathbb{N}$, $x, y \in G_m$, then

(a)
$$D_n(x,y) = \sum_{k=0}^{\infty} D_{M_k}(x,y) \Big(\sum_{s=0}^{n_k-1} \varphi_k^s(x_k) \overline{\varphi}_k^s(y_k) \Big) \psi_{n(k+1)}(x) \overline{\psi}_{n(k+1)}(y),$$

(b)
$$D_{M_n}(x,y) = \begin{cases} M_n & \text{for } x \in I_n(y), \\ 0 & \text{for } x \notin I_n(y), \end{cases}$$

where $(n_0, n_1, ...)$ is the expansion of *n* and $x = (x_0, x_1, ...), y = (y_0, y_1, ...).$

Proof. For each $n \in \mathbf{N}$, $x, y \in G_m$, it is easy to see that

$$D_{n}(x,y) = D_{M_{|n|}}(x,y) \Big(\sum_{s=0}^{n_{|n|}-1} \varphi_{|n|}^{s}(x_{k}) \overline{\varphi}_{|n|}^{s}(y_{k}) \Big) + \varphi_{|n|}^{n_{|n|}}(x_{|n|}) \overline{\varphi}_{|n|}^{n_{|n|}}(y_{|n|}) D_{n_{(|n|)}}(x,y).$$

Formula (a) can be proved by induction, while taking into account that

 $\varphi_k^{n_k} \equiv 1 \quad \text{for } k > |n|.$

To prove (b), note that

$$D_{M_n}(x,y) = \prod_{k=0}^{n-1} \sum_{s=0}^{m_k-1} \varphi_k^s(x_k) \overline{\varphi}_k^s(y_k), \ D_{M_0} \equiv 1 \ (n \in \mathbf{N}, \ n > 0, \ x, y \in G_m).$$

Then it is sufficient to prove that

(1)
$$\sum_{s=0}^{m_k-1} \varphi_k^s(x_k) \overline{\varphi}_k^s(y_k) = \begin{cases} m_k & \text{for } x_k = y_k, \\ 0 & \text{for } x_k \neq y_k, \end{cases}$$

for each $k \in \mathbf{N}$. In other words, it is sufficient to demonstrate that for every finite and compact group G of order m, we have

$$\sum_{\sigma \in \Sigma} \sum_{i,j=1}^{d_{\sigma}} d_{\sigma} u_{ij}^{(\sigma)}(x) \overline{u}_{ij}^{(\sigma)}(y) = \begin{cases} m & \text{for } x = y, \\ 0 & \text{for } x \neq y, \end{cases}$$

where $(x, y) \in G$. Using the equalities

$$\overline{u}_{i,j}^{(\sigma)}(x) = u_{ij}^{(\sigma)}(x^{-1}), \quad u_{i,j}^{(\sigma)}(xy) = \sum_{r=1}^{d_{\sigma}} u_{ir}^{(\sigma)}(x) u_{rj}^{(\sigma)}(y),$$

for $x, y \in G$, $i, j \in \{1, \ldots, d_{\sigma}\}$, $\sigma \in \Sigma$, which are well known in the representation theory (see 27.5 in [6]), we can state the following:

$$\sum_{\sigma \in \Sigma} \sum_{i,j=1}^{d_{\sigma}} d_{\sigma} u_{ij}^{(\sigma)}(x) \overline{u}_{ij}^{(\sigma)}(y) = \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i,j=1}^{d_{\sigma}} u_{ij}^{(\sigma)}(x) u_{ji}^{(\sigma)}(y^{-1}) =$$
$$= \sum_{\sigma \in \Sigma} d_{\sigma} \sum_{i=1}^{d_{\sigma}} d_{\sigma} u_{ii}^{(\sigma)}(xy^{-1}) =: \sum_{\sigma \in \Sigma} d_{\sigma} \chi_{\sigma}(xy^{-1}),$$

where χ_{σ} is called the character of the representation $U^{(\sigma)}$. Since the above sum is the identity element for the convolution (see Theorem 27.41 in [6]), we have

$$\sum_{\sigma \in \Sigma} d_{\sigma} \chi_{\sigma}(xy^{-1}) = \begin{cases} m & \text{for } x = y, \\ 0 & \text{for } x \neq y, \end{cases}$$

where $x \in G$. This completes the proof of Lemma 1.

