Analysis Mathematica, 22(1996), 13-24

LP-norm convergence of series
in compact, totally disconnected groups

G. GAT and R. TOLEDO

The notations that we use in this paper are similar to those in the
books of HEWITT-ROSS [6] and SCHIPP-WADE-SIMON [10]. Let o be
an equivalence class of continuous, irreducible, unitary representations of
a compact group G. Denote by ¥ the set of all such ¢. ¥ is called the dual
object of G. The dimension of a representation U(”), ¢ € %, is denoted by
d,, and let

ul?(z) = (U, &5) 45 €{l,...,do}

be the coordinate functions for U(?), where &1,... ,€4, is an orthonormal
basis in the representation space of U(?), According to the Weyl-Peter
theorem, the system of functions

Vdul), o€, ije{l,...,d},

is an orthonormal basis for L?(G). If G is a finite group, then ¥ is also
finite. If ¥ := {09,...,05}, then

Gl =d2, + o+ a2,

A topological space X is connected if it is not the disjoint union of
any two nonvoid sets that are both open and closed. A component of a
topological space is a connected subset which is properly contained in no
other connected subset. A topological space is totally disconnected if all
of its components are points. We now restrict our attention to infinite,
compact, totally disconnected groups. It is known that these groups have
a countable neighborhood base G = Gg D G; D --- at the identity e
consisting of open and closed normal subgroups which satisfy the property
that for every n € N, the factor structure G, /G, 41 is finite [9]. Moreover,
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14 G. Gat and R. Toledo

G is a complete direct product of these factor structures. Hence an infinite,
compact, totally disconnected group can be constructed in the following way.

Denote by m := (my : k € N) a sequence of positive integers such
that my > 2, k € N, and by G,,, a finite group with order my, £ € N.
For simplicity, we will use the same notation for the operation of G,,,,
k € N, and denote by e the identity of these groups. Suppose that each
group has a discrete topology, and a right and left Haar measure p; with
pk(Gm,) = 1. Thus, each group has a similar measure such that the measure
of every singleton of G,,, equals 1/my, k € N. Let G,, be the compact
group formed by the complete direct product of G,,, with the product of
the topologies, operations, and measures (u). Thus, each z € G,,, consists of
sequences z := (zg,21,...), where zx € Gp,,, k € N. Define Gy by means
of the set of finite sequences of G, Io(z) := G,

IL(2)={y€CGm:yp=xak, for0<k <n} (z€Gpn, neN),

I, := I,,(e). The sets I, form a countable neighborhood base at the identity
in the product topology on G,,.

If Mg :=1 and My yq := mpMg, kK € N, then every n € N can be
uniquely expressed as

o0
n = anMk, 0 <np <myg, nip, €N.
k=0

This allows us to say that the (ng,ni,...) sequence is the expansion of n
with respect to m. We often use the following notations:

k—1 o]
[n] ;= max{k € N :ng #0}, ny):= Z nyMy, k) = anMk.
3=0 i=k

Now we denote by X the dual object of G,,,. Let {¢} : 0 < 5 < my}
be the set of all normalized coordinate functions of the group G,,,, and
suppose that @) = 1. Thus, for every 0 < s < my there exist ¢ € X,
i,j € {1,...,d,} such that

o =V daugffj)(x) (x € Gmy)-
Let 1 be the product system of ¢, namely

bal@) = [] (@) (z € G,
k=0

where

o0
n=anMk and z = (zg,21,...).
k=0
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The Weyl-Peter theorem and Theorem (27.43) in [6] ensure that the
system 1 is orthonormal and complete in L(G,,). Since the set & € L1(G,,)
of all finite complex linear combinations of the coordinate functions, called
polynomials, is dense in L'(G,,), we can state the following

Theorem 1. The system ¥ is orthonormal and complete in L*(G,,).

