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S UMMAR Y 

The data base of known protein structures contains a tremendous amount of information on protein- 
solvent systems. Boltzmann's principle enables the extraction of this information in the form of potentials of 
mean force. The resulting force field constitutes an energetic model for protein-solvent systems. We outline 
the basic physical principles of this approach to protein folding and summarize several techniques which are 
useful in the development of knowledge-based force fields. Among the applications presented are the 
validation of experimentally determined protein structures, data base searches which aim at the identification 
of native-like sequence structure pairs, sequence structure alignments and the calculation of protein confor- 
mations from amino acid sequences. 

I N T R O D U C T I O N  

The protein folding problem belongs to the most fascinating and important problems in con- 
temporary biology. A satisfying solution would pave the way for a vast number of scientific and 
technological applications and it would ultimately yield a deep understanding of the protein 
folding process itself. Over the past decades the folding problem has resisted the attacks of intense 
theoretical research and it is only recently that the problem seems to give way to the invention of 
new strategies [1]. These strategies are based on the analysis of known three-dimensional (3D) 
structures of proteins using statistical procedures whose roots are in statistical physics. The 
results obtained so far give fair promise that in the near future the unknown structures of a 
substantial number of sequences will be discovered by computational methods. 

In this review we summarize basic concepts and techniques developed in our laboratory, 
discuss the most important results obtained so far, assess the current state of the art and glance 
at the applications which are straight ahead of us and within sight. The field has gained momen- 
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rum. Therefore, the material presented will not only refer to published papers but to a substantial 
extent covers work in progress. In our presentation we tried to suit the general reader and we hope 
that we reach a large audience. 

GENERALOUTLINE 

The 3D structures of proteins solved by X-ray analysis and nuclear magnetic resonance (NMR) 
contain a tremendous amount of information on the protein-solvent system. The Brookhaven 
protein data bank [2] currently holds in the order of 300 structures of unrelated or only distantly 
related proteins. The number of solved structures exceeds this number by far, since many 
researchers do not submit their structures to the data base. The public domain structures contain 
all the information on the relationship between amino acid sequences and associated native folds 
which we can trust with some confidence. 

A long-standing goal in protein structure theory is the development of force fields and energy 
functions for the protein-solvent system, which could be used to calculate native folds solely from 
the information contained in amino acid sequences. As outlined in Fig. 1, the goal of the proce- 
dures summarized in this review is the extraction of a force field from a data base of known 3D 
structures, which reasonably models the protein-solvent system. If we succeed in this endeavour 
then the force field obtained can be employed to determine protein structures by computational 

means. 
Our first goal is to present the basic techniques required for the compilation of knowledge- 

based force fields from a set of experimental data. The next section summarizes the basic physical 
principles, comments on the differences between the traditional semi-empirical and the new know- 
ledge-based approach, and reviews the formal tools required. Subsequently, we focus on the 
application of these concepts to intramolecular pair interactions and protein-solvent interactions, 
we present techniques which are useful for the assessment of the predictive power of force 
fields, and we comment on the current predictive power of the force field developed in our 

laboratory. 
Another section is devoted to applications in structural biology. We present techniques for 

analysis of conformational energies which are useful in the validation of experimentally deter- 
mined structures. We outline the basic strategies used for sequence structure alignments required 
for data base searches. The task is the identification of native-like sequence structure pairs by 
combining known sequences with known structures, We then address the problem of calculating 
proteins structures from scratch, a most difficult endeavour due to the astronomical dimensions 
of conformation space. In the closing section we glance at related work in other laboratories and 
take an outlook on the developments straight ahead. The material presented in the following 
section is quite general. Readers not fond of formulas may skip this section in a first reading. 

Before we proceed we need to clarify several basic terms. The term energy refers to the confor- 
mational energy of an individual polypeptide chain and its interaction energy with the surround- 
ings. The energy is a function of the conformational variables of the system (e.g. Cartesian 
coordinates, distances between atoms, etc.). Taking the derivative of the energy with respect to 
the conformational variables we obtain the force field of the molecule. Energy functions and force 
fields therefore, are closely related physical quantities which constitute an energetic model of a 
real physical system. We interchangably use the terms energy function and force field when we 
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Fig. 1. Outiine of  the mean field approach to protein folding. The set of  avai!able 3D structures of proteins is used to 
extract a data-base-derived force field. If this attempt is successful the force field can be employed in the computational 
determination of  protein structures. 

refer to the energetic model of  the system. The term potential or potential function is often 

confined to pair interaction energies but here we use this term as a synonym for energy functions. 
Energy and force are microscopic quantities of  the system. In contrast free energy is a macro- 

scopic quantity referring to an ensemble of  a large number  of  individual molecules. The free 

energy of  a system depends on the energetic features of  the individual molecules (enthalpic 
contributions) as well as on the distribution of the molecules among the various possible micro- 
scopic states (entropic contributions). 

BASIC P H Y S I C A L  P R I N C I P L E S  IN  M O L E C U L A R  F O R C E - F I E L D  D E S I G N  

The design of  macromolecular  force fields can be approached at least f rom two different 
directions. One strategy, the inductive approach, uses the results obtained f rom quantum- 
mechanical calculations on small molecules and thermodynamic and spectroscopic data derived 
f rom simple systems. These data are extrapolated to the macromolecular  level using the hypothe- 
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sis that the complex phenomena of macromolecular systems result from the combination of a 
large number of the same type of interactions as found in the most basic molecular systems. The 
force fields obtained in this approach are called semi-empirical force fields [3 9]. 

The second strategy, the deductive or knowledge-based approach, departs from the opposite 
point of view. The forces encountered in large molecular systems are very complicated. To take 
full account of their complexity the known macromolecular structures are taken as the only 
reliable source of information. The goal is to extract the forces and potentials stabilizing native 
folds in solution from the set of known structures. If this approach is successful then the poten- 
tials derived from the data base of known structures can be recombined yielding a model for the 
force field of an amino sequence of a yet unknown structure. The resulting force field would then 
escort the computational determination of the protein's native fold. 

The inductive approach has been extensively explored during the last two decades resulting in 
the design of several semi-empirical force fields. However, only recently the deductive or knowl- 
edge-based approach became a field of intense study due to the growing data base of experimen- 
tally determined 3D structures of proteins on the one hand, and the application of powerful 
concepts of statistical physics on the other. 

Two important physical principles are common to both approaches. Both rely on the principle 
that, in equilibrium, thermodynamic systems attain the global minimum of free energy. The 
applicability of this principle to protein-solvent systems was first demonstrated by Anfinsen [10] 
on ribonuclease and was corroborated by unfolding and refolding studies on many proteins [11]. 
The folding postulate is a form of the minimum-energy principle adapted to protein-solvent 
systems: In equilibrium the native state of the protein-solvent system corresponds to the global 
minimum o f free energy. 

A macroscopic state of a molecular system contains a large number of individual molecules. At 
the global minimum of free energy the individual molecules may adopt one particular or many 
different microscopic states or conformations. In equilibrium, under physiological conditions, 
soluble globular proteins usually adopt one or several closely related conformations. In the case 
of short peptides however, the individual molecules are often distributed over a range of dissimi- 
lar conformations [12,13]. 

