
The Journal of Real-Time Systems 1, 27-60 (1989)
�9 1989 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Aperiodic Task Scheduling
for Hard-Real-Time Systems

BRINKLEY SPRUNT
Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213

LUI SHA
Department of Computer Science and Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA 15213

JOHN LEHOCZKY
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213

Abstract. A real-time system consists of both aperiodic and periodic tasks. Periodic tasks have regular arrival
times and hard deadlines. Aperiodic tasks have irregular arrival times and either soft or hard deadlines. In this
article, we present a new algorithm, the Sporadic Server algorithm, which greatly improves response times for
soft deadline aperiodic tasks and can guarantee hard deadlines for both periodic and aperiodic tasks. The opera-
tion of the Sporadic Server algorithm, its performance, and schedulability analysis are discussed and compared
with previously published aperiodic service algorithms.

I. Introduction: the real-time scheduling problem

Real-time systems are used to control physical processes that range in complexity from
automobile ignition systems to controllers for flight systems and nuclear power plants. In
these systems, the correctness of system functions depends upon not only the results of
computation but also on the times at which results are produced.

A real-t ime task is generally placed into one of four categories based upon its arrival
pattern and its deadline. I f meeting a given task's deadline is critical to the system's opera-
tion, then the task's deadline is considered to be hard. If it is desirable to meet a task's
deadline but occasionally missing the deadline can be tolerated, then the deadline is con-

sidered to be soft. Tasks with regular arrival times are called periodic tasks. A common
use of periodic tasks is to process sensor data and update the current state of the real-time
system on a regular basis. Periodic tasks, typically used in control and signal-processing
applications, have hard deadlines. Tasks with irregular arrival t imes are aperiodic tasks.
Aperiodic tasks are used to handle the processing requirements of random events such as
operator requests. An aperiodic task typically has a soft deadline. Aperiodic tasks that have
hard deadlines are called sporadic tasks. We assume that each task has a known worst-case
execution time. In summary, we have

28 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Hard and soft deadline periodic tasks. A periodic task has a regular interarrival time equal
to its period and a deadline that coincides with the end of its current period. Periodic
tasks usually have hard deadlines, but in some applications the deadlines can be soft.

Soft deadline aperiodic tasks. An aperiodic task is a stream of jobs arriving at irregular
intervals. Soft deadline aperiodic tasks typically require a fast average response time.

Sporadic tasks. A sporadic task is an aperiodic task with a hard deadline and a minimum
interarrival time (Mok 1983). Note that without a minimum interarrival time restriction,
it is impossible to guarantee that a sporadic task's deadline would always be met.

To meet the timing constraints of the system, a scheduler must coordinate the use of
all system resources using a set of well-understood real-time scheduling algorithms that
meet the following objectives:

Guarantee that tasks with hard timing constraints will always meet their deadlines.

Attain a high degree of schedulable utilization for hard deadline tasks (periodic and sporadic
tasks). Schedulable utilization is the degree of resource utilization at or below which
all hard deadlines can be guaranteed. The schedulable utilization attainable by an algorithm
is a measure of the algorithm's utility: the higher the schedulable utilization, the more
applicable the algorithm is for a range of real-time systems.

Provide fast average response times for tasks with soft deadlines (aperiodic tasks).

Ensure scheduling stability under transient overload. In some applications, such as radar
tracking, an overload situation can develop in which the computation requirements of
the system exceed the schedulable resource utilization. A scheduler is said to be stable
if during overload it can guarantee the deadlines of critical tasks even though it is impos-
sible to meet all task deadlines.

The quality of a scheduling algorithm for real-time systems is judged by how well the
algorithm meets these objectives.

This article develops advanced algorithms to schedule aperiodic tasks. For soft deadline
aperiodic tasks, the goal is to provide fast average response times. For hard deadlines
aperiodic tasks (sporadic tasks), the goal is to guarantee that their deadlines will always
be met. The new algorithms presented here meet both of these goals and are still able to
guarantee the deadlines of hard deadline periodic tasks. For simplicity, we assume that
periodic tasks have hard deadlines and constant execution times. 1 In Section 2 we review
related work on scheduling periodic and aperiodic tasks. Section 3 introduces the Sporadic
Server (SS) algorithm for scheduling aperiodic tasks and illustrates its operation with several
examples. This section also addresses the schedulability issues of the SS algorithm and
compares its performance with previous algorithms. Section 4 addresses the scheduling
of sporadic tasks and discusses the use of a deadline monotonic priority assignment for
scheduling sporadic tasks with short deadlines and long interarrival times. Finally, Section
5 presents a summary and conclusions.

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 29

2. Background and related work

2.1. Scheduling periodic tasks

A well-understood scheduling algorithm for guaranteeing the hard deadlines of periodic
tasks in a multiprogrammed real-time system is Liu and Layland's (1973) rate monotonic
scheduling algorithm. Under this algorithm, fixed priorities are assigned to tasks based
upon the rate of their requests (i.e., a task with a relatively short period is given a rela-
tively high priority). Liu and Layland proved that this algorithm is the optimum static
preemptive scheduling algorithm for periodic tasks with hard deadlines. The algorithm
guarantees that n periodic tasks can always be guaranteed to meet their deadlines if the

. . . . l / n resource utlhzatlon of the tasks is less than n(2 -1), which converges to In 2 (=69%) for
large n. The rate monotonic algorithm can be used as a basis for developing a family of
scheduling algorithms that addresses a wide range of practical problems. The rate monotonic
algorithm has the following favorable qualities for scheduling real-time systems:

High schedulable utilization. Although Liu and Layland show a low scheduling bound for
the rate monotonic algorithm, this bound is pessimistic and represents the absolute worst-
case conditions. Lehoczky, Sha, and Ding (1987) performed an exact characterization
and stochastic analysis for a randomly generated set of periodic tasks scheduled by the
rate monotonic algorithm and found that the average scheduling bound is usually much
better than the worst case. They concluded that a good approximation to the threshold
of schedulability for the rate monotonic algorithm is 88 %. In fact, with the period transfor-
mation method, the utilization threshold can, in principle, be arbitrarily close to 100 %
(Sha and Goodenough 1988). As an example of the high degree of schedulable utiliza-
tion attainable with the rate monotonic algorithm, a schedulable utilization level of 99 %
was achieved for the Navy's Inertial Navigation System (Borger 1987).

Stability under transient overload. Another concern for scheduling algorithms is transient
overload, the case where stochastic execution times can lead to a desired utilization greater
than the schedulable utilization bound of the task set. To handle transient overloads, Sha,
Lehoczky, and Rajkumar (1986) describe a period transformation method for the rate
monotonic algorithm that can guarantee that the deadlines of critical tasks can be met.

Aperiodic tasks. A real-time system often has both periodic and aperiodic tasks. Lehoczky,
Sha, and Strosnider (1987) developed the Deferrable Server algorithm, which is com-
patible with the rate monotonic scheduling algorithm and provides a greatly improved
average response time for soft deadline aperiodic tasks over polling or background ser-
vice algorithms while still guaranteeing the deadlines of periodic tasks.

Resource sharing. Although determining the schedulability of a set of periodic tasks that
use semaphores to enforce mutual exclusion has been shown to be NP-hard (Mok 1986),
Sha, Rajkumar, and Lehoczky (1987) have developed a priority inheritance protocol and
derived a set of sufficient conditions under which a set of periodic tasks that share
resources using this protocol can be scheduled using the rate monotonic algorithm.

Low scheduling overhead. Since the rate monotonic algorithm assigns a static priority to
each periodic task, the selection of which task to run is a simple function. Scheduling
algorithms that dynamically assign priorities may incur a larger overhead because task
priorities have to be adjusted in addition to selecting the highest-priority task to execute.

30 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Thus, we use the rate monotonic algorithm as the basis for scheduling soft deadline
aperiodic tasks and sporadic tasks. In the next section, we review the related work on
aperiodic scheduling.

2.2. Scheduling aperiodic tasks

The scheduling problem for aperiodic tasks is very different from that for periodic tasks.
Scheduling algorithms for aperiodic tasks must be able to guarantee the deadlines for hard
deadline aperiodic tasks and provide good average response times for soft deadline aperiodic
tasks even though the occurrence of the aperiodic requests are nondeterminstic. The aperiodic
scheduling algorithm must also accomplish these goals without compromising the hard
deadlines of the periodic tasks.

Two common approaches for servicing soft deadline aperiodic requests are background
processing and polling tasks. Background servicing of aperiodic requests occurs whenever
the processor is idle (i.e., not executing any periodic tasks and no periodic tasks pending).
If the load of the periodic task set is high, then utilization left for background service is
low, and background service opportunities are relatively infrequent. Polling consists of
creating a periodic task for servicing aperiodic requests. At regular intervals, the polling
task is started and services any pending aperiodic requests. However, if no aperiodic re-
quests are pending, the polling task suspends itself until its next period and the time originally
allocated for aperiodic service is not preserved for aperiodic execution but is instead used
by periodic tasks. Note that if an aperiodic request occurs just after the polling task has
suspended, then the aperiodic request must wait until the beginning of the next polling
task period or until background processing resumes before being serviced. Even though
polling tasks and background processing can provide time for servicing aperiodic requests,
they have the drawback that the average wait and response times for these algorithms can
be long, especially for background processing.

Figures 2 and 3 illustrate the operation of background and polling aperiodic service
using the periodic task set presented in Figure 1. The rate monontonic algorithm is used
to assign priorities to the periodic tasks yielding a higher priority for task A. In each of
these examples, periodic tasks A and B both become ready to execute at time = 0. Figures
2 and 3 show the task execution from time = 0 until time = 20. In each of these examples,
two aperiodic requests occur: the first at time = 5 and the second at time = 12.