We remark that if G,,, is the discrete cyclic group of order my, k € N,
then G,, coincides with the Vilenkin group, and % is the Vilenkin system
[10], [17].

For f € L'(G,,), we define the Fourier coefficients and partial sums by

n—1
fum [ flodn heN), S.fi=Y futw (nEP, Sof :=0)
Cm k=0

where P is the set of positive integers.
The Dirichlet kernel is defined by

Dn( Z Ye(@)Pi(y)  (n€P, Dy:=0).

It is clear that

©)= [ f6)Du(z.y) duty).

The Dirichlet kernel plays a prominent role in the convergence of
Fourier series. The following formulas will be useful in this regard. The
case of Abelian groups G,, k¥ € N, is discussed by VILENKIN [1, 17]. We
follow his method.

Lemma 1. If n€ N, z,y € G, then

ne—1
() Dn( ZDMk z,9) (Z 1 (@1) (k) ) Y1) (@) Pras ) (),
_ [ M, forzxe€ L(y),
where (ng,n1,...) is the expansion of n and =z = (zo,21,...), ¥ =
(yg,yl, .. )
Proof. For each n € N, z,y € G,,, it is easy to see that
n|n|-—1
Dn(z,9) = Doty (2,9)( D 0y ()8 () ) +
s=0

+('07|2rl (.’E|n| )@Tn{‘lﬂl (y|n| )Dn(|n|) (-’L‘, y)
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Formula (a) can be proved by induction, while taking into account that
T for k> |n|.
To prove (b), note that

n—1mp—1

= H Z o (Tr)Pr(Yr ), Dy, =1 (neN,n>0, T,y € Gm).

k=0 s=0
Then it is sufficient to prove that
(1) 3 etpie) = { ™ o=
2 PRI =0 for @y # i,

for each k € N. In other words, it is sufficient to demonstrate that for every
finite and compact group G of order m, we have

o) (o m forx =y,
ZZdu() ()(y):{o form;«éz,

oc€Xi,j=1
where (z,y) € G. Using the equalities

ds
T @) = @), il = 3 ul @ud o),

for z,y € G, i,j € {1,...,d,}, 0 € X, which are well known in the
representation theory (see 27.5 in [6]), we can state the following:

ds
5 5 ) = X e 35 o 00 -

o€ i,j=1 oeX 5=l
= Z d Zd u(a)(xy_l) = Z daXa'(xy_l))
ogEY i=1 c€ED

where . is called the character of the representation U(?). Since the above
sum is the identity element for the convolution (see Theorem 27.41 in [6]),

we have ;
dyxo(zy=1) = {m or x =y,
g Xo( ) 0 forx#y,
where x € GG. This completes the proof of Lemma 1.
Formula (b) is used to prove that the partial sums Sy, f of the Fourier
series of a function f € LP(G,,), p > 1, converge to f in LP-norm and
almost everywhere (a.e.). Indeed, the operator

1
Sud@) = [ 16D, (@ v) duty) = s o
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is the conditional expectation with respect to the o- algebra .4,, generated
by the sets I,,(x), z € G, that is,

Su, f=E(flA,), n€eN.

Thus, the following statement is a corollary of the martingale convergence
theorem [8].

Corollary. For each f € LP(Gn), p > 1, and n € N, the partial
sums Sy, [ converge to f in LP-norm and a.e.

Now we study the whole sequence of the partial sums S,,. According
to the Banach—-Steinhaus theorem,

S.f—f in LP-norm as n — oo
for f € LP(Gy,) if and only if there exists a constant C, > 0 such that

[1Snfllp < Collfllpy  f € LP(Gm)-

Thus, the operators S, are of type (p,p). Since the system ¢ is an or-
thonormal basis in the Hilbert space L%(G,,), it is obvious that S, is of
type (2,2).