The distribution of molecules among the microscopic states is governed by Boltzmann's princi- 
ple, the second principle common to the inductive and deductive approaches. This law connects 
the energy E of a system to its probability density function p. Using discrete variables Boltzmann's 
law can be written in the form 

Pijk = z-I exp(-EijkT) (1) 

where k and T are Boltzmann's constant and the absolute temperature, respectively, and the 
subscripts i, j, k,... correspond to the variables of the system. The quantity Z 

Z = ~ exp (-Eijk/kT) (2) 

is called Boltzmann's sum or partition function. 
The general goal in statistical mechanics is the calculation of the partition function Z and 

probabilities Pijk from a given function Eij k. Then the macroscopic thermodynamic quantities of 
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the system can be derived from Z and Pijk. This approach in statistical mechanics faces two very 
difficult problems which have to be solved successively: (1) It requires the design of an energy 
function which reasonably models the system and (2) It demands the calculation of the partition 
function by analytical or numerical techniques. In general the calculations succeed only for very 
simple systems or for systems which have only a small number of possible states. 

In this form (Eqs. 1 and 2) Boltzmann's law is used to calculate observable quantities from first 
principles. The important role of experimental data in the system of interest is to check the 
calculations and it is generally agreed that we have gained a deep physical understanding of a real 
physical system if the calculations match the experimental data. Here again we encounter the 
inductive approach. 

The deductive approach starts from the inverse Boltzmann law [14], i.e. 

Eij k = -kTln(fijk) + kTln Z (3) 

where the energy function Eij k is called potential of mean force. The energy of the state labelled by 
i, j, k .... is derived from the relative frequencies fijk obtained from measurements on this state. The 
relative frequencies fijk are equivalent to the probability densities Pijk in the sense that, in the limit 
of infinitely many observations, relative frequencies converge to the probability densities, 
limn_~=fijk -- Pijk- Note that ~ijkfijk = ~ijkPi jk  = 1, i.e. relative frequencies and probability densities 
are normalized 

The partition function Z cannot be obtained directly from experimental measurements. How- 
ever, at constant temperature, Z is a constant and does not affect the energy difference between 
particular states. The mean force energies are determined up to this constant term. Choosing 
Z = 1 so that 

gi j  k -~ -kTln(fijk) (4)  

we obtain 

Z =  ij~k exp(-Eijk/kT)= ij~k exp(kTln(fijk)/kT)= ij~k fijk = l  (5) 

which shows that Z = 1 is consistent with the definition of the partition function in Eq. 2. 
The inverted Boltzmann principle is indeed remarkable. The forces which act in solute-solvent 

systems are overwhelmingly complex. Interactions between atoms may be simple combinations of 
basic physical forces in vacuo, but in dense liquid systems the direct interactions are heavily 
disturbed and distorted by the surrounding molecules. Nevertheless, Boltzmann's inverse princi- 
ple enables us to derive the combined action of all these forces in a single strike. The only 
requirement is that we sample a sufficient amount of experimental data of the system of interest. 
In the case of protein structures, of course, sampling of a sufficient amount of experimental data 
is an enormous task. The collection of protein structures solved over the last three decades is a 
rich substrate for Boltzmann's inverse principle. 

However, the successful application of Boltzmann's inverse principle requires additional ingre- 
dients [14]. We have to define an appropriate reference system which can serve as a reference 
frame for the energies derived from Eq. 3. To facilitate the following discussion (but without loss 
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of generality) we assume that the system of interest can be described by a set of four variables i, 
j, k, 1. Often we want to be able to consider some aspect of the system associated with a certain 
subset of variables only, e.g. k and 1, keeping i and j at particular values. In this case we have to 
normalize the subsystem defined by particular values of i and j using 

P~1 = PijkJPij (6) 

Here we used the Einstein convention of summation Pij = Y~klPijkl, i.e. a missing subscript indicates 
summation over that subscript. Then 

k~lPl~ = k~lPijk'/Po = PiJPo = 1 (7) 

i.e. the subsystem is properly normalized. In this way the total system is decomposed into 
subsystems which are defined by the particular values of the superscripts i and j and whose 
independent variables are indicated by the subscripts k and 1. Then the mean force energies of the 
subsystems are 

EOI = -kTln(p~1) (8) 

In order to successfully apply the mean force concept we have to extract the general energetic 
characteristics of the system from the data base. These general characteristics are again mean 
force energies which serve as an energetic frame of reference [14]. Generally a useful reference 
system can be obtained by averaging over a particular set of subsystems. Continuing with the 
four-variable case we choose the subsystem 

Pkl = i~j Pijkl (9a) 

where 

k~l Pkl = ij~klPijkl = 1 (9b) 

which is an average over all subsystems P~I with respect to i and j and we obtain the associated 
mean force energy 

Ekl = -kTln(pkl) (10) 

We are now in a position to compare the mean force energies of the subsystems to the reference 
system. We obtain the net potential of  mean force AEk ij from 

21E~ = E~{ - Ekl = -kTln(p~l/pk,) (11) 

The net mean force energy [14] is the difference between mean force energy and the mean force of 
reference. In subtracting the reference from the mean force we remove all forces which are 



479 

common to all subsystems. The net mean force energy contains only those components which are 
particular to the subsystem labelled by i and j. 

The forces are obtained from the energies by taking the derivatives with respect to the variables 
in the subsystems 

Fl](k) = ~AE~I, F~(1) = ~AE~I (12) 

Since in our formulation the mean force energies are functions of discrete variables, the deriva- 
tives have to be evaluated numerically. This by no means restricts the generality of the approach. 
The difference between discrete and continuous functions, when interpreted as models of physical 
systems, is largely a technical issue. Discrete functions may be represented by series of continuous 
functions which in turn can be differentiated analytically. 

Up to this point our discussion has been very general and not restricted to protein-solvent 
systems. We are now ready to apply these concepts to proteins, which requires the identification 
of useful state variables, subsystems and reference frames. 

K N O W L E D G E - B A S E D  M O L E C U L A R  FORCE FIELDS FOR PROTEIN-SOLVENT 
SYSTEMS 

Mean force potentials for pair interactions 
Native structures of proteins are stabilized by the mutual intramolecular interactions among the 

various protein atoms and the intermolecular interactions of these atoms with the surrounding 
solvent molecules. A particular intramolecular interaction depends on several variables as shown 
schematically in Fig. 2. The interaction is a function of the two participating amino acids a and 
b, the atom types c and d, the separation k of  a and b along the amino acid sequence [15] and the 
spatial distance r between atoms c and d. 

Atomic interactions are generally thought to be symmetric. However, interactions are symmet- 
ric only in the case of free particles. Amino acid sequences are linear chains directed from the N- 
to the C-terminus. Hence the inverse of a sequence grossly differs from the original. This asymme- 
try of the polypeptide backbone is passed on to the intramolecular interactions. Hence, the amino 
acid pairs (a,b) and atom pairs (c,d) are ordered quantities, so that (a,b) # (b,a) and (c,d) ~a (d,c) 
[14]. 

With the exception of the spatial distance r all variables are discrete. Since our goal is the 
compilation of  relative frequencies, the continuous variable r has to be sampled in intervals, i.e. 
r is treated as a discrete variable. The set of  variables (a, b, c, d, k, r) thus defined constitutes a 
model for pair interactions in proteins [14]. All the interactions we encounter in the structure of 
a particular protein can be described by this set of variables. The set a = Val, b = Glu, c = C a, 
d -- C ~, k = 3 and r = 10 (e.g. corresponding to the distance interval 5.0-5.5 A) is an example for 
a particular state. 