The response time performance of background service for the aperiodic requests shown
in Figure 2 is poor. Since background service only occurs when the resource is idle, aperiodic
service cannot begin until time = 16. The response time of the two aperiodic requests are
12 and 6 time units respectively, even though both requests each need only 1 unit of time
to complete.

The response time performance of polling service for the aperiodic requests shown in
Figure 3 is better than background service for the first request but not for the second.
For this example, a polling server is created with an execution time of 1 time unit and
a period of 5 time units which, using the rate monotonic algorithm, makes the polling server
the highest-priority task. The polling server's first period begins at time -- 0. The lower
part of Figure 3 shows the capacity (available execution time) of the polling server as a

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS

Periodic Tasks:

Execution Time Period

~ Task A 4 10

~ Task B 8 20

Priority

High

Low

31

Figure 1. Periodic task set for Figures 2, 3, 4, and 5.

Task
Execution

I Aperiodic
Request #1

Aperiodic
Request #2

[,..',"7/),'/").~>G'.'>;eY'>'Y Y,>G';<">,4/" e"tV/" ,"~."~r I
,," ..- / t / ' ." ', '~:. ~k>" X X 2 (X . I , / , i . " , " ~.• I- .., . / . / . , / , , XX,x,,,.,.~,,.,>.,,~.>:~?,.q/,...i..,/..., ; 4 ~ , ' . . ~ C 4 I ~

I ' 1 ' 1 ' 1 ' I ' 1 1'1' I ' 1 ' 1
0 2 4 6 8 1 0 1 2 14 16 1 8 2 0

Figure 2. Background aperiodic service example.

function of time. As can be seen from the upward arrow at time = 0 on the capacity graph,
the execution time of the polling server is discarded during its first period because no
aperiodic requests are pending. The beginning of the second polling period coincides with
the first aperiodic request, and so, the aperiodic request receives immediate service.
However, the second aperiodic request misses the third polling period (time = 10) and must
wait until the fourth polling period (time = 15) before being serviced. Also note that since
the second aperiodic request only needs half of the polling server's capacity, the remaining
half is discarded because no other aperiodic tasks are pending. Thus, this example
demonstrates how polling can provide an improvement in aperiodic response time perfor-
mance over background service but is not always able to provide immediate service for
aperiodic requests.

The Priority Exchange (PE) and Deferrable Server (DS) algorithms, introduced by
Lehoczky, Sha, and Strosnider (1987), overcome the drawbacks associated with polling
and background servicing of aperiodic requests. As with polling, the PE and DS algorithms
create a periodic task (usually of high priority) for servicing aperiodic requests. However,
unlike polling, these algorithms preserve the execution time allocated for aperiodic service
if, upon the invocation of the server task, no aperiodic requests are pending. These algorithms
can yield improved average response times for aperiodic requests because of their ability

32 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Task
Execution

I Aperiodic N Aperiodic
Request #1 Request #2

I ' l ' l J l ' l ' l ' 1 ' 1 ' I ' 1
o 2 4 8 ~ lo 12 1. 16 18

I

20

Polling Server
Capacity ,, r b I ~ 1 ~ 1 ' 1 ~ ~ 1 ~ 1 I l l ~

0 2 4 6 8 10 12 14 16 18 20

Polling Server: Execution Time = 1, Period = 5

Figure 3. Polling aperiodic service example.

to provide immediate service for aperiodic tasks. In particular, the DS algorithm has been
shown capable of providing an order of magnitude improvement in the responsiveness of
asynchronous class messages for real-time token rings (Strosnider 1988). These algorithms
are called bandwidth preserving algorithms because they provide a mechanism for pre-
serving the resource bandwidth allocated for aperiodic service if, upon becoming available,
the bandwidth is not immediately needed. The PE and DS algorithms differ in the manner
in which they preserve their high-priority execution time.

The DS algorithm maintains its aperiodic execution time for the duration of the server's
period. Thus, aperiodic requests can be serviced at the server's high priority at any time
as long as the server's execution time for the current period has not been exhausted. At
the beginning of the DS's period, the server's high-priority execution time is replenished
to its full capacity.

The DS algorithm's method of bandwidth preservation is illustrated in Figure 4 using
the periodic task set of Figure 1. For this example, a high-priority server is created with
an execution time of 0.8 time units and a period of 5 time units. At time = 0, the server's
execution time is brought to its full capacity. This capacity is preserved until the first
aperiodic request occurs at time = 5, at which point it is immediately serviced, exhausting
the server's capacity by time -- 6. At time = 10, the beginning of the third server period,
the server's execution time is brought to its full capacity. At time = 12, the second aperiodic
request occurs and is immediately serviced. Notice that although the second aperiodic re-
quest only consumes half the server's execution time, the remaining capacity is preserved,
not discarded as in the polling example. Thus, the DS algorithm can provide better aperiodic

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 33

Task
Execution

I Aperiodic ~ Aperiodic
Request #1 Request #2

0 2 4 6 8 10 12 14 16 18

I

20

DeferrableServer 1.o :
Capacity

0~0 -

0 2 4 6 8 10 12 14 16 18 20

Deferrable Server: Execution Time = 0.8, Period = 5

Figure 4. Deferrable server example.

responsiveness than polling because it preserves its execution time until it is needed by
an aperiodic task.

Unlike the DS algorithm, the PE algorithm preserves its high-priority execution time
by exchanging it for the execution time of a lower-priority periodic task. At the beginning
of the PE server's period, the server's high-priority execution time is replenished to its
full capacity. If the highest-priority execution time available is aperiodic time (as is the
case at the beginning of the PE server's period) and aperiodic tasks are pending, then the
aperiodic tasks are serviced. Otherwise, the highest-priority pending periodic task is chosen
for execution and a priority exchange occurs. The priority exchange converts the high-priority
aperiodic time to aperiodic time at the assigned priority level of the periodic task. When
a priority exchange occurs, the periodic task executes at the priority level of the higher-
priority aperiodic time, and aperiodic time is accumulated at the priority level of the periodic
task. Thus, the periodic task advances its execution time, and the aperiodic time is not
lost but preserved, albeit at a lower priority. Priority exchanges will continue until either
the high-priority aperiodic time is exhausted or an aperiodic request occurs, in which case
the aperiodic time is used to service the aperiodic request. Note that this exchanging of
high-priority aperiodic time for low-priority periodic time continues until either the aperiodic
time is used for aperiodic service or until the aperiodic time is degraded to the priority
level of background processing (this complete degradation will occur only when no aperiodic
requests arrive early enough to use the aperiodic time). Also, since the objective of the
PE algorithm is to provide a low average response time for aperiodic requests, aperiodic
requests win all priority ties. At all times the PE algorithm uses the highest-priority execu-
tion time available to service either periodic or aperiodic tasks.

The PE algorithm's method of bandwidth preservation is demonstrated in Figure 5 using
the periodic task set of Figure 1. In this example, a high-priority PE server is created with

34 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Task
Execution

I Aperiodic ~ Aperiodic
Request #1 Request #2

0 2 4 6 8 10 12 14 16
I ,

18 20

Priority Exchange Server: Execution Time = 1,

Priority Exchange
Server Capacity

Level #1

I ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 ' 1 '
0 2 4 6 8 10 12 14 16 18 20

Level #2

Period = 5

0 2 4 6 8 10 12 14 16 18 20

Level #3

0 2 4 6 8 10 12 14 16 18 20

Figure 5. Priority Exchange Server example.

an execution time of 1 time unit and a period of 5 time units. Since the PE algorithm must
manage aperiodic time across all priority levels, the capacity of the PE server as a function
of time consists of three graphs: one for each priority level. The PE server's priority is
priority level 1, which corresponds to the highest priority level, followed by priority 2 for
periodic task A and priority 3 for periodic task B. At time = 0, the PE server is brought
to its full capacity, but no aperiodic tasks are pending and a priority exchange occurs be-
tween priorities 1 and 2. The PE server gains aperiodic time at priority 2, and periodic
task A executes at priority 1. At time = 4, task A completes and task B begins. Since no
aperiodic tasks are pending, another exchange takes place between priority 2 and priority
3. At time = 5, the server's execution time at priority 1 is brought to its full capacity and
is used to provide immediate service for the first aperiodic request. At time = 10, the server's
priority 1 execution time is brought to full capacity and is then exchanged down to priority 2.

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 35

At time = 12, the server's execution time at priority 2 is used to provide immediate ser-
vice for the second aperiodic request. At time = 14.5, the remaining priority 2 execution
time is exchanged down to priority 3. At time = 15, the newly replenished server time at
priority 1 is exchanged down to priority 3. Finally, at time = 17.5, the remaining PE server
execution time at priority 3 is discarded because no tasks, periodic or aperiodic, are pend-
ing. Thus, the PE algorithm can also provide improved response times for aperiodic tasks
compared to the polling algorithm.

