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S U M M A R Y  

Proteins tend to use recurrent structural motifs on all levels of organization. In this paper we first survey 
the topics of recurrent motifs on the local secondary structure level and on the global fold level. Then, we 
focus on the intermediate level which we call the short structural motifs. We were able to identify a set of 
structural building blocks that are very common in protein structure. We suggest that these building blocks 
can be used as an important link between the primary sequence and the tertiary structure. In this framework, 
we present our latest results on the structural variability of the extended strand motifs. We show that 
extended strands can be divided into three distinct structural classes, each with its own sequence specificity. 
Other approaches to the study of short structural motifs are reviewed. 

I N T R O D U C T I O N  

Although the revolution in molecular biology has greatly enhanced our understanding of  many 

biological phenomena, the process of folding a linear polypeptide chain into an exquisite three- 

dimensional (3D) functional protein is still poorly understood. During the past few years, there 

has been a great deal of excitement and unexpected developments in the area of  protein folding 

[1]. However, some of  the most recent studies seem to blur the picture even further. The role of 

hydrophobicity and its quantitative properties is one example, the elusive role of chaperones is 
another. 

The number of  protein structures determined experimentally by X-ray crystallography and 

N M R  spectroscopy is growing rapidly, with over 1000 entries in the current Brookhaven data- 

base [2]. However, these are lagging far behind (by a factor of  about 50) the number of amino acid 
sequences that have been determined [3]. This gap is likely to widen even further due to the results 
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of the Human Genome project and the rapid sequencing technologies that it promotes. In the 
foreseeable future, this gap can only be closed by improvements in methods of theoretical struc- 
tural predictions. 

There are two main theoretical approaches to protein structural prediction, one based on 
energetic considerations that tries to directly compute the native 3D structure and another one 
based on the body of knowledge accumulated in the structural database that could be exploited 
to facilitate the rational predictions of structures from their amino acid sequence. The most 
successful application of this latter approach is the emerging field of homologous modeling, in 
which an unknown structure is predicted from its sequence and from a known 3D structure with 
a similar sequence. Availability of additional related structures and sequences has been shown to 
be very useful. (See a recent review by Benner [4]). However, when such additional clues are not 
available, neither of these approaches have been successful so far in predicting the native 3D 
structure of a protein. We believe that eventually these approaches will have to be merged in a 
clever way in order to address the folding problem. However, as these approaches are currently 
distinct, we will review them in this way here, with special emphasis on aspects of the database 
approach that we have studied. 

The computational approach is based on the assumption that by minimizing the free-energy 
function associated with a protein, its native structure can be found. This approach must face 
three main questions: First, the energy function is not well understood. The basic forces and 
factors are qualitatively known but their absolute and relative quantitative values are not. Sec- 
ond, the proposed functions, even in a simplified form, do not lend themselves to global minimi- 
zation procedures. Finding a minimum of a function with thousands of variables with high-degree 
terms is beyond the ability of any optimization procedure. This difficulty leads us to the third and 
most intriguing problem. There is no proof that the functional (the so-called 'native') conforma- 
tion is the global free-energy minimum conformation available to the chain. The claim that the 
native conformation of proteins is the lowest possible free-energy conformation was suggested by 
Anfinsen (the thermodynamics hypothesis [5]) and has since been accepted as a dogma. Actually 
this claim is supported by very little direct evidence, and careful consideration of the facts shows 
that they only indicate that each protein has a unique functional conformation and not that this 
conformation is the global minimal free-energy conformation. 

The computational complexity of searching for the global-free minimum in protein models has 
been shown [6,7] to be an NP-hard problem (for a good introduction to the subject of computa- 
tional complexity see Ref. 8). This finding strongly indicates that no efficient algorithm could be 
designed to find the global free-energy minimum. This theoretical consideration suggests that the 
natural folding process itself cannot be guaranteed to reach the global free-energy minimum. This 
is due to the fact that theoretical computational considerations are assumed to bind the behavior 
of natural systems (Church's hypothesis [9]) especially in cases where the similarity between the 
model and the natural problem is high. As the most realistic folding model, molecular dynamics 
(MD) can be simulated on a computer with only a polynomial slowdown; the natural folding 
process seems to be bounded by the theoretical NP-hard proof and hence cannot be guaranteed 
to reach an energetically optimal conformation in each instance. 

The implication of this finding seems to be that a direct brute-force minimization of the energy 
function in order to derive the native conformation is neither feasible nor justifiable. One of the 
advantages of the database approach is that, to a certain degree, it can bypass these unresolved 
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issues. By inspecting the folds in the database, and by exploring the relationship between the 
sequence and the conformation of known structures, one can hope to obtain practical achieve- 
ments even without having highly accurate energy functions, minimizing-prohibiting complicated 
functions, or committing oneself to any side of the global/local minimum issue. 