Using this model the compilation of relative frequencies fabcdkr from a data base of known 
protein structures is straightforward. Our next task is the choice of useful subsystems and the 
definition of an appropriate reference frame by a proper partitioning of variables. The variables 
a, b, c, d and k define the nature of the interaction. They are constant if we observe a particular 
interaction in different folds but they change if the amino acid sequence is changed. On the other 
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Fig. 2. Important variables of intramolecular pair interactions of proteins and the extraction of mean force energies. A 
particular intramolecular pair interaction depends on the amino acids a and b, atom types c and d (not shown), the 
separation of a and b along the sequence, and the spatial distance r between atoms c and d. In contrast to pair interactions 
of free particles the intramolecular potentials are asymmetric with respect to residues a and b and atoms c and d due to the 
asymmetry of amino acid sequences. The relative frequencies of particular pair interactions are functions of r. They are 
sampled in discrete intervals of r by scanning the proteins in the data base for particular values of a, b, c, d and k. When 
data acquisition is completed the inverse Boltzmann principle is used to transform relative frequencies to mean force 
potentials. 

h a n d  the var iable  r is c o n f o r m a t i o n  dependen t  bu t  i ndependen t  o f  the va r i a t ion  o f  the amino  ac id  

sequence. 

The  subsys tems associa ted  with  these var iables  are the pa i r  in te rac t ion  poten t ia l s  for  amino  

acid  pairs  (a,b) and  a t o m  types  (c,d) o f  sequent ia l  s epa ra t ion  k. These  po ten t ia l s  are funct ions  o f  

r. The  energet ic  f rame o f  reference is ob ta ined  by  averaging  over  the amino  acid  pai rs  (a, b) [14]. 

The  net  mean  force poten t ia l  for  a pa r t i cu la r  pa i r  in te rac t ion  is ob t a ined  f rom 

A E r  abcdk -- E abcdk - E cdk =--kTln(f~abcdk/f~cdk) (13) 

Figures  3 and  4 show several  examples  o f  mean  force poten t ia l s  compi l ed  f rom a d a t a  base  
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Fig. 3. Examples of CItC ~ mean force potentials for separation k = 4 along the amino acid sequence. Energies are scaled 
in the form E/kT. For small values of k particular values of r correlate strongly with local structures. The deep minimum 
of Leu-Leu at r ~ 6 A reflects the strong preference for c~-helical structures. In contrast, (x-helical conformations are 
energetically unfavourable for Thr-Thr. The mixed pairs are intermediate. Thr-Leu, for example, has two minima of 
comparable depth at c~-helical and extended conformations. 

containing 160 individual protein chains corresponding to a total of ~ 40 000 amino acid resi- 
dues. 

Finally, the mutual mean force acting on atoms c and d of amino acids a and b at sequential 
separation k and at spatial distance r is 

F a b c d k  = - 8  A E a b c d k  (14) 
6r r 
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Fig. 4. Examples of CItC I~ interactions for large separations (k > 10) along the sequence. Ile-Ile has a minimum at close 
contacts which is characteristic of hydrophobic pairs. Close contact energies of Glu-Glu are unfavourable. The potential 
has a negative energy for large distances only. 
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Complexity of pair interactions 
The set of variables used to model the pair interactions produces a description of protein 

structures which is of considerable complexity. There are 400 amino acid pairs and, restricting the 
model to the backbone atoms N, C a, C', O and C ~, we have 25 different atom pairs. Thus there 
are l0 000 individual potentials for a particular sequential separation k. 

Since we have to derive the relative frequencies from a data base, we run into the problem of 
sparse data. For small k values the number of observations we may expect for a particular 
interaction is in the order of N/400, where N is the total number of amino acids in the protein 
structure data base. For N = 40 000 the average number of measurements is 100, but for rare 
amino acid pairs the actual number is much smaller and the potentials derived from the raw data 
will be quite unreliable. Procedures have been developed which overcome this problem, allowing 
the extraction of useful potentials even in the case of extremely sparse data [14]. 

Surface energy 
Proteins strongly interact with the surrounding solvent. David Eisenberg and co-workers 

[16,17] and Bowie et al. [18] demonstrated that solvent exposure of amino acids is a sensitive 
parameter which can be used to model the energetic features on the protein-solvent boundary. 
These parameters as well as the solvent preference of amino acids derived independently by 
Sander and co-workers [19,20] capture an important feature of the protein-solvent system. 

Mean force potentials for the interactions of the protein atoms with solvent molecules can be 
obtained in the same way as we have demonstrated for the intramolecular interactions. However, 
solvent molecules are mobile and only a small fraction of the solvent molecules can be located in 
X-ray determinations. Hence, the required experimental information is missing and we have to 
resort to an indirect approach. 

The neighbourhood of atoms buried in the protein interior is fully occupied by protein atoms. 
On the other hand, for surface atoms only a fraction of the surrounding volume is filled by protein 
atoms. The complement of this volume is occupied by solvent molecules. The variable s, corre- 
sponding to the number of protein atoms in a sphere of radius R, serves as a quantitative measure 
of the solvent exposure of an atom located at the centre of this sphere. In addition, solvent 
exposure depends on the atom type c and amino acid a. Again, using Boltzmann's inverse 
principle the mean force of solvent exposure is obtained from the relative frequencies f, cs by 

AE a° = -kTln(fs~C/f c) (15) 

Calculation of conformational energies for sequence structure pairs 
Once the net potentials of mean force are compiled from a data base, they can be used to 

calculate the conformational energy of a protein. In Fig. 5 we outline the computations involved. 
The total intramolecular pair interaction energy of an amino acid sequence S in some conforma- 
tion C is 

AP(S,C) = • ZAE~ "(i)'bG)'c'a'k (16) 
ij cd 

The summation is over all positions i and j in the amino acid sequence and over all atom pairs 
(c,d). a(i) and b(j) are the amino acids at sequence positions i and j, respectively and k = li -Jl .  
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Fig. 5. Outline of the computation of the total pair interaction energy of proteins. The distances between atoms are 
calculated. The residue types a and b, atom types c and d, the separation k along the sequence determine the type of 
potential used to evaluate the energy at distance r. The total pair interaction energy is obtained by summing over all atom 
pairs in the molecule. 

The distance interval r is derived f rom the Cartesian coordinates  o f  a toms c and d o f  amino acids 

a(i) and b(j), respectively. 

The total surface energy is 

AS(S,C) = ~ A E ~  °)'° (17) 

and finally the total combined pair and surface energy is 

AE(S,C) = copAP(S,C) + cosAS(S,C) (18) 

where COp and co s are the relative weights o f  the individual contributions.  The molecular  force field 

F(S,C) is obtained by differentiating AE(S,C) with respect to the conformat iona l  variables o f  C. 

The most  impor tan t  quest ion is, o f  course, whether AE(S,C) is a reasonable energetic model  for 

protein-solvent  systems. To address this question we need reliable tools for  the quality assessment 
o f  macromolecula r  force fields which is the subject o f  the next section. 
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ASSESSMENT OF THE PREDICTIVE POWER OF FORCE FIELDS 

The successful development of reasonable energetic models of protein-solvent systems strongly 
depends on techniques which can be used to judge the quality of the model at each stage of 
development. The folding postulate requires that the native fold has lowest energy among all 
other alternatives. This is a necessary and sufficient criterion which must hold for all sequences, 
including the degenerate case of sequences which have energies similar to the global minimum for 
a range of dissimilar conformations. 