The PE and DS algorithms differ in their complexity and in their effect upon the
schedulability bound for periodic tasks. The DS algorithm is a much simpler algorithm
to implement than the PE algorithm, because the DS algorithm always maintains its high-
priority execution time at its original priority level and never exchanges its execution time
with lower priority levels as does the PE algorithm. However, the DS algorithm does pay
schedulability penalty (in terms of a lower schedulable utilization bound) for its simplicity.
Both algorithms require that a certain resource utilization be reserved for high-priority
aperiodic service. We refer to this utilization as the server size, Us, which is the ratio of
the server's execution time to the server's period. The server size and type (i.e., PE or
DS) determine the scheduling bound for the periodic tasks, Up, which is the highest
periodic utilization for which the rate monotonic algorithm can always schedule the periodic
tasks. Following are the equations developed by Lehoczky, Sha, and Strosnider (1987) for
Up in terms of Us as the number of periodic tasks approaches infinity for the PE and DS
algorithms:

PE: U p = I n - - 2 DS: Up =In U s + 2
U ~ + I 2 U ~ + l

These equations show that for a given server size, U~ (0 < U~ < 1), the periodic
schedulability bound, Up, for the DS algorithm is lower than it is for the PE algorithm.
These equations also imply that for a given periodic load, the server size, Us for the DS
algorithm is smaller than that for the PE algorithm. For example, with Up = 60%, the
server size for the PE algorithm is 10% compared to a server size for the DS algorithm of 7%.

The focus of this article is to develop a general algorithm for scheduling both soft and
hard deadline aperiodic tasks. Such an algorithm should provide a responsiveness com-
parable to that attainable with the PE and DS algorithms for soft deadline aperiodic tasks.
For hard deadline aperiodic tasks, the algorithm should provide a general technique for
allocating resource utilization to guarantee that the deadline will always be met.

By comparing the PE and DS algorithms we can identify the relative merits of each.
The advantage of the DS algorithm over the PE algorithm is that it is conceptually much
simpler, and thus easier to implement. The PE algorithm must manage aperiodic time across
all priority levels in the system, whereas the DS algorithm maintains its execution time
at its original priority level. The simple bandwidth preservation technique of the DS
algorithm also implies that, on average, the priority of the server's execution time will be
higher than it would be for an equivalently-sized PE server because the DS algorithm
preserves its high-priority execution time at its original priority level for the duration of
its period. In contrast, the PE algorithm must either use its high-priority execution time
for aperiodic service or trade it for lower-priority periodic time. However, the PE algorithm

36 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

has a server size advantage over the DS algorithm. This advantage of the PE algorithm
is even greater when multiple servers are executing at different priority levels. A better
algorithm for soft deadline aperiodic tasks would have the advantages of both these algorithms
while overcoming their limitations. Section 3 describes and gives examples of such an
algorithm, the Sporadic Server (SS) algorithm. Section 3.4 presents the results of a simulation
study that compares the response time performance of the polling, DS, PE, and SS
algorithms.

One important class of aperiodic tasks not generally supported by previous aperiodic
service algorithms consists of aperiodic tasks with hard deadlines. To guarantee hard
deadlines for aperiodic tasks, a high-priority server can be created with enough execution
time to guarantee that an aperiodic task can meet a hard deadline. However, a minimum
interarrival time restriction must be placed upon the aperiodic task to ensure that the server
will always have sufficient execution time to meet the aperiodic task's deadline. This
minimum interarrival time for the aperiodic task must be equal to or greater than the period
of its server task. As long as the aperiodic task does not request service more frequently
than the minimum interarrival time, its hard deadline can be guaranteed. The SS algorithm
can be used to provide such a guarantee, but only if the aperiodic task's deadline is equal
to or greater than its minimum interarrival time. For the cases when the deadline is shorter
than the minimum interarrival time, a priority assignment based upon the deadline of the
aperiodic task rather than on its minimum interarrival time is necessary. This is referred
to as a deadline monotonic priority assignment and requires a different schedulability analysis
than that used for a rate monotonic priority assignment. The necessity of deadline monotonic
priority assignment for hard deadline aperiodic tasks and the required schedulability analysis
is discussed in Section 4.

3. Scheduling soft deadline aperiodic tasks

In this section, we investigate the scheduling of soft deadline aperiodic tasks. Our objec-
tive is to provide fast average response times for aperiodic tasks while guaranteeing the
hard deadlines of periodic tasks. In this section, we introduce a new algorithm, determine
its schedulability bound, and compare its response time performance to previous aperiodic
service algorithms.

3.1. The sporadic server algorithm

Although both the DS and PE algorithms have been shown to provide good average response
times for aperiodic tasks (Lehoczky, Sha, and Strosnider 1987), these algorithms can be
improved in several ways. The DS and PE algorithms have comparable aperiodic response
time performance, but each algorithm has advantages over the other, as was discussed in
Section 2.2. The advantage of the DS algorithm over the PE algorithm is that the DS
algorithm always maintains its high-priority server execution time at its original priority
level. As such, the DS algorithm has a much simpler implementation than the PE algorithm
because the DS algorithm does not have to manage the exchanging of aperiodic execution

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 37

time between priority levels as is necessary with the PE algorithm. However, the PE
algorithm has the advantage of a larger server size than the DS algorithm. A better algorithm
would have an aperiodic response time performance comparable to the DS and PE
algorithms, the low implementation complexity of the DS algorithm, and the larger server
size of the PE algorithm. The Sporadic Server (SS) algorithm has these qualities.

The SS algorithm, like the DS and PE algorithms, creates a high-priority task for ser-
vicing aperiodic tasks. The SS algorithm preserves its server execution time at its high
priority level until an aperiodic request occurs. The SS algorithm differs from the DS and
PE algorithms in the way it replenishes its server execution time. The DS and PE algorithms
periodically replenish their server execution time to full capacity. The SS algorithm only
replenishes its server execution time after some or all of the execution time is consumed
by aperiodic task execution. This method of replenishing server execution time sets the
SS algorithm apart from the DS and PE algorithms and is central to understanding the
operation of the SS algorithm. The following terms are used to explain the SS algorithm's
method of replenishing server execution time:

Ps The task priority level at which the system is currently executing.

P~ One of the priority levels in the system. Priority levels are consecutively
numbered in priority order, with P~ being the highest priority level and P2 being
the next highest.

Active This term is used to describe a period of time with respect to a particular priority
level. A priority level Pi is considered to be active if the current priority of
the system, Ps, is equal to or higher than the priority of Pi.

Idle This term has the opposite meaning of the term active. A priority level Pi is
idle if the current priority of the system Ps, is less than the priority of Pi.

Rr, The replenishment time for priority level Pi. This is the time at which con-
sumed execution time for the sporadic server of priority level Pi will be
replenished.

Replenishment of consumed sporadic server execution time for a sporadic server executing
at priority level Pi proceeds as follows:

If the server has execution time available, the replenishment time, R'/~i, is set when priority
level Pi becomes active. The value of RT/is set equal to the current time plus the period
of Pi. If the server capacity has been exhausted, the next replenishment time can be set
when the server's capacity becomes nonzero and Pi is active.

Replenishment of any consumed server execution time is scheduled to occur at RT/if either
the priority level Pi becomes idle or the server's execution time has been exhausted. The
amount to be replenished is equal to the amount of server execution time consumed.

38 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

3.2. SS algorithm example

The SS algorithm will be illustrated by comparing its operation to that of the DS and PE
algorithms using a simple periodic task set. The task set is composed of two periodic tasks:
rl and r2. Task rl has the shorter period and thus is assigned a higher priority than task
r2 by the rate monotonic algorithm. For these examples, both r~ and r2 begin their periods
at time = 0. The periodic task set parameters are as follows:

Task Exec time Period Utilization (%)

rt 2 10 20.0
r2 6 14 42.9

For this periodic task sets the maximum server sizes were determined for the DS, PE,
and SS algorithms. For each algorithm, the server's period was chosen to be 5 units of
time. This implies that the aperiodic server has the highest priority, followed by priorities
of rl and r2. The initial period for each of the algorithms begins at time = 0. The server
size characteristics for the DS, PE, and SS algorithms are as follows:

Algorithm Exec time Period Server size (%)

DS 1.00 5 20.0
PE 1.33 5 26.7
SS 1.33 5 26.7

Figures 6, 7, and 8 show the behavior of the DS, PE, and SS algorithms for this task
set. The upper part of these figures shows the task execution order, and the lower part
shows the server capacity as a function of time. In each of these examples, two aperiodic
requests occur. Both requests are for aperiodic tasks that require 1.33 units of execution
time. The first aperiodic request occurs at time = 1 and the second occurs at time = 8.

Figure 6 shows the behavior of the DS algorithm for this task set. At time = 0, the serv-
er's execution time is brought to its full capacity of 1.00 unit and "r I begins execution. The
server's capacity is preserved until the first aperiodic request occurs and is serviced at
time = 1. At time = 2, the server's execution time is exhausted and rt resumes execution.
At time = 3, rl completes execution and r2 begins execution. At time = 5, the server's
execution time is brought to its full capacity of 1.00 unit and service for the first aperiodic
request resumes, consuming 0.33 units of server execution time. At time = 5.33, the serv-
ice for the first request is completed and r2 resumes execution. The response time for the
first aperiodic request is 4.33 units of time. At time = 8, the second aperiodic request
occurs and is serviced using the remaining 0.66 units of server execution time. At
time = 8.66, aperiodic service is suspended and r2 resumes execution. At time = 10, r2
completes execution, the server's execution time is brought to its full capacity of 1.00 unit,
and service for the second aperiodic request is resumed. At time = 10.66, service for the

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 39

Task
Execution

Aperiodic Aperiodic
Request #1 Request #2

0 2 4 6 8 10 12 14 16 18 20

B Deferrableserver I

Task 1

Task 2

Deferrable
Server
Capacity

0 2 4 6 8 10 12 14 16 18 20

Figure 6 Deferrable Server example.