For bounded Vilenkin systems the Paley theorem implies that the nth
partial sum operators are bounded, uniformly in n, from LP(G,,) into
itself for 1 < p < oo, that is, the S, are uniformly of type (p,p) for
1 < p < co. The Paley theorem on unbounded Vilenkin groups does not
hold (see WATARI [18]). However, the partial sums of the Vilenkin-Fourier
series are uniformly bounded in LP(G,,) (1 < p < o0) (see YOUNG [16],
ScHIPP [12], SIMON [14]), thus they converge in LP(G,,) (1 < p < 00).

We cannot generalize this statement for every non-Abelian group. To
illustrate the situation, we consider G,,, = S3 for each ¥ € N, where S3
is the symmetric group on 3 elements. It is known that in a certain basis
{€1,&2} the representation operators of S; have the following matrices:

(D) (3 ),

(13)~(_f¢§ _Ef) <23)“’(;¢§ %—\/f)
(123)_)(%—%3 ‘%‘f) (132)_.(_;5/?_) '%_\/;).

Put
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where 0 < s < 6 is a fixed integer, 111 is the coordinate function of the above
representation corresponding to the first row and the first column. Thus,

V3 2v2

lpilly = ——

prle) = 3

Define fi € L'(S3) by
1 forz =ce,

fu(@) = {0 for z # e,
where x € S3. Thus,

\/22\/5 4

—sd s I S - = . .
[, it = - 5= = 2l

Since the norm ||f]|, is a continuous function of p for each f € LP(G,,),
there are constants C' > 1 and 1 < p < 2 such that

([ szt dm)lieils > Clliul.
3

Now we suppose that j € N, 7 > 0, and let
j—1

n = 236’“.

k=0
Define F; € L}(G,,) by

i-1
Fi(@) =[] folz) (2 € Gn),
k=0

where & = (¢, 1,...). Since

=1
15l = TT il
k=0
it follows that
1SwssFs =SBl = | [ i, duial, =

j—1
=11 [, fewidunliilly > GOl
k=053
Since S, is of type (p, p), there is a constant C, > 0 so that
[1Sn+1F5 = SnFjllp < NSns1Fjllp + 1SnFjllp < 2C, | Fjlh

for each j > 0. For this reason the operators S, are not uniformly of
type (p,p).
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Remark. In the same way, we can prove that the Paley theorem is
not valid for groups for which there exists a constant C > 0 so that

+C

s 1
okl > B
dj,

for infinite number of functions, where dff) is the dimension of the represen-

tation corresponding to ;.

Finally, we prove the convergence in LP-norm of the Fejér means of
Fourier series when p > 1 in the bounded case. The method of the proof
is similar to that in [4]. As for the Fejér kernel in the case of Abelian
groups G, , k € N, see also [1]. In this regard, we introduce the following
concepts. The compact, totally disconnected group G,, is called bounded if
the sequence m is bounded. Denote by

1 n—1
onf = —ZSkf (neP, oof :=0)
n iz
the Fejér mean of the Fourier series and by
1
::—ZDk (neP, Kog:=0)
" k=0

the Fejér kernel. Then
onf@) = [ f@E(0)du(y) (@€ G, nEP)

Lemma 2. If G, is a bounded group, then there is a constant C > 0
such that

swjim@ww@sa
2€EGm JGm

Proof. Throughout this proof C > 0 will denote an absolute constant
which will not necessarily be the same at different occurrences. Let r be a
fixed natural number. To estimate |K,|, we prove that for every r € P

(2) ZM d,i) < \/_\/: M,d, ), where d, = H d;c"’“)

k=0
and dscn’“) is the dimension of the representation corresponding to ¢p*. Set
bj = M;d,;» (0<s<r),
thus

> b;V2

m.
bjy1:= Mj+1dn(j+1) = M;d, d(nj)

3
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for 0 < s < r, since (dg."j))2 < m;. Then