A rigorous proof for a particular sequence Sp requires the computation of E(Sp,Cq) for all 
possible conformations q = 1,...,n which is computationally prohibitive, since n is astronomically 
large. However, if we look at a subset of conformations which includes the native fold CN of Sp, 
then the folding postulate requires E(Sp,CN)< E(Sp,Cq) where q now labels the structures in the 
subset and q ¢ N. If this condition is violated then it will be impossible to identify the native fold 
by minimizing the energy E(Sp,Cq). The condition is necessary but not sufficient, since there may 
be structures outside the test set which have lower energy than the native fold. 

Novotny et al. [21] were the first to apply this principle in their pioneering study on the 
predictive power of semi-empirical force fields. Using two proteins of different architecture they 
prepared two native sequence structure pairs ($1,C1) and ($2,C2) and two misfolded pairs ($1,C2) 
and ($2,C1) by exchanging the sequences. They demonstrated that the force field applied was 
unable to distinguish misfolded from native pairs. In contrast, an early prototype of a knowledge- 
based force field as defined in Eq. 16 has no difficulties in picking the correct native pairs, i.e. 
AE(SI,C1) << 2xE(Sl,C2) and AE(S2,C2) << AE(S2,C1) [22]. 

Hide-and-seek on a polyprotein 

Identification of the native sequence structure pair is, of course, harder if the native fold is 
hidden among a large number of nonnative decoys provided the set of alternative structures 
contains genuine protein folds similar to folds determined by experimental methods. The set of all 
possible fragments Cq of length 1 derived from the structures in the data base is a convenient 
source of alternative conformations. Here 1 is the length of the test sequence Sp whose native fold 
CN is hidden in the pool of fragments. The guiding principle in our search is the energy AE(Sp,Cq). 
The native sequence structure pair is successfully identified if AE(Sp,CN)< AE(Sp,Cp) for all 

q C N .  
In our early studies the knowledge-based force field was able to identify the native fold for a 

large number of proteins [22], indicating the applicability of the mean force approach to protein 
folding. The results obtained have been used recently as a bench-mark to judge the quality of 
alternative force fields or sets of preference parameters [23]. It should be noted however, that the 
force field used by Hendlich et al. [22] was an early prototype. 

The number of decoys obtained from the data base depends on the length of the test sequence. 
This number is large for small proteins. On the other hand only few fragments of the size of large 
proteins can be obtained. Hence, a successful identification is hard for the smaller proteins in the 
test set but for the largest proteins the test is insignificant. Moreover, the results obtained for 
proteins of different length are not comparable. This is a severe drawback prohibiting the calcula- 
tion of a meaningful performance measure over the whole test set. 

To circumvent this problem we constructed a polyprotein from the structures in the data base 
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(manuscript in preparation). Starting at the N-terminus the test sequence S v glides along the 
polyprotein chain, one amino acid at a time, and the energy AE(Sp,Cq) is recorded at each position 
q. Finally the native pair energy AE(Sp,CN) is calculated. Again, if the native pair energy is less 
than AE(Sp,Cq) for all q then the native fold is successfully identified. In constructing the polypro- 
rein, particular care has been taken in designing the linker regions between protein modules. This 
ensures that fragments containing linker regions do not violate general characteristics of protein 
folds making the identification of the native fold as hard as possible. 

Our current version of the polyprotein is composed of 160 experimentally determined folds 
with a total length in the order of n ~ 40 000 residues. The number of  folds encountered by each 
test sequence is n - 1 and since 1 << n these numbers are close to the total length n of the 
polyprotein for all test sequences. Thus the problem of  identifying the correct fold using hide-and- 
seek on a polyprotein is comparably hard for all sequences in the test set. 

The energies sampled along the polyprotein can be transformed to z-scores 

Zpq = (AE(Sp,Cq) - gp)](yp (19) 

m 

where Ep --= ~qAg(Sp,Cq) is the average energy of all conformations Cq with respect to sequence Sp 
and ~p is the corresponding standard deviation. The z-score Zp,N of  the native fold is a quantitative 
measure of the predictive power of a force field with respect to test protein p. The average 

n 

1 ~Zp,N (20) ~ = ~  
P 

obtained from the test set of n sequences is a measure of the overall performance of the force field. 

Predictive power of mean force potentials 
Table 1 summarizes the predictive power of the mean force potentials. The test set'consists of 

157 individual protein chains of known structure. The force field used in this study was compiled 
for the C ~ atoms only. For  all proteins in the test set hide-and-seek was performed on a polypro- 
rein of ~ 40 000 residues, and the number of decoys is of the same order of magnitude. The pair 
energy successfully identifies 148 native conformations. The success of  the surface energy is lower 
(134 successful trials) but it is noteworthy that the average native z-score for the surface energy 
is higher although a smaller fraction of native folds is successfully identified. 

The combined force field identifies all native folds. The average native z-score almost doubles 
when the pair and surface energies are combined. This indicates that the information contained 
in the two terms is complementary. The results also indicate the usefulness of the average native 

TABLE 1 
PREDICTIVE POWER OF MEAN FIELDS 

Force field Total correct" % correct Average native z-score 

Pair 148 94 -5.40 
Surface 134 85 -6.33 
Combined 157 100 -8.02 

a Number of proteins whose native fold is successfully identified. The number of chains in the test set is 157. 
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z-score obtained from the polyprotein as a performance measure of force fields. Even if all native 
folds are identified correctly improvement or deterioration of the force field is reliably monitored 
by this parameter. 

COMPUTATIONAL DETERMINATION OF PROTEIN STRUCTURES 

From the results obtained on the test set we may assume with some confidence that the 
mean-force approach is a powerful tool for the development of force fields for the protein-solvent 
system. At the same time we should be aware of the fact that our present force field is neither 
complete nor optimized. The pair interactions are calculated for the backbone atoms only and the 
surface term is a crude approximation of the actual protein-solvent interactions. In addition the 
quality of the force field depends on several parameters. Such parameters are the grid size used to 
sample intramolecular distances, cut-off distances for the calculation of energies, and approxima- 
tions to the probability density functions from relative frequencies, to mention only a few. 
Optimization of these parameters is laborious but with the help of hide-and-seek the task is 
manageable. 

Theoretical work reaches a state of maturity when the concepts developed can be applied to 
verify experimental data and when the calculations correctly predict the state of a physical system 
ahead of experimental observation. The following sections are devoted to applications of the 
current mean field in protein structural problems. Before we start we introduce the notion of 
sequence structure space which will be useful in the discussion of some peculiarities of protein 
folding and its twin the inverse folding (e.g. Ref. 16). 

Folding and inverse folding in sequence structure space 
At a particular instant of time a protein molecule is identified by two basic features, its amino 

acid sequence and its 3D fold. In Fig. 6 we plot the space of all amino acid sequences versus the 
space of all conformations. Each point in this 2D representation corresponds to a sequence 
structure pair, i.e. a particular sequence Sp folded in a particular conformation Cq, where the 
subscripts p and q run over all possible sequences and conformations, respectively. 