Aperiodic Aperiodic
Request #1 Request #2

Execution

l l l l l I I l t l l l =
o 2 4 6 8 lo ~2 14 16 18 2o

Pnoaty B
Exchange
Server

Task 1 ~]

Task 2

I I

Priority 1 . 3 3 ~
Level #1 o.66

ATA

0 2 4 6 8 10 12 14 16 18 20

Priority
Level #2

ATA

0 2 4 6 8 10 12 14 16 18 20

Pdodty
Level #3

ATA

0 2 4 6 8 10 12 14 16 18 20

Figure 7. Priority Exchange Server example.

40 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

second aperiodic request is completed (leaving 0.33 units of server execution time) and
r~ begins execution. The response time for the second aperiodic request is 2.66 units of
time. At time = 14, r2 begins execution. At time = 15, the server's execution time is brought
to its full capacity of 1.00 unit. At time = 20, r2 completes execution.

Figure 7 shows the behavior of the PE algorithm for this task set. Since the PE algorithm
exchanges server execution time with lower-priority periodic tasks, three time lines are
shown in Figure 7 for the aperiodic time available (ATA) of priority levels 1 (the highest),
2, and 3 (the lowest). At time = 0, r~ begins execution and the server time of priority
level 1 is brought to its full capacity of 1.33 units. Since no aperiodic tasks are pending,
the PE server's priority 1 execution time is exchanged with the periodic execution time
of priority level 2. This exchange continues until the first aperiodic request occurs at
time = 1, at which point the remaining priority 1 server time is used to service the aperiodic
task. At time = 1.33, the priority 1 server time is exhausted and aperiodic service is con-
tinued using priority 2 server time. At time = 2.33, service for the first aperiodic request
is complete, the PE server time is completely exhausted, and 7-1 resumes execution. At
time = 3.33, 7-t completes execution and 7-2 begins execution. At time = 5, the server time
of priority level 1 is brought to its full capacity of 1.33 units. Since no aperiodic tasks
are pending, the priority 1 server time is traded down to priority 3 server time by
time = 6.33. At time = 8, the second aperiodic request occurs and is serviced using the
priority 3 server time. At time = 9.33, service for the second aperiodic request is com-
plete, the priority 3 server time is completely exhausted, and 7-2 resumes execution. At
time = 10, the server time of priority 1 is brought to its full capacity of 1.33 units, and
7" 2 begins execution. Since no aperiodic requests occur between time -- l0 and time -- 20,
the PE server time is exchanged for lower-priority aperiodic execution time or is discarded
when no exchanges are possible (as from time = 12.66 to time -- 14, when no periodic
or aperiodic tasks are ready to execute).

The following server characteristics should be noted by comparing the operation of the
DS and PE algorithms in Figures 6 and 7.
The DS algorithm always preserves its server execution time at its original priority level,

whereas the PE algorithm must exchange or discard its server execution time if no
aperiodic tasks are pending. This quality of the DS algorithm allows a less complex im-
plementation than is necessary for the PE algorithm.

Since the PE algorithm has a larger server size, it was able to provide a better response
time for the aperiodic requests.

Both algorithms, periodically replenish their server execution time at the beginning of the
server period.

Figure 8 shows the behavior of the SS algorithm using a high-priority sporadic server
for this task set. Since the sporadic server is the only task executing at priority level P~
(the highest priority level), P~ becomes active only when the sporadic server executes an
aperiodic task. Similarly, whenever the sporadic server is not executing an aperiodic task,
P~ is idle. Therefore, RT~ is set whenever an aperiodic task is executed by the sporadic
server. Replenishment of consumed sporadic server execution time will occur one server
period after the sporadic server initially services an aperiodic task.

The task execution in Figure 8 proceeds as follows. For this example, the sporadic server

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 41

Aperiodic Aperiodic
Request #1 Request #2 Sporadic

~ ~ Server

Task 1

I I
Task

Execution [~
Task 2

Sporadic
Server

Capacity

0 2 4 6 8 10 12 14 16 18 20

Figure R High-priority Sporadic Server example.

begins with its full execution time capacity. At t ime = 0, 7" 1 begins execution. At time = 1,
the first aperiodic request occurs and is serviced by the sporadic server. Priority level P1
has become active and RTI is set equal to 6. At time = 2.33, the servicing of the first
aperiodic request is completed, exhausting the server's execution time, and P1 becomes
idle. A replenishment of 1.33 units of time is set for time = 6 (note the arrow in Figure
8 pointing from time -- 1 on the task execution time line to t ime = 6 on the server capac-
ity time line). The response time of the first aperiodic request is 1 unit of time. At
time = 3.33, rl completes execution and 7" 2 begins execution. At time = 6, the first replenish-
ment of server execution time occurs, bringing the server's capacity up to 1.33 units of
time. At time = 8, the second aperiodic request occurs and P1 becomes active as the
aperiodic request is serviced using the sporadic server's execution time. RT~ is set equal
to 13. At time = 9.33, the servicing of the second aperiodic request completes, P1 becomes
idle, and 7"2 is resumed. A replenishment of 1.33 units of t ime is set for time = 13 (note
the arrow in Figure 8 pointing from time = 8 on the task execution time line to time = 13
on the server capacity time line). At time = 13, the second replenishment of server execu-
tion time occurs, bringing the server's capacity back up to 1.33 units of time.

By comparing Figures 6, 7, and 8, the following advantages of the SS algorithm are seen:

The SS algorithm has a low implementation complexity comparable to the DS algorithm,
because it maintains its server execution time at its original priority level and does not
exchange server execution time with lower priority levels as the PE algorithm does.

The SS algorithm has the same server size advantage over the DS algorithm as the PE
algorithm does.

The SS algorithm may also have a run-time advantage over the DS and PE algorithms.
A run-time overhead is incurred periodically for the DS and PE algorithms to replenish
their server execution time. This overhead is paid whether or not any aperiodic tasks
were serviced during the last server period. The SS algorithm only pays a replenishment
overhead if some of its server execution time has been consumed.

42 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

To better undertand the SS algorithm's replenishment method, the previous high-priority
sporadic server example presented in Figure 8 is augmented with examples of an equal-
and a medium-priority sporadic server. For these examples, presented in Figures 9 and
10, all aperiodic requests require 1 unit of execution time.

Figure 9 shows the task execution and the task set characteristics for the equal-priority
sporadic server example. The sporadic server and rt both execute at priority level P1 and
r2 executes at priority level P2. At time = 0, rl begins execution, PI becomes active, and
RT]~ is set to 10. At time = 2, the first aperiodic request occurs and is serviced by the sporadic
server. At time = 3, service is completed for the first aperiodic request, r2 begins execu-
tion, P~ becomes idle, and a replenishment of 1 unit of server execution time is set for
time = 10. At time = 8, the second aperiodic request occurs and is serviced using the
sporadic server, P~ becomes active, and RT~ is set to 18. At time = 9, service is completed
for the first aperiodic request, z2 resumes execution, P~ becomes idle, and a replenishment
of 1 unit of server execution time is set for time = 18. At time = 10, rl begins execution
and causes P~ to become active and the value of RT 1 to be set. However, when r~ com-
pletes at time = 12 and P1 becomes idle, no sporadic server execution time has been con-
sumed. Therefore, no replenishment time is scheduled even though the priority level of
the sporadic server became active.

Aperiodic Aperiodic
Request #1 Request #2 Server

~l Task 1

Execution Task t ~ . ~ ~ ~ ~ " , \ " ~ ~ / ~
'~'\ Task 2

9

Sporadic I I

Sporadic
Server

Capacity

0 2 4 6 8 10 12 14 16 18 20

Task Exec Time Per iod Utilization
SS 2 10 20.0%
x 1 2 10 20.0%
'~2 6 14 ,12.9%

Figure 9. Equal-priority Sporadic Server example.

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 43

Figure 9 illustrates two important properties of the SS algorithm. First, R'/]- can be deter-
mined from a time that is less than the request time of an aperiodic task. This occurs for
the first aperiodic request in Figure 9 and is allowed because P1 became active before and
remained active until the aperiodic request occurred. Second, the amount of execution time
replenished to the sporadic server is equal to the amount consumed. When the PE and
DS algorithms replenish their server execution time, the server capacity is always brought
to its maximum value regardless of how much server execution was used.

Figure 10 shows the task execution and task set characteristics for the medium-priority
sporadic server example. The sporadic server executes at priority level Pz, between the
priority levels of rl (P1) and r2 (P3). At time = 0, rl begins execution. At time = 1, r~
completes execution and r2 begins execution. At time = 4.5, the first aperiodic request
occurs and is serviced using the sporadic server, making priority level Pz active. At time = 5,
r~ becomes active and preempts the sporadic server. At this point, both priority levels P~
and Pz are active. At time = 6, rl completes execution, P1 becomes idle, and the sporadic
server is resumed. At time = 6.5, service for the first aperiodic request is completed, r~
resumes execution, and Pz becomes idle. A replenishment of 1 unit of sporadic server exe-
cution time is scheduled for time = 14.5. At time = 8, the second aperiodic request occurs
and consumes 1 unit of sporadic server execution time. A replenishment of 1 unit of sporadic
server execution time is set for time = 18.

Task
Execution

Aperiodic Aperiodic Sporadic
Request #1 Request #2 Server

~ . ~ Task 1

Task 2

I I
D

Sporadic
Server

Capacity

0 2 4 6 8 10 12 14 16 18 20

Task Exec Time Per iod Utilization

x 1 1.0 5 20.0%
SS 2.5 10 25.0%
x 2 6.0 14 42.9%

Figure 10. Medium-priority Sporadic Server example.

