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LP-norm convergence of series 
in compact ,  total ly d isconnected groups 

G. GAT and R. TOLEDO 

The notations that  we use in this paper are similar to those in the 
books of HEWITT-ROSS [6] and SCHIPP-WADE-SIMON [10]. Let o be 
an equivalence class of continuous, irreducible, uni tary representations of 
a compact  group G. Denote by E the set of all such o. E is called the dual 
object  of G. The dimension of a representation U (~), o E E, is denoted by 
d~, and let 

u(~) /U (~)~. {1, d~} i,j (x) := ~j) i , j  

be the coordinate functions for U (r where ~ l , . . . ,~da  is an orthonormal 
basis in the representation space of U (~). According to the Weyl -Pe te r  
theorem, the system of functions 

y/-~u~,~j ), 0 e E, i , j  e {1, . . .  ,d~}, 

is an orthonormal basis for L2(G). If G is a finite group, then E is also 
finite. If E := { o l , . . . , o 8 } ,  then 

]G] = d 2 + . . .  + d 2 
G 1 {7 s �9 

A topological space X is connected if it is not the disjoint union of 
any two nonvoid sets that  are both  open and closed. A component  of a 
topological space is a connected subset which is properly contained in no 
other connected subset. A topological space is totally disconnected if all 
of its components  are points. We now restrict our attention to infinite, 
compact,  totally disconnected groups. It is known that  these groups have 
a countable neighborhood base G = Go D G1 D " "  at the identity e 
consisting of open and closed normal subgroups which satisfy the proper ty  
that  for every n E N,  the factor s tructure Gn/Gn+l is finite [9]. Moreover, 
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G is a complete direct product of these factor structures. Hence an infinite, 
compact,  totally disconnected group can be constructed in the following way. 

Denote by m := (mk : k E N) a sequence of positive integers such 
tha t  mk >__ 2, k E N,  and by Gm~ a finite group with order mk, k E N.  
For simplicity, we will use the same notation for the operation of Gmk, 
k E N,  and denote by e the identity of these groups. Suppose that  each 
group has a discrete topology, and a right and left Haar measure #k with 
#k(Gmk) = 1. Thus, each group has a similar measure such that  the measure 
of every singleton of Gmk equals 1~ink, k C N. Let Gm be the compact 
group formed by the complete direct product of Gmk with the product of 
the topologies, operations, and measures (#). Thus, each x E Gm consists of 
sequences x := (Xo,Xl , . . . ) ,  where xk E Gm~, k E N. Define Go by means 
of the set of finite sequences of Gm, Io(x) := Gm, 

In(X) := {y e Gm : Yk = xk, for 0 < k < n} (x e Gin, n C N), 

In := In (e). The sets In form a countable neighborhood base at the identity 
in the product  topology on Gin. 

If M0 := 1 and Mk+l := mkMk,  k E N, then every n E N can be 
uniquely expressed as 

n =  ~ nkMk, 0 ~_ n1r < mk, nk C N. 
k = 0  

This allows us to say that  the ( n 0 , n l , . . . )  sequence is the expansion of n 
with respect to m. We often use the following notations: 

k - 1  c~ 

I n l : = m a x { k e N : n k r  n(k) := ~ n k M k ,  n (k) = ~ nkMk. 
j = 0  j=k 

Now we denote by Ek the dual object of Gm~. Let { ~  : 0 _< s < mk} 
be the set of all normalized coordinate functions of the group Gmk, and 
suppose that  qa ~ - 1. Thus, for every 0 _< s < mk there exist a E Ek, 
i , j  C {1 , . . . , d~}  such that  

, (x 
Let r be the product system of qo~r namely 

O O  

nk 
Cn(x) := 1-I 

k=0  

where 

(x ~ Gin), 

O O  

n = ~ nkMk 
k=0  

and x = (x0, x l , . . . ) .  
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The Weyl-Peter theorem and Theorem (27.43) in [6] ensure that the 
system ~b is orthonormal and complete in L2(Gm). Since the set ~ E LI(Gm) 
of all finite complex linear combinations of the coordinate functions, called 
polynomials, is dense in LI(Gm), we can state the following 

T h e o r e m  1. The system r is orthonormal and complete in LI(Gm). 