RESULTS 

Structural motifs 
When one looks at the database of known protein structures, it becomes clear that proteins 

utilize recurrent structural motifs on all levels of organization (for a recent survey see Ref. 10). 
This recurrence is evident at the level of secondary-structure elements, at the level of the local 3D 
structures, as well as at the level of the whole topologies (folds) of domains of proteins. On the 
very local level, the recurrence of secondary-structure motifs has been known for a long time. On 
the global level, the classification of the overall folds and the design of threading algorithms 
aimed to test the compatibility between a sequence and a potential fold have received a great deal 
of attention recently. Our focus here will be on the intermediate level, i.e. the short 3D motifs, 
where we believe a great deal of useful structural information can be found. We start with a brief 
review of the secondary structure and the global fold level. Following this, we concentrate on 
describing the research that has been going on in the last few years on defining and analysing 
short structural motifs. In this framework we will describe our specific approach and some of our 
latest results. 

Secondary structures 
The seminal work of Pauling [11,12] predicted that protein structures are composed of standard 

secondary-structure elements. Interestingly, this work was based on theoretical considerations 
combined with the X-ray structures of several short peptides and preceded the actual determina- 
tion of the first known structures of myoglobin and hemoglobin. The secondary-structure ele- 
ments are mainly defined by the characteristic values of their dihedral angles and by their internal 
hydrogen-bonding patterns. They consist of helices, strands, turns and random coil. Even at the 
level of assigning the secondary-structure elements for a known 3D protein structure there are still 
definition problems. For example, the actual number of meaningful classes varies between differ- 
ent studies. Some methods (for example Ref. 13) consider turns and random coils as different 
objects, with random coil being the default assignment for non-helix, non-extended and non-turn. 
Other methods (for example Ref. 14) only deal with three-state systems (helices, strands, and coil 
which includes turns). Another issue is choosing the 'right' method of assigning a residue in a 
structure to one of these classes. The first objective automated method is due to Levitt and Greer 
[15] and is based mainly on values of dihedral angles, but the more widely used method of Kabsch 
and Sander [16] is based primarily on hydrogen-bonding patterns. Their program DSSP has 
become the standard method, and its assignments are used now as a benchmark to test the 
performance of secondary-structure prediction algorithms. DSSP subclassifies the main element 
types into eight classes (c~-helix, 310-helix, ~t-helix, isolated [3-bridge, extended strand (part of a 
[3-1adder), H-bonded turn, bend, and a random class for residues that do not fit any of the other 
classes). Still, in the context of secondary-structure prediction, evaluations of these substates are 
usually merged into just three states, i.e. ~, [3 and coil. 
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A large number of different algorithms have been proposed to predict the secondary structure 
for sequences of unknown structure. For a recent review see Sternberg [17]. On average, the 
methods have shown similar performance and are able to predict, using the three-state classifica- 
tion, the correct assignment for about 65% of the residues. This 65%-barrier seems to be inherent 
in the system, and to reflect the extent to which the local sequence determines the local structure. 
The conformation of the other 35% must be strongly influenced by interactions with nonlocal 
regions of the protein, i.e. the rest of the tertiary structure. 

Global folds 
Based on the large number of similar folds observed in the structural databse, Chothia [18] has 

recently suggested that the total number of actual folds is limited to about 1500. This estimation 
is based on crude approximations and on a vague definition of folds. Nevertheless, the logic 
behind this calculation implies that there is a limited number of possible folds. The same logic is 
behind the recent emphasis on 'threading' algorithms. These algorithms try to evaluate the fit of 
a sequence to a fold. If indeed, as Chothia suggested, the number of possible folds is not 
enormous, and if those folds will be determined in the next few years, then the protein folding 
problem can be virtually bypassed. It will be possible to determine the conformation of a new 
sequence just by checking its compatibility with the library of all possible folds. Thus, prediction 
could be achieved without a detailed understanding of the folding process. 

Bowie et al. [3] published an important work in this direction. The 3D fold is described by a 1D 
'environment string' in which each position represents the environment of this residue in the fold. 
The value of each position is one of 18 possible classes reflecting properties like solvent accessibil- 
ity, polarity, and secondary structure. Once a fold is converted into a linear sequence of these 
values, it becomes possible to align this sequence with amino acid sequences. The alignment is 
done by a standard dynamic-programming method and the scores of matching an amino acid to 
a certain environment class are calculated from the frequencies of such a match in a database. The 
gap penalties are determined empirically and are aimed at preserving the boundary of the second- 

ary-structure elements. 
This method yielded remarkable results in identifying sequences that are compatible with a 

given environment. For example, the fold of sperm whale myoglobin was shown to be highly 
compatible with any myoglobin sequence. Furthermore, 511 of the 544 globins in the sequence 
database scored better than any non-globins. Yet, the description of the environment is static, 
while introducing a new sequence actually changes the environment. An arrangement of polar 
residues in one structure may be replaced by a cluster of hydrophobic residues in another struc- 
ture while still supporting the same fold. Thus, in cases where the evolutionary distance between 
the sequences is large, and the fold is maintained by compensating mutations which change the 
static environment, the method might fail. We suspect that the limitation to a static environment 
is inherent in the method, and that a different way of representing the fold, rather than the 1D 
environment string, must be considered to overcome this limitation. 