By traversing sequence structure space across vertical lines we explore the conformational 
space of a particular sequence S v. Folding of proteins proceeds along such lines of constant 
sequence. Travelling along horizontal lines we encounter all sequences folded in conformation Cq. 
Movements along such lines require the instantaneous replacement of one or more amino acids 
whereby the conformation is not allowed to relax. Inverse folding is confined to such lines of 
constant conformation. 

Each pair (Sp,Cq) has an associated energy E(Sp,Cq) which in a sense reflects the fitness of the 
pair. Some points in sequence structure space correspond to native pairs. According to the folding 
postulate, native sequence structure pairs have the lowest energy along lines of constant sequence. 
Along such lines we may find only one native pair corresponding to a distinct global energy 
minimum. In equilibrium almost all molecules of an ensemble of this sequence will be found at 
this point in sequence structure space. This corresponds to the native state of a globular protein 
with the free energy of the system at its global minimum. 

However, along lines of constant sequence we may also encounter several pairs whose energies 
are close to the global minimum. Such sequences do not fold to a unique structure. In equilibrium 
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Fig. 6. Sequence structure space. In this representation the universe of all amino acid sequences is plotted against the 
universe of all conformations. Each point in the resulting plane corresponds to a particular sequence Sp folded into a 
particular conformation Cq. For each point (Sp,Cq) there is an associated energy E(Sp,Cq), which in a sense reflects the 
fitness of the sequence structure pair. When plotted in three dimensions the energy forms a landscape over the sequence 
structure plane. Some points in the plane correspond to native sequence structure pairs (represented by solid squares). 
According to the folding postulate these points correspond to global minima along the vertical lines (i.e., constant 
sequence) through these points. 

the individual molecules will be distributed over these low-energy pairs. This situation often 
applies to short polypeptides where, in equilibrium, individual chains travel along paths of 
constant sequence resting at conformations of comparable energy. 

The protein folding problem requires the determination of the native structure from the infor- 
mation contained in the amino acid sequence alone by computational or theoretical methods. In 
terms of sequence structure space the problem can be approached in two successive steps. The 
first step requires the construction or design of an energy function whose global minima along 
lines of constant sequence correspond to the native state(s) of amino acid sequences. If we succeed 
in this endeavour the second step requires that we locate the global minima along lines of constant 
sequence. 

Inverse folding pursues a different goal. Here the problem is to identify sequences which fit into 
a given conformation. Hence, in the inverse folding problem sequence structure space is explored 
along lines of constant conformation. This does not correspond to a physical process. Sequences 
change in the course of evolution but these changes take place on the DNA level and not in a 
protein folded into a rigid structure. 

Proteins frequently adopt similar 3D folds even if they are completely unrelated on the 
sequence level. The current data bases hold a large number of known sequences but only a 
relatively small number of known structures. The native folds of a substantial number of these 
sequences will be similar to a known structure. The goal of inverse folding is to identify the 
sequences in the data base which fit into a known fold. As in the original folding problem, the 
guiding principle is the energy or fitness of sequence structure pairs. 
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There is, however, a subtle difference between the original folding problem and its inverse. In 
the original folding problem the native sequence structure pairs correspond to global minima 
along lines of constant sequence. However, there is no physical principle which guarantees that 
global minima along lines of constant conformation correspond to native sequence structure 
pairs. 

This puts some constraints on the applicability of inverse folding. In general a particular 
conformation does not correspond to the native fold of an amino acid sequence. Noncompact 
and random-coil chains belong to this class. However, there are less trivial cases. To illustrate this 
point let us start at a native pair (S1,C1) in sequence structure space, see Fig. 7. The folding 
postulate guarantees that along constant S~ the energy E(S1,C1) is a global minimum. However, 
along constant C1 we may find sequences which have lower energy, where S 2 is the sequence of 
most favourable energy. The pair ($2,C1) is not necessarily native. Minimizing along constant $2 
we may find some conformation C2 as the native fold of Sa. The conclusion is that a search along 
lines of constant conformation does not necessarily locate a native sequence structure pair. This 
is only the case if at the same time the pair is at a global minimum along the corresponding line 
of constant sequence. 

This has some consequences for the applicability of energy calculations to proteins. In general 
it will not be possible to design proteins by proposing a desired 3D fold followed by the construc- 
tion of a sequence compatible with this fold by minimization in sequence space. The optimal 
sequence may form a native pair with a different conformation, or the sequence may be unstable 

S-1 S-2  

t 
c o n f o r m a t i o n  

s p a c e  

C-2 

C-1 

s e q u e n c e  s p a c e  y 

Fig. 7. Folding and inverse folding in sequence structure space. If point (S~,C1) corresponds to a native sequence structure 
pair, then the folding postulate guarantees that E(S~,C1) is a global minimum along the straight line Sj = constant. 
However, we have no physical principle at hand which prevents that along C~ = constant we find a sequence S 2 and hence 
pair ($2,C1) (filled circle) of  lower energy, i.e. E(S2,C~) < E(S~,C~). Even if ($2,C~) is a global minimum along C~ = constant, 
the pair is not necessarily native. The chances are that $2 forms a native pair with a different conformation C2. In summary, 
if the energy relation between the pairs is of  the form E(S~,C~) < E(S2,C~), minimization along lines of  constant conforma- 
tions in general will not yield physically meaningful results. 
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and may not fold to a unique structure. Hence, a subsequent search in conformation space is 
necessary to keep the designed sequence constant. If this search reveals structures of lower energy 
the designed sequence structure pair is likely to be unstable. We encounter a similar problem in 
sequence structure alignments, which we will discuss below. We now turn to applications of 
knowledge-based mean fields. 

Validation of  experimentally determined structures 
Validation of experimentally determined structures is a difficult problem [24,25]. Several mis- 

traced structures have been discovered by repeated structure determination on the same molecule. 
Validation of experimentally determined folds is one of the most important duties of computa- 
tional techniques in structural biology. It is only recently that the development of computational 
tools has reached a level of sophistication where this task can be approached with some success. 
The profile method invented by Eisenberg and co-workers [17] belongs to the most advanced 
methods in this field. 

At the present stage of development the knowledge-based mean field can be used to analyse the 
distribution of energies in experimentally determined structures. The resulting profiles display 
native-like or nonnative-like features of protein folds. Conformational analysis is performed on 
the pair energy matrix (Fig. 8). Each element % of this matrix corresponds to the pair interaction 
energy of amino acids i and j in the amino acid sequence. The matrix can be analysed in several 

j= i+k  

Fig. 8. k-profile calculated from the pair interaction matrix. Elements e~j of  the energy matrix correspond to the pair 

interaction energy of two residues at sequence positions i and j in the amino acid sequence. The sum over the subset of  
elements Yq% + k collects all energies of  constant  sequence separation k. When plotted as a function of k these values 

constitute an energy profile for a particular sequence structure pair. As indicated k-plots of  native-like sequence structure 
pairs have a pronounced min imum at short sequence separations. 
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ways. As shown in Fig. 8 the sum over diagonals yields the energy content of the matrix as a 
function of sequential separation k. The values are normalized by the number of interactions for 
a particular value of k to account for the variations in sequence length. 

Native sequence structure pairs have a pronounced minimum at small sequential separations 
whose depth is in the order o f -0 .1 .  Maxima or positive values indicate a nonnative sequence 
structure pair. Figure 9 presents several k-plots calculated from structures obtained from X-ray 
analysis. Two of the plots (2GN5, 1PTE) have a nonnative appearance. 