44 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Figure 10 illustrates another important property of the SS algorithm. Even if the sporadic
server is preempted and provides discontinuous service for an aperiodic request (as occurs
with the first aperiodic request in Figure 10), only one replenishment time is necessary.
Preemption of the sporadic server does not cause the priority level of the sporadic server
to become idle, allowing the discontinuous consumption of sporadic server execution time
to be replenished continuously. Note that one replenishment for the consumption of sporadic
server execution time resulting from both aperiodic requests in Figure 10 is not permitted
because the priority level of the sporadic server became idle between the completion of
the first aperiodic request and the initial service of the second aperiodic request.

3. 3. The schedulability of sporadic servers

In this section, we prove that, from a scheduling point of view, a sporadic server can be
treated as a standard periodic task with the same period and execution time as the sporadic
server. It is necessary to prove this claim because the sporadic server violates one of the
basic assumptions governing periodic task execution as described by Liu and Layland (1973)
in their analysis of the rate monotonic algorithm. Given a set of periodic tasks that is
schedulable by the rate monotonic algorithm, this assumption requires that, once a periodic
task is the highest-priority task that is ready to execute, it must execute. 2 If a periodic task
defers its execution when it otherwise could execute immediately, then it may be possible
that a lower-priority task will miss its deadline even if the set of tasks was schedulable.
A sporadic server does not meet this Liu and Layland requirement because even though
it may be the highest-priority task that is ready to execute, it will preserve its execution
time if it has no pending requests for aperiodic service. This preservation of the server's
execution time is equivalent to deferring the execution of a periodic task. A deferrable server
also fails to meet the above requirement because of its preservation capabilities. To prove
that a sporadic server can still be treated as normal periodic task, we will show that the
sporadic server's replenishment method compensates for any deferred execution of the
sporadic server. In contrast, we will also show how the replenishment method for a defer-
rable server fails in this respect.

To demonstrate how deferred execution can cause a lower-priority task to miss its deadline,
the execution time of a periodic task will be compared to the execution of the deferrable
server with the same period and execution time. Figure 11 presents the execution behavior
of three periodic tasks. Let T represent the period of a periodic task and C represent its
execution time. Task A, with TA = 4 and CA ---- 1, has the highest priority. Task B, with
TB = 5 and Ca = 2, has a medium priority. Task C, with Tc = 10 and C c = 3, has the
lowest priority. Tasks A and B begin their first periods at time = 0, and task C begins
its first period at time = 3. Note that no idle time exists during the first period of task
C. This constrains task C to a maximum execution time of 3 units.

Figure 12 presents the execution of the task set of Figure 11, with task B replaced with
deferrable server. Also presented in Figure 12 is the capacity of the deferrable server as
a function of time. For this example, the following aperiodic requests are made to the defer-
rable server:

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 45

Request Request Instant Exec Time

1 1 1
2 3 1
3 5 2
4 10 2

Referring to the deferrable server execution graph in Figure 12, at time = 2, the service
for the first aperiodic request completes and no other aperiodic requests are pending. At
this point, the deferrable server defers its execution by preserving its remaining execution
time until the second aperiodic request occurs at time = 3. Note that this deferred execu-
tion, followed by the servicing of the second aperiodic request from time = 3 to time = 4,
has blocked task C from executing during this interval, whereas during the same interval
in Figure 11, task C was not blocked. The third and fourth aperiodic requests are executed
by the deferrable server during the same intervals as task B executes in Figure 11. Thus,
task A and the deferrable server limit task C to a maximum of 2 units of execution time
per period, whereas the original periodic task was able to complete 3 units of computation
during the same period in Figure 11. I f task C had needed 3 units of execution time during
the period shown in Figure 12, it would have missed its deadline. It is this invasive quality
of the deferrable server for lower-priority periodic tasks that results in the lower schedul-
ing bound for the DS algorithm described in Section 2.2.

Figure 13 presents the execution of the task set of Figure 11 with task B replaced by
a sporadic server. The third time line in Figure 13 is the capacity of the sporadic server
as a function of time. The arrows in Figure 13 indicate the replenishment of consumed
sporadic server execution time. The requests for aperiodic service are the same as the

Periodic Task A: h h h h
T=4, C=1

l l l l l l l l l l l l l
0 2 4 6 8 10 12

h
I l i l
14 16

i I
18 20

Periodic Task B:
T=5, C=2 m

I i l
2

l
4 6

m
i l i l l
8 10 12

i l l l l 14 16 18 I 2O

Periodic Task C:
T=10, C=3 h

I t
4 1 1 1 1 1 6 8 10

II
12

Figure H. Periodic task example.

46 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Periodic Task A:
T = 4 , C = 1

Deferrable Server:
T = 5 , C = 2

Deferrable Server:
Capacity

Periodic Task C:
T = 1 0 , C = 2

h h h n i l i l l l f l i J i I I I f l
0 2 4 6 8 10 12 14 16 18 20

l la l l
l l f l i i l l i l i l l l l i i l l
0 2 4 6 8 10 12 14 16 18 20

2 4

i j
4

6 8 10 12 14 16 18 20

i J l l l i i
6 8 10 12

Figure 12. An example of deferred execution with the DS algorithm.

L~
Periodic Task A: Iii".~

T = 1 , C = 4 l:~'] I

0 2 4 6
h h h i i I i I f l
8 10 12 14 16 18 20

Sporadic Server:
T = 5 , C = 2

Sporadic Server
Capacity

0 2 4 6 8 10 12 14 16 18 20

Periodic Task C:
T = 1 0 , C = 3 n

l l i l i l l l l
4 6 8 10 12

Figure 13. An example of deferred execution with the SS algorithm.

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 47

requests of Figure 12. Note that the sporadic server, like the deferrable server in Figure
12, blocks the execution of task C during time = 3 to time = 4. However, the sporadic
server replenishment method prevents the execution time consumed during this interval
from being replenished until time = 8. This allows task C to execute from time = 6 to
time = 7, whereas the deferrable server was executing during this interval in Figure 12.
The sporadic server, unlike the deferrable server, blocks task C from executing from
time = 9 to time = 10. However, the replenishment of the server execution time consumed
during this interval does not occur until time = 14. This allows task C to complete its exe-
cution from time = 11 to time = 12. Thus, in this example, the sporadic server allows task
C to meet its deadline, whereas a deferrable server having the same period and execution
time cannot. However, one should note that the sporadic server completes the third and
fourth aperiodic requests 3 time units later than the deferrable server. Thus, for the same
series of aperiodic requests, a sporadic server may provide a longer response time than
an equivalently sized deferrable server. The next section presents a simulation study that
investigates the relative performance of these algorithms.

Now that we have shown a specific example of how the replenishment method of the
SS algorithm can compensate for deferred execution of the sporadic server, we need to
prove that, in terms of schedulability, a sporadic server can always be treated as a periodic
task having the same period and execution time. To do this, we first show that a sporadic
server can behave in a manner identical to a periodic task with the same period and execu-
tion time. Next, we show that any execution of the sporadic server before the server's priority
level becomes idle falls into one of three cases: (1) none of the server's execution time
is consumed, (2) the server's execution time is completely consumed, or (3) the server's
execution time is only partly consumed. In the first case, the server can be shown to be
equivalent to a periodic task with a delayed request. In the second case, the server's execu-
tion is shown to be identical to that of a normal periodic task. In the third case, the exe-
cution behavior of the server is shown to be equivalent to two periodic tasks: one that
executes normally and one that is delayed. Thus, all types of sporadic server execution
are shown to be equivalent to the execution of one or more periodic tasks.

In order to explore the schedulability effects of sporadic servers upon a periodic task
set, several terms and concepts developed by Liu and Layland (1973) are needed. A periodic
task set is composed of n independent tasks, Zl through rn, numbered in order of decreas-
ing priority. A periodic task z i is characterized by its computation time, C i, and a period,
Ti. At all times, the highest-priority task that is ready to execute is selected for execu-
tion, preempting any lower-priority tasks as necessary. The deadline of a periodic task
occurs one period after it is requested. The cr i t i ca l ins tan t for a periodic task is the instant
at which a request for that task will have the longest response time. Liu and Layland state
and prove the following theorem concerning the critical instant of a periodic task:

Theorem 1. Given a set of periodic tasks, the critical instant for any task occurs whenever
the task is requested simultaneously with all higher-priority tasks.

The cr i t i ca l zone for a periodic task is the time interval between its critical instant and
the completion of that request. A periodic task set is schedulable if the critical zone for
each task is less than or equal to its deadline.

48 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

We now state and prove the following property of schedulable periodic task sets:

L e m m a 1. Given a periodic task set that is schedulable with 7-i, the task set is also
schedulable if 7" i is split into k separate periodic tasks, ,l'i, 1 7"i,k, w i t h ~}k 1 Ci, j = C i

and T/ , j= T/ for 1 < j _< k.

Proof. By the rate monotonic algorithm, all tasks ri,1 ,ri , k will be assigned the same
priority because they have the same period. The rate monotonic algorithm schedules a
periodic task set independently of the phasing between any two tasks. Suppose the requests
for tasks 7"i, 1 7"i, k are all in sync with each other. The execution pattern of ri,~ zi,k
will now be identical to the execution pattern of the original task, ri, and therefore the
task set is still schedulable for this phasing of ri,1 ri,k. Since the task set is schedulable
for one phasing of ri,1,. �9 �9 ,ri ,k it is schedulable for them all. The lemma follows.

Next we establish that the execution behavior of a sporadic server can be identical to
that of a periodic task with the same period and execution time.

L e m m a 2. Given a schedulable periodic task set, replace a periodic task with a sporadic
server having the same period and execution time. I f the requests for the sporadic server
are identical to that of the original periodic task, then the execution behavior of the sporadic
server is identical to that of the original periodic task.