We remark that if Gm~ is the discrete cyclic group of order ink, k E N, 
then Gm coincides with the Vilenkin group, and r is the Vilenkin system 
[10], [17]. 

For f E LI(Gm), we define the Fourier coefficients and partial sums by 
n--1 

f k : = / G  fCk d# ( k E N ) ,  Snf := ~ ~r  (n E P, Sof := O), 
k=0 

where P is the set of positive integers. 
The Dirichlet kernel is defined by 

n--1 

Dn(x,y) := ~ r ) (n E P, Do := 0). 
k--0 

It is clear that 

Snf(X) = L f(y)Dn(x,y)d#(y). 
1o 

J t ~  m 

The Dirichlet kernel plays a prominent role in the convergence of 
Fourier series. The following formulas will be useful in this regard. The 
case of Abelian groups Gm~, k E N, is discussed by VILENKIN [1, 17]. We 
follow his method. 

(a) 

L e m m a  1. If n E N, x,y E Gin, then 
co n~ --i 

nn(x'Y) = E DMk(X'Y)( E ~t~Sk(xk)-~Sk(Yk))r (y)' 
k=0  s=0 

{Mn for x E I~(y), 
(b) DM~(x,y) = 0 for x q~ In(y), 

where (no, n1,...) is the expansion of n and x = (xo,xl,.. .), y -= 
(yo, yl , . . . ) .  

P r o o f .  For each n E N, x,y E Gin, it is easy to see that 

nln 1-1 

Dn(X,y)=DM,,~I(x,Y)( E ~l=l(X~)~l~nl(Yk)) + 
s----O 

q-" nl~l IX ~'--=nlnl 
~1~1 ~ I~1)~1~1 (Ylnl)Dn(,,~I) (x, Y)" 
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Formula (a) can be proved by induction, while taking into account tha t  
nt~ ~k - -1  for k > l n l .  

To prove (b), note tha t  

n--1 mt~--i 

DM~(X,y) = 1-[ E PSk(Xk)'~Sk(Yk)' DMo =-- 1 (n �9 N, n > O, x ,y  �9 Gin). 
k=0 s=0 

Then  it is sufficient to prove tha t  
mk--1 

(1) ~ ~(Xk)-~(yk)  = { mk for xk = Yk, 
~=0 0 for Xk 7 s Yk, 

for each k �9 N.  In other words, it is sufficient to demonst ra te  that  for every 
finite and compact  group G of order m,  we have 

da 
E E " (~)~ '-(~) { m  f o r x = y ,  
o-~Zi,j-~la~UiJ (x)uiJ (y) = 0 for x r y, 

where (x, y) E G. Using the equalities 

_(o') (a)z --lx (a) u~,~ (x) = u~ Lx j, u~,j (xy) 
do. 

= ~-~ (~) (o) 

r = l  

for x,y  E G, i , j  E { 1 , . . . , d ~ } ,  a E E, which are well known in the 
representat ion theory (see 27.5 in [6]), we can state the following: 

d~ da 

E E "  (~ (o) (o) -1 a~uij (x)uij (y )= ~ d,, ~ u~j (x)uji (y )=  
nEE i,j=l nEE i,j=l 

do- 
E d a E  (a) --1 = d u. ( x y ) = :  
nEE i=1 ~EE 

where X~ is called the character of the representation U (~). Since the above 
sum is the identity element for the convolution (see Theorem 27.41 in [6]), 
we have 

m for x = y, 
0 f o r x # y ,  

nEE 

where x E G. This completes the proof  of Lemma 1. 
Formula (b) is used to prove tha t  the partial sums SM,~f of the Fourier 

series of a function f E LP(Gm), p > 1, converge to f in LP-norm and 
almost everywhere (a.e.). Indeed, the operator 

SM~f(x) = m f(y)nM,~(x,y)d#(y) - #(In(x)) ~(x) 
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is the conditional expectat ion with respect to the c~- algebra .An generated 
by the sets In(x),  x C G, that  is, 

SM,,f = E ( f t A ~ ) ,  n E N.  