Hendlich et al. [19] suggested a way to extract potentials of mean force from the database and 
to use them to check a matching between a sequence and a fold. The energy of the matching is 
calculated as a sum of pairwise interactions. The values of these interactions were calculated using 
mean force parameters based on counting frequencies in the database, according to (a) amino 
acid types of the pair; (b) the sequence distance between these residues (i.e. how many residues 
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apart they are in the sequence); and (c) the Cartesian distance between the positions they occupy. 
The method was tested by fitting a given sequence to many folds taken from the database. As the 
method does not allow for gaps, each sequence was fitted to continuous portions of folds with the 
same length. (A structure of length N can 'supply' N - L overlapping folds of continuous L 
residues). The method was used successfully, in many cases, to identify the native conformation 
among a large number of incorrect folds of the same length. Note however that because of the 
fixed-size limitation no 'threading' can be performed. This is a clear limitation as it is known that 
many cases of structural homology are only evident when gaps are allowed. 

The method of Bowie et al. [3] utilizes the ability of dynamic-programming algorithms to 
introduce gaps in the appropriate position in the alignment. Hendlich et al. [19] suggested a way 
to score the fit of a given sequence to a given fold. The next major step is to combine the two 
approaches. A first step in this direction was recently suggested by Jones et al. [20]. In this method 
the score of the match is provided by threading the sequence to the fold. This threading is done 
by sliding the sequence along the fold, while introducing insertions and deletions. In this way a 
sequence can be fitted to folds with various sizes. For each thread the energy is calculated as a 
pairwise sum, based on the actual position in which each residue ends up in the fold. This method 
was able, for example, to point out the structural similarity between C-phycocyanin and the 
globin folds, although the sequence similarity is very low. The authors mentioned that in some 
cases the method failed to find the desired similarities. For example, it found a wrong match of 
carp parvalbumin and T4 lysozyme with the globin fold, and missed the right match between 
glycolate oxidase and xylose isomerase. 

Three problems should be discussed at this point. First of all, it is not clear whether indeed the 
energy function that is used is sensitive enough to identify the right fold. Secondly, by introducing 
gaps, the energy calculations are carried out on infeasible structures, in which the distance 
between two consecutive amino acid fragments separated by a gap will be much greater then the 
actual distance possible by the chain connectivity. In Ref. 30 this problem is somehow addressed 
by calculating the energy only for residues in helices and strands (ignoring any loop residues). 
Gaps are not allowed in helices and strands. This conservative solution, while working fine in 
some cases, may be the reason for the failure of the method in others. The third problem arises 
from the algorithm that is used to find the optimal threading. The algorithm of Taylor and 
Orengo [21] for structural alignment is used as a basis for the current work. It is based on a double 
pass of the dynamic-programming procedure by finding, at a low level, the optimal value of 
assigning a specific residue to a specific position, and then using these values as a basis for a 
global alignment at a higher level. The problem is that there is no mechanism to maintain 
consistency between the low-level and the high-level alignments. Thus, there is no guarantee that 
indeed the optimal solution is found. The computational problem of finding the optimal thread- 
ing seems to be very hard. While the algorithm of Jones et al. [20] can be considered a reasonable 
heuristic approach, more robust algorithms are still needed. 

Short structural motifs 
Similar short 3D structural motifs are common to many proteins. Jones and Thirup [22] were 

the first to suggest a use for them. They noticed that the main chain of a particular protein could 
be reconstructed by using fragments of the main chain taken from other structures, e.g. the main 
chain of retinol-binding protein (RBP) could be reconstructed using fragments from only three 
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other known protein structures, with an rms of 1.0 A. Their work mainly suggested that the use 
of known substructures might aid in the initial stages of X-ray structure determination when one 
has to fit a polypeptide chain to an electron density map. Using the same idea, Claessens et al. [23] 
suggested the use of recurrent motifs to build a complete main-chain model. Recently, Levitt [24] 
went a step further and suggested a method to build a full, all-atom model (including side chains), 
starting from the C~ atoms only (and in some regions of the chain not all of the C~ atoms are 
required). By pulling the fragments from the database, using sequence considerations in addition 
to the structural ones, and by averaging the results over many runs, this method shows excellent 
results. On average, the rms distance between the model and the correct structure is: 0.42 A for 
main-chain atoms, 1.72 A for side-chain atoms, and 1.26 ]~ for all atoms. 

These methods actually do not require a systematic analysis of the recurrence of short structur- 
al motifs in the database. As long as each template can pull out a few or even just one good motif 
from the database, the modeling activities can proceed. We believe that a significant amount of 
information is contained in short structural motifs. In order to explore this phenomenon we set 
out to study short 3D motifs in a systematic manner. 