A more detailed view of the energy distribution within a conformation is obtained from the 
total interaction energies of individual residues along the amino acid sequence (Fig. 10). The 
resulting plot serves as an energetic finger print. Figure 11 shows several examples. In the case of 
native folds the energy is below zero for most sequence positions and only occasionally we 
encounter small positive peaks. Large positive peaks indicate strained parts of the chain. 2GN5, 
for example, has positive peaks along the whole sequence. The electron-density interpretation of 
this protein appears to be problematic. We found several entries (e.g. 1PTE) in the Brookhaven 
data base whose total mean force energy and profiles are nonnative. A detailed analysis of these 
structures is in progress. 

Energy profiles are powerful tools. They can be used to identify incorrect chain tracings and 
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Fig. 9. k-profiles of several protein structures determined by X-ray analysis. The energies were calculated from C p 
interactions only. Plastocyanin (1PAZ), myoglobin (1MBA), cz-lactalbumin (1ALC), and immunoglobulin light chain 
(1FB4-L) have native-like profiles. The profiles of bacteriophage M13 gene 5 D N A  binding protein (2GN5) and strepto- 
myces D-alanyl-*D-alanine carboxypeptidase (1PTE) do not resemble native-like profiles. The energies are normalized by 
the number of terms in each diagonal to account for variations in protein size. 
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Fig. 10. Residue profile. The sum ]~j % corresponds to the total interaction energy of a residue at sequence position i with 
respect to all other residues. The resulting profile shows the energy distribution in the molecule as a function of sequence 
position. Generally the residue profiles fluctuate strongly. Fluctuations can be damped using gliding averages along the 
chain. 

problematic structures obtained from NMR studies. They can be employed to guide early inter- 
pretations of electron densities and they can be used to supplement structure calculations from 
NMR studies especially in cases where distance information is sparse. The power of these energet- 
ic tools in experimental structural biology is just beginning to unfold. 

Data base searches 

Frequently unrelated sequences adopt similar folds. In fact it is becoming rather unusual to 
find a completely novel fold in a newly determined protein structure [26]. Prominent examples of 
proteins unrelated in sequence but similar in structure are hexokinase/actin and 44K heat shock- 
cognate protein, and mandelate racemase and muconate lactonizing enzyme [27]. 
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Fig. 11. Residue profiIes for several protein structures determined by X-ray analysis. The energies were calculated from C ~ 
interactions only. In the plastocyanin (i PAZ), myoglobin (1MBA), and c(-lactalbumin (1ALC) profiles the energy remains 
mostly below zero. Only occasionally we encounter small positive peaks. In contrast, the residue profile of 2GN5 contains 
large positive peaks. The conformation appears to be extremely strained. It is noteworthy that this strain is not a 
consequence of steric overlap. The energies for all distances r less than 5 A were excluded from the calculations. The 
window used for gliding averages amounts to 10 residues. 

The current sequence data bases hold a large number of sequences whose structure and func- 
tion is unknown. The native fold of a considerable number of these sequences will be similar to 
some fold in the data base of known structures. Using the mean force energy, proteins unrelated 

in sequence but similar in structure can be discovered [28]. 
Figure 12 outlines the data base search currently being performed in our laboratory. Sequences 

in the SWlSSPROT data base (and other sources) are combined with all available conformations. 
The known structures are joined to a polyprotein and using hide-and-seek the conformational 
mean force energies of a particular sequence are sampled along the polyprotein and transformed 
to z-scores. If the lowest z-score is similar to scores expected for native sequence structure pairs, 
a detailed analysis of the conformational energy is performed. 

Searching the current data bases the number of possible sequence structure pairs is in the order 
of 50 000 x 300 = 15 x 106, equivalent to 50 000 searches along a polyprotein assembled from 300 
structures. A complete search needs considerable computing resources and, therefore, our initial 
search is confined to sequences of less than 200 amino acids. At the current stage our search has 
identified several sequence structure pairs of native-like z-scores. One example is the SWISS- 
PROT entry IMMF$BPPH1, the IMMF control region protein (10 kD) of bacteriophage O-105, 
forming a native-like sequence structure pair with Brookhaven data base entry 1LRD, lambda 
repressor. Another example is COAB$BPFD, the major coat protein precursor of bacteriophages 
FD, F1 and M13, scoring native-like when combined with residues 245 316 of2TS1 (a fragment 
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Fig. 12. Data base search for native-like sequence structure pairs. A polyprotein is constructed from the set of available 
protein structures. Sequences taken from the SWISSPROT and similar data bases are sent through the polyprotein and 
the energies and z-scores are recorded for each sequence. If the most favourable z-score of a particular sequence is 
native-like, the corresponding fragment is cut from the polyprotein and the profiles are investigated. If the profile shape 
is native-like we may assume with some confidence that we have discovered the native fold of the corresponding sequence. 
The sequences of many of the native-like sequence structure pairs encountered in our search have very low but still 
discernible homology to the sequence associated with the high scoring fold (20 to 30%). The most interesting native-like 
sequence structure pairs are those whose sequence identity is below 20%. Figure 13 shows two examples. 

f r o m  t y r o s y l - t R N A - s y n t h a s e ) .  F i g u r e  13 shows a de ta i led  energy  ana lys i s  o f  these two examples .  

A de ta i led  r e p o r t  o n  the  na t ive - l ike  sequence  s t ruc tu re  pairs  ident i f ied in  this search is in  p r epa ra -  

t ion .  

Sequence structure alignments 
In  sequence  s t ruc tu re  a l i g n m e n t  the goal  is to o p t i m a l l y  t h r e a d  a g iven  sequence  t h r o u g h  a 

g iven  fold. R e a s o n a b l e  a l i g n m e n t s  are genera l ly  poss ib le  on ly  if  gaps  are a l lowed  in  the  sequence  

a n d / o r  s t ruc ture .  A l t h o u g h  h i d e - an d - s eek  is a power fu l  too l  for  the d e v e l o p m e n t  a n d  qua l i t y  

a s ses smen t  o f  force fields, its va lue  as a tool  to iden t i fy  na t ive - l ike  sequence  s t ruc tu re  pa i rs  is 
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Fig. 13. Native-like sequence structure pairs found in a data base searches. The sequence of the IMMF control region 
10-kD protein of bacteriophage ~-105 (SWISSPROT entry IMMF$BPPH1) forms a native-like pair with the X-repressor 
structure (Brookhaven entry 1LRD). The amino acid identity to the 1LRD sequence is 18%. At the C-terminus the residue 
profile points to a strained conformation. The native fold of IMMF$BPPH 1 may deviate from the 1LRD structure in this 
region. COABSBPFD, the coat protein B precursor of bacteriophages FD, F1 and M13 forms a native-like pair with 
fragment 245-316 of 2TS 1, tyrosyl-tRNA-synthase. The amino acid identity of COABSBPFD to the 2TS 1 fragment is 7%. 

restricted due to the neglect of  gaps. Therefore, many native-like sequence structure pairs will be 
missed in the data base search discussed above. 