Formula (b) is used to prove that the partial sums $S_{M_n}f$ of the Fourier series of a function $f \in L^p(G_m)$, $p \ge 1$, converge to f in L^p -norm and almost everywhere (a.e.). Indeed, the operator

$$S_{M_n}f(x) = \int_{G_m} f(y)D_{M_n}(x,y)\,d\mu(y) = \frac{1}{\mu(I_n(x))}\int_{I_n(x)} f\,d\mu$$

is the conditional expectation with respect to the σ - algebra \mathcal{A}_n generated by the sets $I_n(x), x \in G$, that is,

$$S_{M_n}f = E(f|\mathcal{A}_n), \quad n \in \mathbf{N}.$$

Thus, the following statement is a corollary of the martingale convergence theorem [8].

Corollary. For each $f \in L^p(G_m)$, $p \ge 1$, and $n \in \mathbb{N}$, the partial sums $S_{M_n}f$ converge to f in L^p -norm and a.e.

Now we study the whole sequence of the partial sums S_n . According to the Banach-Steinhaus theorem,

$$S_n f \to f$$
 in L^p -norm as $n \to \infty$

for $f \in L^p(G_m)$ if and only if there exists a constant $C_p > 0$ such that

$$||S_n f||_p \le C_p ||f||_p, \quad f \in L^p(G_m).$$

Thus, the operators S_n are of type (p, p). Since the system ψ is an orthonormal basis in the Hilbert space $L^2(G_m)$, it is obvious that S_n is of type (2, 2).

For bounded Vilenkin systems the Paley theorem implies that the *n*th partial sum operators are bounded, uniformly in *n*, from $L^p(G_m)$ into itself for $1 , that is, the <math>S_n$ are uniformly of type (p, p) for $1 . The Paley theorem on unbounded Vilenkin groups does not hold (see WATARI [18]). However, the partial sums of the Vilenkin–Fourier series are uniformly bounded in <math>L^p(G_m)$ $(1 (see YOUNG [16], SCHIPP [12], SIMON [14]), thus they converge in <math>L^p(G_m)$ (1 .

We cannot generalize this statement for every non-Abelian group. To illustrate the situation, we consider $G_{m_k} \equiv S_3$ for each $k \in \mathbf{N}$, where S_3 is the symmetric group on 3 elements. It is known that in a certain basis $\{\xi_1, \xi_2\}$ the representation operators of S_3 have the following matrices:

$$e \to \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad (12) \to \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix},$$
$$(13) \to \begin{pmatrix} \frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}, \quad (23) \to \begin{pmatrix} \frac{1}{2} & \frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix},$$
$$(123) \to \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2}\sqrt{3} \\ \frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}, \quad (132) \to \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\sqrt{3} \\ -\frac{1}{2}\sqrt{3} & -\frac{1}{2} \end{pmatrix}.$$

Put

$$\varphi_k^s(x) = \sqrt{2}u_{11}(x),$$

where 0 < s < 6 is a fixed integer, u_{11} is the coordinate function of the above representation corresponding to the first row and the first column. Thus,

$$\varphi_k^s(e) = \sqrt{2}, \quad \|\varphi_k^s\|_1 = \frac{2\sqrt{2}}{3}.$$

Define $f_k \in L^1(S_3)$ by

$$f_k(x) = \begin{cases} 1 & \text{for } x = e, \\ 0 & \text{for } x \neq e, \end{cases}$$

where $x \in S_3$. Thus,

$$\int_{S_3} f_k \overline{\varphi}_k^s \, d\mu_k \|\varphi_k^s\|_1 = \frac{\sqrt{2}}{6} \cdot \frac{2\sqrt{2}}{3} = \frac{4}{3} \|f_k\|_1.$$