Thus,  the following s ta tement  is a corollary of the martingale convergence 
theorem [8]. 

C o r o l l a r y .  For each f E LP(Gm), p >_ 1, and n C N,  the partial 
sums SMnf converge to f in LP-norm and a.e. 

Now we s tudy the whole sequence of the partial  sums Sn. According 
to the Banach-Ste inhaus  theorem, 

Snf  ~ f in LP-norm as n --~ ce 

for f E LP(Gm) if and only if there exists a constant  Cp > 0 such tha t  

lISnfllp _< CpllflIp, f e LP(Gm). 

Thus,  the operators  Sn are of type (p,p). Since the system ~ is an or- 
thonormal  basis in the Hilbert space L2(Gm), it is obvious tha t  Sn is of 
type (2, 2). 

For bounded  Vilenkin systems the Paley theorem implies tha t  the n t h  
partial  sum operators are bounded,  uniformly in n, from LP(Grn) into 
itself for 1 < p < cxD, that  is, the S~ are uniformly of type (p,p) for 
1 < p < cx~. The  Paley theorem on unbounded  Vilenkin groups does not 
hold (see WATARI [18]). However, the partial  sums of the Vilenkin-Fourier  
series are uniformly bounded  in LP(Gm) (1 < p < co) (see YOUNG [16], 
SCHIPP [12], SIMON [14]), thus they converge in LP(Gm) (1 < p < co). 

We cannot  generalize this s ta tement  for every non-Abelian group. To 
illustrate the situation, we consider Gmk -- $3 for each k C N,  where $3 
is the symmetr ic  group on 3 elements. It is known that  in a certain basis 
{~1, ~2} the representat ion operators of $3 have the following matrices: 

( ~  ~ )  (-1 01) e ~  , ( 1 2 ) - - +  0 ' 

Put 

( (1 
- , 

(13) ~ - �89  ~ . 

' -�89 ( 1 3 2 )  - ~  -~  �89 (123)-+ �89 - ~ .  , _1~  - ~ .  

~ ( x )  = V ~ U X l ( X ) ,  
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where 0 < s < 6 is a fixed integer, ul l  is the coordinate function of the above 
representation corresponding to the first row and the first column. Thus, 

2 ~  
~r  = ~ ,  il~ill~ - 3 

Define fk e L1($3) by 

1 for x = e, 
f k ( x ) =  0 fo rxT~e ,  

where x E Sa. Thus, 

s  v ~  2v/-2 4 
3 d , ~ l l ~ i l l l  = 6 3 - 3 ilAll~" 

Since the norm [IfJlp is a continuous function of p for each f 6 LP(G~), 
there are constants C > 1 and 1 < p < 2 such that  

3 

Now we suppose that  j C N, j > 0, and let 

j - - 1  

n = ~ s6 k. 
k = 0  

Define Fj E LI(G,~) by 

j - 1  

Fj(X) := l-I A(Xk) 
k----O 

where x = (Xo,Xl,...). Since 

j - - 1  

IIFj Jl~ --  1-I  IFfk II~, 
k = O  

it follows that  

(x C Gin), 

J l S n ' + I F j  - S n F j l I P  : / ;  Fy~n dl~ iir = 
~z 

j - - 1  

= l - I / s  f k ~ i d ~ k i l ~ i l J p  > CJilFjil~. 
k = 0  3 

Since Sn is of type (p,p), there is a constant Cp > 0 so that  

[IS~+IFj - S~rjJl~ _< IIs~+lF~ll~ + JiSnFs[lp ___ 2C~IIFjlL~ 

for each j > 0. For this reason the operators S~ are not uniformly of 
type (p, p). 
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Remark. In the same way, we can prove that the Paley theorem is 

not valid for groups for which there exists a constant C > 0 so that 

1 
ILl, Ill > ,  + c 

for infinite number of functions, where d~ s) is the dimension of the represen- 
tation corresponding to ~r 