We regard the short fragments as the building blocks of proteins in that they have specific 3D 
conformations and in many cases have some sequence specificity. Actually, we suggest that they 
are in fact another, intermediate, level of protein structure organization. These building blocks 
are actually more meaningful than the conventional secondary-structure (2D) level elements. 
Secondary-structure elements are in general too vague, both in their loose conformation defini- 
tion and in their weak sequence specificity. As the building blocks are more specific in their 
structure and sequence, they may serve as an important link in trying to understand the compli- 
cated relationships between the primary sequence of proteins and their 3D conformation. 

Our first step was to identify the recurrent short structural motifs [25]. We developed an 
algorithm that enabled us to identify the recurrent structural motifs which we call building blocks. 
For this study, we used a set of 82 well-refined proteins as our structural database. In order not 
to include trivially homologous proteins we retained only polypeptides that do not share identical 
dodecamer sequences. Working at the level of Co. atoms only and using fragments of six residues 
(hexamers) in length, we identified 81 building blocks that reoccur at least 35 times in the 
database. The similarity measure defining the recurrence was an rms distance of less than 1 ]~. 
(Note that our rms measure normalizes the score by (n-2) which makes the similarity for hex- 
amers much larger than normalizing just by n, which has been used in several other studies.) Some 
of the more popular building blocks simply describe the common secondary-structure elements, 
but many represent structures of more delicate motifs. For example, many building blocks 
describe specific structural ways to connect helices and strands. Some of those agree with the 
common definitions of turns, but other hexamers display structural consistencies in fragments 
that are considered random coils by standard secondary-structure assignments. 

The building blocks we have identified are shown in Fig. 1. Some of them may look quite 
similar to each other, but the rms distance between any pair of building blocks is at least 1 A. 
These 81 building blocks were able to represent 76% of all hexamers in our database with a 1-A 
rms similarity level, and 92% with an rms of 1.25 A. In some cases the 3D structural similarity 
between hexamers appeared to be very high even though their secondary-structure assignments 
were significantly different. An interesting application of our work can be found in structure 
verification. Some structures may include a few nonstandard hexamers which are not represented 
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F ig .  1. T h e  81 m o s t  c o m m o n  b u i l d i n g  b l o c k s  in  p r o t e i n s .  

by the building blocks. However, their number is usually limited. When we examined the struc- 
tures in the database we found only two exceptions. For 2FD1 (Azotobacter Ferredoxin) only 
14% of its hexamers could fit our building blocks. For 2ABXa (Alpha Bungarotoxin, chain a), 
only 26% of the hexamers were close enough to one of the building blocks. We suggested that such 
a low match indicates a severe problem concerning the accuracy of the structure. As for 2FD1, a 
redetermination of the structure [26a,b] (which can be found as 4FD1 in the PDB database) 
showed the original structure to be incorrect. The 2ABXa case still has to be checked. Hence, we 
suggest that our building blocks, derived by automatic clustering of shapes in the database, can 
be used as a practical first filter in structure verification. 

The frequencies for each position of the amino acids of the hexamers that are associated with 
each building block were counted. This produced a sequence specificity matrix for each building 
block. Many of these matrices show a nonrandom amino acid distribution, but only few of them 
had a signal strong enough to be used as the sole source of a prediction scheme. As will be 
discussed below, Wodak's group decided to concentrate on the fragments that show a strong 
sequence/structure association. 

We suggested [25] that even the weak signals can be useful in predicting the overall conforma- 
tion. The suggested scheme is based on attaining few alternative building-block selections for each 
fragment, and then trying to select a consistent subset to cover the whole chain. This can be done 
by using local smooth connectivity constraints combined with long-range constraints, e.g. form- 
ing sheets from strands, forming disulfide cross links, enabling linkage to known ligands, etc. 

Our next step was [27] to try to understand the source of the high selectivity of the hexamer 
population. Many hexamer shapes can be created by a computer program, even when the allowed 
dihedral angles are restricted to the well-populated regions in the Ramachandran map [28]. We 
showed that if one builds fragments in this simple way, i.e. keeping the distribution of the dihedral 
angles similar to what is found in the database, many of the fragments (ranging from over 90% 



for hexamers to 65% for fragments with a length of 12 residues) will not contain internal colli- 
sions. We showed, however, that many of the fragments produced do not appear in real proteins. 
Thus, it became clear that the single dihedral-angle distribution is not sufficient to dictate protein- 
like 3D fragments. 

We next constructed fragments of the type that maintains the distribution of consecutive pairs 
of dihedral angles as found in the database. In other words, if a dihedral-angle pair (q,, yr,) was 
chosen around one C, atom, the next dihedral-angle pair was randomly chosen, only from the set 
of consecutive dihedral angles in which the first values are similar to (q,, yr,). This procedure 
yielded fragments that were much closer to fragments found in actual proteins. Thus, we conclud- 
ed that the conformations observed in proteins are not a statistical reflection of sampling the 
single dihedral-angle distribution, but rather, they reflect the preferred combinations of dihedral- 
angle pairs. While the local dependency between consecutive pairs of dihedral angles is not large 
enough to dictate the global conformation of the whole protein, in many cases it may be funda- 
mental in dictating the structure of the short structural motifs. 