Proof. The periodic task and the sporadic server execute at the same priority level, and
each request for the sporadic server and the periodic task requires the same execution time.
Each request for the sporadic server completely consumes its execution time, and the con-
sumed execution time is replenished before the next request. Therefore, the sporadic server's
execution is identical to that of the original periodic task.

We now show that sporadic servers are equivalent to periodic tasks in terms of
schedulability.

Theo rem 2. A periodic task set that is schedulable with a task, z i, is also schedulable
if ri is replaced by a sporadic server with the same period and execution time.

Proof. To prove this theorem, we will show that, for all types of sporadic server execu-
tion, the sporadic server exhibits an execution behavior that can also be represented by
a combination of one or more periodic tasks.

Let the sporadic server's period be Tss and execution time be Css. At time tA, let the
priority level of the server become active and let the sporadic server be at full capacity.
Consider the interval of time beginning at tA during which the priority level of the server
remains active. The execution behavior of the server during this interval can be described
by one of three cases:

1. None of the server's execution time is consumed.
2. All of the server's execution time is consumed.
3. The server's execution time is partly consumed.

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 49

Case 1. I f the server is not requested during this interval, then it preserves its execution
time. The server's behavior is identical to a periodic task for which the interarrival time
between two successive requests for the periodic task is greater than its period. Referring
to Theorem 1, if any request for a periodic task is delayed, it cannot lengthen the critical
zone of any lower-priority periodic task because the lower-priority task would be able to
execute during the delay, yielding a shorter critical zone. Since a critical zone of a lower-
priority task cannot be made longer, the delay has no detrimental schedulability effect.
Case 2. I f the execution time of the sporadic server is completely consumed, a replenish-
ment will be scheduled to occur at tA + Tss to bring the server back to full capacity. By
Lemma 2 the behavior of the sporadic server between tA and tA + Tss is identical to that
of a similar periodic task that is requested at tA.
Case 3. If the server's execution time is not completely exhausted, then a replenishment
will be scheduled to occur at tA + Tss for the consumed execution time and the server
will preserve the unconsumed execution time until it is requested. Let the amount of exe-
cution time to be replenished be CR.

Now consider a periodic task with a period of Tss and an execution time of Css that
is split into two periodic tasks, rx and ry, both with a period of Tss. Let rx have an execu-
tion time of CR and let ry have an execution time of Css - CR. By Lemma 1, the splitting
of the original periodic task can be done without affecting schedulability. Let requests for
both rx and ry be in sync until tA. At tA, let rx execute normally but delay ry. As in case
1, the delay for ry has no schedulability effect. The behavior of the two periodic tasks rx
and ry from tA to tA + Tss is identical to that of the sporadic server over the same time
interval.

Since a sporadic server's execution in each of these cases can be represented by a periodic
task or a combination of periodic tasks with a period and total execution time that is iden-
tical to that of the sporadic server, the theorem follows.

If a sporadic server's execution time is only partly consumed before a replenishment
is scheduled, as described in case 3 of the proof for Theorem 2, the server must then manage
two quantities of execution time: the execution time that will be replenished and the un-
consumed execution time. This could be a concern for a sporadic server implementation
if many successive executions of the sporadic server split the server's execution time into
many small quantitites. However, if the server is not requested for a while, these small
quantities can be merged together. In fact, regardless of how many times a server's execu-
tion time has been split into smaller quantities, if the server is not requested for an amount
of time equal to or greater than its period, then all of these quantifies can be merged together.
An example of this behavior is shown in Figure 14. The sporadic server is the highest-
priority task in the system and has a period of 5 and an execution time of 2. The first four
requests for the server require 0.5 units of execution time. Since the priority level of the
sporadic server becomes idle between each of these requests, the execution time of the
sporadic server has been split four ways, requiring four separate replenishment times. How-
ever, no requests are made to the server from time = 4 to time = 9, one server period
after the last request. By time = 9, the server's capacity has been completely replenished
and merged together.

In this section, we have shown that although a sporadic server can defer its execution
time, it can still be treated as a periodic task. However, we also showed that this is not

50 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Sporadic Server:
T--5, C--2

Sporadic Server
Capacity

0 2 4 6 8 10 12 14 16 18 90

Figure 14. An example of the splitting and merging of sporadic server execution time.

true for a deferrable server. The key difference between these two types of servers is that
when a sporadic server defers its execution, it also defers the replenishment of its execu-
tion time once it is consumed. In contrast, a deferrable server replenishes its execution
time independently of when its execution time is consumed.

3.4. Sporadic server performance

Simulations were conducted to compare the response time performance of the polling, DS,
PE, and SS algorithms for soft deadline aperiodic tasks. For these simulations, a set of
ten periodic tasks with periods ranging from 54 to 1,200 was chosen. Three periodic loads
were simulated for this set of periods: 40%, 69%, and 88%. The 40% load represents
a low periodic load. The 69% case corresponds to the maximum resource utilization for
which the rate monotonic algorithm can always guarantee schedulability, independent of
the particular task periods (Liu and Layland 1973). The 88% case represents the average
case scheduling bound for the rate monotonic algorithm (Lehoczky, Sha, and Ding 1987).
The server period for each of the polling, DS, PE, and SS algorithms was chosen to be
54. The server execution times were selected to be the maximum value for which all the
periodic tasks remain schedulable. The aperiodic load for these simulations was varied
across the range of resource utilization unused by the periodic tasks. The interarrival times
for the aperiodic tasks were modeled using a Poisson arrival pattern with three different
average interarrival times: 18, 36, and 54. The aperiodic service times were modeled using
an exponential distribution.

Figures 15, 16, and 17 present the results of these simulations for each of the mean aperiodic
interarrival times simulated (18, 36, and 54). In each of these figures, three graphs corres-
pond to the different periodic loads simulated (40%, 69%, and 88%). In all the graphs
of these figures, the average aperiodic response time of each algorithm is plotted as a func-
tion of the aperiodic load. The average aperiodic response time of each algorithm is presented
relative to the response time of background aperiodic service. In other words, the average
response time equivalent to background service has a value of 1.0 on all the graphs. An
improvement in average aperiodic response time over background service corresponds to
a value of less than 1.0. The lower the response time curve lies on these graphs, the better
the algorithm is for improving aperiodic responsiveness.

A P E R I O D I C TASK S C H E D U L I N G F O R H A R D - R E A L - T I M E SYSTEMS 51

As can be seen from each of the graphs presented in Figures 15, 16, and 17, the DS,
PE, and SS algorithms can provide a substantial reduction in average aperiodic response
time compared to background or polling aperiodic service. These algorithms provide the
greatest improvement for short, frequent aperiodic tasks, as can be seen in the lower left-
hand side of each graph. The performance of the SS algorithm in each of these graphs
is comparable to the performance of the DS and PE algorithms.

Average Response Time
Relative To

Background Service

Periodic Load: 40%

Average Response Time
Relative To

Background Service

Periodic Load: 69%

Average Response Time
Relative To

Background Service

Periodic Load: 88%

1

0.8-

0.6-

0.4-

0.2-

0
(a)

1

0.8-

0.6-

0 .4-

0.2-

0
(b)

1

0.8-

0.6-

0 .4-

0.2-

0
(c)

Mean Aperiodic Execution Time

0.9 23 4.5 6.3 8.1 9,9
I I t I I I

�9 4 1 _ _ _- �9 . .

r ; - - ~ w

I I I] I I
5 15 25 35 45 55

Aperiodic Load (%)

Mean Aperiodic Execution Time

0.9 1.8 23 3.6 4.5 5,4
1 I I I] I

~'- --~ P ~

i I I I I I
5 l0 15 20 25 30

Aperiodic Load (%)

Mean Aperiodic Execution Time

0.18 636 0.54 0.72 0.90 1.08
I I I I I I

- Polling

1.26
q

1 2 3 4 5 6 7
Aperiodic Load (%)

1

-0.8

- 0.6 Server Sizes
4 3 . 6 % D S

-0.4 56.3% PolIing, PE, SS

- 0.2

0

1

-0.8

- - 0.6 Server Sizes
23,7% DS

-0.4 24.8% PoUing.PE, SS

-0.2

0

1

-0.8

- 0.6 Server Sizes
3.9% DS

- 0.4 4.0% Polling. PE. SS

-0 .2

0

Figure 15, SS a lgor i thm pe r fo rmance compar i son , mean aper iodic interarrival t ime = 18,

52 B R I N K L E Y S P R U N T , L U I S H A A N D J O H N L E H O C Z K Y

Average Response Time
Relative To

Background Service

Periodic Load: 40%

1

0.8-

0 .6-

0 .4-

0 .2-

0
(a)

Mean Aperiodic Execution Time

1,8 5.4 9.0 12.6 16.2 19,8
I I I I I I

. • ' "

~- - - -a SS

I I r J I I
5 15 25 35 45 55

Aperiodic Load (%)

1

0.8

0.6 Server Sizes
43,6% DS

- 0.4 56.3% Polling, PE. SS

- 0.2

0

Average Response Time
Relative To

Background Service

Periodic Load: 69%

1

0.8-

0 .6 -

0 .4 -

0 . 2 -

0

(b)

Mean Aperiodic Execution Time

1.8 3.6 5.4 7.2 9.0 10.8
I [J I I I

: : Po.mng i m
Q'-... (D D~ 1/

) J [I (I
5 10 15 20 25 30

Aperiodic Load (%)

1

-0 .8

- 0.6 Server Sizes
23.7% DS

-0 .4 24.8% PollJng, PE, SS

-0 .2

0

Average Response Time
Relative To

Background Service

Periodic Load: 88%

1

0 . 8 -

0 . 6 -

0 . 4 -

0 . 2 -

0
(c)

Mean Aperiodic Execution Time

0.36 0.72 1.08 1.4~. 1.80 2.16 2.52
I I I I I f I

PODll~ng

&__ .~

1 2 3 4 5 6 7
Aperiodic Load (%)

--0.8

- 0.6 Server Sizes
3.9% DS

-- 0A. 4.0% Polling. PE, SS

- 0 . 2

Figure 16 SS a l g o r i t h m p e r f o r m a n c e c o m p a r i s o n m e a n a p e r i o d i c in terarr ival t i m e = 36.