More sophisticated techniques are necessary which account for the possibility of gaps. Such 
techniques can be derived from dynamic-programming algorithms similar to the techniques 
employed in conventional sequence alignment [29,30]. Sequence alignment techniques based on 
dynamic programming generally require two steps: (1) the calculation of a comparison matrix 
where each matrix element cij measures the similarity between amino acids ai and bj (where a i is 
at position i in sequence A and bj is at position j in sequence B, respectively) and (2) the 
calculation of an optimal path through the comparison matrix. 

In the calculation of sequence structure alignments we can employ the same techniques. The 
major problem is the calculation of an appropriate comparison matrix whose elements measure 
the mean force energy or fitness of amino acid ai of sequence A at location bj in conformation B. 
To evaluate this energy the positions of  all other amino acids in conformation B must be known. 
This is a severe complication as compared to sequence alignments where the matrix elements cij 
are strictly local quantities. One approach to overcome this problem was recently proposed by 
Jones et al. [31], 
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energy and profiles 
native like 

native like sequence 
' structure pair 

Fig. 14. Outline of sequence structure alignment. The amino acid at position i in the sequence is placed at position j in the 
conformation and the total interaction energy of this residue is calculated. The energy obtained constitutes element c~j of 
the comparison matrix. Repeating the process for all sequence structure positions yields the complete comparison matrix. 
As indicated, optimal paths through the comparison matrix are obtained from dynamic programming techniques. Then 
all unpaired sequence structure positions are removed. For the aligned pairs the amino acids in the structure are replaced 
by the corresponding residues in the sequence (bold lines in the lower structure). Alignments can be calculated for 
arbitrary sequence structure pairs. Native-like energies and profiles are necessary conditions for reasonable alignments. 

Our current approach, summarized in Fig. 14, uses the field produced by the native structure 
retaining the original amino acid sequence. A similar approach is currently being explored by 

David Eisenberg and co-workers (personal communication). The amino acid at position bj in 

conformation B is replaced by ai and the interaction and surface energy of this residue are 
calculated yielding the matrix element cij. In this way every amino acid in sequence A is placed at 
every position of  structure B yielding the complete comparison matrix. The calculation of the 
optimal path through this matrix, using standard techniques borrowed from sequence-sequence 
alignment, is straightforward. Then, for all aligned pairs, the residue in conformation B is 
replaced by the corresponding amino acid in sequence A. The final aligned sequence structure 
pair is obtained by removing all unpaired residues f rom A and B. 
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Al ignment s  can be ca lcu la ted  for  a rb i t r a ry  sequence s t ructure  pairs.  Thus,  a mos t  i m p o r t a n t  

last  step is the va l ida t ion  o f  the a l ignment .  The  qual i ty  o f  the a l ignment  is j udged  by  the mean  

force energy ca lcu la ted  f rom the a l igned sequence s t ructure  pair .  The  energy o f  na t ive  sequence 

s t ructure  pairs  is k n o w n  and  the energy o f  nat ive- l ike  sequence s t ructure  a l ignments  mus t  be 

relat ively close to  this energy value. I f  the energy and  the profi les der ived f rom the energy mat r ix  

are nat ive- l ike  we m a y  assume with  some confidence tha t  the a l igned regions compr i se  a reason-  

able mode l  for  the u n k n o w n  fold. 

In  Fig.  15 we summar ize  the results  ob ta ined  in the case o f  p l a s tocyan in  and  azurin.  W h e n  the 

p l a s tocyan in  sequence is a l igned with  all s t ructures  in the da t a  base  the nat ive  p l a s tocyan in  and  

the re la ted  azur in  s t ructures  s tand  out  as the energet ical ly  mos t  favourable .  A n  add i t iona l  inter-  

est ing ques t ion  is whether  the sequence s t ructure  a l ignment  ca lcula ted  f rom the mean  field is 
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Fig. 15. Alignment of the plastocyanin sequence with the azurin structure. Plastocyanin (PCY) and azurin (PAZ) are 
unrelated at the sequence level but they have similar 3D folds. The figure summarizes the results obtained from the 
sequence structure alignment technique outlined in Fig. 14. The plastocyanin sequence is aligned with 160 conformations 
in our data base and the corresponding mean force energies are calculated. When aligned with the plastocyanin sequence, 
the native plastocyanin and the related azurin conformations stick out with the most favourable mean force energies. The 
structure structure alignment of PCY versus PAZ and the corresponding sequence structure alignment obtained from our 
algorithm are closely related (shaded areas) with only minor deviations in some details. The bold lines on the PAZ 
conformation (bottom) indicate the aligned sequence structure positions, a and b indicate the location of deletions in the 
PAZ conformation relative to the PCY sequence. 
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similar to the alignment obtained from the known 3D structures of these molecules. As sketched 
in Fig. 15, with the exception of some details the two alignments match satisfactorily. 

Sequence structure alignments are currently used in our laboratory to identify unknown folds 
by aligning the sequence of interest with all structures in the data base. This may reveal additional 
native-like pairs which the hide-and-seek approach is unable to detect. It is likely, however, that 
sequence structure alignments may fail in some situations, even if two proteins have very similar 
structures. In terms of sequence structure space, gap opening is equivalent to changes in sequence. 
Therefore, the folding postulate is not applicable in sequence structure alignments and the 
chances are that the alignment procedure goes astray as indicated in Fig. 16. Hence, sequence 
structure alignments may fail even if the force field used to calculate the comparison matrix cij is 
of excellent quality. 

Computation of structures from scratch 
Similar to conventional sequence alignments, a twilight zone exists [32] for sequence structure 

alignments. Proteins related in structure may share a similar architecture but the details may 
differ. If these differences are large, search techniques will fail. In addition, for the unknown fold 
of many sequences there will be no related structure in the data base. In such cases we have to 
resort to techniques which enable the computation of structures from scratch. 

A major strength of data base searches is their computational efficiency. All structures encoun- 
tered in the data base are real and have all the characteristics of native folds. If we leave the firm 
ground of real structures we have to deal with steric overlap, excluded volume effects and similar 
phenomena. A large fraction of structures generated in energy minimization, Monte Carlo and 
molecular dynamics (MD) studies violate basic steric requirements. These structures will not 

t 
conformation 

space C 

sequence space ... 

Fig. 16. Sequence structure alignment in terms of sequence structure space. In the alignment of sequence S with conforma- 
tion C there is no guarantee that we find a native-like sequence structure pair. The introduction of gaps changes the 
sequence S, hence the folding postulate is not applicable, and the chances are that the alignment goes astray. Nonnative- 
like alignments are unmasked by their nonnative energies and profiles but it may be impossible to find the native-like pair 
(filled square) even if we start at a point (S,C) in its immediate neighbourhood. 
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survive, but production of such structures and evaluation of their energy is extremely time- 
consuming. It is therefore advantageous to stick to experimentally determined structures as long 
as possible. 

For small fragments the data base is a rich source of conformations. The accessible conforma- 
tional space of oligopeptides is reasonably modelled by the set of fragments obtained from the 
data base. They cover almost the entire range of possible conformations. Mean force potentials 
have been applied to study the conformational preferences of oligopeptides and sequence frag- 
ments of proteins. The collection of procedures employed in this approach is called Boltzmann 
Device [14]. The major components are: (1) calculation of conformational energies for all frag- 
ments derived from the data base; (2) energy ranking and extraction of low-energy structures 
from the pool of conformations; and (3) conformational analysis, which facilitates the visualiza- 
tion and processing of the preferred ranges of conformations. 