We focused next on the difference between secondary-structure classification and short struc- 
tural motifs classification [29]. In Ref. 25 it was noticed that the classification into building blocks 
crosses the lines of traditional secondary-structure assignment. If, on the other hand, we examine 
a class of fragments all with the same particular secondary-structure assignment, there is a 
surprisingly large 3D structural variability amongst them. We present here preliminary results on 
the structural variability within the extended-strand motif. We have extracted all of the hexamers 
from our database that have been assigned by the DSSP program [16] to be 'pure' extended 
strands (i.e., assignment of EEEEEE, where E in Kabsch and Sander's (DSSP) terms denotes 
'extended strand, participating in a &ladder7). Longer fragments were considered in an overlap- 
ping manner, e.g., the EEEEEEE heptamer is considered as two consecutive hexamers. Altogeth- 
er, 539 EEEEEE hexamers were found. The distance between hexamers was calculated as the rms 
deviation distance. The histogram of all 144 991 rms distances between the EEEEEE hexamers is 
shown in Fig. 2. The average distance is 1.7 A. The rms values range, however, from virtually 
identical 3D conformations to some pairs with an rms distance of more then 4 A. These numbers 
are higher than one might expect for hexamers with identical secondary assignments and support 
our claim that much structural variation is tolerated within the same secondary-structure motif. 

We attempted to classify the hexamers into compact disjoint structural classes, such that the 
sum of distances within each class would be minimal. Formally, we assigned to each class C, 
(i = 1,. . .n) a set of elements El with centers r, (r, E E,), to minimize the quantity 

In order to minimize Term 1 we designed the following heuristic procedure (based on a variation 
of the K - means algorithm [30]: we chose, randomly, an initial set of elements as centers r,,. . .r, 
and assigned each of the other hexamers e, to the set El if rms(e,,r,) < rms(e,,r,,,). We then 
recalculated the set of centers r,,. . .r, as follows: for each set of elements E,, we selected the center 
r, to be the element whose sum of rms distances to all of the elements in El is minimal. This process 
of assigning elements into classes according to their minimal distance to the centers and then 
recalculating the set of centers was repeated until the set of centers stabilized and did not change 
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Fig 2. The histogram of the distribution o f r m s  distances between each pair of  the 539 EEEEEE hexamers in the database. 

Note that  most  of  the rms distances are between 1 A. and 3 ~ ,  which is surprising for hexamers with idential secondary 

asslgnment.  

in consecutive iterations. This algorithm always converges, but is not guaranteed to minimize 
Term 1. For classification in three subclasses, we ran the algorithm many times with different 
initial centers and in most cases it converged to the following solution (which was the minimum 
among all the solutions we obtained): Class I: 192 hexamers centered around hexamer 157-162 of 
3RP2a (rat mast cell protease, chain a [31]); Class II: 277 hexamers around hexamer 19-24 of 
1FB4h (immunoglobulin fab, chain h [32]); and Class III: 70 hexamers around hexamer 161-166 
of 2SGA (Proteinase A [33]). Figure 3 shows a superposition of 30 hexamers from each of the 
three classes mentioned above, which shows that the classes are structurally homogeneous and 
quite distinct from each other. 

The sequence-specificity matrix of the 539 EEEEEE hexamers is shown in Table 1. The matrix 
is well correlated with the known amino acid preference of extended sheets [34]. Asp, Glu, Asn 
and Pro are underrepresented in the extended-sheet population relative to the overall frequencies, 
while Phe, Ile, Thr, Val and Tyr are overrepresented. 

Each class is associated with its own sequence-specificity matrix. The three matrices are shown 
in Table 2. One can see that the overall matrix (Table 1) is quite flat, namely, for each amino acid 
there is no significant variation along the positions. On the other hand, the more specific matrices 
(Table 2) show high variation along the different positions, with some amino acids preferred in 
specific positions and rejected in others. Another interesting observation is the occurrence of 
glycines. In the EEEEEE population, Gly is present for 9.3%, quite evenly spread in all positions, 
which is approximately the observed overall Gly composition (9.2%) in our database. Thus, as a 
whole, the E residues neither prefer nor reject Gly residues. In the specific classes the situation is 
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Fig. 3. The three classes of the extended-structure family. Thirty hexamers are shown for each class. 

different. Class I has a high content of Gly in all positions, with an average of 12.1%. Class II has 
a low content of  Gly, 6.3% on average. In Class III the average Gly content is the highest, 13.6%, 
and the variability among the different positions is also very large, with 2.9% in the first position 

in contrast to 35.7% in the fourth position! 
To show the significance of  the sequence specificity, we had to show that a random distribution 

of the hexamers into three classes would not yield any sequence specificity related to the classes. 
We divided the EEEEEE population, randomly, into three classes of  the same size as the real 
classes and obtained the sequence-specificity matrices. We then calculated the distances between 
each pair of these matrices. The distance between two sequence-specificity matrices A and B is 

defined as: 