Since the norm $||f||_p$ is a continuous function of p for each $f \in L^p(G_m)$, there are constants C > 1 and 1 such that

$$\left(\int_{S_3} f_k \overline{\varphi}_k^s \, d\mu_k\right) \|\varphi_k^s\|_p > C \|f_k\|_p.$$

Now we suppose that $j \in \mathbf{N}, j > 0$, and let

$$n = \sum_{k=0}^{j-1} s6^k$$

Define $F_j \in L^1(G_m)$ by

$$F_j(x) := \prod_{k=0}^{j-1} f_k(x_k) \quad (x \in G_m),$$

where $x = (x_0, x_1, ...)$. Since

$$||F_j||_p = \prod_{k=0}^{j-1} ||f_k||_p,$$

it follows that

$$\begin{split} \|S_{n+1}F_j - S_nF_j\|_p &= \Big|\int_{G_m} F_j\overline{\psi}_n \,d\mu\Big| \|\psi_n\|_p = \\ &= \prod_{k=0}^{j-1} \int_{S_3} f_k\overline{\varphi}_k^s \,d\mu_k \|\varphi_k^s\|_p > C^j \|F_j\|_p. \end{split}$$

Since S_n is of type (p, p), there is a constant $C_p > 0$ so that

$$||S_{n+1}F_j - S_nF_j||_p \le ||S_{n+1}F_j||_p + ||S_nF_j||_p \le 2C_p ||F_j||_p$$

for each j > 0. For this reason the operators S_n are not uniformly of type (p, p).

Remark. In the same way, we can prove that the Paley theorem is not valid for groups for which there exists a constant C > 0 so that

$$\|\varphi_k^s\|_1 > \frac{1}{\sqrt{d_k^{(s)}}} + C$$

for infinite number of functions, where $d_k^{(s)}$ is the dimension of the representation corresponding to φ_k^s .

Finally, we prove the convergence in L^p -norm of the Fejér means of Fourier series when $p \ge 1$ in the bounded case. The method of the proof is similar to that in [4]. As for the Fejér kernel in the case of Abelian groups $G_{m_k}, k \in \mathbb{N}$, see also [1]. In this regard, we introduce the following concepts. The compact, totally disconnected group G_m is called bounded if the sequence m is bounded. Denote by

$$\sigma_n f = \frac{1}{n} \sum_{k=0}^{n-1} S_k f \quad (n \in \mathbf{P}, \ \sigma_0 f := 0)$$

the Fejér mean of the Fourier series and by

$$K_n := \frac{1}{n} \sum_{k=0}^{n-1} D_k \quad (n \in \mathbf{P}, \ K_0 := 0)$$

the Fejér kernel. Then

$$\sigma_n f(x) = \int_{G_m} f(y) K_n(x, y) \, d\mu(y) \quad (x \in G_m, \ n \in \mathbf{P}).$$

Lemma 2. If G_m is a bounded group, then there is a constant C > 0 such that

$$\sup_{x \in G_m} \int_{G_m} |K_n(x,y)| \, d\mu(y) \le C.$$

Proof. Throughout this proof C > 0 will denote an absolute constant which will not necessarily be the same at different occurrences. Let r be a fixed natural number. To estimate $|K_n|$, we prove that for every $r \in \mathbf{P}$

(2)
$$\sum_{j=0}^{r} M_j d_{n^{(j)}} \le \frac{\sqrt{2}}{\sqrt{2}-1} M_r d_{n^{(r)}}, \quad \text{where} \quad d_n = \prod_{k=0}^{\infty} d_k^{(n_k)}$$

and $d_k^{(n_k)}$ is the dimension of the representation corresponding to $\varphi_k^{n_k}$. Set $b_j := M_j d_{n^{(j)}} \quad (0 \le s \le r),$

thus

$$b_{j+1} := M_{j+1} d_{n^{(j+1)}} = M_j d_{n^{(j)}} \frac{m_j}{d_j^{(n_j)}} \ge b_j \sqrt{2}$$

for $0 \le s < r$, since $(d_j^{(n_j)})^2 < m_j$. Then $\sum_{j=0}^r b_j \ge b_0 + \sqrt{2} \sum_{j=0}^r b_j - \sqrt{2}b_r.$

Consequently,

$$\sum_{j=0}^r b_j \le \frac{\sqrt{2}}{\sqrt{2}-1} b_r.$$

This proves inequality (2).