Finally, we prove the convergence in LP-norm of the Fej~r means of 
Fourier series when p _> 1 in the bounded case. The method of the proof 
is similar to that  in [4]. As for the Fej~r kernel in the case of Abelian 
groups Gmk, k E N,  see also [1]. In this regard, we introduce the following 
concepts. The compact,  totally disconnected group Gm is called bounded if 
the sequence m is bounded. Denote by 

1 n - - 1  

an f  = n ~ Sa f  (n �9 P, crof := 0) 
k O 

the Fej6r mean of the Fourier series and by 
n--1 

Kn .-'- _1 ~ Dk (n �9 P,  K0 := 0) 
n k=0 

the Fej~r kernel. Then 

an f (x )  = [~ f ( y )Kn (x , y )d # ( y )  (x �9 Gin, n �9 P).  
m 

L e m m a  2. I f  Gm is a bounded group, then there is a constant C > 0 
such that i. 

[ Ign(x ,y ) ld#(y)  <_ C. s u p  
xEG,,~ JG,,~ 

P r o o f .  Throughout  this proof C > 0 will denote an absolute constant 
which will not necessarily be the same at different occurrences. Let 7" be a 
fixed natural  number. To estimate IKnl, we prove that  for every r �9 P 

r q x )  

(2) ~ ijdn(J) < x/~---~Mrdn(~), w h e r e  dn = ~ d~ nk) 
j=O -- V/2-- k=O 

and d~ ~k) is the dimension of the representation corresponding to ~ k .  Set 

bj := Mjdn(j) (0 < s < r), 

thus 
rnj 

bj+l := Mj+ldn(~+i) = ijdn(~) z-~ ) >_ bjv/2 
d3 
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(n j )  2 for 0 < s < r ,  since (dj ) <mj.  Then 

bj _> bo + , / i  bj - 
j=o j=o 

Consequently, 
T 

Ebb< ' /2 b,.. 
j = o  - v / 2 - 1  

This proves inequality (2). 
First we will estimate the absolute value of the kernel 

n(*)+Ms-1 

Kn("),M3 := E Da (s �9 N) 
amn(s) 

for x �9 Gin, y �9 I~(x) \ I~+l(X) and use the identity 

Inl ns--1 

(3) nK~ = E E Kn('+~)+JM~,M~ (n �9 P). 
s=O j=O 

Let s _< r. Then, by Lemma 1, 

K~(~),M~ (x, y) = 

n(~)TMs-1 ak--1 
= ~ i Mk( ~ ~Jk(xk)-~Jk(yk))r 

a=n(s) k--0 j----0 

where x �9 Gin, y �9 I~(x) \ I~+l(x). Since Gm is a bounded group, by (2) 
we have 

Then 

fI IKn(s),Ms (x, y)] d#(y) <_ cMsdn(s). 
~(x)\/~+l(x) 

Next we turn  to the case s > r. In this case we have to find a bet ter  
estimate of It(n(~),Ms (x, Y)I. Namely, 

n(S)TMs-1 r -1  - - i  

I(n(s) Ms(x,Y) = ~ ~ Mk I~k(Xk)] )r162 
a=n(s) k----0 j----0 

n(S)+Ms-1 a,.-1 

+ Z Mr( E (PJ(Xr)-~J(Yr))r Jl -t- J2, 
a=n(S) j=0 

where x E Gin, y E I~(x) \ I~+l(X). It is easy to see that  
7nO--i mr-l--i mr+l--i ms-l--I m~.--I 

a0- -0  a r - l ~ 0  a~-F1-----0 as - l=O ar=O 
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where  r  y) does not  depend  on at .  By  (1) in the  p roof  of L e m m a  1, we 
have J1 = 0. 