20 6 

Y_. Y_. IA,., - B,.,I (2) 
1=1 J = l  

We averaged this value over the three pairs of matrices. Repeating this random distribution a 
1000 times we derived a mean value of 3 with standard deviation 0.1. The highest observed value 
for random distribution was 3.3. Calculating the distance between each pair of  the real matrices 
yielded an averaged value of  4 which is 10 standard deviations more than randomly expected. The 
strong nonrandom correlation between the sequence and structure subclassifications may enable 
the use of the sequence signal in a more refined prediction scheme. 
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In the a rea  o f  sys temat ic  analysis  o f  shor t  s t ruc tura l  motifs ,  much  w o r k  has  been done  by 

W o d a k ' s  group.  They  concen t r a t ed  on ana lyz ing  the re la t ionsh ip  be tween the sequence and  the 

s t ructure  o f  shor t  s t ruc tura l  motifs .  In  the ear ly studies they conc luded  tha t  the size o f  the 

d a t a b a s e  was too  small  [35] to der ive rel iable  sequence/s t ruc ture  associa t ions ,  and  tha t  the qual i ty  

o f  mos t  der ived  assoc ia t ions  was p o o r  [36]. I t  was then real ized tha t  the p o o r  pe r fo rmance  is 

ac tua l ly  due more  to long- range  in te rac t ions  ra the r  than  to the size o f  the d a t a b a s e  [37]. They  

suggested [38,39] however ,  tha t  shor t  s t ruc tura l  mot i fs ,  which  have a high cor re la t ion  between 

sequence and  s t ructure ,  can be cons idered  as s table  s t ruc tura l  units  tha t  fold  independen t ly  o f  the 

rest o f  the s t ructure .  In  Ref.  39 a m e t h o d  was deve loped  to  pred ic t  the b a c k b o n e  c o n f o r m a t i o n  

f rom the sequence.  In  this w o r k  the emphas i s  was on ident i fying the correct  values  o f  the d ihedra l  

angles (using seven d o m a i n s  in the R a m a c h a n d r a n  m a p  [28] as the s t ruc tura l  states).  F o r  each 

residue, a p red ic t ion  was p e r f o r m e d  independent ly ,  ca lcula t ing  the s t ruc tura l  state for  which  the 

net  energy o f  a local  w i n d o w  of  length  17 (eight residues on  ei ther  side o f  the p red ic ted  centra l  

residue) will be min imal .  The  energy terms are based  on the po ten t i a l  o f  m e a n  force, s imilar ly  to 

the one der ived  by  Hend l i ch  et al. [19]. However ,  since these values are used for  s t ruc tura l  

p red ic t ion  purposes ,  the  frequencies in the d a t a b a s e  are ca lcu la ted  based  on  a m i n o  acid  types and  

sequence distance,  while the Car tes ian  d is tances  be tween pos i t ions  canno t  be considered.  The  

frequencies  cons idered  are those  o f  f inding a specific a m i n o  acid in a specific pos i t ion  inside the 

TABLE1 
SEQUENCE-SPECIFICITY MATRIX OF THEEEEEEE HEXAMERS ~ 

Amino acid Pos. 1 Pos. 2 Pos. 3. Pos. 4 Pos 5 Pos. 6 

A 9.1 7.6 7.3 7.8 8.7 6.9 
C 2.4 4.3 4.1 3.7 2.6 1.5 
D 1.7 2.0 1.9 24 2.4 3.5 
E 2.6 2.8 2.8 2.2 3.7 3.4 
F 4.1 4.1 4.3 6.1 6.5 5.0 
G 9.3 9.9 9.7 10.2 9.1 7.4 
H 2.8 3.4 4.3 2.2 1.9 2.4 
I 7.1 7.1 5.8 5.8 61 5.8 
K 4.7 3.2 3.4 3.9 4.3 4.5 
L 6.7 9.1 8.7 7.8 7.4 7.4 
M 1.3 0.6 1.1 0.9 0.9 1.3 
N 1.3 1.9 2.2 2.2 2.4 4.5 
P 1.1 1.1 0.9 0.6 0.2 1.7 
Q 5.2 2.0 3.5 3.2 4.3 3.7 
R 3.0 1.9 1.7 2.0 3.9 3.5 
S 9.7 8.7 7.6 9.5 8.2 9.9 
T 9.7 10.6 11.3 9.5 10.0 9.7 
V i0.6 12.3 12.5 13.0 11.3 11.7 
W 1.7 1.9 2.0 1.7 1.5 1.7 
Y 6.1 5.8 5.2 5.2 4.5 4.7 