Db >bo+ V2 by —V2b,.
3=0 3=0
Consequently,
\/"
Zba < Y2,
V2 -1

This proves inequality (2).
First we will estimate the absolute value of the kernel
n{d M, ~1
K'n(s),M5 = Z D, (S S N)

a=n(s)
for x € G, y € I(z) \ I, 41(x) and use the identity

Inl ng—1

(3) nKn,=> > Kpetvyjm.m (n€P)
§=0 j=0

Let s < r. Then, by Lemma 1,
Kn(s),Ms (l‘,y) =

nD+M~1 ag=1 . .
= > ZMk( > Wi(l’k)@i(yk))%(kw($)¢a(k+1>(?/)a
a=n(s) k=0 ]=O

where € G, y € I(2) \ I41(x). Since G, is a bounded group, by (2)
we have

|Kn(s)’M5 (x,y)l < cM;M,d, .
Then

K, z,y)|d < cMyd, 5.
Loy Vo, )] di) “

Next we turn to the case s > r. In this case we have to find a better
estimate of | K, ) 5, (%,y)|. Namely,

n( M —1r-1 ap—1
Koo, (@y) = > ZMk( Z EAEN ) Vatern) (T) P01 (y)+
—n(s)
n( M, -1 ar,—1
+ > M, ( Z ¢ xr)%(yr))1/}a<r+1>( JParin (y) =2 J1 + Ja,
a=n(s)
where x € Gy, y € Ir(x) \ L41(x). It is easy to see that
mo—1 Mp_1—1meq1—1 ms—1—1 m,.—1

VED RS SEED IR DIl () DR~ o =l (S CAD) B

ag=0 ap_1=0 app1=0 as—1=0 a,=0
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where ¢(z,y) does not depend on a,. By (1) in the proof of Lemma 1, we
have J; = 0.
Next we estimate J, as follows:

mo—1 ms—1—1 g,.-1

Jy=M > o > ( > wi(wr)af(yr))%(rm($)¢a(r+1>(y)-

ap=0 as_1=0 7=0

It is clear that Jy does not depend on a1,as,...,a,—1. Therefore,
mp—1 a,—1 Mpp1—1 ms—1—1
B=M2 3 (X GEBw) D Y taw@baw(y) =
ar=0 ;=0 art1=0  a,_1=0
me—1 ap—1 s=1  my—1
= M; Z ( Z ¢i($r)¢i(yr)) H ( Z <P2”(ﬂfl)@?l(yl))Tﬁn(sﬁn(s)(1/)-
ar=0 = ;=0 I=r+1  a;=0

By (1), we have J, = 0 if z; # y; for any r <[ < s. Since G, is a bounded
group, if z; = y; for some r <[ < s, then we have

Ko, (2,9)] £ M Mod, .
Then denoting by
A= {ye Gm CYo=Toy 05 Yr—1 = Tr—1, Yr #mry
Yr41 = Trgly o000y Ys—-1 = xs—l}a

we may write that

/ 1Ko ,00, 09| dao) < [ €M Mo du(y) =
Ir(@)\Irt1(2) A

m, — 1
=cM,.M.d, i < cM,d, ).

8

Since n > Mj,, by (2) and (3),

n
. In|

A c
|I{n($? y)' dﬂ(y) < Msdn(s) + Mrdn(s) S
/Mm)\ml(x) M Z:% M) szz,;l

c
<

c
Mrdn(T) + ‘_‘—M’l‘dn(")(lni - T)'
M

In|

Then

C
[Kn(z,y)|duly) < ——M,d,»(|n| =7 +1).
/uw)\ml(m) M
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The set G,,, is a disjoint union of the sets I.(z)\ I,41(z), r € N, where
z is a fix element of G,,. If r > |n|, the modulus | K, (z,y)| depends only
on = whenever y € I.(z). For this reason if z € G,,, then we get that

n—1 "!
1
l 5 Z Z Mden(k) < CM[n|7
1=0 k=0
and hence
> 1a(2,9)] duly) =
r=[n|+1 I (z)\Irt1(z)
KTL ?
= K (z,y)| duly) = Hnlzm, 2| ¢,
Dinj41(2) M,
Since

d("])