Next  we es t imate  J2 as follows: 

mo--i ms-l--1 a t - -1  

J2 : Mr  E "'" E ( E (P i (Xr ) :J (Yr ) )  '~/ja(r-I-1)(x)~a(r+l)(y)" 
a0----0 as--l----0 j----0 

It is clear tha t  J2 does not depend  on a: ,  a 2 , . . . ,  a t - 1 .  Therefore,  

m ~ - - i  a~ - - i  m~+l - -1  m s - l - - 1  

aT,----0 j----0 a~-~-l=0 as-l----0 

m ~ - - I  a . - -1  s--1 rot--1 

at----0 j----0 l----r-t-1 at:O 

By (1), we have J2 = 0 if xt ~ Yt for any r < l < s. Since Gm is a b o u n d e d  
group,  if xt = yl for some r < l < s, then we have 

[K~(s),M ~ (x, y)[ _< cMrM~dn(s). 

Then  denot ing  by 

:= {y E Gm : Yo = x0, . . . ,  Yr- :  = x r - : ,  Yr r x~, A 

Yr+l = Xr+l,  . . .  , Ys-1 -: X s - l  ~, ) 

we may  wri te  tha t  

= c M r M s d ~ ( ~ ) -  

Since n > Mi l l ,  by (2) and (3), 

T h e n  

~r(~) \L+:(~)  

IK~(~),Ms( x, Y)I d#(y) <_ /A cMrM~d~(s) d#(y)  = 

m r  -- 1 
<_ cMrd~(,). 

Ms 

c ~ c Inl 

s=o MI~I ~=r+:  

C C 
< - - M r d ~ ( ~ )  + Mrdn(r)(Inl - r). 
- M I n  I 

~I C ~(x)\I~+l(=) tKn(x 'Y) l  d#(y) < -M--~HMrd,(~)(Inl - r + 1). 



22 G. Gs and R. Toledo 

The  set Gm is a disjoint union of the sets It(x)\/~+l(X), r E N,  where 
x is a fix element  of Gin. If  r > Inl, the modulus  [K~(x,y)l depends only 
on x whenever  y C IT(x). For this reason if x C Gin, then  we get t h a t  

1 n--1 Inl 
[Kn(X'X)I <- n ~ ~ Mkcdn(k) < cM[n[, 

/(3= k---0 

and hence 

Since 

it follows that 

s 

v= 1 r(x)\Ir+l(x) 

= .f, f tC~(x,y) ld~(y)  - IK~(x,x) l  < C. 
l,~l+l(x) Mini 

dJ ~j) 1 
m j  V ~  ' 

0(3 P 

IIin(x,y)l d#(y) = ~ / IKn(x,y)l dp(y) < 
r=0 J/~(x)\/~+l(x) 

Inl C M 
< ~ ~ rdn(~)(Inl- r + l) + C < 

r=0 ,v~ln I 

d(n~) d(nl,q -1)ln1-1 o o  k + l  
<~(Ud(nlnl)lnl ~ mr ( I n J - r + l ) + C  <C2-" 

1 1  1 %  ~ + C 
r=0 mini-1 k=0 (v~)  - - - - / -  

for each x E G,~, where r n T " - m M _ l  = 1 and r = ]hi. Since the above 
series is convergent,  for each x E G,~ there exists a positive constant  C such 
tha t  

/Gm It(n(x'y)I d~(Y) < C. 

This  completes the proof  of L e m m a  2. 