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 53

Average Response Time
Relative To

Background Service

Periodic Load: 40%

Average Response Time
Relative To

Backgrouad Service

Periodic Load: 69%

Average Response Time
Relative To

Background Service

Periodic Load: 88%

1

0.8

0.6

0 . 4 -

0 . 2 -

0
(a)

1

0 .8 -

0 .6 -

0 .4 -

0 .2-

0

Co)

1

0.8-

0 .6-

0 ,4-

0 ,2-

0
(c)

Mean Aperiodic Execution Time

2.7 g,1 13.5 18.9 24.3 29,7
I I I I I . 1 .

A- - - -~ SS

I I q I I [
5 15 25 35 45 55

Aperiodic Load (%)

Mean Aperiodic Execution Time

2.7 5.4 8.1 10.8 13.5 16.2
I I I I I I

I I I i I 1
5 10 15 20 25 30

Aperiodic Load (%)

Mean Aperiodic Execution Time

0.54 1,08 1.62 2,16 2.70 3.24 3.78
I I t I I I I

8....8 P~-

1 2 3 4 5 6 7

Aperiodic Load (%)

-0.8

-0 ,6 Server Sizes
43.6% DS

- 0.4 56.3% Polling, FE, SS

-0 .2

0

1

- 0.8

-0 .6

-0 .4

- 0.2

0

1

-0 .8

- 0.6

- 0 . 4

- 0.2

0

Server Sizes
23.7% DS

24.8% Polling, PE, SS

Server Sizes
3.9% DS

4.0% Polling, PE, SS

Figure 17. SS algorithm performance comparison, mean aperiodic interarrival time = 54.

Referring to the 40 % periodic load case presented in graphs 15a, 16a, and 17a, the per-
formance of the SS and PE algorithms becomes better than the performance of the DS
algorithm as the aperiodic load increases. The performance of the DS algorithm even
becomes worse than the performance of polling for high aperiodic load. This increase in
the relative response time for the DS algorithm is due to the smaller server size of 43.6%
compared to a server size of 56.3% for the polling, PE, and SS algorithms. The larger

54 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

server size of the SS algorithm is an advantage over the DS algorithm for a task set with
a moderate periodic load and a high aperiodic load.

The 69% and 88% periodic load cases presented in graphs (b) and (c) of Figures 15,
16, and 17 show that the average response time of the SS algorithm becomes slightly higher
than the response time of the DS and PE algorithms for moderate to high aperiodic load.
The behavior is not attributable to a difference in server size, because as the periodic load
increases, the difference in server sizes diminishes. The difference between the DS server
size and server size for the polling, PE, and SS algorithms is about 1% for a periodic load
of 69% and decreases to about 0.1% for a periodic load of 88%. The cause for the slightly
higher response time of the SS algorithm is its more restrictive replenishment method,
as discussed in Section 3.3. The DS and PE algorithms periodically replenish their server
execution time independent of when the server's execution time was consumed. The SS
algorithm replenishes consumed server execution time in a sporadic manner that depends
upon when the execution time is consumed. On the average, once server execution time
is exhausted, aperiodic tasks must wait longer for the SS algorithm to replenish its server
execution time than with the DS or PE algorithms.

4. Scheduling sporadic tasks

One important type of aperiodic task that is not generally supported by previous aperiodic
service algorithms is a sporadic task, which is an aperiodic task with a hard deadline and
a minimum interarrival time. To guarantee a hard deadline for a sporadic task, a high-
priority server can be created to exclusively service the sporadic task. This server preserves
its execution time at its original priority level until it is needed by the sporadic task. To
guarantee that the server will always have sufficient execution time to meet the sporadic
task's deadline, a minimum interarrival time restriction must be placed upon the sporadic
task. This minimum interarrival time must be equal to or greater than the period of the
server task. As long as the sporadic task does not request service more frequently than
the minimum interarrival time, its hard deadline can be guaranteed. The SS algorithm can
be used to provide a guarantee for a sporadic task as long as the aperiodic task's deadline
is equal to or greater than its minimum interarrival time. However, for the cases when
the deadline is shorter than the minimum interarrival time, a different priority assignment
for the sporadic server and a different schedulability analysis are necessary. The priority
of the sporadic server should be based upon the deadline of its associated sporadic task,
not upon the maximum arrival rate of the sporadic task. This type of priority assignment,
first considered by Leung and Whitehead in (1982), is referred to as deadline monotonic
and requires a schedulability analysis different from that for a rate monotonic priority assign-
ment. Apart from the assignment of server priority, the operation of a deadline monotonic
sporadic server is identical to that of the SS algorithm as presented in Section 3.1. Section
4.1 demonstrates the necessity of a deadline monotonic priority assignment for a short
deadline sporadic task and describes the schedulability analysis for task set where the
priorities of the periodic tasks are assigned by the rate monotonic algorithm and the priorities
of the sporadic servers are assigned by the deadline monotonic algorithm.

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 55

Periodic Task Exec Time Period

4 12

4 20

Ut i l izat ion

33.3%

20.0%

Aperiodic Task

I I

Minimum

Exec Time Interarr ival Uti l izat ion
Time

Deadline

8 32 25.0% 10

Figure 18 Periodic task set with short deadline aperiodic task.

4.1. A simple example of the deadline monotonic priority assignment

The necessity for a deadline monotonic priority assignment for a short deadline sporadic
task will be illustrated with a simple example that shows how a rate monotonic priority
assignment cannot guarantee the sporadic task's hard deadline, while a deadline monotonic
priority assignment can be used to guarantee that the hard deadline will always be met.
The set of tasks presented in Figure 18 is used for this example.

Figure 19 presents the execution of these tasks using the rate monotonic priority assign-
ment for the sporadic task. In Figure 19 a high priority is represented by a low number.
Note that the rate monotonic algorithm assigns the lowest priority to the sporadic task because
of its long minimum interarrival time. The task execution graph presented in Figure 19
assumes that requests for both periodic tasks and the sporadic task occur at time = 0. Both
periodic tasks meet their deadlines, but the sporadic task completes only 2 of the required
8 units of execution time before it misses its deadline. Clearly, the rate monotonic algorithm
is inappropriate for this task set.

Since a higher priority is needed for the short deadline sporadic task, one might con-
sider treating it as a periodic task with a period of 10. This would give the sporadic task
the highest priority and guarantee that its deadline would be met. However, this would
cause other problems. The sporadic task only needs a resource utilization of 25 % to meet
its deadline. Treating it as a periodic task with a period of 10 means that a resource utiliza-
tion of 80% (an execution time of 8 units divided by a period of 10 units) would be dedicated
to a task that needs only 25 %. This is a very wasteful scheduling policy. Also, if the prior-
ity of the sporadic task is increased in this manner, the total utilization required to schedule
all three tasks is now 133.3% (33% + 20% + 80%), making this an infeasible schedule.
A different method is needed that will assign priorities such that all their deadlines will
be met using an efficient level of scheduled resource utilization.

56 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

Rate Monotonic Priority Assignment:

Rate Exec Time Deadline

~ 12 4 12

20 4 20

32 8 10 I I

Priority

1

2

3

Task
Execution

Aperiodic Missed
Request Deadline

0 2 4 6 8 10 12 14 16 18 20

Figure 19. Example of rate monotonic priority assignment for a short deadline sporadic task.

A deadline monotonic priority assignment can be used to efficiently schedule the task
set presented in Figure 18. A sporadic server is created with an execution time of 8 units
and a period of 32 units to service the short deadline sporadic task. The priority of the
sporadic task is assigned based upon the deadline of the task it is servicing, not upon its
period. In other words, the rate monotonic algorithm is used to assign priorities for the
periodic tasks, and the priority of the sporadic task is assigned as if its rate of occurrence
were equal to its deadline. The task execution graph for this priority assignment is presented
in Figure 20. The sporadic task now has the highest priority and meets its deadline. The
execution of the periodic tasks is delayed but both still meet their deadlines.

Now that we have shown that a deadline monotonic priority assignment can be used to
guarantee that a sporadic task will meet its deadline, we need to be able to perform a
schedulability analysis that will indicate whether a deadline monotonic priority assignment
for the sporadic server with a rate monotonic priority assignment for the periodic tasks
is feasible for a given task set. The deadline monotonic priority assignment raises the priority
of the sporadic server above the priority that would be assigned by the rate monotonic
algorithm. As such, the sporadic server can be considered a low-priority task that is allowed
to block a higher-priority task from executing. A similar problem can occur when periodic

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 57

Deadline

I I

Monotonic Priority Assignment:

Rate Exec Time Deadline Priority

32 8 10 1

12 4 12 2

20 4 20 3

Task
Execution

Aperiodic Deadline
Request Met

0 2 4 6 8 10 12 14 16 18 20

Figure 20. Example of deadline monotonic priority assignment for a short deadline sporadic task.

tasks that share data using critical sections are scheduled using the rate monotonic algorithm.
A low-priority task that has already entered a critical section can block the execution of
a high-priority task that needs to enter the critical section. The blocking of the high-priority
task continues as long as the critical section is blocked by the lower-priority task. Sha,
Rajkumar, and Lehoczky (1987) have developed the priority ceiling protocol for a set of
periodic tasks that share data using critical sections) This protocol establishes a set of suf-
ficient conditions under which the periodic tasks can be scheduled using the rate monotonic
algorithm. The schedulability analysis equations developed for the priority ceiling proto-
cols can be used to test the schedulability of sporadic servers with deadline monotonic
priority assignments:

u 1 <_ i < n, CI + C z + . . . + Ci + Bi < i (2 vi - 1) (1)

Vi 1 < i < n, m i n Uj Tj __IT k + C/ + _ _ _< 1 (2)

L
(k, /) E R i

58 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

where Ci and T/are respectively the execution time and period of task %; Ui = Ci/Ti is
the utilization of task 7"i; and R i = [(k,l) I 1 <_ k <_ i , l = 1 lTi/Tk_] I. The term B i is
the worst-case blocking time for task ri.