<L
<7

it follows that

[ 1ol duty) z/ (a9 ) <
Gm In(z)\Irt1(2)

<Z Mdn(r) n|—r+1)+C<

<Cd," A2 (] —r+ 1)+ C<C +C
Mn|-1 Z o (V2)k

for each z € Gm, where m, -+~ myp—1 = 1 and r = |n|. Since the above
series is convergent, for each = € G, there exists a positive constant C such
that

[ i@yl <c.
This completes the proof of Lemma 2.

Remark. In an analogous way, we can prove that there is a constant
C such that

sip [ |Ka(a,9)] du(z) < C.
YEGm JGm .
From Lemma 2 we can get the following

Theorem 2. If G, is a bounded, compact, totally disconnected group
and f € LP(G,), 1 <p < o0, then o,f — f in LP-norm.
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Proof. It is sufficient to prove that the operators o,, are uniformly of
type (p,p) when 1 < p < o0, since the convergence o,f — f is valid for
each f € & trigonometric polynomial and then we can apply the Banach-
Steinhaus theorem. By the interpolation theorem of Marcinkiewicz [10], it
is sufficient to prove that the operators o, are uniformly of type (1,1) and
(00,00). From Lemma 2, using the Fubini theorem, for f € L}Y(G,,), we

have
lonfl < [ [ @I )l duy)dn(z) =
-/ WM/,KMWWW@WWSCMH
Gm Gm

Thus, the operators o,, are uniformly of type (1,1). For f € L*>(G,,),
o flloo < £l [ Va0l d(®)loe < C1lfl e

Thus, the operators o, are uniformly of type (00, 00). This completes the
proof of Theorem 2.

Finally, we remark the one of the authors proved the pointwise con-
vergence o,f — f ae. (f € LYG)) (see [5]). If mp = 2 for each
k € N (the Walsh case), this was proved by FINE [2], and for bounded
(Abelian) Vilenkin groups this was proved by SIMON and PAL [15]. The two-
dimensional (Walsh) case o, nf — f a.e. is discussed by MORICZ, SCHIPP
and WADE [7] (as min(m,n) — oo and |f| € H¥* (which is a certain “hy-
brid” Hardy space)), and by GAT [3] and by WEIsz [19] (as m,n — oo in
such a manner that the integral lattice points (m, n) remain in some positive
cone, f € L*). The two-dimensional “non-Abelian” case is open as to both
norm and pointwise convergence.
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CxomumocTs B LP-HOpMe psoB
HA KOMMAKTHLIX BIOJIHE HECBA3HBIX I'PYIIIax

' TAT u P. TOJEIO

Xopomo u3BecTHO, YTO YacTHble CyMMBl paioB ®Pypoe—Bunemxkuua nis xasnoit
bymxnum f € LP, 1 < p < oo, cxomarca k f mo HopMe. Ilas mioBoro 1 < p < oo
olepaTopnl Sir, TakKe CXOLATCA o HopMme K f I kaxaod f € LP.

B nmacroameli paBore Mb uszydaeM momoGHBle CBOWCTBa Ha BIOJHE HECBA3HLIX
rpyunnax, He o6A3aTeJbHBIX abelleBbIX, U I CHCTEM, COCTOAWUX U3 MpOM3BedeHuil
HOPMUPOBaHHLIX KOODAUHATHBIX $YHKOUH NiA HENpepLIBHLIX HEIPUBOJAUMEIX YHUTAp-
HBIX OpeACTaBileHul koopAMHATHBIX rpynn. HakoHen, Mbl YCTAHOBIMBaEM CXOIUMOCTD

ast 1 < p < oo cpennaux Peliepa B ciydae orpaHudeHHBIX TPYIIIL.
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