R e  m a r  k.  In an analogous way, we can prove tha t  there is a cons tant  
C such t h a t  

/ II~(x,y)ld~(x) <_ c. s u p  
y ~ G m  J G m  

From L e m m a  2 we can get the following 

T h e o r e m  2. If Gm is a bounded, compact, totally disconnected group 
and f C LP(Gm),  1 <_ p <_ ee, then O'nf ~ f in LP-norm. 
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Thus, the operators 

II nfll  

Thus, the operators 
proof of Theorem 2. 

P r o o f. It is sufficient to prove that  the operators o n are uniformly of 
type (p,p) when 1 _< p < c~, since the convergence Crnf ~ f is valid for 
each f E ~ trigonometric polynomial and then we can apply the Banach-  
Steinhaus theorem. By the interpolation theorem of Marcinkiewicz [10], it 
is sufficient to prove that  the operators crn are uniformly of type (1, 1) and 
(ee, ec). From Lemma 2, using the Fubini theorem, for f C LI(Gm),  we 
have 

IIo-nfll  <_ imm Jcm If(Y)llI n(x,y)l = 

= iG. If(y)l Jam <_ cIIfll . 
O" n are uniformly of type (1, 1). For f E L~ 

_~ IIfHc~ i~ ][(n(',Y)ldlt(Y)lIoo ~ Clifilc~. 
m 

~rn are uniformly of type (c~, c~). This completes the 

Finally, we remark the one of the authors proved the pointwise con- 

vergence (Tnf ~ f a.e. ( f  ~ LI(G))  (see [5]). If m k =  2 for each 
k E N (the Walsh case), this was proved by FINE [2], and for bounded 
(Abelian) Vilenkin groups this was proved by SIMON and P i E  [15]. The two- 
dimensional (Walsh) case am,nf ~ f a.e. is discussed by MdRICZ, SCHIPP 
and WADE [7] (as min (m,n )  ~ oe and ]fl E H # (which is a certain "hy- 
brid" Hardy space)), and by G i T  [3] and by WEISZ [19] (as m, n -~ ~ in 
such a manner  that  the integral lattice points (m, n) remain in some positive 
cone, f E L1). The two-dimensional "non-Abelian" case is open as to both 
norm and pointwise convergence. 
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CXO,/I~IMOCTB B L P - H o p M e  p~I)IOB 

H a  R O M I I a I ~ T H t ~ I X  BIIOJIHe HeCBH3HBIX r p y n n a x  

F. FAT I4 P. TOJIE210 

Xopomo M3BeCTHO, qTO qaCTHBIe CyMMBI pH~OB ffPypLe-B~ne~HHa Jla~ Ka~o~ 

qbyHKnHH f 6 L v, 1 < p < c~, cxoaamca K f no HopMe. ]]JISI ato6oro 1 ~ p ~ oo 
oIIepaTopI,I SMn T a K ~ e  CXO]IHTC$[ rio nopMe K f )In~t Ka~I~o~ f E L p. 

B HaCTOHII~e~ pa6oTe MLI I43yqaeM no~o6HLm CBO.~4CTBa Ha BIIOHHe HeCBYI3HBIX 

rpynnax,  He O6YI3aTCYILHBIX a6eJieBt,ix~ H ,~Ji$I CMCTeM~ COCTOHI/II4X I43 IIpOM3BejIeHH~ 

H0pMI4pOBaHHLIX I4oop~II4HaTttBIX qbyHKIII4~ JIn~i tIeIIpepI~IBHI~IX HenpHBO,~I4MIoIX yHI4Tap- 

HBIX IIpe)ICTaBJIeHH~ KoopJIHHaTHBIX rpynn. Ha~oHen, MLr yCTaHOBHI4BaeM CXOfl~I4IVIOCTB 

~nH 1 < p _< oo cpe~HHX ~ef iepa  B cny~4ae orpaHH~4eHH~IX rpynm 
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