Equations 1 and 2 were derived from equations developed for testing the schedulability
of a set of periodic tasks whose priorities have been assigned using the rate monotonic
algorithm. Equation 1 was derived using the worst-case utilization bound equation for
scheduling periodic tasks developed by Liu and Layland (1973), which, under the absolute
worst-case conditions, provides a sufficient condition for determining schedulability of a
rate monotonic priority assignment. Equation 2 was derived from an equation developed
by Lehoczky, Sha, and Ding (1987) that provides necessary and sufficient conditions for
determining schedulability of a rate monotonic priority assignment. Both Equations 1 and
2 provide sufficient conditions under which a periodic task set that allows lower-priority
tasks to block higher-priority tasks can be scheduled by the rate monotonic algorithm.
However, Equation 1 represents the absolute worst-case conditions, and a much tighter
Characterization is provided by Equation 2.

The blocking term, Bi, in Equations 1 and 2 represents the amount of time that a lower-
priority task can block a higher-priority task from executing. For a sporadic server with
a deadline monotonic priority, B i is used to represent the amount of time the sporadic
server can block a periodic task that has a higher priority than the rate monotonic priority
of the sporadic server. To check the schedulability of a periodic task set with a deadline
monotonic sporadic server, the term B i is set equal to the execution time of the sporadic
server for all ri with a priority less than or equal to the priority or the sporadic server
and greater than the sporadic server's original rate monotonic priority. For all ~'i with a
priority less than the sporadic server's original rate monotonic priority, the sporadic server
should be treated normally (i.e., treated as a normal sporadic server with a rate monotonic
priority assignment). For all ~'i with a priority greater than the priority of the sporadic
server, the corresponding value of B i is set to zero.

The use of Equations 1 and 2 will be demonstrated with the task set presented in Figure
18. Let ~'1 and r2 be the periodic tasks and let r3 be the short deadline sporadic task. The
following are the parameters for each task:

Task G ri Bi

rl 4 12 8
7"2 4 20 8
r3 8 32 0

Evaluation of Equation

i = 1 , --C~ +
T,
4 +
12

1 proceeds as follows:

B I < 1

rl
__8_<1
12

1 2 < 1
12

APERIODIC TASK SCHEDULING FOR HARD-REAL-TIME SYSTEMS 59

i = 2 , --C~ +__C2 +__B2_< 2(2 ~_1)
r, r~ r~

4 + 4 + 8 _ < 0.824

12 20 20

5__66 >- 0.824

60

The inequality for i = 1 holds, but the inequality for i = 2 does not; therefore it is not
necessary to check the i = 3 case and Equation 2 must now be used.

The evaluation of Equation 2 proceeds as follows:

i = l : Check if C1 + B 1 < Tl. S ince4 + 8 < 12, taSkr l iSschedulable .

i = 2: Check whether either of the following two inequalities hold:

(k,/)

(1,1) C ~ + C z + B 2 < T ~ 4 + 4 + 8 > _ 1 2
(2,1) 2C~ + C2+B2 --- T~ 8 + 4 + 8 _< 20

The inequality for (k,l) = (2,1) holds and therefore, rE is schedulable.

i = 3: Check whether any of the following inequalities hold:

(k,#

(1,1) C1 + 2(?2 + C3 + B3 -< T1 4 + 8 + 8 + 0 - 12
(1,2) 2C1 + 26"2 + C3 + B3 --< 2T~ 8 + 8 + 8 + 0 < 24
(2,1) 2C1 + C2 + C3 + B3 < 8T2 8 + 4 + 8 + 0 _< 20
(3,1) 3C1 + 2C2 + C3 + B3 -< 8T2 1 2 + 8 + 8 + 0 < 32

Since all the inequalities except (k,/) = (1,1) hold, 73 is schedulable. Note that it would
have been sufficient to stop checking after finding one inequality that holds for each value
of i; all the inequalities are listed here for completeness only.

5. Summary and conclusions

This article described the Sporadic Server (SS) algorithm, a general algorithm for scheduling
soft and hard deadline aperiodic tasks in real-time systems. The SS algorithm creates a
server with a given period and utilization. The server maintains its utilization until it is
needed by an aperiodic task and replenishes any consumed utilization in a sporadic man-
ner based upon when the utilization is consumed. For soft deadline aperiodic tasks, a high-
priority sporadic server is created that is shared by the soft deadline aperiodic tasks. For
hard deadline aperiodic tasks (sporadic tasks), an individual sporadic server is dedicated
to each hard deadline aperiodic task in order to guarantee that its deadline will always be met.

60 BRINKLEY SPRUNT, LUI SHA AND JOHN LEHOCZKY

The SS algorithm was shown to have the low implementation complexity advantage of
the Deferrable Server (DS) algorithm and the server size advantage of the Priority Exchange
(PE) algorithm, and to provide a response time performance for soft deadline aperiodic
tasks that is comparable to that attainable with either the DS or PE algorithms. In terms
of schedulability, it was shown that a sporadic server can be treated as a periodic task hav-
ing the same period and execution time. For short deadline sporadic tasks, it was also shown
that the SS algorithm can guarantee their deadlines by using a deadline monotonic priority
assignment rather than a rate monotonic priority assignment. Finally, it was shown that
the schedulability analysis formulas developed for the priority ceiling protocols can be used
to determine the schedulability of deadline monotonic sporadic servers.

Acknowledgments

The authors would like to thank Ragunathan Rajkumar for his comments and help with
this work.

This work was sponsored in part by the Office of Naval Research under contract N00014-
84-K-0734, in part by the Naval Ocean System Center under contract N66001-87-C-0155,
in part by Southeastern Center for Electrical Engineering Education, and in part by the
Federal Systems Division of IBM Corporation under University Agreement YA-278067.

Notes

1. See Sprunt, Lehoczky, and Sha 1988 for information on taking advantage of the stochastic execution time of
periodic tasks.

2. For the case when two or more periodic tasks of equal priority are the highest priority tasks that are ready
to execute, the requirement is that one of these tasks must execute.

3. See Sprunt, Sha, Lehoczky 1988 for information regarding the interaction of the priority inheritance protocols
and sporadic servers.

References

Borger, M. W. 1987. I/AXE/_2V Experimentation: Programming a Real-Time Periodic Task Dispatcher using VAX-
ELN Ada 1.I. Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA 15213.

Lehoczky, J. P., L. Sha, and Y. Ding. 1987. The Rate Monotonic Scheduling Algorithm: Exact Characterization
and Average Case Behavior. Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213.

Lehoczky, J. P., L. Sha, and J. K. Strosnider. 1987. Enhanced Aperiodic Responsiveness in Hard-Real-Time
Environments. Proc. IEEE Real-Time Systems Symposium, San Jose, CA, pp. 261-270.

Leung, J. Y.-T., and J. Whitehead. 1982. On the Complexity of Fixed-Priority Scheduling of Periodic Real-Time
Tasks. Performance Evaluation 2: 237-250.

Liu, C. L., and J. W. Layland. 1973. Scheduling Algorithms for Multiprogramming in a Hard-Real-Time
Environment. JACM 20 (January): 46-61.

Mok, A. K.-L. 1983. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time Environ-
ment. Ph.D. Dissertation, M.I.T., Cambridge, MA 02139.

Sha, L., and J. Goodenough. 1988. Real-Time Scheduling Theory in Ada. Software Engineering Institute, Carnegie
Mellon University.

Sha, L., J. P. Lehoczky, and R. Rajkumar. 1986. Solutions for Some Practical Problems in Prioritized Preemp-
tive Scheduling. Proc. IEEE Real-Time Systems Symposium, New Orleans, LA, pp. 181-191.

Sha, L., R. Rajkumar, and J. E Lehoczky. 1987. Prior/ty Inheritance Protocols: An Approach to Real-Time Synch-
ronization. Technical Report CMU-CS-87-181, Computer Science Department, Carnegie Mellon University,
Pittsburgh, PA 15213.

Sprunt, B., Sha L., and Lehoczky, J. P. 1988. Scheduling Sporadic and Aperiodic Events in a Hard Real-Time
System. Software Engineering Institute, Carnegie Mellon University. Submitted for publication.

Sprunt, B., J. P. Lehoczky, and L. Sha. 1988. Exploiting Unused Periodic Time for Aperiodic Service using
the Extended Priority Exchange Algorithm. Proc. IEEE Real-Time Systems Symposium, Huntsville, AL.

Strosnider, J. K. 1988. Highly Responsive Real-Time Token Rings. Ph.D. Dissertation, Carnegie Mellon Univer-
sity, Pittsburgh, PA 15213.