The normalized distribution of amino acids along the six positions of the 539 hexamers in the database that have a 
secondary assignment to EEEEEE. The normalization was done by dividing the counts in each entry by the number (539) 
of hexamers used; the values are given in percentages. 
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TABLE 2 
SEQUENCE DISTRIBUTION MATRICES OF SUBCLASSES OF EXTENDED STRUCTURES a 

Amino acid Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos. 6 

ClassI 
A 5.7 6.8 9.4 6.8 11.5 7.3 

C 3.6 3.6 3.6 2.6 2.1 0.0 

D 0.0 3.1 2.1 2.6 3.6 3.1 

E 2.6 3.6 2.1 3.1 4.2 2.1 

F 6.3 5.2 5.7 6.8 4.7 6.2 

G 13.5 15.6 9.4 12.5 12.0 9.4 

H 2.6 3.6 4.2 2.6 1.0 2.1 

I 10.4 2.1 3.6 7.3 5.7 6.8 

K 3.6 3.1 3.6 3.1 2.6 4.2 

L 5.7 7.8 7.8 6.8 5.2 8.3 

M 1.0 0.5 0.5 1.6 0.0 0.5 

N 1.6 1.0 5.2 0.5 3.6 4.2 

P 2.1 0.5 2.1 0.0 0.5 2.6 

Q 3.6 3.6 3.1 4.2 4.2 5.2 

R 2.1 3.6 1.0 1.0 4.2 3.6 

S 10.4 6.8 9.4 7.3 8.3 7.8 

T 6.8 14.6 10.9 8.9 14.6 4.2 

V 9.9 10.4 10.4 14.1 7.3 15.6 

W 3.6 1.0 2.1 1.0 0.5 0.5 

Y 4.7 3.1 3.6 7.3 4.2 6.3 

ClassII 
A 10.5 6.9 6.9 7.6 7.9 5.8 

C 2.2 5.4 5.4 4.7 3.6 2.9 

D 2.9 1.8 1.1 2.2 1.8 4.3 

E 1.4 2.5 3.2 1.8 3.6 4.3 

F 3.2 3.6 3.6 6.9 8.7 3.6 

G 7.9 6.5 8.3 2.5 6.5 5.8 

H 2.9 3.6 4.3 2.2 2.9 2.9 

I 5.8 11.2 7.2 5.8 5.4 4.7 

K 5.1 3.6 3.2 4.0 5.8 5.4 

L 6.9 8.3 9.0 9.7 9.0 7.6 

M 1.4 0.7 1.8 0.7 0.7 2.2 

N 1.1 2.5 0.7 2.2 1.4 4.3 

P 0.8 0.7 0.0 0.7 0.0 1.4 

Q 6.5 1.1 3.2 2.9 4.3 3.6 

R 3.2 0.7 2.2 2.9 3.6 3.6 

S 9.0 9.7 5.8 11.2 7.2 11.2 
T 9.4 7.9 11.2 10.5 7.6 10.8 

V 10.8 12.3 13.4 14.4 13.7 10.1 

W 0.7 1.8 2.5 2.5 2.5 1.8 

Y 8.3 9.0 6.9 4.7 3.6 3.6 



TABLE 2 (continued) 

Amino acid Pos. 1 Pos. 2 Pos. 3 Pos. 4 Pos. 5 Pos 6 
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C l a s s l l I  
A 12.9 129 2.9 11.4 4.3 10.0 
C 0.0 1.4 0.0 2.9 0.0 0.0 
D 1.4 0.0 4.3 2.9 1.4 1.4 
E 7.1 1.4 2.9 1.4 2.9 2.9 
F 1.4 2.9 2.9 1.4 2.9 7.1 
G 2.9 7.1 15.7 35.7 11.4 8.6 
H 2.9 1.4 4.3 1.4 0.0 1.4 
I 4.3 4.3 4.2 1.4 10.0 7.1 
K 5.7 1.4 2.9 5.7 4.3 1.4 
L 8.6 15.7 10.0 2.9 7.1 5.7 
M 1.4 0.0 0.0 0.0 4.3 0.0 
N 1.4 1.4 0.0 7.1 2.9 5.7 
P 0.0 5.7 1.4 1.4 0.0 0.0 
Q 4.3 1.4 5.7 1.4 4.3 0.0 
R 4.3 1.4 1.4 1.4 4.3 2.6 
S 10.0 10.0 10.0 8.6 11.4 10.0 
T 18.6 10.0 12.9 7.1 7.1 20.0 
V 11.4 17.1 15.7 4.3 I2.9 7.1 
W 0.0 4.3 0.0 0.0 0.0 4.3 
Y 1.4 0.0 2.9 1.4 8.6 4.3 

Three normalized sequence distribution matrices of subclasses I, II and III of the extended-structure family. Note the 
large variability of frequencies along the different positions for many of the amino acids. 