First we will estimate the absolute value of the kernel

$$K_{n^{(s)},M_s} := \sum_{a=n^{(s)}}^{n^{(s)}+M_s-1} D_a \quad (s \in \mathbf{N})$$

for $x \in G_m$, $y \in I_r(x) \setminus I_{r+1}(x)$ and use the identity

(3)
$$nK_n = \sum_{s=0}^{|n|} \sum_{j=0}^{n_s-1} K_{n^{(s+1)}+jM_s,M_s} \quad (n \in \mathbf{P}).$$

Let $s \leq r$. Then, by Lemma 1,

$$K_{n^{(s)},M_s}(x,y) =$$

$$=\sum_{a=n^{(s)}+M_s-1}^{n^{(s)}+M_s-1}\sum_{k=0}^r M_k\Big(\sum_{j=0}^{a_k-1}\varphi_k^j(x_k)\overline{\varphi}_k^j(y_k)\Big)\psi_{a^{(k+1)}}(x)\overline{\psi}_{a^{(k+1)}}(y),$$

where $x \in G_m$, $y \in I_r(x) \setminus I_{r+1}(x)$. Since G_m is a bounded group, by (2) we have

 $|K_{n^{(s)},M_s}(x,y)| \le cM_sM_rd_{n^{(s)}}.$

Then

$$\int_{I_r(x)\setminus I_{r+1}(x)} |K_{n^{(s)},M_s}(x,y)| \, d\mu(y) \le cM_s d_{n^{(s)}}$$

Next we turn to the case s > r. In this case we have to find a better estimate of $|K_{n^{(s)},M_s}(x,y)|$. Namely,

$$K_{n^{(s)},M_{s}}(x,y) = \sum_{a=n^{(s)}}^{n^{(s)}+M_{s}-1} \sum_{k=0}^{r-1} M_{k} \Big(\sum_{j=0}^{a_{k}-1} |\varphi_{k}^{j}(x_{k})|^{2} \Big) \psi_{a^{(k+1)}}(x) \overline{\psi}_{a^{(k+1)}}(y) + \sum_{a=n^{(s)}}^{n^{(s)}+M_{s}-1} M_{r} \Big(\sum_{j=0}^{a_{r}-1} \varphi_{r}^{j}(x_{r}) \overline{\varphi}_{r}^{j}(y_{r}) \Big) \psi_{a^{(r+1)}}(x) \overline{\psi}_{a^{(r+1)}}(y) =: J_{1} + J_{2},$$
where $x \in G$, $y \in L(x) \setminus L_{r}(x)$. It is easy to see that

where $x \in G_m$, $y \in I_r(x) \setminus I_{r+1}(x)$. It is easy to see that

$$J_{1} = \sum_{a_{0}=0}^{m_{0}-1} \cdots \sum_{a_{r-1}=0}^{m_{r-1}-1} \sum_{a_{r+1}=0}^{m_{r+1}-1} \cdots \sum_{a_{s-1}=0}^{m_{s-1}-1} \Big(\sum_{a_{r}=0}^{m_{r}-1} \varphi_{r}^{a_{r}}(x_{r}) \overline{\varphi}_{r}^{a_{r}}(y_{r}) \phi(x,y) \Big),$$

20

where $\phi(x, y)$ does not depend on a_r . By (1) in the proof of Lemma 1, we have $J_1 = 0$.