Depending on the sequence, ensembles of short peptides may prefer only one, several or a range 
of conformations [14]. In addition, in the context of the whole protein, parts of the amino acid 
chain may be forced to adopt conformations which are unfavourable for the free oligopeptide. 
Kabsch and Sander [33] discovered pairs of identical pentapeptides which have different folds 
depending on the parent protein. In studies on the conformational ensembles of these sequences, 
we have been able to account for the observed differences [14]. 

We recently extended this approach to the calculation of complete models for protein backbone 
conformations [34]. Low-energy ensembles of overlapping fragments along the amino acid chain 
are assembled to complete conformations for entire proteins. The resulting conformations are 
optimized with respect to local interactions along the chain. A large fraction of the local struc- 
tures assembled for lysozyme, myoglobin and thymosin are close to the structures obtained from 
X-ray and NMR studies. Such locally optimized folds provide reasonable starting points for 
subsequent energy minimization using the complete set of interaction and surface energies. 

A large body of knowledge and skill has been acquired on energy minimization, Monte Carlo 
and MD calculations on proteins using semi-empirical force fields (for reviews see Refs. 
7,9,35,36). These techniques combined with knowledge-based mean fields should be a powerful 
tool for the calculation of native protein folds from scratch. As in the past, the success or failure 
of these techniques will depend on the quality of the force field employed. At the present stage of 
development the knowledge-based force field is able to detect virtually all native folds hidden in 
the polypeptide. As pointed out in previous sections this does not necessarily mean that the global 
minimum of the force field corresponds to the native fold of a protein. 

The current force field is compiled for the backbone atoms (including C ~) only and is therefore 
an incomplete model for the protein-solvent system. In addition there are still numerous ways to 
improve the backbone version using hide-and-seek on a polyprotein as a supporting tool. In spite 
of its incompleteness it is of course tempting to study the performance of the force field in 
combination with energy minimization, Monte Carlo and MD. The results obtained so far are 
encouraging. For example, Monte Carlo calculations on the antennapedia homeodomain in 
conjunction with mean force potentials yield the local structure and overall topoIogy as deter- 
mined by NMR [37] with only minor deviations in the structural details. We are currently 
exploring the performance of the mean field in Monte Carlo and minimization studies on a 
number of different proteins. 
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SUMMARY AND OUTLOOK 

In this final section we touch on a few issues concerning the physical basis and range of 
applicability of knowledge-based mean fields and summarize several important features of the 
mean-field approach to protein folding. Mean force energies are derived from experimental data. 
Hence, they are only valid for the kind of system from which they have been compiled although 
they may be applicable for an extended range of systems. 

The current force field is derived from a data base of soluble globular proteins. Since the 
resulting energetic model strongly depends on the surrounding solvent it cannot be applied to 
membrane proteins which maintain their structures in hydrophobic environments. Surprisingly 
however, the force field can be used to calculate the local structures of membrane proteins with 
some success. If the total pair energy is calculated for k < 10 hide-and-seek is able to identify the 
native fold of membrane proteins hidden in the polyprotein. Seemingly, the local mean forces 
along polypeptide backbones are less dependent on the surrounding solvent as compared to 
long-range (k > 10) and surface forces. A meaningful complete model of the energetic features of 
proteins in hydrophobic environments requires the compilation of mean force energies from a set 
of membrane proteins of known structure. This will be possible once a larger set of membrane 
protein structures is available from experiment. 

A similar question arises in the case of short peptides. The mean force energies are derived from 
complete globular folds and, therefore, they are not necessarily applicable to oligopeptides in 
solution. However, calculations on oligopeptides reveal that the structural preferences derived 
from the mean field largely agree with experimental data obtained from NMR studies [12,13]. 

The intramolecular pair interactions depend on the separation along the sequence. Again, these 
interactions are not necessarily applicable to intermolecular interactions between individual pro- 
tein chains. Amino acid residues within protein chains are forced to interact with each other due 
to the covalent linkage along the polypeptide chain. The intermolecular forces encountered in the 
association of two protein chains lack this constraint. Therefore, the intermolecular forces should 
be compiled from the intermolecular distances between oligomers and molecular associations as 
found in the crystal structures. On the other hand, the intramolecular potentials corresponding to 
large separations along the sequence may be useful models for these intermolecular forces. 

The mean force concept is a statistical approach to protein folding but there is a strong 
connection to basic physical principles. The mean force potentials are combinations of all the 
basic forces which stabilize the native folds of proteins. For example, it is possible to extract 
hydrophobic forces from the mean force potentials [38]. Single amino acid hydrophobicities 
obtained in this study correlate with experimentally observed amino acid solubilities and transfer 
energies. In a recent study Casari and Beyer [39] were able to determine the electrostatic contribu- 
tion to mean force potentials. Their results point to an exponential law of the e-F/r type, consistent 
with the Debye-Hfickel theory. It is noteworthy that the Debye-Hfickel theory is a mean-field 
approach to electrostatic phenomena in solution. The correspondence of mean-force electrostatic 
energies with the Debye-Hiickel theory indicates that mean force potentials are a productive 
source for the study of complex physical phenomena which are difficult to handle by approaches 
based on first principles. 

Statistical analysis of protein structures has a long tradition in protein structure theory. The 
basic feature which distinguishes the approach based on the inverse Boltzmann principle from 
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other approaches is its connection to very general physical principles. In a sophisticated logical 
study Rooman and Wodak [40] have estimated that the extraction of parameters of sufficient 
predictive power requires a data base of at least 1500 unrelated protein structures. In contrast, 
employing the mean force approach [14], parameters of considerable predictive power could be 
derived from a data base as small as 100 proteins [41,42]. 

There have been independent attempts by other groups to apply Boltzmann's principle to 
protein folding. Miyazawa and Jernigan [43], for example, derived a contact potential from a data 
base of known structures. Others proposed contact potentials without explicit reference to 
Boltzmann's principle (e.g. Ref. 23). Wilson and Doniach [44] performed dynamic simulations on 
simplified representations of proteins using knowledge-based potentials. A detailed account of 
these studies is beyond the scope of this review. 

Instead, we summarize several of the most important features which are required for a success- 
ful application of Boltzmann's inverse principle. These features are: (1) definition of a consistent 
energetic frame of reference; (2) use of a structural model which preserves the characteristics of 
genuine protein folds; (3) identification of important variables; and (4) a procedure which enables 
the assessment of the predictive power of the energetic model. 

The most important item in the mean field approach to protein folding is the set of experimen- 
tally determined protein structures. Without them the approach would be meaningless. The data 
have been collected over the last three decades by X-ray crystallographers and NMR spec- 
troscopists in an often painstaking and tiresome effort and we owe a large part of the current 
knowledge on protein folding to the people who determined the structures. Of course, this applies 
only to those who made the structures available. Solved and published structures whose coordi- 
nates remain undisclosed for years are of little use to the scientific community. 

The prospects for the knowledge-based mean field approach to protein folding are exciting. 
The number of experimentally determined structures is increasing at an accelerating rate. The 
growing number of available structures enhances the quality of the potentials as well as the 
chances to find native-like sequence structure pairs in data base searches. At the present stage of 
development the force field supports the experimental determination of protein folds, aids in the 
verification process and reveals native-like sequence structure pairs in data base searches. The 
most ambitious goal is the calculation of native protein folds from scratch. The chances are that 
this will be achieved in the near future. 
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