window,  and  o f  f inding a specific pa i r  o f  amino  acids  in a specific pa i r  o f  pos i t ions  inside the 

w i n d o w  when the centra l  res idue is in a specific s t ruc tura l  state. This  m e t h o d  can  be cons idered  

to be a s t ruc tura l  extens ion to the G O R  secondary- s t ruc tu re  p red ic t ion  [13], as this p red ic t ion  

scheme is able  to cons t ruc t ,  based  on the s t ruc tura l  s tate o f  each residue, a t race o f  the p ro te in  

backbone .  The  m e t h o d  showed p romis ing  results  in de te rmin ing  the s t ructure  o f  f ragments  tha t  

were shown exper imenta l ly  to have a s table s t ructure  as pept ides .  Unfo r tuna te ly ,  this s tudy d id  

no t  r epo r t  on the relat ive impor t ance  o f  the  different  f requencies  tha t  were cons idered  for  the 

poten t ia l .  I t  wou ld  be in teres t ing to k n o w  wha t  the i m p o r t a n c e  o f  the pai rs  is versus the single 

amino  acids  counts ,  and  wha t  the relat ive impor t a nc e  o f  different  pos i t ions ,  or  pos i t ion  pairs ,  is 

in the final ass ignment .  

In  a very recent  set o f  papers ,  this g roup  went  a step further .  In  Ref. 40 a m e t h o d  was deve loped  

to scan a p ro te in  sequence in o rde r  to detect  f r agments  for  which  a specific c o n f o r m a t i o n  is highly 

p re fe r red  over  a l te rna t ive  confo rma t ions .  F r a g m e n t s  o f  prefer red  c o n f o r m a t i o n  are those  for 

which the energy gap  between the best  c o n f o r m a t i o n  and  the next  dis t inct  c o n f o r m a t i o n  is large.  

As  this energy is ca lcu la ted  only  f rom ne ighbor ing  residues,  such f ragments  are  suggested to have 

a local  s table con fo rma t ion ,  and  thus serve as a nuc lea t ion  site to ini t ia te  the fo ld ing  process.  The  

concept  is s imi lar  to tha t  o f  M o u l t  and  Unge r  [41] in which  f ragments  tha t  local ly  (wi thout  

ass is tance f rom o ther  regions  o f  the pro te in)  bu ry  a significant p o r t i o n  o f  h y d r o p h o b i c  surface 

area  f rom the solvent  were suggested to be in i t ia t ion  sites for  the fo ld ing  process.  The  progress  



here is in the attempt to identify these fragments from the sequence alone without additional 
structural information. 

The next question Wodak's group addressed dealt with the conservation of the regions with 
preferred conformation. If indeed these regions play a significant role in folding and stability then 
they should be highly conserved within related families of sequences. In this context what should 
be conserved is not the actual sequence of a region, but rather its predicted preferred conforma- 
tion. In Ref. 42, fragments that have preferred conformations were traced within their sequence 
families (i.e. a family of sequences with a high sequence similarity to the sequence containing the 
fragment). To enable a full analysis, the fragments were taken from known structures. It was 
found that, in 13 such families, at least one region was predicted to have the same preferred 
conformation in all the members of the family. The conservation of the conformation is not 
trivially linked to sequence conservation as the sequence conservation in these regions was not 
higher than the overall sequence conservation within the family. These regions are suggested to 
be important to the folding process as they may guide all the members of the family to be folded 
in a similar pathway. The authors mentioned however that a high level of overall sequence 
similarity within the family is needed to guarantee the existence of such guiding regions. Thus, it 
may follows that members of families that share the same fold but have a low overall sequence 
conservation may be folded using different pathways. This implication still needs more directly 
convincing support. 

In another, more restricted domain, similar results have been obtained. Specifically in the study 
of antigen-binding loops in immunoglobulins [43,44], it was shown that there are some 'canonical 
forms' of loops. The specific shape of the loop is associated with specific amino acids that can 
form those loops. 

CONCLUSIONS 

During the past few years the role of short structural motifs in our understanding of protein 
structures has become increasingly important. Computationally, as a basis for a 3D prediction 
scheme, there is a clear advantage in using the building blocks rather than standard secondary- 
structure elements. Unlike secondary-structure elements, the building blocks have tertiary mean- 
ing, in the sense that concatenating them in an overlapping manner produces a 3D chain. In 
contrast, secondary-structure elements do not carry a great deal of 3D information; fragments 
with identical secondary-structure assignment can still be very different from a structural point of 
view. Even if the secondary-structure elements of a protein are known, it is not obvious how to 
combine them into a 3D structure. In addition, it appears to be easier to assign building blocks 
from the sequence rather than secondary-structure elements. The 3D information content of the 
building blocks leads us to regard them more like units on a '2.5D' level of protein structure 
organization. The next step should be a procedure that will merge the strong prediction signal 
from some of the building blocks with the weaker signal of the others. Combined, this informa- 
tion should be further incorporated into a threading algorithm to overcome the limitations of the 
current algorithms, by providing a way to model the regions of the chain which have to be 
inserted into a given fold. 
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