Next we estimate J_2 as follows:

$$J_2 = M_r \sum_{a_0=0}^{m_0-1} \cdots \sum_{a_{s-1}=0}^{m_{s-1}-1} \Big(\sum_{j=0}^{a_r-1} \varphi_r^j(x_r) \overline{\varphi}_r^j(y_r) \Big) \psi_{a^{(r+1)}}(x) \overline{\psi}_{a^{(r+1)}}(y).$$

It is clear that J_2 does not depend on $a_1, a_2, \ldots, a_{r-1}$. Therefore,

$$J_{2} = M_{r}^{2} \sum_{a_{r}=0}^{m_{r}-1} \left(\sum_{j=0}^{a_{r}-1} \varphi_{r}^{j}(x_{r}) \overline{\varphi}_{r}^{j}(y_{r}) \right) \sum_{a_{r+1}=0}^{m_{r+1}-1} \cdots \sum_{a_{s-1}=0}^{m_{s-1}-1} \psi_{a^{(l)}}(x) \overline{\psi}_{a^{(l)}}(y) =$$
$$= M_{r}^{2} \sum_{a_{r}=0}^{m_{r}-1} \left(\sum_{j=0}^{a_{r}-1} \varphi_{r}^{j}(x_{r}) \overline{\varphi}_{r}^{j}(y_{r}) \right) \prod_{l=r+1}^{s-1} \left(\sum_{a_{l}=0}^{m_{l}-1} \varphi_{l}^{a_{l}}(x_{l}) \overline{\varphi}_{l}^{a_{l}}(y_{l}) \right) \psi_{n^{(s)}} \overline{\psi}_{n^{(s)}}(y)$$

By (1), we have $J_2 = 0$ if $x_l \neq y_l$ for any r < l < s. Since G_m is a bounded group, if $x_l = y_l$ for some r < l < s, then we have

$$|K_{n^{(s)},M_s}(x,y)| \le cM_r M_s d_{n^{(s)}}.$$

Then denoting by

$$A := \Big\{ y \in G_m : y_0 = x_0, \dots, y_{r-1} = x_{r-1}, y_r \neq x_r, \\ y_{r+1} = x_{r+1}, \dots, y_{s-1} = x_{s-1} \Big\},\$$

we may write that

$$\begin{split} \int_{I_r(x)\setminus I_{r+1}(x)} |K_{n^{(s)},M_s}(x,y)| \, d\mu(y) &\leq \int_A cM_r M_s d_{n^{(s)}} \, d\mu(y) = \\ &= cM_r M_s d_{n^{(s)}} \frac{m_r - 1}{M_s} \leq cM_r d_{n^{(s)}}. \end{split}$$

Since $n \ge M_{|n|}$, by (2) and (3),

$$\begin{split} \int_{I_r(x)\setminus I_{r+1}(x)} |K_n(x,y)| \, d\mu(y) &< \frac{c}{M_{|n|}} \sum_{s=0}^r M_s d_{n^{(s)}} + \frac{c}{M_{|n|}} \sum_{s=r+1}^{|n|} M_r d_{n^{(s)}} \leq \\ &\leq \frac{c}{M_{|n|}} M_r d_{n^{(r)}} + \frac{c}{M_{|n|}} M_r d_{n^{(r)}} (|n|-r). \end{split}$$

Then

$$\int_{I_r(x)\setminus I_{r+1}(x)} |K_n(x,y)| \, d\mu(y) < \frac{c}{M_{|n|}} M_r d_{n^{(r)}}(|n|-r+1).$$

The set G_m is a disjoint union of the sets $I_r(x) \setminus I_{r+1}(x)$, $r \in \mathbf{N}$, where x is a fix element of G_m . If r > |n|, the modulus $|K_n(x, y)|$ depends only on x whenever $y \in I_r(x)$. For this reason if $x \in G_m$, then we get that

$$|K_n(x,x)| \le \frac{1}{n} \sum_{l=0}^{n-1} \sum_{k=0}^{|n|} M_k c d_{n^{(k)}} < c M_{|n|},$$

and hence

$$\sum_{r=|n|+1}^{\infty} \int_{I_r(x)\setminus I_{r+1}(x)} |K_n(x,y)| \, d\mu(y) =$$
$$= \int_{I_{|n|+1}(x)} |K_n(x,y)| \, d\mu(y) = \frac{|K_n(x,x)|}{M_{|n|}} < C$$

Since

$$\frac{d_j^{(n_j)}}{m_j} < \frac{1}{\sqrt{2}},$$

it follows that

$$\begin{split} \int_{G_m} |K_n(x,y)| \, d\mu(y) &= \sum_{r=0}^{\infty} \int_{I_r(x) \setminus I_{r+1}(x)} |K_n(x,y)| \, d\mu(y) < \\ &< \sum_{r=0}^{|n|} \frac{C}{M_{|n|}} M_r d_{n^{(r)}}(|n| - r + 1) + C < \\ &< C d_{|n|}^{(n_{|n|})} \sum_{r=0}^{|n|} \frac{d_r^{(n_r)}}{m_r} \cdots \frac{d_{|n|-1}^{(n_{|n|-1})}}{m_{|n|-1}} (|n| - r + 1) + C < C \sum_{k=0}^{\infty} \frac{k+1}{(\sqrt{2})^k} + C \end{split}$$

for each $x \in G_m$, where $m_r \cdots m_{|n|-1} = 1$ and r = |n|. Since the above series is convergent, for each $x \in G_m$ there exists a positive constant C such that

$$\int_{G_m} |K_n(x,y)| \, d\mu(y) \le C.$$

This completes the proof of Lemma 2.

Remark. In an analogous way, we can prove that there is a constant C such that

$$\sup_{y \in G_m} \int_{G_m} |K_n(x,y)| \, d\mu(x) \le C.$$

From Lemma 2 we can get the following

Theorem 2. If G_m is a bounded, compact, totally disconnected group and $f \in L^p(G_m)$, $1 \le p \le \infty$, then $\sigma_n f \to f$ in L^p -norm. Proof. It is sufficient to prove that the operators σ_n are uniformly of type (p,p) when $1 \leq p \leq \infty$, since the convergence $\sigma_n f \to f$ is valid for each $f \in \Im$ trigonometric polynomial and then we can apply the Banach– Steinhaus theorem. By the interpolation theorem of Marcinkiewicz [10], it is sufficient to prove that the operators σ_n are uniformly of type (1,1) and (∞,∞) . From Lemma 2, using the Fubini theorem, for $f \in L^1(G_m)$, we have

$$\|\sigma_n f\|_1 \le \int_{G_m} \int_{G_m} |f(y)| |K_n(x, y)| \, d\mu(y) d\mu(x) =$$

=
$$\int_{G_m} |f(y)| \int_{G_m} |K_n(x, y)| \, d\mu(x) d\mu(y) \le C \|f\|_1.$$

Thus, the operators σ_n are uniformly of type (1, 1). For $f \in L^{\infty}(G_m)$,

$$\|\sigma_n f\|_{\infty} \leq \|f\|_{\infty} \int_{G_m} |K_n(\cdot, y)| \, d\mu(y)\|_{\infty} \leq C \|f\|_{\infty}.$$

Thus, the operators σ_n are uniformly of type (∞, ∞) . This completes the proof of Theorem 2.

Finally, we remark the one of the authors proved the pointwise convergence $\sigma_n f \to f$ a.e. $(f \in L^1(G))$ (see [5]). If $m_k = 2$ for each $k \in \mathbb{N}$ (the Walsh case), this was proved by FINE [2], and for bounded (Abelian) Vilenkin groups this was proved by SIMON and PÁL [15]. The twodimensional (Walsh) case $\sigma_{m,n} f \to f$ a.e. is discussed by MÓRICZ, SCHIPP and WADE [7] (as $\min(m, n) \to \infty$ and $|f| \in H^{\#}$ (which is a certain "hybrid" Hardy space)), and by GÁT [3] and by WEISZ [19] (as $m, n \to \infty$ in such a manner that the integral lattice points (m, n) remain in some positive cone, $f \in L^1$). The two-dimensional "non-Abelian" case is open as to both norm and pointwise convergence.

References

- G. H. AGAEV, N. JA. VILENKIN, G. M. DZHAFARLI and A. I. RUBINSTEIN, Multiplicative systems of functions and harmonic analysis on 0-dimensional groups, (in Russian), Izd. "ELM" (Baku, 1981)."
- [2] N. J. FINE, Cesàro summability of Walsh-Fourier series, Proc. Nat. Acad. Sci. USA, 41(1955), 558-591.
- [3] G. GÁT, Pointwise convergence of the Cesàro means of double Walsh series, Ann. Univ. Sci. Budapest Sect. Comput. (to appear).
- [4] G. GÁT, Vilenkin Fourier series and limit periodic arithmetical functions, Proc. Conf. on Approximation Theory, Kecskemét (Hungary), 1990; North Holland (Amsterdam, 1992); 315–332.
- [5] G. GÁT, Pointwise convergence of Fejér means on compact, totally disconnected groups, Acta Sci. Math. (Szeged), 60(1995), 311-319.
- [6] E. HEWITT and K. ROSS, Abstract harmonic analysis, Springer (Heidelberg, 1963).

- [7] F. MÓRICZ, F. SCHIPP and W. R. WADE, Cesàro summability of double Walsh-Fourier series, Trans. Amer. Math. Soc., 329(1992), 131-140.
- [8] J. NEVEU, Martingales à temps discret, Masson et Cie (Paris, 1972).
- [9] L. S. PONTRYAGIN, Topological groups, Gordon and Breach, Science Publishers, Inc. (New York, 1966).
- [10] F. SCHIPP, W. R. WADE, P. SIMON, and J. PÁL, Walsh series, An introduction to dyadic harmonic analysis, Akadémiai Kiadó (Budapest, 1990).
- [11] F. SCHIPP, Pointwise convergence of expansions with respect to certain product systems, Analysis Math., 2(1976), 64-75.
- [12] F. SCHIPP, On L^p -norm convergence of series with respect to product systems, Analysis Math., 2(1976), 49-63.
- [13] F. SCHIPP and W. R. WADE, Norm convergence and summability of Fourier series with respect to certain product systems, *Proc. Conf. on Approximation Theory*, *Memphis, Tennessee* (U.S.A.), 1991; Marcel Dekker (New York-Basel-Hong Kong, 1992), 437-452.
- [14] P. SIMON, Verallgemeinerte Walsh-Fourierreihen II., Acta. Math. Acad. Sci. Hungar., 27(1976), 329-341.
- [15] P. SIMON and J. PÁL, On a generalization of the concept of derivative, Acta. Math. Acad. Sci. Hungar, 29(1977), 155-164.
- [16] W. S. YOUNG, Mean convergence of generalized Walsh-Fourier series, Trans. Amer. Math. Soc., 218(1976), 311-320.
- [17] N. JA. VILENKIN, On a class of complete orthonormal systems (in Russian), Izv. Akad. Nauk. SSSR, Ser. Math., 11(1947), 363-400.
- [18] CH. WATARI, On generalized Walsh-Fourier series, Tôhoku Math. J., 10(1958), 211-241
- [19] F. WEISZ, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math Soc. (to appear).

Сходимость в *L^p*-норме рядов на компактных вполне несвязных группах

Г. ГАТ и Р. ТОЛЕДО

Хорошо известно, что частные суммы рядов Фурье-Виленкина для каждой функции $f \in L^p$, 1 , сходятся к <math>f по норме. Для любого $1 \le p \le \infty$ операторы S_{M_n} также сходятся по норме к f для каждой $f \in L^p$.

В настоящей работе мы изучаем подобные свойства на вполне несвязных группах, не обязательных абелевых, и для систем, состоящих из произведений нормированных координатных функций для непрерывных неприводимых унитарных представлений координатных групп. Наконец, мы установливаем сходимость для $1 \le p \le \infty$ средних Фейера в случае ограниченных групп.

BESSENYEI COLLEGE DEPARTMENT OF MATHEMATICS 4400 NYÍREGYHÁZA, P. O. BOX 166 HUNGARY e-mail: gatgy@ny1.bgytf.hu, toledo@ny1.bgytf.hu